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Abstract. The present work analyzes the quality and reliability of an important class of general-purpose, second-order accurate

finite-volume (FV) solvers for the large-eddy simulation of a neutrally-stratified atmospheric boundary layer (ABL) flow. The

analysis is carried out within the OpenFOAM® framework, which is based on a colocated grid arrangement. A series of

open-channel flow simulations are performed
::::::
carried

:::
out

:
using a static Smagorinsky model for sub-grid scale momentum

fluxes and
::
in

::::::::::
combination

:::::
with

:
an algebraic equilibrium wall-layer model. The sensitivity of the solution to variations in5

numerical parameters such as grid resolution (up to 1603 control volumes), numerical solvers, and interpolation schemes

for the discretization of the nonlinear term is studied
:::::::
nonlinear

:::::
terms

::
is
:::::::::

evaluated and results are contrasted against those

from a well established mixed pseudo-spectral–finite-difference code. Considered flow statistics include the mean streamwise

velocity, resolved Reynolds stress, turbulence intensities, skewness , kurtosis, spectra and spatial autocorrelations. The structure

of
:::::::
stresses,

:::::::
velocity

::::::::
skewness

:::
and

:::::::
kurtosis,

:::::::
velocity

::::::
spectra

::::
and

::::::::
two-point

::::::::::::::
autocorrelations.

::
A

:::::::
quadrant

:::::::
analysis

:::::
along

::::
with

:::
the10

::::::::::
examination

::
of

:::
the

:::::::::::::::::::
conditionally-averaged

::::
flow

::::
field

:::
are

:::::::::
performed

::
to

:::::::::
investigate

:::
the

:
mechanisms responsible for momentum

transfer in the flowsystem is also discussed via a quadrant and a conditional-flow analysis. At the considered
:
It
::
is
::::::

found

:::
that,

:::
at

:::
the

:::::::
selected

:::
grid

:
resolutions, the considered class of FV-based solvers yields a poorly correlated flow field and is not

able to accurately capture the dominant mechanisms responsible for momentum transport in the ABL, especially when using

linear interpolation schemes for the discretization of non-linear terms. The latter consist of sweeps
:
.
::::::::::
Specifically,

:::
the

::::::::
predicted15

::::
flow

::::
field

::::
lacks

:::
the

:::::::::::
well-known

:::::
sweep

:
and ejection pairs organized side by side along the cross-stream direction,

:::::
which

:::
are

representative of a streamwise roll mode. This
::
is

::::::::
especially

::::
true

:::::
when

:::::
using

:::::
linear

::::::::::
interpolation

::::::::
schemes

::
for

:::
the

::::::::::::
discretization

::
of

::::::::
nonlinear

:::::
terms.

::::
This

:
shortcoming leads to a misprediction of flow statistics that are relevant for ABL

:::
flow

:
applications and

to an enhanced sensitivity of the solution to variations in grid resolution,
::::
thus calling for future research aimed at reducing the

impact of modeling and discretization errors.20

Copyright statement. TEXT

1



1 Introduction

An accurate prediction of atmospheric boundary layer (ABL) flows is of paramount importance across a wide range of fields and

applications, including weather forecasting, complex terrain meteorology, agriculture, air quality modeling and wind energy

(Whiteman, 2000; Fernando, 2010; Calaf et al., 2010; Oke et al., 2017; Shaw et al., 2019).25

Since the early work of Deardorff (1970), the large eddy simulation (LES) technique has spurred considerable insight on the

fundamental dynamics of ABL flow over rough surfaces (Anderson and Meneveau, 2010; Salesky et al., 2017; Momen et al.,

2018), over and within plant and urban canopies (Yue et al., 2007b; Bailey and Stoll, 2013; Pan et al., 2014; Tseng et al., 2006;

Bou-Zeid et al., 2009; Giometto et al., 2017; Li and Bou-Zeid, 2019), and ABL flow for wind energy applications (Calaf et al.,

2010; Abkar and Porté-Agel, 2013; Stevens and Meneveau, 2017), amongst others.30

The majority of past works has relied on fully or partially dealiased mixed pseudo-spectral–finite-difference (PSFD) solvers—

the go-to approach for LES studies since the works of Moin et al. (1978) and Moeng (1984). Such solvers are known to yield

accurate flow fields up to the LES cutoff frequency and to produce good results when used in conjunction with dynamic sub-

grid scale (SGS) models (Germano et al., 1991; Lilly, 1992), even when relying on a low-order finite-difference discretization

in the vertical coordinate direction. However, single domain PSFD-based solvers are limited to regular domains, are not suit-35

able for the simulation of non-periodic flows and sharp variations in the flow field such as shocks or gas-solid interfaces ,

and typically feature poor scaling
:::::::::
fluid-solid

::::::::
interfaces

::
in

::::::::
boundary

::::
layer

::::::
flows,

:::
and

:::
are

::::::::
typically

::::::
difficult

::
to
:::::::::
parallelize

:
owing

to the global support of their spatial representation (see e.g. Margairaz et al., 2018). With the increasing need to account for

complex geometries and multi-physics, several efforts have been devoted to the mitigation of the aforementioned limitations

(Fang et al., 2011; Li et al., 2016; Chester et al., 2007). The solutions, however,
::::::::
However,

:::
the

::::::::
solutions are often ad-hoc or40

validated only for specific applications, thus introducing a degree of uncertainty in model results that is hard to quantify and

generalize.

There is hence a growing interest from the ABL community in LES solvers based on compact spatial schemes via structured

or unstructured meshes (Orlandi, 2000; Ferziger and Peric, 2002). The parallelized large eddy simulation model (Raasch and

Schröter, 2001; Maronga et al., 2015) and the weather research and forecasting model (Skamarock et al., 2008; Powers et al.,45

2017) are prominent examples of said efforts. Both the approaches are based on a high-order finite-difference discretization
:
,

and nonlinear terms are
::::
with

::::::::
nonlinear

::::
terms

:
approximated by using high-order upwind biased differencing schemes. The latter

are suitable for LES in complex geometries with arbitrary grid stretching factors and outflow boundary conditions (Beaudan

and Moin, 1994; Mittal and Moin, 1997), but are dissipative and do not strictly conserve energy. On the other hand, if central

schemes are used instead for the evaluation of nonlinear terms, no numerical dissipation is introduced, but truncation errors50

can have an overwhelming impact on the computed flow field (Ghosal, 1996; Kravchenko and Moin, 1997). These limitations

typically result in a strong sensitivity of the solution to properties of the spatial discretization and numerical scheme (Mey-

ers et al., 2006, 2007; Meyers and Sagaut, 2007; Vuorinen et al., 2014; Rezaeiravesh and Liefvendahl, 2018; Breuer, 1998;

Montecchia et al., 2019). Further, truncation errors corrupt the high wavenumber range of the solution, restricting the ability

to adopt dynamic LES closure models which make use of information from the smallest resolved scales of motion to evaluate55
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the SGS diffusion (Germano et al., 1991). Notwithstanding these limitations, central schemes have been heavily employed in

the past in both the geophysical and engineering flow communities, and are the de-facto standard in the wind engineering one,

where most of the numerical simulations are carried out using second-order accurate finite-volume (FV) -based solvers (Stovall

et al., 2010; Churchfield et al., 2010; Balogh et al., 2012; Churchfield et al., 2013; Shi and Yeo, 2016, 2017; García-Sánchez

et al., 2017, 2018).60

Motivated by the aforementioned needs, the present study aims at characterizing the quality and reliability of an important

class of second-order accurate FV solvers for the LES of neutrally-stratified ABL flows. The analysis is conducted in the open-

channel flow setup (no Coriolis acceleration) via the OpenFOAM® framework (Weller et al., 1998; De Villiers, 2006; Jasak

et al., 2007). A suite of simulations is carried out varying physical and numerical parameters, including grid resolution (up to

1603 control volumes), the
::::::::
numerical solver, and interpolation schemes for the discretization of the non-linear terms

::::::::
nonlinear65

::::
term. Predictions from the FV solvers are contrasted against the results from the Albertson and Parlange (1999) PSFD code in

terms of first-, second-, and higher-order statistics, energy spectra, spatial
::::
flow

::::::::
statistics,

::::::::
including

:::::
mean

:::::::::
streamwise

::::::::
velocity,

:::::::
resolved

::::::::
Reynolds

:::::::
stresses,

:::::::::
two-point

:::::::
velocity autocorrelations, and mechanisms supporting momentum transport. The end

goal is to provide a more nuanced understanding of the capabilities of general-purpose, second order, FV-based solvers in

predicting ABL flow.70

The work is organized as follows. Section 2 briefly summarizes the governing equations, the numerical methods and the

::::::::::
summarizes

:::
the setup of the problem, along with a summary of the simulated cases

::
the

:::::::::
simulation

::::::::
database,

:
and the post-

processing procedure. Results are shown in §3 and conclusions are drawn in §4. A
:::::
further

:
discussion on the sensitivity of the

solution to model constants, interpolation schemes
:
, and numerical solvers is provided in the Appendix.

2 Methodology75

2.1 Governing equations and numerical schemes

In the following, vector and index notations are used interchangeably, according to needs,
::
We

:::
use

:::::
index

:::::::
notation

:
in a Cartesian

reference system. The spatially-filtered Navier–Stokes equations are considered,

∂ui
∂t

+
:::::

u
:j
∂ui
∂xj

=−1

ρ

∂p̃

∂xi
− ∂τij
∂xj
−
∂τSGS,dev
ij

∂xj
− 1

ρ

∂P

∂xi
,

::::::::::::::::::::::::::::::::::::::

(1)

∂ui
∂xi

= 0 ,
:::::::

(2)80

∇ ·u = 0 ,

∂u
∂t +∇u ·u =− 1

ρ∇p̃+∇ · τ −∇ · τSGS,dev − 1
ρ∇P ,
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where u = (ux,uy,uz) = (u,v,w)
:::::
where

:::::::::::
ui = (u,v,w)

:
is the spatially-filtered velocity field along the streamwise (x), cross-

stream (y) and vertical (z) coordinate directions,
::::::::::
respectively, t is the time, ρ is the constant fluid density (Boussinesq approx-

imation), p̃≡ p+ 1
3τ

SGS
kk is the pressure termwith an additional contribution from the sub-grid kinetic energy ( 1

2τ
SGS
kk ), τ85

::::::::::::
p̃≡ p+ 1

3τ
SGS
kk ::

is
::
a

:::::::
modified

::::::::
pressure

:::::
term,

::
τij:is the filtered viscous stress tensor, τSGS,dev

:::
and

::::::::
τSGS,dev
ij :

is the deviatoric

part of the SGS stress tensor. In addition, the term − 1
ρ∇P is a pressure gradient , here assumed to be constant and uniform,

responsible for
::::::
− 1
ρ
∂P
∂xi::

is
::
an

::::::::
imposed

::::::
costant

:::::::
pressure

:::::::
gradient

:
driving the flow. The filtered

:::::::::::::
spatially-filtered

:
viscous tensor is

τ =−2νS
:::::::::::
τij =−2νSij , where ν = const is the kinematic viscosity of the Newtonian fluid and S

:::
Sij is the resolved (in the

LES sense) rate of strain tensor. For the SGS stress tensor, the static Smagorinsky model is used,90

SGS,devτSGS,dev
ij

:::::::

=−2νSGSSSGSSij
:::::

=−2(CSS∆)2|SS
:
|SSij

::
, (3)

where νSGS
::::
νSGS

:
is the SGS eddy viscosity,CS ::

CS is the Smagorinsky coefficient (Smagorinsky, 1963), ∆ = (∆x∆y∆z)1/3

is a local length scale based on the volume of the computational cell (Scotti et al., 1993), and |S|=
√

2S : S
:::::::::::::
|S|=

√
2SijSij

quantifies the magnitude of the rate of strain. In the present work, CS = 0.1
::::::::
CS = 0.1, unless otherwise specified. Note that

dynamic Smagorinsky models are preferred to the static one for the LES of ABL flows (Germano et al., 1991; Lilly, 1992;95

Meneveau et al., 1996; Porté-Agel, 2004; Bou-Zeid et al., 2005). Dynamic models evaluate SGS stresses via first-principles-

based constraints, feature improved dissipation properties when compared to the static Smagorinsky one (especially in the

vicinity of solid boundaries), and are free of explicit modeling parameters. The choice made in the present study is motivated

by problematics encountered when using the available dynamic Lagrangian model in preliminary tests. However, while SGS

dissipation plays a crucial role in PSFD solvers, truncation errors may overshadow SGS stress contributions in the second-order100

FV-based ones (Kravchenko and Moin, 1997). The static Smagorinsky SGS model used herein might hence perform similarly

to dynamic SGS models for the considered flow setup. This conjecture is supported by the results of Majander and Siikonen

(2002).

The large scale separation between near-surface and outer-layer energy containing ABL motions poses stringent resolution

requirements to numerical modelers, if all the energy containing motions have to be resolved. To reduce the computational105

cost of such simulations, the near-surface region is typically bypassed, and a phenomenological wall-layer model is lever-

aged instead to account for the impact of near-wall (inner-layer) dynamics on the outer-layer flow (Piomelli, 2008; Bose and

Park, 2018). This approach is referred to as wall-modeled large eddy simulation (WMLES) and is used herein. An algebraic

wall-layer model for surfaces in fully rough aerodynamic regime was implemented, based on the logarithmic equilibrium

assumption, i.e.,110

|uũ
:
|= u∗

κ
ln
( z
z0

)
, (4)

where |u| ≡
√
u2 + v2

:::::::::::::
|ũ| ≡

√
u2 + v2 is the norm of the velocity at a certain distance from the ground level, u∗ is the

friction velocity (see Sub-Section 2.2 for details), κ is the von Kármán constant, z is the distance from the ground level and
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z0 is the so-called aerodynamic roughness length, a length-scale used to quantify the drag of the underlying surface. In this

workwe define
:
,
:::
the

::::::
values κ= 0.41 and z0 = 0.1 m

::
are

:::
set. The kinematic wall shear stress is assumed to be proportional to115

the local velocity gradient (Boussinesq hypothesis),

τ iz,wiz,w
:::

= (ν+ νtt)
∂ui
∂z

∣∣∣ww
:
, i= x,y , (5)

with νt being
::
νt the total eddy viscosity. Employing the no-slip condition for the velocity field, the standard FV approxima-

tion of the shear stress at the wall gives (Mukha et al., 2019)

τ iz,wiz,w
:::

= (ν+ νtt)f
ui,c
∆z

f
ui,c
∆z

::::

, i= x,y , (6)120

where the subscript f f
:
is used to denote the evaluation at the center of the wall face, the subscript c

:
c denotes the evaluation

at the center of the wall-adjacent cell and ∆z is the distance from the wall. From the logarithmic law (Eq. 4) evaluated at

the first cell-center, one can write u∗ = κ|u|c/ ln(∆z
z0

)
::::::::::::::::
u∗ = κ|ũ|c/ ln(∆z

z0
). Using the definition of friction velocity u∗ =

√
τ2
w,

where τw :::::::::
u∗ =

√
τ2
w,

::::::
where

:::
τw is the magnitude of the kinematic wall shear stress vector, along with Eq. 5and rearranging

terms
:
,
:::
and

::::::::::
rearranging, the total eddy viscosity at the wall can be written as125

νt,f t,f
:

=

(
κ|u|c

ln
(∆z

z0

) κ|ũ|c

ln
(∆z

z0

)
:::::::

)2
∆z

|u|c
∆z

|ũ|c
:::

− ν , (7)

which is the formulation implemented herein. Note that ν+ νt ≈ νt :::::::::
ν+ νt ≈ νt:

in boundary layer flows in fully rough

aerodynamic regime, so that ν could be neglected without loss of accuracy.

In the OpenFOAM® framework
::::::
present

:::::
work, the computational grid is colocated,

::::::
being

:::
the

::::::::
colocated

::::
grid

:::::::::::
arrangement

::
the

:::::
only

:::
one

::::::::
available

:::::
within

:::
the

::::::::::::
OpenFOAM®

::::::::::
framework. Although

::::
Note

::::
that,

:::::::
although

:
advantageous in complex domains130

when compared to staggered grids (Ferziger and Peric, 2002), the colocated arrangement is known to cause difficulties with

pressure-velocity coupling, hence requiring specific procedures to avoid oscillations in the solution. The
::::::::::::
OpenFOAM®

:::::
offers

::
the

:
standard Rhie-Chow correction (Rhie and Chow, 1983)is here adopted, which is known to negatively affeect

:::::
affect the

energy-conservation properties of central schemes (Ferziger and Peric, 2002). In addition, when approximating the integrals

over the surfaces bounding each control volume (as a consequence of the Gauss divergence theorem), the unknowns are evalu-135

ated at face-centers and are assumed to be constant at each face, yielding an overall second-order spatial accuracy (Churchfield

et al., 2010). Since the divergence form of the convective term is used in combination with a low-order scheme over a non-

staggered grid, the solution is inherently unstable (Kravchenko and Moin, 1997). The present work makes use of the linear

and the QUICK interpolation schemes (Ferziger and Peric, 2002) to evaluate the unknowns at face-centers (more details are

provided in § 2.2). The numerical solver combines
:
is

:::::
based

:::
on the PISO algorithm (Issa, 1985) for the pressure-velocity calcu-140

lation and
::
on

:
an implicit Adams–Moulton scheme for time integration (Ferziger and Peric, 2002). The

:
In

:::
the

::::::::
Appendix

::::
A2,

:::
the
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performances of an alternative solver characterized by
::::
with a Runge–Kutta time-advancement scheme and a projection method

for the pressure-velocity coupling (Vuorinen et al., 2014) are also analyzedin the Appendix A2
:::::::
analyzed.

2.2 Problem setup

A series of WMLES of ABL flow (open-channel flow setup) is performed. Tests are carried out in the domain [0,Lx]×[0,Ly]×145

[0,Lz] with Lx = 2πh, Ly = 4
3πh, Lz = h, where h= 1000 m denotes the width of the open channel. Symmetry is imposed at

the top of the computational domain, no-slip applies at the lower surface and periodic boundary conditions are enforced along

each side. A kinematic pressure gradient term − 1
ρ∂P/∂x= 1 m/s2

::::::::::::::
− 1
ρ
∂P
∂x = 1 m/s2

:
drives the flow along the x coordinate

direction, yielding u∗ = 1 m/s. The kinematic viscosity is set to a nominal value of 10−7 m2/s, which results in an essentially

inviscid flow.150

The computational mesh is Cartesian, with a uniform stencil along each direction. Three simulations are run, over 643,

1283 and 1603 control volumes, with the linear interpolation scheme for the evaluation of the unknowns at the face-centers

(simulations FV64, FV128 and FV160, respectively). Three additional simulations are run, over
:
at
:
the same grid resolutions,

with the linear scheme for the approximation of every term except for the nonlinear one, for which the QUICK scheme is

used instead (simulations FV64*, FV128* and FV160*). The cases span different grid resolutions at the same aspect ratio155

∆x/∆z = 2π. Note that the chosen grid resolutions are in line with those typically used in studies of ABL flows using a
::::
flow

::::
with

:::
the pseudo-spectral approach (see, e.g., Salesky et al., 2017). All the calculations satisfy the Courant–Friedrichs–Lewy

(CFL) condition Co. 0.1, where Co
:::::::
C . 0.1,

::::::
where

::
C

:
is the Courant number. Runs are initialized from a fully developed

open-channel flow simulation in statistically steady state (dynamic equilibrium), and time integration is carried out for 100 eddy

turnover times, where the eddy turnover time is defined as h/uτ ::::
h/u∗. Flow statistics are the result of an averaging procedure160

in
::::
over the horizontal plane of statistical homogeneity of turbulence (xy) and in time over the last 60 eddy turnover times.

The procedure yields well converged statistics throughout the considered cases. In the following, the horizontal and temporal

averaging operation is denoted by 〈·〉.
Results

::::
The

:::::
results

:
from the present study are contrasted against

::
the

:
corresponding ones from the Albertson and Parlange

(1999) mixed PSFD code (simulations PSFD64, PSFD128 and PSFD160). The code is based on an explicit second-order165

accurate Adams–Bashforth scheme for time integration and on a fractional-step method for solving the system of equations.

Simulations from the PSFD solver are carried out using a static Smagorinsky SGS model with Cs = 0.1
:::::::
CS = 0.1, a rough

wall-layer model with z0 = 0.1 m, and Co. 0.1
:::::::
C . 0.1. A summary of the runs is given in Tab. 1 along with the acronyms

used in this study.

3 Results170

This Section is devoted to the analysis of velocity central moments (§3.1), spectra and spatial autocorrelations (§3.2), and

momentum transfer mechanisms (§3.3).
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Table 1. Tabulated list of cases.

simulation FV64 FV128 FV160 FV64* FV128* FV160* PSFD64 PSFD128 PSFD160

grid resolution
:::::::::::
Nx×Ny ×Nz: 643 1283 1603 643 1283 1603 643 1283 1603

numerical solver FV FV FV FV + QUICK FV + QUICK FV + QUICK PSFD PSFD PSFD
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Figure 1. Vertical structure of mean streamwise velocity 〈u〉/u∗ (a), streamwise velocity RMS
:::::::
u′RMS/u∗:(b), cross-stream velocity RMS

:::::::
v′RMS/u∗ (c) and vertical velocity RMS

::::::::
w′RMS/u∗ (d). The red line in (a) denotes the reference logarithmic profile and the red line in (b) is

a reference profile from Hultmark et al. (2013).

3.1 Mean velocity, Reynolds stresses, and higher order statistics

:::::
Figure

::
1

:::::
shows

::::
first

:::
and

::::::
second

::::
order

::::::::
statistics

:::
for

::
all

:::
the

:::::::::
considered

:::::
cases.

:
The mean streamwise velocity is shown in Fig. 1(a),

in a comparison with the phenomenological logarithmic-layer profile. The velocity at the first two cell-centers off the wall is175

consistently underpredicted, whereas a positive log-layer mismatch (LLM) is observed in the bulk of the flow (Kawai and

Larsson, 2012). The LLM is particularly pronounced for the cases using the QUICK interpolation scheme. This behavior could

have been anticipated, as the wall shear stress is evaluated using the instantaneous horizontal velocity at the first cell-center

off the wall. A number of procedures have
:::
has been proposed to alleviate the LLM, including modifying the SGS stress model

in the near-wall region (Sullivan et al., 1994; Porté-Agel et al., 2000; Chow et al., 2005; Wu and Meyers, 2013), shifting the180

matching location further away from the wall (Kawai and Larsson, 2012), and carrying out a local horizontal/temporal filtering

operation (Bou-Zeid et al., 2005; Xiang et al., 2017). In preliminary runs, we implemented the approach of Kawai and Larsson

(2012)
:::
was

:::::::::::
implemented

:
in an attempt to alleviate the LLM, but .

::::::::
However,

:
no apparent improvement was observed and the

solution became very sensitivity to grid resolution and matching location. This finding suggests that alternative procedures

7



Table 2. Relative error on the turbulence intensities ||u′−u′ref ||L2/||u′ref ||L2
::::::::::::::::::::::::::::
||u′RMS−u′RMS,ref ||L2/||u′RMS,ref ||L2

:
w.r.t. the reference

profile from Hultmark et al. (2013), in the interval z0/h≤ z/h≤ 0.4.

simulation FV64 FV128 FV160 FV64* FV128* FV160* PSFD64 PSFD128 PSFD160

relative error on u′
:::::
u′RMS 0.2259

:::
0.23

:
0.1696

:::
0.17

:
0.1722

:::
0.17

:
0.2808

:::
0.28

:
0.2036

:::
0.20

:
0.1965

:::
0.20

:
0.1050

:::
0.10

:
0.0489

:::
0.05

:
0.0683

:::
0.07

:

might need to be devised to overcome the LLM in ABL flow simulations
::::
when

:
using the considered class of FV solvers. Note185

that profiles from the PSFD solver also feature a positive LLM, in spite of a spatial, low-pass filtering operation that is carried

out on the horizontal velocity field before evaluating the surface shear stress (Bou-Zeid et al., 2005).

The vertical structure of turbulence intensities is also shown in Fig. 1, where (·)′
::::::
(·)′RMS denotes the root mean square

(RMS) of the fluctuations. Profiles from the FV-based solver start off relatively slow at the wall when compared to those from

the PSFD-based solver and to the reference profile from Hultmark et al. (2013). This behavior is due to a combination of SGS190

and discretization errors, which damp the energy of high-wavenumber modes and whose accurate quantification remains an

open challenge in LES (see e.g., Meyers et al., 2006; Meyers and Sagaut, 2007; Meyers et al., 2007). Further aloft, u′ (w′
:::::
u′RMS

::::::
(w′RMS) features relatively stronger (weaker) peak values when compared to the corresponding PSFD profile, the overprediction

(underprediction) being more apparent in the simulations with the QUICK scheme. The overshoot in the peak of u′
::::
u′RMS:

is a

well-known problem of FV-based WMLES (Bae et al., 2018). Lack of energy redistribution via pressure fluctuation from shear195

generated u′ to v′ and w′
:::::
u′RMS::

to
:::::
v′RMS:::

and
::::::
w′RMS is the root cause of said behavior, and possible mitigation strategies include

allowing for wall transpiration (Bose and Moin, 2014). Grid refinement shifts the velocity RMS peaks closer to the surface and

increases the magnitude of velocity RMS therein, but lead to no improvement in the max(u′)
::::::::::
max(u′RMS)

:
and only marginally

improves the estimation of the max(w′)
:::::::::::
max(w′RMS). A quantitative measure of the relative error on u′

::::
u′RMS:

with respect to

the reference profile
:::::::
u′RMS,ref from Hultmark et al. (2013) in the z0/h≤ z/h≤ 0.4 interval is shown in Tab. 2. It is clear that200

the PSFD solver performs best and that the FV solution with QUICK performs worst, but what’s more important is that
:::
The

::::::::
FV-based

:::::
solver

::::::::
performs

:::::
worse

::::
than

:::
the

:::::::::::
PSFD-based

::::
one,

:::
and

:
the convergence is not monotonic. Non monotonic

::::
Note

::::
that

::::::::::::
non-monotonic

:
convergence is relatively common in LES at relatively coarse resolutions and is due to the interaction between

discretization and modeling errors, whose impact on the solution cannot be a-priori quantified (Meyers et al., 2007).

Skewness and kurtosis of the streamwise velocity (Suu and Kuu, respectively) are shown in Fig. 2. Profiles
:::
The

:::::::
profiles of205

Suu obtained with the FV-based solver in combination with
:::
and

:
the QUICK scheme and those from the simulations carried

out
::
as

::::
well

::
as

:::::
those

:::::::
obtained

:
with the PSFD-based solver are in good agreement with experimental results from Monty et al.

(2009), which are here taken as a reference. The FV-based solver, on
::
On

:
the contrary,

:::
the

::::::::
FV-based

:::::
solver

:
overpredicts Suu

when the linear interpolation scheme is used, with the skewness remaining positive throughout the whole extent of the surface

layer. Note that a positive skewness of streamwise velocity represents a flow field where negative fluctuations are more likely210

to happen than the correspondent
::::::::::::
corresponding positive ones. The kurtosis obtained with the FV-based solver is consistently

overpredicted, representing a flow field populated by a greater number of extreme events. Again, profiles from all cases featue
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Figure 2. Vertical structure of skewness of streamwise velocity (a) and kurtosis of streamwise velocity (b). Lines are defined in Fig. 1. The

red x-marks denote the measurements from Monty et al. (2009), digitalized by the authors.

Table 3. Relative error on skewness ||Suu−Suu,meas||L2/||Suu,meas||L2 and kurtosis ||Kuu−Kuu,meas||L2/||Kuu,meas||L2 w.r.t. the

measurements from Monty et al. (2009), in the interval z0/h≤ z/h≤ 0.4.

simulation FV64 FV128 FV160 FV64* FV128* FV160* PSFD64 PSFD128 PSFD160

relative error on Suu 1.6339
:::
1.63

:
1.7656

:::
1.77

:
1.8142

:::
1.81

:
0.8577

:::
0.86

:
0.7495

:::
0.75

:
0.7083

:::
0.71

:
0.5122

:::
0.51

:
0.5719

:::
0.57

:
0.6826

:::
0.68

:

relative error on Kuu 0.2832
:::
0.28

:
0.2546

:::
0.25

:
0.2538

:::
0.25

:
0.2271

:::
0.23

:
0.1644

:::
0.16

:
0.1535

:::
0.15

:
0.1093

:::
0.11

:
0.0459

:::
0.05

:
0.0401

:::
0.04

:

::::::
feature a non-monotonic convergence to the reference ones, as shown in Tab. 3, where the relative error on skewness and

kurtosis with respect to the measurements from Monty et al. (2009) is reported, in the interval z0/h≤ z/h≤ 0.4.

3.2 Spectra and autocorrelations215

One-dimensional spectra of streamwise velocity fluctuations (Euu) for each of the considered cases are shown in Fig. 3(a).

Profiles
:::
The

::::::
profiles

:
are contrasted against the phenomenological production range and inertial sub-range power-law profiles

(k−1 and k−5/3, respectively). Predictions from the PSFD-based solver feature a relatively good agreement with the phe-

nomenological power-law profile, especially at the two highest grid resolutions, which feature a slope of −1.2 for
::::::::
especially

:
at
:::::

high
:::
grid

:::::::::
resolution.

::::
For

::::::::
example, the cases PSFD128 and PSFD160

::::::
exhibit

:
a
:::::
slope

::
of

:::::
−1.2 in the production range (here220

defined as kxz < 1). Profiles from the FV-based solver, on the contrary, exhibit strong sensitivity to grid resolution and are

unable to capture the expected power-law behavior. In the production range, velocity spectra from the FV solver start off rel-

atively shallow at small wavenumbers, expecially
:::::::::::
wavenumber,

:::::::::
especially when using the linear scheme. A narrow band

:::
can

::
be

::::::::
identified

:
where Euu ∼ (kxz)

−1 can then be identified
:::::::::::::
Euu ∼ (kxz)

−1, followed by a rapid decay in energy density. The
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Figure 3. (a) Normalized one-dimensional spectrum
:::::
spectra

:
of streamwise velocity at height z/h≈ 0.1. Solid

:::
The

::::
solid

:
red line , (kxz)

−1

in
:::::
depicts

:
the

:::::::
(kxz)

−1 production range and (kxz)
−5/3 in the inertial sub-range

:::::
scaling. All the other lines as in Fig. 1. (b) Premultiplied

one-dimensional spectrum
::::::
spectra of streamwise velocity at z/h≈ 0.1.

decay is especially
::::::::::
density—the

:::::
decay

:::::
being

::::::::::
particularly

:
pronounced when using the QUICK interpolation scheme, because225

of the associated numerical dissipation.

Overall, the energy density in the production range and in the inertial sub-range are
:
is

:
not well captured by the FV-based

solver and grid refinement does not help circumvent this limitation, at least at the considered resolutions. The authors note that

this fact might limit the use of dynamic procedures based on the Germano et al. (1991) identity.

A further characterization of the energy distribution in the wavenumber space is given in Fig. 3(b), where premultiplied230

velocity spectra kxEuuu−2
∗ are shown. The usual reason for considering this quantity

::::
these

::::::::
quantities

:
is to create a plot in semi-

log scale where equal areas under the profiles correspond to equal energy. In addition, premultiplied spectra provide information

on the coherence of the flow, in particular on the so-called large and very large scale motions (LSMs and VSLMs, respectively).

These structures are responsible for carrying more than half of the kinetic energy and Reynolds shear stress and are a persistent

feature of the surface and outer layers of both aerodynamically smooth and rough walls (Kim and Adrian, 1999; Balakumar and235

Adrian, 2007; Monty et al., 2007; Hutchins and Marusic, 2007; Fang and Porté-Agel, 2015). The current domain is of modest

dimensions and should only be
:
is

:
able to accommodate

::::
only LSMs (Lozano-Durán and Jiménez, 2014), which are identified

in premultiplied spectra by a local maximum at the streamwise wavenumber kx/h≈ 1. The location of the peaks from the

FV-based solver with linear interpolation scheme shifts toward higher wavenumbers
::::::::::
wavenumber

:
with grid refinement, with

a maximum at kx/h≈ 4 for the FV160 case. This
:::
fact signals a flow field where the streamwise extent of energetic modes240

(a.k.a., coherent structures) reduces as the grid is refined. The
::
On

:::
the

::::::::
contrary,

:::
the

:
FV-based solver in combination with

the QUICK scheme , on the contrary, predicts the peak in premultiplied energy density at the expected wavenumber, hence

suggesting that this approach is able to capture LSMs. The PSFD-based solver features a peak at the expected wavenumber

(kx = 1) only at the lowest resolution (PSFD64). Profiles from the higher resolution cases feature high energy densities at the

10
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Figure 4. Contours of two-dimensional spatial autocorrelation of streamwise velocity at height z/h≈ 0.1, from the simulations FV64 (a),

FV64* (b), PSFD64 (c), FV160 (d), FV160* (e) and PSFD160 (f). Contour levels from 0.1 to 0.9 with increments of 0.1.

lowest wavenumbers
::::::::::
wavenumber, highlighting an artificial “periodization" of energy-containing structures in the streamwise245

direction. This behavior is linked to the limited horizontal extent of the computational domain. The authors have indeed verified

that a larged
::::
larger

:
domain (twice as large along each horizontal direction) enables to capture LSM with the PSFD solver at

resolutions matching that
:::
the

:::
one

:
of the PSFD128 case (not shown). A corresponding single run of the FV solver was also

carried out the
:::
was

::::::
carried

:::
out

::::
with

::::
the

:::
FV

:::::
solver

:::::
over

:::
the said larger domain and premultiplied spectra were found to be

in good agreement with those presented herein, supporting the working conjecture that the proposed domain size suffice to250

capture the range of variability of FV solvers for the problem under consideration.

To gain better insight on the spatial coherence of the flow field, the contour lines of the two-dimensional autocorrelation

of the streamwise velocity
:::
R2D
uu:

in the xy plane are shown in Fig. 4. The Ruu = 0.1
:::::::::
R2D
uu = 0.1

:
contour is often used to

identify the boundaries of coherent structures populating the flow field. The contours from the FV-based solver with linear

scheme (Figs. 4,a,d) are representative of a poorly correlated flow field, with a streamwise extent of the Ruu = 0.1 contour255

extending
:::::::::
R2D
uu = 0.1

:::::::
contour

::
of 0.5h and 0.1h in

::::
along

:
the streamwise and spanwise

:::::::::::
cross-stream directions, respectively. On

the contrary, the contours from the FV-based solver with QUICK scheme (Fig. 4,b,e) depict a flow field characterized by larger

spatial autocorrelation, in line with results from the PSFD-based solver.
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Figure 5. One-dimensional spatial autocorrelation of streamwise velocity at height z/h≈ 0.1, along the streamwise direction (a) and along

the cross-stream direction (b). Lines as in Fig. 1.

Note that the flow statistics presented before
:::::
above should not be impacted by the fact that the current domain size prevents

some of the contour lines (simulations FV64*, FV160*, PSFD64, PSFD160) from closing(Lozano-Durán and Jiménez, 2014)260

:
,
::
as

::::::::
discussed

::
in

::::::::::::::::::::::::::::
Lozano-Durán and Jiménez (2014).

The one-dimensional spatial autocorrelation (Ruu), shown in Fig. 5 along the streamwise and cross-stream directions, further

corroborates the above findings. From Fig. 5(a) it is apparent that the extension of the selected domain does not enable the flow

to become
:::::::::
completely uncorrelated in the streamwise direction for the PSFD solver and for the FV solver using QUICK: Ruu

remains finite in the available rx/h range across resolutions. Profiles
::
On

:::
the

:::::
other

:::::
hand,

::::::
profiles

:
from the FV-based solver with265

using a linear interpolation , on the other hand, decay rapidly
:::::
using

:::
the

:::::
linear

::::::::::
interpolation

::::::
rapidly

::::::
decay towards zero.

Along the cross-stream direction (Fig. 5,b), profiles from the PSFD-based solver feature the expected negative lobes, high-

lighting the presence of high- and low-momentum streamwise-elongated streaks flanking each others in
::
the said direction. This

behavior is in line with findings from previous studies on the coherence of wall-bounded turbulence and with standard turbu-

lence theory. Profiles from the FV-based solver exhibit a similar profile, albeit featuring a more rapid decay and less prominent270

negative lobes, especially for the high-resolution cases using the linear interpolation scheme.

A quantitative measure of the coherence of the flow field is provided in Tab. 4, where the integral lengths Λrx,u and Λry,u are

reported for all the considered cases and for the
::::::::
compared

::::::
against direct numerical simulations of a channel flow atReτ = 2000

from Sillero et al. (2014). The integral lengths in Tab. 4 are evaluated at z/h≈ 0.15, since the data from Sillero et al. (2014)

were
:::
are available at this height. Although Λrx,u might not be meaningful across the considered cases, owing to the lack of a275

zero crossing of the autocorrelation function, it is apparent that the FV-based solver underestimates the integral lengths when

compared to the PSFD cases and the reference DNS values, especially when the linear interpolation scheme is used.

Instantaneous snapshots of streamwise velocity fluctuations over a horizontal plane confirm said
::::::
support

:::
the

:::::
above findings

(see Fig. 6). Artificially-periodized, streamwise-elongated bulges of uniform high and low momentum are indeed apparent in
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Table 4. Integral lengths at height z/h≈ 0.15.

simulation FV64 FV128 FV160 FV64* FV128* FV160* PSFD64 PSFD128 PSFD160 Sillero et al. (2014)

Λrx,u/h 0.2320
:::
0.23

:
0.1203

:::
0.12

:
0.1151

:::
0.11

:
0.8246

:::
0.82

:
0.5879

:::
0.59

:
0.5930

:::
0.59

:
1.2810

:::
1.28

:
1.5009

:::
1.50

:
1.4523

:::
1.45

:
2.1440

:::
2.14

:

Λry,u/h 0.0379
:::
0.04

:
0.0293

:::
0.03

:
0.0277

:::
0.03

:
0.0967

:::
0.10

:
0.0828

:::
0.08

:
0.0828

:::
0.08

:
0.1436

:::
0.14

:
0.1546

:::
0.15

:
0.1433

:::
0.14

:
0.2021

:::
0.20

:

Figure 6. Instantaneous snapshots of normalized streamwise velocity fluctuations at z/h≈ 0.1 from the simulations FV64 (a), FV64* (b),

PSFD64 (c), FV160 (d), FV160* (e) and PSFD160 (f). The normalized velocity fluctuation is defined as (u−〈u〉xy)/u′′
:::::::::::
(u−〈u〉xy)/u∗,

where averages (and fluctuations therefrom) are evaluated in space over the selected horizontal plane.

the snapshots from the PSFD-based solver (Fig. 6,c,f). The
:::
On

:::
the

:::::::
contrary,

:::
the

:
instantaneous streamwise velocity field from280

the FV solver , on the contrary, appears to be
::
is populated by smaller regions of uniform momentum, especially when using

the linear scheme,
:
and the size of energetic structures diminishes with increasing

:::
grid

:
resolution (see, e.g., Figs. 6,a,d).

3.3 Momentum transfer mechanisms

This section
::::::
Section is devoted to the analysis of momentum transfer mechanisms in the ABL, with a focus on quadrant analysis

(Lu and Willmarth, 1973) and
::
on

::::::::
statistics

::
of

:
conditionally-averaged flow fields.285

The quadrant hole analysis is a technique based on the decomposition of the velocity fluctuations into four quadrants: the first

and third quadrants, outward interactions (u′ > 0, w′ > 0) and inward interactions (u′ < 0, w′ < 0), respectively, are negative

contributions to the momentum flux, whereas the second and fourth quadrants, a.k.a. ejections of low-speed fluid outward from

the wall (u′ < 0, w′ > 0) and sweeps of high-speed fluid toward the wall (u′ > 0, w′ < 0), represent positive contributions. A
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Figure 7.
:::::
Stress

::::::
fractions

::
at

::::::::
z/h≈ 0.1.

::::
The

:::::
profiles

:::
are

::::::::
normalized

::
so
::::
that

::
the

::::
sum

:
of
:::
the

::::
stress

:::::::
fractions

:::
for

:::::
H = 0

:
is
:::::
unity

::::
across

:::
the

:::::
cases.

::::
Lines

:::
are

:::::
defined

::
in
::::
Fig.

:
1.
:

range of flow statistics can be defined based on the said
:::
this

:
decomposition and used to provide insight on the mechanisms290

supporting momentum transfer in the ABL.

Figure 7 features the quadrant-hole analysis, where the notation is the same as in Yue et al. (2007a), with H being the hole

size, Si,H the resolved Reynolds shear stress contribution to the i-th quadrant at hole size H , and Sfi,H is the correspondent

:::::::::::
corresponding

:
quadrant fraction. Stress fractions are presented for values of the hole size H ranging from 0 to 8, where

larger hole sizes correspond to contributions to the resolved Reynolds shear stress from more extreme events. Clearly, the295

FV-based solver with the linear scheme underpredicts ejections (Fig. 7,a), outward interactions (Fig. 7,b) and inward interac-

tions (Fig. 7,c), and overpredicts sweeps at large hole size H (Fig. 7,d). The QUICK scheme , on the contrary, predicts fairly

well the magnitude of ejections
::
On

::::
the

:::::::
contrary,

:::
the

:::
FV

::::::
solver

::::
with

:::::::
QUICK

::::::
scheme

::::::::::::
underpredicts

::
all

:::
the

:::::::
profiles

::::::
except

:::
for

::
the

:::::::::
ejections,

:::::
which

:::
are

::::::::
captured

:::::
fairly

::::
well

::::::
instead

:
(see Fig. 7,a)whereas profiles from the other quadrants are consistently

underpredicted when compared to corresponding PSFD ones. It is well known .
:::::
Note that ejections are violent events, concen-300

trated over a very thin region in the cross-stream direction of the ABL (Fang and Porté-Agel, 2015).

To gain insight on the vertical structure of momentum transfer mechanisms
:
,
:::
the

::::::::::
exuberance

::::
ratio

::::
and

:::
the

::::
ratio

::
of

:::::::
sweeps

::
to

:::::::
ejections

:::
are

::::::::
analyzed

::
in
::::

the
::::::::
following.

:
Fig. 8(a) shows the exuberance ratio, defined as the ratio of negative to positive

contributions to the momentum flux, (S1,0 +S3,0)/(S2,0 +S4,0) (Shaw et al., 1983). Across the whole surface layer except

for the first node at the wall, the
:::
The

:
exuberance ratios from the PSFD-based solver are larger (in absolute value ) than the305
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Figure 8. Stress fractions at z/h≈ 0.1. The profiles are normalized so that the sum
:::::
Vertical

:::::::
structure

:
of

::::
event

:::::
ratios:

:::
(a)

:::
ratio

::
of
:::::::
negative

::
to

::::::
positive

::::::::::
contributions

::
to the stress fractions for H = 0 is unity across the cases

::::::::
momentum

::::
flux;

:::
(b)

:::
ratio

::
of
::::::

sweeps
::
to

:::::::
ejections. Lines are

defined
:
as

:
in Fig. 1.

correspondent ones from the FV-based solver . The exuberance ratio profiles support findings from Fig. 7, which highlighted

:::::
across

:::
the

::::::
whole

::::::
surface

:::::
layer,

::::::
except

::::
very

:::::
close

::
to

:::
the

:::::::
surface.

::::::
Profiles

::::::::
highlight

:
that outward and inward interactions have

a significant impact on the resolved Reynolds stress in the PSFD-based solver, whereas the flow simulated with the FV-based

solver is characterized predominantly by
::
by

::
a
::::::::::::
predominance

::
of

:
sweeps and ejections. This behavior is consistent throughout

the ABL. Fig. 8(b) shows the ratio of sweeps to ejections in the lower
::
at

::
the

::::::
lowest portion of the ABL (z/h≤ 0.4). Profiles ob-310

tained with the QUICK scheme are in line with predictions from the PSFD-based solver and with findings from measurements

of surface-layer flow over rough surfaces, where ejections are identified as the dominant momentum transport mechanism in

the ABL (Raupach et al., 1991). On the contrary, the FV-based solver with linear scheme tends to favor sweeps over ejections

as the mechanisms for momentum transfer in the surface layer, throughout the considered grid resolutions.

To conclude the analysis on the mechanisms responsible for momentum transfer, the
::::::
velocity

:::::::
statistics

:::::
from

:
a
:
conditionally-315

averaged flow field is
:::
are discussed next. The approach of Fang and Porté-Agel (2015) is adopted to compute the conditionally-

averaged flow field, where the conditional event is a positive streamwise velocity fluctuation u′′/u∗ at ∆x/h= 0, ∆y/h= 0,

z/h= 0.5. Figure 9 features a pseudocolor
::::::::::
pseudo-color

:
and vector plot of the conditionally-averaged velocity field in a cross-

stream-vertical plane for selected cases
:
, whereas Fig. 10 displays a three-dimensional iso-surface thereof.

The flow structure in the equilibrium surface layer is known to be characterized by counter-rotating rolls and low- and high-320

momentum streamwise-elongated streaks flanking each others in the cross-stream direction. Rolls and streaks are indeed the

dominant flow mechanism responsible for tangential Reynolds stress (Ganapathisubramani et al., 2003; Lozano-Durán et al.,

2012).

As apparent from Fig. 9, the PSFD conditionally-averaged velocity field exhibits counter-rotating patterns associated with

positive and negative streamwise velocity fluctuations (corresponding to the aforementioned streaks). The
::::::::::
Throughout

:::
the325
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Figure 9. Vertical structure
::::::::::
Visualization of event ratios:

:::
the

:::::::::::::::::
conditionally-averaged

::::::
velocity

::::
field

::
in
:::

the
::::::::::::::::

cross-stream-vertical
:::::
plane

::
at

::::::::
∆x/h= 0

::::
from

:::::::::
simulations

:::::
FV64

:
(a)ratio of negative to positive contributions to the momentum flux;

:
,
:::::
FV64*

:
(b)ratio of sweeps to

ejections
:
,
:::::::
PSFD64

:::
(c),

:::::
FV160

::::
(d),

::::::
FV160*

:::
(e)

:::
and

::::::::
PSFD160

::
(f). Lines as in Fig

:::
The

:::::::::
conditional

::::
event

::
is

:
a
:::::::

positive
::::::::
streamwise

:::::::
velocity

::::::::
fluctuation

::
at

::::::::
∆x/h= 0,

:::::::::
∆y/h= 0,

:::
and

:::::::::
z/h= 0.5. 1

::::
Colors

:::
are

::::
used

::
to

:::::::
represent

:::
the

::::::::
magnitude

::
of
:::

the
:::::::::
streamwise

:::::::::
component,

::::::
vectors

:::::
denote

::
the

::::::::::
cross-stream

:::
and

::::::
vertical

:::::::::
components.

Figure 10.
:::::::::::::::::
Conditionally-averaged

::::
flow

::::
field

::::
from

:::::::::
simulations

:::::
FV64

:::
(a),

:::::
FV64*

:::
(b),

:::::::
PSFD64

:::
(c),

::::::
FV160

:::
(d),

::::::
FV160*

:::
(e)

:::
and

::::::::
PSFD160

::
(f).

::::
The

::::::::
conditional

::::::
average

::
is
::::::::
computed

::
as

::
in

:::
Fig.

::
9.
::::

Red
:::::::::
iso-surfaces

::::
show

:::::::
positive

:::::::::
fluctuations

::::::
(> 0.7,

:::
top,

:::
and

::::::
> 0.65,

:::::::
bottom);

::::
blue

:::::::::
iso-surfaces

::::
show

::::::
negative

:::::::::
fluctuations

::::::::
(<−0.55,

:::
top,

:::
and

:::::::
<−0.5,

:::::::
bottom).

:::::
ABL,

:::
the roll modes feature a diameters (d≈ h) throughout the ABL,

:::::::
diameter

:
which is consistent with findings from the

literature , and positive an
:::::::
(d≈ h).

:::::::::
Moreover,

:::::::
positive

:::
and

:
negative velocity fluctuations are approximately of the same mag-

nitude (≈ uτ )
::::::
(≈ u∗). From Fig. 10, it is also apparent how the considered isosurfaces extend in

:::::::
apparent

:::
that

:::
the

::::::::::
considered

::::::::::
iso-surfaces

:::::
extend

:::::
about

:::
4h

:::::
along the streamwise directionfor about 4h. Quite surprisingly, the FV-based solver is not able to
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predict the roll modes, irrespective of the interpolation scheme or
:::
and

:::
grid

:
resolution, and

:::::::
severely

:::::::::::
underpredicts the magnitude330

of the low-momentum streaksis also severely underpredicted across the considered cases. Further, Figs. 9 and 10 both depict a

FV conditionally-averaged flow field that is poorly correlated in
:::::
along the cross-stream and streamwise directions, resulting in

significantly smaller momentum-carrying structures. This
:::
fact supports previous findings from the two-point correlation maps

:::::::::::::
two-dimensional

::::::
spatial

:::::::::::::
autocorrelation (Fig. 4).

The lack of roll modes implies that these solvers
::
the

::::::::
FV-based

:::::::
solvers

::::
here

::::
used

:
are not able to capture the fundamental335

mechanism supporting momentum transfer in the ABL, at least at the considered grid resolutions. This limitation can also

be identified as
::
is

:::::
likely

::
to

:::
be the root cause of several of the observed problematics with the FV solutions

::::::::
associated

:::::
with

::
the

:::::::::
FV-solver

:::::::
solution, including the relatively high (low) streamwise-velocity skewness when using using linear (QUICK)

schemes (see Fig. 2,a) and the inbalance
:::::::
observed

:::::::::
imbalance between sweeps and ejections (Fig. 1 and Fig. 8).

Visualization of the conditionally-averaged velocity field in the cross-stream-vertical plane at ∆x/h= 0 from simulations340

FV64 (a), FV64* (b), PSFD64 (c), FV160 (d), FV160* (e) and PSFD160 (f). Colors are used to represent the magnitude of the

streamwise component, vectors denote the cross-stream and vertical components. The conditional average is computed as in

Fig. 10.

Conditionally-averaged flow field from simulations FV64 (a), FV64* (b), PSFD64 (c), FV160 (d), FV160* (e) and PSFD160

(f). The conditional event is a positive streamwise velocity fluctuation u′′/u∗ at ∆x/h= 0, ∆y/h= 0, and z/h= 0.5. Red345

iso-surfaces show u′′/u∗ > 0.7 (top) and u′′/u∗ > 0.65 (bottom); blue iso-surfaces show u′′/u∗ <−0.55 (top) and u′′/u∗ <−0.5

(bottom).

4 Conclusions

This
:::
The

:::::::
present work provides insight on the quality and reliability of an important class of general-purpose, second-order

accurate FV-based solvers in
:::
for

:::
the wall-modeled LES of neutrally-stratified ABL flow. The FV

::::::::
considered

:::::::::
FV-based solvers350

are part of the OpenFOAM® framework, make use of the divergence form of
:::
for the nonlinear term, and are based on a

colocated arrangement for the evaluation of the unknowns
::::
grid

::::::::::
arrangement.

A suite of simulations has been
::::
was carried out in an open-channel flow setup, varying grid resolution (with grid refinement

::
the

::::
grid

:::::::::
resolution up to 1603 control volumes), interpolation schemes for the discretization of the nonlinear term(linear and

QUICK), the value of the Smagorinsky coefficient(CS = 0.1 to CS = 1.678), the pressure-velocity coupling method,
:
and the355

time-advancement scheme(PISO with a second order Adams-Moulton and a projection method with a fourth order Runge-Kutta

time stepping scheme). Several flow statistics have been
:::
were

:
contrasted against profiles from a well established PSFD-based

solver and against experimental measurements (when the latter were available)
::::
when

:::::
these

::::
were

::::::::
available. Considered flow

statistics include the mean velocity, turbulence intensities, velocity skewness and kurtosis, velocity spectra and spatial autocor-

relations. An analysis of mechanisms supporting momentum transfer in the flow field has also been proposed. Main
:::
was

::::
also360

::::::::
proposed.

:::
The

:::::
main findings are summarized below.
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With the exception of the FV solver based on the projection and Runge-Kutta time advancement
::::
with

:::
the

::::::::
projection

:::::::
method

:::
and

:::
the

:::::::::::
Runge–Kutta

:::::::::::::::
time-advancement

:
scheme, mean velocity profiles from the PSFD and FV solvers

::
all

:
feature a positive

LLMand existing .
::::::::

Existing
:
techniques to alleviate this limitation lead

::
led

:
to no apparent improvements. This observation

suggests that, for this class of solvers, alternative approachesshould be devised to overcome this limitation in ABL flow365

simulations
:::::::::::
improvement,

::::
thus

::::::
calling

:::
for

:::::::::
alternative

:::::::::
approaches.

Near-surface streamwise velocity fluctuations are consistently overpredicted by both the PSFD and FV solvers, irrespective

of the grid resolution. The overshoot is particularly pronounced for the cases based on the QUICK interpolation scheme. This

behavior can be related to a deficit of pressure redistribution in the budget equations for the velocity variances, which results

in a pile up
::::::
pile-up of shear-generated streamwise velocity fluctuations and deficit in the vertical and cross-stream velocity370

fluctuation components.

The interpolation scheme used for the discretization of the nonlinear term plays a role in determining the remaining flow

statistics. Specifically, FV solvers using
::::
with a linear interpolation scheme lead to i)

:::
-5pt

:
a positive streamwise velocity skewness throughout the surface layer, which is at odds with experimental findings;

ii) a severe overprediction of the streamwise velocity kurtosis; iii) a poorly correlated streamwise velocity field in the375

horizontal directions, especially at high grid resolutions; iv) a severe underprediction of outward and inward interactions

and ejection events; and v) a lack of
:::::::
organized

:
high- and low-momentum streaks paired with

:::
and

:::::::::
associated roll modes

in the conditionally-averaged flow field.

Grid resolution is either not affecting the above quantities or leading to larger departures from the reference profiles.

When the QUICK schemeis used, the i) streamwise velocity skewness is better predicted when compared to the linear380

scheme and profiles show a convergence towards reference experimental measurements; ii) the kurtosis
:::::::
expected

::::::::
behavior.

::::
The

::::::
QUICK

:::::::
scheme,

:::
on

:::
the

::::
other

:::::
hand,

:::::
leads

::
to

:::
-5pt

:::
an

::::::::
improved

:::::::::
prediction of the streamwise velocity is also better predicted

::::::::
skewness

:::
and

:::::::
kurtosis, especially as the

grid stencil is reduced; iii) the
:
a
:
streamwise velocity field feature a higher degree of correlation when compared to those

from the linear scheme in the
:::
that

::
is
:::::
more

:::::::::
correlated

:::::
along

:::
the horizontal directions, but integral length scales are still385

::::::
remain only a fraction of those from the PSFD and reference DNS results; iv) outward and inward interactions and sweep

events are severely underpredicted; and v) there is again
::
an

:::::::::::::
underprediction

::
of

::::::
inward

::::
and

:::::::
outward

::::::::::
interactions;

::
a lack

of organized high- and low-momentum streaks and
:::::::::
associated roll modes in the conditionally-averaged flow field.

To summarize, the considered class of FV-based solvers overall predicts a flow field that is less correlated in space when

compared that of the
::::
than

:::
the

::::
one

:::::::
obtained

:::::
with

:::
the

:
PSFD solver and is not able to

::
do

::::
not capture the salient features390

::::::::::
mechanisms

:
responsible for momentum transfer in the ABL, at least at the considered grid resolutions. These limitations

appear to be the root cause of many of the observed discrepancies between FV flow statistics and the reference
::::::::::::
correspondent

PSFD or experimental ones, including the mispredicted streamwise-velocity skewness (Fig. 2,a), the inbalance
:::::::::
imbalance be-

tween sweeps and ejections (Fig. 1 and Fig. 8), and the overall sensitivity of flow statistics to variations in the grid resolution.
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Findings from this study indicate that higher grid resolutions—or a different arrangement of the computational grid—might395

be required to correctly capture the aforementioned quantities and achieve resolution-independent results in wall-modeled

LES of neutrally-stratified ABLs. Given
::::::
Higher

::::
grid

:::::::::
resolutions

:::::
might

::::
help

::::::::
alleviate

:::::
some

::
of

:::::
these

::::::::::::
shortcomings,

:::
but

:::::
given

that grid resolutions used herein are state-of-the-art for general purpose
:::::::::::::
general-purpose FV-based solvers and that computing

power increases relatively slowly with time (Moore, 1965), the aforementioned limitations are likely to persist for years to

comeand introduce ,
::::
thus

::::::::::
introducing a degree of uncertainty in model results that needs to be addressed. This calls for further400

:::::
These

:::::::::
limitations

::::
call

:::
for research aimed at reducing the impact of discretization and modeling errors , such as introducing

discretizations that rely
:::::
errors

::
in

:::
this

:::::
class

::
of

:::::::
solvers,

::
or

:::
for

::::::::
alternative

::::::::::
approaches

::::
such

::
as

:::::::::
leveraging

::::::::::::
discretizations

:::::
based

:
on

staggered grid arrangements or using
:::
and

:
higher-order spatial-discretization

:::::
spatial

::::::::::::
discretization schemes.

––––––––– Code availability. OpenFOAM® is an open-source computational fluid dynamics toolbox. The present study made use of OpenFOAM®

version 6.0, available for download at https://openfoam.org/version/6/. Data and scripts to generate figures in this manuscript405

can be downloaded from https://gitlab.com/turbulence-columbia/miscellaneous/fv-solvers-abl-flow.

Appendix A

A1 Smagorinsky constant

A sensitivity analysis on
:::
We

::::
here

::::
test

:::
the

::::::::
sensitivity

:::
of

:::::::
selected

::::
flow

:::::::
statistics

::
to
:::::::::

variations
::
in

:
the Smagorinsky constant CS

is here performed. In addition to CS = 0.1, the values CS = 0.12, CS = 0.14, CS = 0.16, and CS = 0.1678
:::
CS.

::::
The

::::::
values410

::::::::
CS = 0.1,

::::::::::
CS = 0.12,

:::::::::
CS = 0.14,

::::::::::
CS = 0.16,

:::
and

:::::::::::
CS = 0.1678

:
(the default value in OpenFOAM®) are considered. All the

tests are run on ,
::::
and

::
all

::::
tests

:::
are

::::::
carried

:::
out

::
at

:
643 control volumes.

As shown in Fig. A1(a), the Smagorinsky constant has an
:
a
::::::::
relatively

::::::::
important

::::
and

:::::::::::::
non-monotonic

:
impact on the mean

streamwise velocity profile. The case at CS = 0.1
::::::::
CS = 0.1 results in the largest positive LLM, in agreement with the pre-

dictions from the PSFD-based solver, whereas the cases at larger CS ::
CS:

exhibit a smaller, albeit still positive, LLM. The415

Smagorinsky coefficient has
:::
also

:
a discernible impact on the velocity RMSs. Specifically,

:
as
:::
CS::

is
:::::::::
increased, the magnitude of

the near-surface maximum for both u′
::::
u′RMS:

(Fig. A1,b) and w′
:::::
w′RMS (Fig. A1,c) is reduced, and the location of the maximum

is shifted away from the surface—possibly the result of a higher near-surface energy dissipationas CS is increased. In addition,

larger values of CS ::
CS:

yield a more apparent departure from the corresponding profiles obtained with the PSFD-based solver.

The one-dimensional spectra (Fig. A2,a) show that larger values of the Smagorinsky coefficient result in a more rapid decay420

of energy density and in a shift of profiles toward the inertial sub-range. Interestingly, all the profiles exhibit the same slope,

hence the same power-law exponent. No value of the Smagorinsky coefficient seems suitable for capturing the k−5/3
:::
k−1

:
power

law in the inertial sub-range. Increasing CS ::::::::
pruduction

:::::
range

:::
of

:::::::::
turbulence.

:::::::::
Increasing

:::
CS leads to a modest improvement in

the profiles of the spatial autocorrelation
::::::::
two-point

::::::::::::
autocorrelation

:::::::
profiles (Fig. A2,b and Fig. A2,c).
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Figure A1. Vertical structure of streamwise velocity (a), streamwise velocity RMS (b), vertical velocity RMS (c). Red lines denote the

phenomenological logarithmic-layer profile (a) and the analytical expressions from similarity theory (Stull, 1988) (b, c).
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Figure A2. Normalized one-dimensional spectrum
:::::
spectra

:
of streamwise velocity at height z/h≈ 0.1 (a); one-dimensional spatial autocor-

relation of streamwise velocity at height z/h≈ 0.1 along the streamwise direction (b) and along the cross-stream direction (c). Lines as in

Fig. A1. Red line, (kxz)
−1.

A2 Solvers425

In this Sub-Appendix,
:::
The

::::::::::
performance

:::
of an alternative solver within the OpenFOAM® framework is

:::
here

:
considered, and

the results are contrasted against those previously shown (obtained with the PISO algorithm in combination with an Adams–

Moulton time-advancement scheme). The solver is based on a projection method coupled with the Runge–Kutta 4 time-

advancement scheme (Ferziger and Peric, 2002). Details on the implementation can be found in Vuorinen et al. (2015)(note

that, in their reported code, a term in the form of a time step ∆t is missing, leading to a dimensional mismatch and raising a430
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Figure A3. Vertical structure of streamwise velocity (a), streamwise velocity RMS (b), vertical velocity RMS (c). Red lines denote the

phenomenological logarithmic-layer profile (a) and the analytical expressions from similarity theory (Stull, 1988) (b, c).

compile time error). The performances of the two solvers have already been
::
are

:
compared at moderate Reynolds number in

Vuorinen et al. (2014), where it is pointed out that the projection method coupled with the Runge–Kutta 4 time advancement

scheme provides similar results at lower computational cost. In the following, the performances of the solver are tested at high

Reynolds number (Reτ = 107). Two simulations, over
::
for

:::
the

:::::::::
considered

:::::
ABL

::::
flow.

::::
Two

::::
grid

::::::::
resolution

:::
are

::::::::::
considered,

:::::
based

::
on

:
643 cubes (case FV64RKp) and over 1283 cubes (case FV128RKp) , are considered

:::::
control

::::::::
volumes.435

In Fig. A3(a) the
:::
The

:
vertical profile of the mean streamwise velocity is shown .

::
in

::::
Fig.

:::::
A3(a).

:
The use of the projec-

tion Runge–Kutta 4 solver leads to an underprediction of the velocity at the wall as for the simulations FV64 and FV128.

Interestingly, the profiles feature no
:
,
:::
but

:::
no

:::::::
apparent

:
LLM in the surface layer. The streamwise and vertical velocity RMSs,

shown in
::::
u′RMS:::::::

exhibits
:::
the

:::::::::
previously

::::::::
observed

::::::::::
near-surface

:::::
peaks

:
(Fig. A3(b) and

::
,b)

:::::::
whereas

:::::
w′RMS::

is
::::::::::::
overpredicted

:::::
above

:::::::::
z/h= 0.15

::
(Fig. A3(c), exhibit the behavior already analyzed in §3.1, with an underprediction in the near-wall region, an440

overpredition of the u′+ peak and an underprediction of the w′+ peak
::
,c).
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