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Abstract. Large air quality models and large climate models simulate the physical and chemical properties of the ocean, land 

surface and/or atmosphere to predict atmospheric composition, energy balance, and the future of our planet. All of these models 

employ some form of operator splitting, also called the method of fractional steps, in their structure, which enables each 

physical or chemical process to be simulated in a separate operator or module within the overall model. In this structure, each 

of the modules calculates property changes for a fixed period of time; that is, property values are passed into the module which 15 

calculates how they change for a period of time and then returns the new property values, all in round robin between the various 

modules of the model. Some of these modules require the vast majority of the computer resources consumed by the entire 

model so increasing their computational efficiency can either improve the model’s computational performance or enable more 

realistic physical or chemical representations in the module, or a combination of these two. Recent efforts have attempted to 

replace these modules with ones that use machine learning tools to memorize the input-output relationships of the most time-20 

consuming modules. One shortcoming of some of the original modules and their machine learned replacements is lack of 

adherence to conservation principles that are essential to model performance. In this work, we derive a mathematical 

framework for machine learned replacements that conserves properties, say mass, atoms, or energy, to machine precision. This 

framework can be used to develop machine learned operator replacements in environmental models. 

1 Introduction 25 

Complex systems require large models that simulate the wide range of physical and chemical properties that govern their 

performance. In the air quality realm, models include CMAQ (Foley, Roselle et al. 2010), CAMx (Yarwood, Morris et al. 

2007), WRF-Chem (Grell, Peckham et al. 2005) and GEOS-Chem (Eastham, Weisenstein et al. 2014). In the climate change 

arena, models include HadCM3 (Jones, Gregory et al. 2005), GFDL CM2 (Delworth, Rosati et al. 2012), ARPEGE-Climat 

(Somot, Sevault et al. 2008), CESM (Kay, Deser et al. 2015), and E3SM (Golaz, Caldwell et al. 2019). These models employ 30 

operator splitting, also called the method of fractional steps (Janenko 1971), in their structure, so that each module can be 
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tasked with representing one or a small number of physical and/or chemical processes. This modular structure enhances model 

maintenance and sustainability while enabling diverse physical and chemical processes to interact. Each module is tasked with 

simulating its processes over a fixed period of time, each module called in turn until they have all returned their results. Usually, 

the computational performance of these models is governed by one or two modules that consume the vast majority of the 35 

computer resources. In air quality models, this is usually the photochemistry and/or aerosol dynamics modules. In climate 

models, this is usually the radiative energy transport module.  

 

Machine learning has been used to improve the computational efficiency of modules in atmospheric models for decades 

(Potukuchi and Wexler 1997). As machine learning algorithms have improved, these efforts have matured (Hsieh 2009, Kelp, 40 

Tessum et al. 2018, Rasp, Pritchard et al. 2018, Keller and Evans 2019, Pal, Mahajan et al. 2019). But the effort to replace 

physical and chemical operators with machine learned modules is challenging because small systematic errors can build. For 

instance, an 0.1% error over a 1 hour time step could lead to a 72% error after a month of simulation. This problem is 

compounded if the replacement module does not conserve quantities that are essential to model accuracy, such as atoms in a 

photochemical module, molecules and mass in an aerosol dynamics module, or energy in a radiative transfer module. 45 

 

Recent efforts at developing and using machine learned replacement modules has focused on memorizing how the quantities 

change.  Some have also explored enforcing physical constraints when memorizing these quantities, via post-prediction 

balancing approaches (Krasnopolsky et al. 2010), introducing a penalty into the cost function (Beucler et al. 2019), or 

incorporating hard constraints on a subset of the output in neural network architecture (Beucler et al. 2019). All of these 50 

approaches focus on memorizing how quantities change, and incorporate some correction strategy after all or a portion of the 

quantities have been predicted. If instead, we focus on how the fluxes between quantities change, we can guarantee adherence 

to conservation principles to machine precision, without a post-prediction correction. In photochemical modules, the fluxes 

are how atoms move between chemical species as reactions progress. In aerosol dynamics, the fluxes are the 

condensation/evaporation or coagulation processes that move material between the gas and particle phases or between particle 55 

sizes. In radiative transfer, the fluxes are the energy movements between spatial domains. 

 

In this work, we derive a mathematical framework that enables the use of machine learning tools to memorize these fluxes. 

We focus this work on atmospheric photochemistry and provide an example for a simple photochemical reaction mechanism, 

because the number of species and the complexity of the problem exercises many aspects of the framework. 60 
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2 Glossary of Symbols 

𝐶!(𝑡) – concentration at time t 

𝐶!(𝑡 + ∆𝑡) – concentration at time 𝑡 + ∆𝑡 

∆𝐶! ≡ 𝐶!(𝑡 + ∆𝑡) − 𝐶!(𝑡) 65 

𝑖 = 1, 𝑛 – the number of molecular species 

∆𝑡 – operator splitting time step 

𝑅"(𝑡) – contribution to ∆𝐶! from each reaction 

𝑆"(𝑡) = 0 𝑅"(𝜏)𝑑𝜏
#$∆#

#
 

𝑗 = 1,𝑚 – the number of reactions, 𝑚 > 𝑛 70 

𝐴 – stoichiometry matrix relating ∆𝐶! to 𝑆", sparse, most element values are 0, 1 or -1 

𝐴& – generalized inverse of 𝐴 

𝐴'& – constrained generalized inverse of 𝐴 

 

 75 

3 Derivation of the Framework for Photochemistry 

In general, the atmospheric chemistry operator solves  

()
(#
= 𝐹(𝐶, 𝑇, 𝑅𝐻, actinic	flux, stability, etc. )							        (1) 

where 𝐶 is a vector containing the current concentration of the chemical species, 𝑇 is temperature and 𝑅𝐻 is the relative 

humidity. The right hand side can be written as  80 

𝐹 = 𝐴𝑅																																																																																        (2) 

where 𝐴 is a matrix describing the stoichiometry and 𝑅 is a vector of reactions. The form of the right hand side assures mass 

balance because it is composed of reactions that destroy one species while creating one or more other ones, all in balance, 

described by 𝐴.  The 𝑅 terms take forms such as 𝑘𝐶!𝐶" where 𝑘 is the rate constant for a reaction between species, 𝐽𝐶! where 

𝐽 is the photolysis reaction rate, or 𝑘(𝐶!(𝑥*) − 𝐶!(𝑥+)) where 𝑘 is a diffusion or mass transport rate constant between two 85 

spatial locations or between the gas and particle phases.  

 

In the method of fractional steps, all modules integrate their equations forward for a fixed time step, ∆𝑡, that we call the 

operator splitting time step. Combining these two equations and integrating gives 

∆𝐶! = ∑ 𝐴!," ∫ 𝑅"(𝑡)𝑑𝑡
#$∆#
#" = ∑ 𝐴!,"" 𝑆" 																																																																												     (3a) 90 
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Or in matrix form 

∆𝐶 = 𝐴𝑆																																		           (3b) 

where 𝑆" = ∫ 𝑅"(𝑡)𝑑𝑡
#$∆#
# . 𝑆" is the flux integral. For atmospheric photochemistry, it is the flux of atoms between molecules. 

For aerosol dynamics, it is the flux of molecules condensing on or evaporating from particles or the flux of small particles 95 

coagulating on large particles. For radiative transfer, 𝑆" is the energy between spatial coordinates. We are able to pull the A out 

of the integral if it is a constant, which is usually the case or can be approximated as such.  

 

Using machine learning tools to learn the relationship 

𝑆 = 𝑆(𝐶, 𝑇, 𝑅𝐻, actinic	flux, stability, etc. )																											        (4) 100 

has advantages over memorizing a concentration-concentration relationship because: 

a. The formulation in Eq. (3) conserves mass. 

b. The R terms are simpler to memorize because they do not contain the complexity in A. 

c. There are fewer concentrations directly influencing 𝑆 than 𝐶 so the machine learning algorithm should be simpler. 

 105 

The difficulty resides in developing the training and testing sets needed to train and test the machine learning algorithm 

corresponding to Eq. (4). In principle, we can run a model many times, generate a data set, and then learn that data using 

machine learning techniques. That is, we can run many models that integrate Eq. (1) to find the relationship between 

concentrations at two time steps to develop our machine learning training set. But such models do not provide the value of 𝑆 

and since the chemical system is stiff the integrators make many complex calls to calculate the right hand side of Eq. (1) to 110 

integrate it. Another way of saying this is that the ∆𝐶 is easily available from the models but the 𝑆 is not. 

 

If we have many sets of ∆𝐶 values, in principle we can invert Eq. (3b) to obtain the corresponding 𝑆 values. The difficulty 

with this approach is that there are more elements of 𝑆 than ∆𝐶, so a conventional inverse cannot be applied. Instead, we 

employ the generalized inverse of 𝐴 to obtain 𝑆 via the relationship 115 

𝑆 = 𝐴&∆𝐶																																		           (5) 

where 𝐴& is the generalized inverse of 𝐴. In the case that there are as many fluxes as quantities (𝐴 is a square matrix), and the 

quantities are coupled but linearly dependent (𝐴 is full rank), then 𝐴& is the true inverse of 𝐴 and readily calculable. If the 

system is overdetermined, where 𝐴 is a rectangular matrix with more quantities than fluxes, but has full column rank, then a 

left inverse can calculate 𝐴& .  An overdetermined system is typical in an aerosol module calculating condensation and 120 

evaporation, where fluxes depend on two quantities. However, if 𝐴 is underdetermined, meaning there are more fluxes than 
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known quantities, or otherwise rank deficient from linear dependency, there are an infinite number of generalized inverses 𝐴& . 

This means that given values for ∆𝐶, Eq. (5) will not give reliable values for 𝑆. 

 

Given sufficient constraints, 𝐴&  will be unique and provide the desired values of 𝑆 that are needed to develop a machine 125 

learning training set. Ben-Israel and Greville (Ben-Israel and Greville 2003) show that the inverse can be unique if the 

solutions, 𝑆 , are restricted to lie in a subspace that defines the “legal” solutions and these restrictions are sufficiently 

constraining. The constrained generalized inverse of 𝐴 the produces solutions, 𝑆, that lie in the legal subspace defined by good 

examples of solutions 𝑆 is given by 

𝐴'& = 𝑃'(𝐴𝑃')& 																																										         (6) 130 

where 𝐴'& is the generalized inverse of 𝐴 restricted to the subspace of all possible solutions by the projection 𝑃', which in turn 

is defined by a set of basis vectors that define the subspace. Before we discuss obtaining the basis vectors, we first need to 

discuss how to obtain the projection, 𝑃'. 

 

Assume for the moment that we have the basis vectors 𝑆-. We concatenate them (column-wise) to form the matrix 𝑈: 135 

𝑈 = ⟨𝑆*|𝑆+|… |𝑆-⟩																														          (7) 

The projection onto the subspace defined by these basis vectors 𝑆- and the matrix 𝑈 is then (Mukhopadhyay 2014): 

𝑃' = 𝑈(𝑈$𝑈).*𝑈$																													          (8) 

where 𝑈$ is the transpose of 𝑈. 

 140 

Atmospheric chemistry problems are stiff so the 𝑈$𝑈 may be ill-conditioned. One source of this ill conditioning which also 

can hamper machine learning tools is that the concentrations are often orders of magnitude apart. The modules use actual 

concentrations to make the mechanism easier to understand and debug. Normalizing the concentrations helps with both 

learning and stiffness/ill conditioning. Ill conditioned problems can hamper matrix inversion. Since the 𝑆 vectors describe the 

subspace where the solutions must reside, their magnitude does not matter, just their direction. So we normalize the 𝑆 vectors 145 

by dividing by the average of the non-zero values. Mathematically, we form a diagonal square matrix, 𝑁', with the averages 

on the diagonal and calculate the normalized 𝑆 with 

𝑆/012 = 𝑁'.*𝑆		            (9) 

Since 𝑁' is diagonal, the inverse is simply the reciprocal of each diagonal element. The ∆𝐶 values are recovered from the 

𝑆/012 values via 150 

∆𝐶 = 𝐴𝑁'𝑆/012																																											         (10) 
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Atmospheric chemistry problems are also high dimensional. Typical air quality models may have 100 to 200 chemical species 

and since the vertical column mixing time scale is similar to the slower time scales of the chemistry, some models solve the 

vertical transport and chemistry simultaneously. Since typical air quality models have 10 to 20 vertical cells, the dimension of 

the problem is 1,000 to 4,000. Even though the inverse (𝑈$𝑈).*  only has to be calculated once, this inversion may be 155 

intractable. Providing that the condition number of 𝑈$𝑈 is not too large, Gram-Schmidt orthonormalization can be performed 

on the 𝑆! vectors before carrying out Eqs. (7) and (8) in which case they will describe the same subspace but now the matrix 

𝑈$𝑈 will be the identity matrix which is its own inverse.  

 

Now let us return to the question of how to find the basis vectors that define the “legal” subspace of S. These can be developed 160 

by solving Eq. (1) using Euler’s method, in which case Eq. (3) becomes 

∆𝐶!~𝐴!,-𝑅-(𝑡)∆𝑡~𝐴!,-𝑆-							          (11) 

That is 

𝑆-~𝑅-(𝑡)∆𝑡																																																		         (12) 

The value of ∆𝑡 does not matter since it just changes the length of 𝑆- not its direction and therefore not its value in describing 165 

the subspace. The original module that calculates 𝑅- can be run many times under many conditions to generate a set of 𝑆- 

vectors that span the subspace. Then Locality Preserving Projections (LPP), Principal Component Analysis (PCA) or another 

similar algorithm can be used to find a minimum set of vectors that define the subspace.  

 

 170 
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4 Solution Procedure for a Photochemical Module 

The following overview aims to put into context the procedure outlined in this paper.  The focus of this paper is on deriving 

and conducting the mass balancing framework and inverse problem detailed in steps 1 – 9.  Steps 10 – 13 are provided for 

context: these include machine learning, operator replacement, and benchmarking. In principle, any machine learning 175 

algorithm can be used with the framework described here in steps 1 – 9. 

1. Determine which species are active in the photochemical mechanism. That is, not the steady state or build-up species.  

2. From the mechanism, extract the A matrix for these species. 

3. Using a representative set of atmospheric concentrations, T, RH, and actinic flux, use Eq. (10) and the photochemical 

module to generate data that match values of ∆𝐶 and 𝑆 for many values of 𝐶, T, RH, and actinic flux for the models 180 

operator splitting time step. 

4. Normalize the 𝑆 vectors by dividing each by the average of its nonzero elements. Use these averages to form the 𝑁' 

matrix, which relates 𝑆 to 𝑆/012 via Eq. (9). 

5. Use the 𝑆/012 vectors and Eq. (7) to form the 𝑈 matrix and then the 𝑈$𝑈 matrix. What is the condition number of 

the 𝑈$𝑈 matrix? If the system is large and not ill-conditioned, use Gram-Schmidt orthonormalization on the 𝑆 vectors 185 

before calculating 𝑈 and 𝑈$𝑈, in which case 𝑈$𝑈 should be an identity matrix or a subset of one. 

6. Use Eq. (8) to calculate 𝑃'. 

7. Use Eq. (6) to calculate the constrained generalized inverse 𝐴'&. 

8. Use Eq. (5) to calculate values of 𝑆 from the values of ∆𝐶. 

9. Compare the values of 𝑆 obtained from steps 3 and 7 to make sure they are very similar using the dot product to 190 

calculate the angle between them. If they are, we have a good 𝐴'&. 

10. Use neural networks or another machine learning algorithm to memorize the 𝑆(𝐶) relationship obtained using (a) Eq. 

(5), and (b) many runs of the mechanism for a wide range of 𝐶, T, RH, and actinic flux values. 

11. Replace the mechanism with the neural network to calculate 𝑆(𝐶) and Eq. (3b) to march forward. 

12. Clock the speed improvement. 195 

13. Calculate standard measures of performance such as mass balance, bias, and error compared to runs using the 

complete mechanism. 

 

5 Photochemical Mechanism 

We tested the methods described above on the following very simplified set of photochemical reactions used by Dr. Kleeman 200 

at the University of California, Davis when teaching the modeling of atmospheric photochemistry. Although this mechanism 

is abbreviated, it contains the essential components of all atmospheric photochemical mechanisms related to ozone formation: 

NOx chemistry, VOC chemistry, formation of peroxy radicals from VOC chemistry that then react with NO to form NO2 and 

OH, both of which may react to terminate.  
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The 10 reactions are given in Table 1. The oxygen atom and hydroxyl radical are assumed to be in steady state so there are 6 205 

active species, which are listed in Table 2. 

 

Table 1: Reaction Mechanism  

Reaction 
Reaction 

Number 

NO2 + hv -> NO + O R1 

O + O2 -> O3 R2 

O3 + NO -> NO2 + O2 R3 

HCHO + hv -> 2 HO2. + CO R4 

HCHO + hv -> H2 + CO R5 

HCHO + HO. -> HO2. + CO + H2O R6 

HO2. + NO -> OH. + NO2 R7 

OH. + NO2 -> HNO3 R8 

HO2H + hv -> 2 HO. R9 

HO2H + HO. -> H2O + HO2. R10 

 

 
 210 

Table 2. Active 

Species 

O3 

NO 

NO2 

HCHO 

HO2. 

HO2H 
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The resulting 𝐴 matrix represents the stoichiometry of the reactions where the rows correspond to each species and the columns 

to each reaction: 

𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝑅1 𝑅2 𝑅3 𝑅4 𝑅5 𝑅6 𝑅7 𝑅8 𝑅9 𝑅10
O3 0 1 −1 0 0 0 0 0 0 0
NO 1 0 −1 0 0 0 −1 0 0 0
NO+ −1 0 1 0 0 0 1 −1 0 0
HCHO 0 0 0 −1 −1 −1 0 0 0 0
HO+ 0 0 0 2 0 1 −1 0 0 1
HO+H 0 0 0 0 0 0 0 0 −1 −1 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 215 

 

As in prior efforts (Kelp, Tessum et al. 2018, Keller and Evans 2019), we employed a box model in Julia to generate 60 

independent days of output for both ∆𝐶and 𝑆, recording data every 6 minutes. We are interested in the set of 𝑆 vectors that 

form a basis describing the subspace that contains the desired 𝑆 vectors. First, the transformation in Eq. (9) is performed to 

normalize the sample 𝑆 vectors. In this example, we use LPP (Locality Preserving Projections) (He and Niyogi 2004), which 220 

is similar to PCA (Principle Component Analysis) but more robust for this application. Here LPP yields a basis set of 7 vectors, 

which form the columns of the 𝑈 matrix: 

 

𝑈 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−0.6869 0.1334 −0.2068 −0.1461 0.0867 −0.3715 0.4761
−0.6869 0.1334 −0.2068 −0.1461 0.0867 −0.3715 0.4761
−0.1877 −0.1444 0.0260 0.1967 −0.0540 0.5443 −0.7353
0.0406 −0.5849 −0.0080 −0.2426 0.1194 0.1747 0.0027
0.0411 −0.5911 −0.0081 −0.2452 0.1207 0.1765 0.0027
−0.0202 −0.2414 −0.0069 −0.0875 0.0844 −0.3942 −0.0570
0.0149 −0.2555 0.0154 0.0759 −0.1568 −0.2242 −0.0519
0.1063 −0.1359 0.0844 0.4800 −0.7829 0.4002 	−0.0066
−0.0670 −0.0762 0.9337 0.0057 0.0069 −0.0136 −0.0012
0.0354 −0.3227 −0.1856 0.7455 0.5554 0.0107 −0.0013⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 225 

High condition numbers mean that the matrix inversion is problematic at best. The condition number of 𝑈$𝑈 is approximately 

12. This is several orders of magnitude smaller than the same problem but without the 𝑁' transformation of Eq. (9) where the 

condition number was 1888. This suggests that the 𝑁' transformation has potential to reduce ill-conditioning arising from 

stiffness in S. The condition number of 12 after the 𝑁' transformation ensures that the inversion needed to make the projection 

𝑃' in Eq. (8) is numerically tractable. 230 
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The resulting symmetric block diagonal projection 𝑃' is equal to: 235 

 

𝑃' =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0.500 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.500 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.495 0.500 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.500 0.505 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.587 0.471 −0.142 0.001 −0.005
0.000 0.000 0.000 0.000 0.000 0.471 0.462 0.163 −0.001 0.006
0.000 0.000 0.000 0.000 0.000 −0.142 	0.163 0.951 0.000 −0.002
0.000 0.000 0.000 0.000 0.000 0.001 −0.001 0.000 1.000 0.000
0.000 0.000 0.000 0.000 0.000 −0.005 0.006 −0.002 0.000 1.000 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

And Eq. (6) gives us  

 240 

𝐴'& =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
2.70E1 0.0000 0.0000 0.0000 0.0000 0.0000
2.70E1 0.0000 0.0000 0.0000 0.0000 0.0000
−4.18E1 0.0000 0.0000 0.0000 0.0000 0.0000
3.63E3 −5.45E3 −1.82E3 3.63E3 5.45E3 3.63E3
3.67E3 −5.51E3 −1.84E3 3.67E3 5.51E3 3.67E3
−2.84E3 4.26E3 1.42E3 −3.45E3 −4.26E3 −2.84E3
5.37E2 −5.37E2 0.0000 0.0000 0.0000 0.0000	
0.0000 −1.78E3 −1.78E3 0.0000 0.0000 0.0000
−9.24E5 1.14E6 2.16E5 −9.24E5 −1.14E6 −9.24E5
9.81E4 −1.21E5 −2.29E4 9.81E4 1.21E5 4.58E4 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

Since 𝑈 and 𝐴'& have 7 and 6 independent columns, respectively, but 10 rows, and the row rank is equal to the column rank, 

there must be linearly dependent rows. One manifestation of this is that the first two rows of 𝑈 and 𝐴'& are identical, or nearly 

so.  The 𝑆 values computed from 𝐴'& may not be identical to the original 𝑆 corresponding to the ∆𝐶 values.  However, all 𝑆 245 

values calculated from Eq. (5) using the above 𝐴'& are “legal”: in other words, within the subspace defined by the basis set 𝑈.  

Furthermore, the inverse 𝐴'& by definition satisfies 𝐴𝐴'& = 𝐼, so that even if a calculated 𝑆 is not identical to the 𝑆 from the 

original box model output, it can be used in Eq. (3b) to return a ∆𝐶 identical to that of the box model output. 

 

  250 
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6 Conclusions 

Large models of the environment require solution of large systems of equations over long periods of time. These models 

consume vast quantities of computational resources so approximations are necessarily employed so that the models are 

computationally tractable. Machine learning tools can be used to dramatically improve the speed of these models enabling 

more faithful representation of the physics and chemistry while also improving runtime performance. But this field is in its 255 

infancy. To help facilitate the use of machine learning tools in these environmental models, we have developed a framework 

that (a) enables machine learning algorithms to learn flux terms assuring that conservation principles dictated by the physics 

and chemistry are adhered to and (b) allow parameters easily calculated by geophysical models to be used to back calculate 

these flux terms that can then be used to train the machine learning algorithm of choice. Applications of this framework in 

environmental model include any process where conservation principles apply such as conservation of atoms in chemical 260 

reactions, conservation of molecules during phase change, and conservation of energy in say radiative transfer calculations. 

 

Author Contribution 

ASW initiated the project and is responsible for the conceptualization of the mass balancing framework.  ASW and POS 

contributed to the formal analysis, including the generalized inverse and preconditioning approach.  POS developed the model 265 

code using Julia and MATLAB. 

 

Competing Interests 

The authors declare that they have no conflict of interest. 

 270 

Code Availability 

The most current version of the MATLAB script used to generate 𝐴'&  and the projection is available at 

https://doi.org/10.5281/zenodo.3712457, and the input data at https://doi.org/10.5281/zenodo.3733502.  The exact version of 

the script used to produce the results used in this paper is named GenerateAG.m and is archived on Zenodo 

(https://doi.org/10.5281/zenodo.3733594, Sturm P.O. and A.S Wexler 2020).  The input files required for this script, as well 275 

as the Julia mechanism, are available on Zenodo as S.txt and delC.txt  (https://doi.org/10.5281/zenodo.3733503, Sturm 2020). 

Both the restricted inverse script and the input data are available under a Creative Commons Attribution 4.0 International 

license.  

 

Acknowledgements 280 

Dr. Michael Kleeman at University of California, Davis contributed the photochemical mechanism which was modified to 

create the data needed to calculate the restricted inverse. 

The LPP MATLAB program was written by Dr. Deng Cai at the College of Computer Science Zheijang University, China.  

Both the Fortran and LPP programs were essential in calculating the restricted inverse described in this paper. 



12 
 

References 285 

Ben-Israel, A. and Greville, T. N.:  Generalized inverses: theory and applications, Springer Science & Business Media, 2003. 

Beucler, T., Rasp, S., Pritchard, M., Gentine, P.:  Achieving Conservation of Energy in Neural Network Emulators for Climate 

Modeling, arXiv, https://arxiv.org/abs/1906.06622, 2019. 

Delworth, T. L., A. Rosati, W. Anderson, A. J. Adcroft, V. Balaji, R. Benson, K. Dixon, S. M. Griffies, H.-C. Lee and 

Pacanowski, R. C.: Simulated climate and climate change in the GFDL CM2. 5 high-resolution coupled climate model", 290 

J. Climate 25(8): 2755-2781, https://doi.org/10.1175/JCLI-D-11-00316.1,  2012. 

Eastham, S. D., D. K. Weisenstein and Barrett , S. R.:  Development and evaluation of the unified tropospheric–stratospheric 

chemistry extension (UCX) for the global chemistry-transport model GEOS-Chem", Atmos. Environ. 89: 52-63, 

https://doi.org/10.1016/j.atmosenv.2014.02.001, 2014. 

Foley, K. M., Roselle, S. J., Appel, K. W., Bhave, P. V., Pleim, J. E., Otte, T. L., Mathur, R., Sarwar, G., Young, J. O., Gilliam, 295 

R. C., Nolte, C. G., Kelly, J. T., Gilliland, A. B., and Bash, J. O.: Incremental testing of the Community Multiscale Air 

Quality (CMAQ) modeling system version 4.7, Geosci. Model Dev., 3, 205–226, https://doi.org/10.5194/gmd-3-205-

2010, 2010. 

Golaz, J. C., P. M. Caldwell, L. P. Van Roekel, M. R. Petersen, Q. Tang, J. D. Wolfe, G. Abeshu, V. Anantharaj, X. S. Asay‐

Davis and Bader, D. C.: The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution", J. 300 

Adv. Model Earth. Sy. 11(7): 2089-2129 , https://doi.org/10.1029/2018MS001603, 2019. 

Grell, G. A., S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock and Eder, B.: Fully coupled “online” 

chemistry within the WRF model, Atmos. Environ. 39(37): 6957-6975, https://doi.org/10.1016/j.atmosenv.2005.04.027, 

2005. 

He, X. and Niyogi, P.: Locality preserving projections. Advances in neural information processing systems, 2004. 305 

Hsieh, W. W.: Machine learning methods in the environmental sciences: Neural networks and kernels, Cambridge university 

press, 2009. 

Janenko, N. N.: The method of fractional steps, Springer, 1971. 

Jones, C., J. Gregory, R. Thorpe, P. Cox, J. Murphy, D. Sexton and Valdes, P.: Systematic optimisation and climate simulation 

of FAMOUS, a fast version of HadCM3, Clim. Dynam. 25(2-3): 189-204, 2005. 310 

Kay, J. E., Deser, C., A. Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J. M., Bates, S., Danabasoglu, G., and Edwards, 

J.: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate 

change in the presence of internal climate variability, B. Am. Meteorol. Soc. 96(8): 1333-1349, 

https://doi.org/10.1175/BAMS-D-13-00255.1, 2015. 



13 
 

Keller, C. A. and Evans, M. J.: Application of random forest regression to the calculation of gas-phase chemistry within the 315 

GEOS-Chem chemistry model v10, Geosci. Model Dev., 12, 1209–1225, https://doi.org/10.5194/gmd-12-1209-2019, 

2019. 

Kelp, M. M., C. W. Tessum and Marshall, J.D.: Orders-of-magnitude speedup in atmospheric chemistry modeling through 

neural network-based emulation, arXiv preprint arXiv:1808.03874, 2018. 

Krasnopolsky, V. M., Rabinovitz, M. S., Hou, Y. T., Lord, S. J., and Belochitski, A. A.: Accurate and Fast Neural Network 320 

Emulations of Model Radiation for the NCEP Coupled Climate Forecast System: Climate Simulations and Seasonal 

Predictions, Monthly Weather Review, https://doi.org/10.1175/2009MWR3149.1, 2010. 

Mukhopadhyay, N.: Quick Constructions of Non-Trivial Real Symmetric Idempotent Matrices,  Sri Lankan Journal of Applied 

Statistics 15(1), 2014. 

Pal, A., S. Mahajan and Norman, M. R.: Using Deep Neural Networks as Cost‐Effective Surrogate Models for Super‐325 

Parameterized E3SM Radiative Transfer, Geophys. Res. Lett. 46(11): 6069-6079, 

https://doi.org/10.1029/2018GL081646, 2019. 

Potukuchi, S. and Wexler, A. S.: Predicting vapor pressures using neural networks, Atmos. Environ. 31(5): 741-753, 

https://doi.org/10.1016/S1352-2310(96)00203-8, 1997. 

Rasp, S., M. S. Pritchard and Gentine, P. (2018). Deep learning to represent subgrid processes in climate models, P. Natl. 330 

Acad. Sci. USA 115(39): 9684-9689, https://doi.org/10.1073/pnas.1810286115, 2018. 

Somot, S., F. Sevault, M. Déqué and Crépon, M.: 21st century climate change scenario for the Mediterranean using a coupled 

atmosphere–ocean regional climate model, Global Planet Change 63(2-3): 112-126, 

https://doi.org/10.1016/j.gloplacha.2007.10.003 2008. 

Sturm, P.O.: Photochemical Box Model in Julia, Zenodo, https://doi.org/10.5281/zenodo.3733503, 2020. 335 

Sturm, P.O. and Wexler, A. S.: A MATLAB Script to Generate a Restricted Inverse v0.2.0, Zenodo, 

https://doi.org/10.5281/zenodo.3733594, 2020. 

Yarwood, G., R. E. Morris and Wilson, G. M.: Particulate matter source apportionment technology (PSAT) in the CAMx 

photochemical grid model. Air Pollution Modeling and Its Application XVII, Springer: 478-492, 

https://doi.org/10.1007/978-0-387-68854-1_52, 2007. 340 

 


