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Abstract. The thermal state of an ice sheet is an important control on its past and future evolution. Some parts of the ice sheet

may be polythermal, leading to discontinuous properties at the cold–temperate transition surface (CTS). These discontinuities

require a careful treatment in ice sheet models (ISMs). Additionally, the highly anisotropic geometry of the 3D elements in

ice sheet modelling poses a problem for stabilization approaches in advection dominated problems. Here, we present extended

enthalpy formulations within the finite-element Ice Sheet System Model (ISSM) that show a better performance to earlier5

implementations. In a first polythermal-slab experiment, we found that the treatment of the discontinuous conductivities at the

CTS with a geometric mean produce more accurate results compared to the arithmetic or harmonic mean. This improvement

is particularly efficient when applied to coarse vertical resolutions. In a second ice dome experiment, we find that the numer-

ical solution is sensitive to the choice of stabilization parameters in the well-established Streamline Upwind Petrov–Galerkin

(SUPG) method. As standard literature values for the SUPG stabilization parameter do not account for the highly anisotropic10

geometry of the 3D elements in ice sheet modelling, we propose a novel Anisotropic SUPG (ASUPG) formulation. This

formulation circumvents the problem of high aspect-ratio by treating the horizontal and vertical directions separately in the

stabilization coefficients. The ASUPG method provides accurate results for the thermodynamic equation on geometries with

very small aspect ratios like ice sheets.

Copyright statement.15

1 Introduction

Ice sheets and glaciers are important components of the climate system. Their evolution is one of the primary sources of sea-

level change (Church et al., 2013). Besides the interactions of the ice sheet with the environment, changes in ice flow can alter

the internal thermal state of the ice, which in turn can affect ice dynamics (e.g. MacAyeal, 1993; Hindmarsh, 2009; Feldmann

and Levermann, 2017). Therefore thermo-mechanical numerical modelling of ice sheets is a crucial tool to understand both20

their past and future evolution.
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Ice sheets and glaciers can exhibit a polythermal state that includes both cold (below the pressure melting point) and tem-

perate (at the pressure melting point) domains, separated by the cold–temperate transition surface (CTS) (Blatter and Hutter,

1991). In temperate ice, the heat generated by viscous deformation leads to a change of phase (Fowler, 1984; Blatter and Hut-

ter, 1991), hence temperate ice contains liquid water. The decrease of the ice viscosity with increasing content of liquid water25

in temperate ice in turn enhances ice flow (Duval, 1977), especially if the temperate ice is present in basal layers, where shear

deformation is largest.

Modern state-of-the-art ice sheet models (ISMs) simulate the thermal state according to the enthalpy method originally

formulated in Aschwanden et al. (2012) and further developed and verified in Kleiner et al. (2015), Blatter and Greve (2015),

Greve and Blatter (2016) and Hewitt and Schoof (2017). The main advantage of this formulation is the elimination of tracking30

the CTS, as both cold and temperate ice domains are handled within one equation for the enthalpy E; temperature T and liquid

water fraction ω are diagnostically computed from enthalpy. An increasing number of ice flow models are adopting an enthalpy

scheme (e.g. Aschwanden et al., 2012; Brinkerhoff and Johnson, 2013; Seroussi et al., 2013; Kleiner et al., 2015; Greve and

Blatter, 2016; Hoffman et al., 2018).

In ISMs, the governing thermodynamic equation are discretized, e.g. using the finite element method (FEM). Special care35

has to be taken to the parabolic thermodynamic equation as numerical instabilities inherent to the advection component of

this equation tend to occur without stabilization. When employing the FEM the standard Galerkin finite element method is

often stabilized with the popular Streamline Upwind Petrov–Galerkin (SUPG) method (Brooks and Hughes, 1982). Although

the SUPG method is well-established for advection-dominated problems, the optimal parameter choices are still subject of

extensive research (e.g. Tezduyar and Osawa, 2000; John and Knobloch, 2007). Low aspect ratio mesh elements in the FEM40

are particularly problematic, and error analysis is often restricted to two dimensions (e.g. John et al., 2018). Moreover, current

mathematical and numerical analyses are not always general enough to apply to real-world applications (John et al., 2018).

ISMs are dealing with low aspect ratio, since the ice vertical extent (up to ∼4 km) is much smaller than its lateral extent (up

to several thousands of kilometres). As a consequence, 3D elements are frequently highly anisotropic and pose a challenging

problem in order to maintain stabilization. A non-optimal choice of stabilization parameters could result either in under- or45

over-stabilization of the numerical solution. As a consequence of increasing computer power and modern models frequently

relying on the FEM, Helanow and Ahlkrona (2018) investigated the accuracy and robustness of linear equal order finite ele-

ments discretization with Galerkin least-squares (GLS) stabilization on the Stokes equation system with anisotropic meshes.

They found that common literature values for this stabilization scheme perform well on simple domains. However, on more

complex geometries, in particular, at the ice margin of outlet glaciers, the choice of standard parameters results in significant50

oscillations in the vertical component of the surface velocity.

Beside the need for efficient stabilization in FEM, the phase change in the enthalpy formation leads to discontinuous thermal

properties. This feature needs to be handled with care when seeking a numerical solution. Of particular concern are discontinu-

ities of the thermal conductivity (Patankar, 1980; Voller and Swaminathan, 1993; Voller, 2001; Nield and Bejan, 2013). Kleiner

et al. (2015) mentioned, that treating the discontinuous conductivity at the CTS as an arithmetic mean causes non-plausible55

oscillations in the enthalpy solution that are visible, e.g. in a time-varying CTS elevation. Our work addresses the current lack
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of accuracy of the simulated vertical enthalpy profile to the analytical solution obtained with the ice flow model ISSM with a

coarse vertical resolution (∆z=10 m, Kleiner et al., 2015, see Fig. 4 (upper row) therein).

We describe and analyze here recent developments designed to obtain an enthalpy formulation within the finite-element

model ISSM (Ice Sheet System Model, Larour et al., 2012) that performs well over a wide range of grid aspect ratios in60

advection dominated problems. The focus of this work is twofold: on the one hand, we focus on treatments of discontinuous

conductivities at the CTS. Here, we test three formulations for the discontinuous conductivity proposed in Nield and Bejan

(2013) for porous medium. On the other hand, we test SUPG formulations on thin geometries like ice sheets. Therefore, we run

sensitivity experiments to test distinct parameter choices. One component of this study is the presentation of a novel anisotropic

SUPG (ASUPG) method in ice sheet modelling that decouples the vertical from the horizontal direction to account for their65

different scales. The formulations presented are extensions of the current implementations within the ice flow model ISSM

(version 4.17) compared to Seroussi et al. (2013) and Kleiner et al. (2015).

2 Theory and Background

2.1 Mathematical model

Let Ω(t)⊆ R3 be a three-dimensional domain with t ∈ [0, tmax]. The equations are given in Cartesian coordinates, in which x70

and y are in the horizontal plane, and z is positive upward. The enthalpy balance equation reads

%i

(
∂E

∂t
+v · ∇E

)
=−∇ · q + Ψ, (1)

with the specific enthalpy (internal energy) E, the ice velocity vector v = (vx,vy,vz), the ice density %i, the non-advective

enthalpy flux q, and the heat source Ψ. The enthalpy field equation of the ice–water mixture depends on whether the mixture is

cold (E <Epmp) or temperate (E ≥ Epmp), with Epmp the enthalpy at the pressure melting point. The non-advective enthalpy75

flux in cold ice is represented by Fourier’s law but replacing temperature T by E. In the temperate domain, the non-advective

enthalpy flux is the sum of sensible and latent heat fluxes (e.g. Greve and Blatter, 2009, p. 239). The sensible heat flux is

caused by variations in the pressure melting point temperature Tpmp according to the Clausius-Clapeyron relation. In contrast,

the latent heat flux originates from liquid water mass flux j. A constitutive equation for this flux is needed but is not yet

established based on observations and experiments. Here, the liquid water mass flux is assumed to be of Fick-type diffusion80

(Hutter, 1982)

j =−ν∇ω =−K0∇E, (2)

withK0 = ν/L, the latent heat of fusion L, the liquid water fraction ω and liquid water diffusivity ν. The diffusivity is assumed

to be constant although it could depend on ω (Hutter, 1982). However, other approaches for the water mass flux, e.g. transport

according to Darcy’s law, are equally feasible (e.g. Fowler, 1984; Hewitt and Schoof, 2017). Sensible heat flux within the85

temperate ice is assumed to be small compared to heat production due to deformation and considered as a source term in Eq. 1.
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Thus,

q =−Keff∇E =−

 Kc∇E E <Epmp

K0∇E E ≥ Epmp

, (3)

with Kc = ki/ci, where ki is the temperature conductivity and ci the specific heat capacity of ice and

Ψ =

 Φ E <Epmp

Φ +∇ · (ki∇Tpmp) E ≥ Epmp

, (4)90

where Φ is the heat production term due to deformation. The temperature dependence of the heat conductivity and specific heat

capacity is neglected as well as the contribution of the liquid water conductivity to the ice/water mixture (Eq. 71 in Aschwanden

et al., 2012).

In most cases, the liquid water fraction is increasing but temperature is decreasing towards the base, because of the Clausius-

Clapeyron relation. Therefore, the transport of latent heat down the liquid water fraction gradient (Eq. 2) occurs against the95

temperature gradient. However, the temperate ice conductivity K0 remains poorly constrained as laboratory experiments and

field observations are scarce. In the polythermal sided slab experiment proposed in Greve and Blatter (2009, sec. 9.3.6) the

liquid water diffusivity is neglected and thus K0 = 0. Nevertheless, numerical implementations will automatically generate

some numerical diffusion (Greve, 1997). Sometimes a small diffusivity is used for numerical stability rather than physical rea-

sons, e.g.K0 = 10−6 kg m−1 s−1 (Greve and Blatter, 2016). In ISMs typical ratios forK0/Kc are between 10−1 (Aschwanden100

et al., 2012) and 10−3 (Greve and Blatter, 2016). In this study, K0 is simply varied to test its sensitivity on the polythermal

structure.

Dirichlet boundary conditions are imposed at the upper surface in all setups. The type of basal boundary condition (Neumann

or Dirichlet) is time dependent and follows the decision chart for local basal conditions given in Aschwanden et al. (2012).

However, the boundary conditions for the conducted experiments in this study are specified below.105

2.2 Finite element formulation

In ISSM (Larour et al., 2012; Seroussi et al., 2013), the enthalpy equation (Eq. 1) is discretized with piecewise linear P1×P1

elements and stabilized using the SUPG method according to Franca et al. (2006). The stabilized finite element methods for

Eq. 1 can be written as: find E ∈H1
0 (Ω) such that

B(E,w) = F (w) ∀w ∈H1
0 (Ω), (5)110

where

B(E,w) =

(
∂E

∂t
+v · ∇E,w

)
+Keff(∇E,∇w) +S(E,w), (6)

F (w) = (Ψ,w), (7)
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where (·, ·) is the inner product of the Hilbert space H1
0 (Ω) of square integrable functions and derivatives, and are zero on the

domain boundary. The term S(E,w) is added to the standard variational formulation such that consistency is preserved and115

numerical stability enhanced. There are different stabilization schemes that are usually considered (Franca et al., 2006); here

we rely on the SUPG method:

SSUPG(E,w) =
∑
K

τK(−Keff∆E+v · ∇E−Ψ,v · ∇w)K (8)

where K denotes an arbitrary element of the triangulation Th, τK is a stability coefficient and (·, ·)K denotes integration over

K. Please note, that for bilinear elements ∆E = 0.120

The stabilization parameter, τK is formulated as follows (Brooks and Hughes, 1982; Franca et al., 2006)

τK =
hK
2|v|

ξ (PeK) , (9)

PeK =
mk|v|hK

2Keff
, (10)

ξ (PeK) =

 PeK 0≤ PeK < 1

1 PeK ≥ 1
. (11)

hK is a characteristic dimension of element K (referred to as local mesh parameter), ξ is an upwind function and PeK is the125

local Peclet number. The usual Peclet definition is modified by including mk, which takes into account the effect of the degree

of interpolation, k. For linear interpolations, mk=1 is 1/3 (Franca et al., 1992). For the velocity norm |v| we use the euclidean

norm.

2.3 Anisotropic SUPG

The standard stabilization techniques were initially developed for isotropic meshes, which essentially require that the elements130

have a similar size in all spatial directions. Once the elements become anisotropic, the local mesh parameter plays an important

role in the calculation of stabilizing coefficients. Various definitions have been utilized based on e.g. the maximum edge length,

minimum edge length, circumradius of an element, and the element length aligned with the upwind direction (e.g., Mittal,

2000; Knobloch, 2008; Brinkerhoff and Johnson, 2015). Apart from that, Becker and Rannacher (1995) and Blasco (2008)

introduced stabilization coefficients for GLS diffusion that cover geometrical information from different spatial directions.135

These definitions do not cover the element characteristic that stems from thin 3D elements. In ice sheet modelling, 3D meshes

are generally formed by extruding vertically triangular meshes, leading to prismatic elements that are highly anisotropic since

the vertical extent is typically one or two orders of magnitude smaller than the horizontal extent. Typically, 15 to 20 horizontal

layers are used, with thinner layers close to the base. Considering a one-kilometer thick ice sheet, that is discretized in the

horizontal direction between 0.5 km and 20 km, aspect ratios could exceed 100. Taking the maximum edge length as the140

local mesh parameter hK , which is a default choice for isotropic elements, would lead to over-stabilization, while taking the

minimum edge length as hK would result in under-stabilization.
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In order to develop a new SUPG stabilized method for anisotropic meshes, which accounts for geometrical information from

the mesh, we consider a Cartesian three-dimensional mesh with prismatic elements. In doing so, we split the traditional SUPG

formulation into a horizontal and vertical direction with the stabilization parameters τhorizontal
K and τvertical

K , respectively.145

Relying on the ideas for stabilization parameters in different spatial direction by Becker and Rannacher (1995) and Blasco

(2008), the anisotropic SUPG (ASUPG) stabilization term S(E,w) is written as

SASUPG(E,w) =
∑
K




vx

√
τhorizontal
K

vy

√
τhorizontal
K

vz

√
τvertical
K

 · ∇E,


vx

√
τhorizontal
K

vy

√
τhorizontal
K

vz

√
τvertical
K

 · ∇w

K

+ (12)

∑
K

(−Keff∆E−Ψ,


vxτ

horizontal
K

vyτ
horizontal
K

vzτ
vertical
K

 · ∇w)K . (13)

The stabilization parameters τhorizontal
K and τvertical

K are similar to those calculated in Eqs. 9, 10, and 11, but the ASUPG150

approach replaces the local mesh parameter hK with the characteristic horizontal and vertical dimension of the element K.

That means hk is replaced by hhorizontal
K and hvertical

K in the two spatial directions. Here, both are calculated as the maximum

extent of the element K in the respective directions.

2.4 Treatment of discontinuous conductivity

Since the conductivity is discontinuous at the CTS, special attention must be paid to the treatment of the effective conductivity155

Keff in Eq. 3. The effective thermal conductivity of the solid-fluid system is related to the conductivity of the solid (ice), Kc,

and to the conductivity of the fluid (water), K0, and depends in a complex way on the geometry of the medium. In Nield and

Bejan (2013), three models are proposed:

1. The effective thermal conductivity is the weighted arithmetic mean:

Karithmetic
eff = θK0 + (1− θ)Kc. (14)160

2. The effective thermal conductivity is the weighted harmonic mean:

1

Kharmonic
eff

=
θ

K0
+

(1− θ)
Kc

. (15)

3. The effective thermal conductivity is given by the weighted geometric mean:

Kgeometric
eff =Kθ

0K
(1−θ)
c . (16)

The weighting term θ ∈ [0,1] indicates the volume fraction occupied by liquid water in a grid cell K. The volume fraction165

of K is defined as the sum of the enthalpy in the temperate phase, Et =
∑
iE if E ≥ Epmp, divided by sum of the enthalpy
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Em =
∑
iE, with i the number of nodes of K. It follows that (a) θ is zero if Et = 0 and (b) θ is one if the whole grid cell is

temperate (i.e. Em = Et). The discontinuous conductivity model is only evaluated for elements that contain a CTS.

The applicability of the three models is controversial in the literature and depends strongly on the problem (e.g. Midttømme

and Roaldset, 1999; Wang et al., 2006; Reddy and Karthikeyan, 2010; Jorand et al., 2011; Nield and Bejan, 2013; Ghanbarian170

and Daigle, 2016). However, Nield and Bejan (2013) recommend the arithmetic mean if the heat conduction in the solid and

fluid phases occurs in parallel. On the other hand, the harmonic mean is appropriate if the structure and orientation of the porous

medium is such that the heat conduction takes place in series, with all of the heat flux passing through both solid and fluid.

Since heat conduction through porous media is likely a combination of both structures, a geometric mean can be interpreted as

accounting for both processes as it always results in a value in between an arithmetic and harmonic mean (assumingKc 6=K0).175

Instead of employing a geometric mean a combination of the arithmetic and harmonic mean models may reveal comparable

results for the effective conductivity (e.g. combinatory rules are used by Wang et al., 2006; Reddy and Karthikeyan, 2010).

When Kc and K0 are equal, the three models give the same effective thermal conductivity. For the limit case, where K0→ 0,

the harmonic and geometric mean imply insulating properties as Keff → 0 and no heat flux occurs across the interface; the

arithmetic mean retains a non-zero flux.180

3 Experiments

We ran several experiments with the emphasis to test our modifications in ISSM on accuracy and on stability. The discontinuous

conductivity treatments are verified against an analytical solution within a polythermal slab experiment. As this experiment

results effectively in a one-dimensional vertical experiment, it is not suitable to test the SUPG parameter choices. Therefore,

we setup a synthetic second ice dome experiment with variations in the topography. Constants and model parameters used in185

the experiments are summarized in Tab. 1.

3.1 Polythermal slab

We repeat the well-established polythermal sided slab experiment proposed in Greve and Blatter (2009) and already applied

to ISSM in Kleiner et al. (2015). The setup poses a representative situation in glacier modelling with an intra-glacial CTS.

The model domain consists of a 200 m thick and 4◦ downward inclined ice slab. The horizontal velocity vx is prescribed as an190

analytical expression (from 5 m a−1 at the base towards ≈38 m a−1 at the surface and does not vary horizontally. The vertical

velocity is set to be constant and equal to vz =−0.2ma−1 while vy = 0ma−1). In addition, the geothermal heat flux is set to

be zero during the model run so that the englacial strain heating is the only source of energy in the enthalpy balance equation.

An analytical solution for the steady-state enthalpy profile based on the solution of Greve and Blatter (2009) leads to a

CTS elevation 18.95 m above the bed. In our experiments, the conductivity ratio K0/Kc is varied from 10−1 to 10−5. The195

simulations are performed on equidistant horizontal layers using different vertical resolutions ∆z = (10,5,2,0.5) m. To be

comparable to the ISSM results published in Kleiner et al. (2015)) no stabilization is applied in this setup, i.e. the term S(E,w)

in Eq. 6 is ignored. Please note that the analytical solution considersK0 = 0kgm−1 s−1. In this experiment, we apply a thermal
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steady-state solver (i.e. ∂E/∂t= 0 in Eq. 1). Comparisons of results when applying a transient solver or a steady-state solver

revealed no difference in the steady-state enthalpy profile.200

3.2 Ice dome

In this experiment, a more realistic set-up than the polythermal slab experiment is considered with a three-dimensional ice

dome based on the Vialov profile (Vialov, 1958). Other settings and parameters are borrowed from the EISMINT Phase 2

benchmark (Payne et al., 2000). The surface zs and bedrock zb of the entire ice sheet are defined as:

zb(x,y) = 0, (17)205

zs(x,y) = h(x,y)

= 10 +hmax

(
1− (r/rmax)(n+1)/n

)n/(2n+2)

, (18)

with the ice thickness h(x,y), the maximum ice thickness hmax, the radius r =
√
x2 + y2, the maximum extent rmax, and the

Glen exponent n. The summit of the ice dome is located at (x,y) = (0,0).

In this experiment, a thermo-mechanical coupling is considered. The Glen–Steinemann power-law rheology (Steinemann,210

1954; Glen, 1955) is used for the deformation of ice. The ice viscosity reads

η =
1

2
A−1/nε̇eff

−2/n, (19)

where A is the flow rate factor and ε̇eff the effective strain rate (considered as the second invariant of the strain-rate tensor). A

is assumed to be dependent on the temperature T ∗ (temperature relative to the pressure melting point Tpmp) and liquid water

fraction ω:215

A=A(T ∗,ω) =

 A0 e
−Qa/RT

∗
T ∗ < Tpmp

At0 (1 + 181.25ω) T ∗ = Tpmp

, (20)

where A0 and At0 are constants, Qa is the activation energy for creep, and R is the gas constant. The constant At0 is equal to

A(T ∗ = Tpmp,ω = 0). The upper bound of the water fraction ω is 0.01 to ensure validity of the flow rate factor parameterization

in the temperate part with the experimental dataset (Duval, 1977; Lliboutry and Duval, 1985).

For the dynamical model, we employ the higher-order Blatter-Pattyn approximation (Blatter, 1995; Pattyn, 2003). Basal220

sliding is allowed everywhere and the basal drag, τb, is written as:

τb,i =−k2Nvb,i, (21)

where vb,i is the basal velocity component in the horizontal plane and i= x,y and k2 the friction coefficient. The effective

pressure is defined as N = %i gh. At the ice front a zero pressure boundary condition is applied as all the ice is above sea level.

A traction-free boundary condition is imposed at the ice/air interface.225

For the thermal model, we impose a Dirichlet condition at the surface:

T (x,y) = 238.15K + 1.67× 10−5 K m−1r. (22)
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The ice sheet base is subject to the decision chart presented in Aschwanden et al. (2012). In this implementation, the basal

boundary condition is allowed to switch between Neumann and Dirichlet type dependending on the thermal basal conditions.

The geothermal flux, qgeo, is considered spatially constant.230

To investigate the sensitivity of over- and under-stabilization, we perform experiments with three different stabilization

formulations (Tab. 2). The setup SUPG maxK is the standard SUPG setup based on the maximum edge length of an element

K for the local mesh parameter hK . In contrast, the SUPG minK uses the minimum edge length as, however, recommended

for anisotropic 2D meshes (Harari and Hughes, 1992; Mittal, 2000). Finally, the ASUPG is employed.

To study whether the stabilization is dependent on different mesh resolutions and the amount of advection, we vary the235

horizontal grid size and the amount of sliding. Here, we use a base mesh of 20 km in the interior, which is subsequently

refined to lmin = (10,5,1)km towards the glacier margin. The friction coefficient is treated as spatially constant and several

experiments are performed with k2 = (400,100,50)am−1. For the three sliding cases, this results in frontal velocities of about

50, 350 and 1100m a−1, respectively. We use 15 layers refined close to the base to account for the high velocity gradients and

vertical shearing near the base in the vertical direction. The simulations are run 2000 years forward in time without necessarily240

reaching a steady state.

4 Results and Discussion

4.1 Polythermal slab

The final steady-state CTS elevations for all simulations are shown in Fig. 1. For the maximum value of temperate ice conduc-

tivity (K0/Kc = 10−1), the models result in a CTS elevation around 36–39 m. With decreasingK0/Kc, the temperate ice layer245

thickness consistently decreases for the harmonic and geometric mean models and is almost halved for the lowest conductivity

ratio K0/Kc = 10−5; the solution converges to the analytical CTS elevation for the high mesh resolution. However, for the

harmonic mean, we detect a larger spread over the grid-resolutions at low K0/Kc compared to the geometric mean. The sim-

ulations with the arithmetic mean yield a completely different picture. The range in the CTS elevation increases considerably

with decreasing K0/Kc and the analytical CTS elevation is met for the highest mesh resolution, below 2 m.250

The steady-state results of the three conductivity models are verified with the analytical solution of the vertical enthalpy

profile. Figure 2 shows the simulated vertical enthalpy profiles for ∆z = 10 and 0.5 m and the lowest conductivity ratio

K0/Kc = 10−5. The results of all models agree well with the analytical solution for high resolutions. At coarser resolu-

tions however, the simulated enthalpy profiles differ noticeably from the analytical solution for the arithmetic and the harmonic

mean, while the geometric mean coincides well with the analytical solution. Please note, that the results for the harmonic mean255

are similar to those presented in Kleiner et al. (2015) for ISSM.

The accuracy of the simulations with the lowest conductivity ratio is measured with the root-mean-square error (RMSE) to

the analytical solution. The RMSE as a function of vertical resolution is shown in Fig. 3. All three models exhibit different

behaviors. The arithmetic mean reveals a somewhat inconsistent behavior, while the harmonic mean shows approximately
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Figure 1. Difference of simulated steady state CTS elevations to the analytical CTS elevation for different values of the temperate ice

conductivity,K0, for the polythermal slab experiment. The analytical CTS elevation is 18.95 m. The different conductivity models are shown

as: harmonic mean (yellow), geometric mean (red) and arithmetic mean (blue). Results of different models are slightly shifted on the x-axis

to not overlay each other. The dashed black line indicates the CTS elevation of the analytical solution derived for K0 = 0kgm−1 s−1.

Figure 2. Simulated steady-state profiles of the enthalpy E computed with the three conductivity models withK0/Kc = 10−5 and a vertical

resolution of ∆z = 10m (a) and ∆z = 0.5m (b) compared to the analytical profile.
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Figure 3. Root-mean-square error (RMSE) for the polythermal slab experiment. The RMSE is computed between the modeled enthalpy

result and the analytical solution for different vertical grid resolutions ∆z and for each conductivity parameterization. Model results are

obtained for the lowest conductivity ratio K0/Kc = 10−5. The dashed light and darkgrey line shows the indicative rate for (∆z)1 and

(∆z)2, respectively.

first-order convergence as ∆z→ 0. Overall, the geometric mean shows low errors, and the error remains on a similarly low260

level even for coarse resolutions.

The different behaviors highlight the dependency of the solution on the CTS implementation details. As already identified

by Kleiner et al. (2015) the usage of an arithmetic mean leads to oscillations in the enthalpy solution that are visible e.g. in a

time-varying CTS elevation. Consequently, no steady-state solution is reached under these conditions. Here, when applying a

steady-state solver, the solver does not converge and the CTS elevation flips between the non-linear iterations.265

4.2 Ice dome

In this experiment, we explore the impact of the parameter choices in the SUPG formulation on the reliability and accuracy of

the results. In Fig. 4 the simulated basal enthalpy field is shown for the lowest resolution lmin = 10km and high sliding case

k2 = 50am−1 for the three employed stabilization formulations. Due to symmetry, only the upper-right part of the domain

is shown. As expected, the SUPG minK produces unphysical oscillations in the simulated enthalpy field. SUPG maxK and270

ASUPG reveal a smooth result with merely minor oscillations a the ice front, where the surface slopes becomes singular. The

same picture is observed along a cross-section of the ice sheet interior (Fig. 5). For the SUPG minK, the numerical oscillations

in the enthalpy field are visible in the whole ice profile. The same qualitative behavior among the SUPG formulations is detected
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Figure 4. Simulated enthalpy (kJ kg−1) for the ice dome experiment with lmin = 10km and k2 = 50am−1. (a) SUPG maxK, (b) SUPG

minK, (c) ASUPG. Black line in (c) indicates the location of the cross-section is shown in Fig. 5.

Figure 5. Simulated enthalpy (kJ kg−1) for the ice dome experiment with lmin = 10km and k2 = 50am−1 along a vertical cross section.

(a) SUPG maxK, (b) SUPG minK, (c) ASUPG. The location of the cross-section is shown in Fig. 4c.

for all employed grid resolutions and sliding cases (Fig. 6). Increasing the mesh resolution leads to a significant reduction in

upstream oscillations. However, oscillations still occur close to the ice margin. This is in line with the theory that τk must275

vanish as grid refinement increases, and no stabilization may be necessary for sufficiently fine meshes. The amount of basal

sliding, which controls the amount of advection, plays a secondary role.

Surprisingly, SUPG maxK and ASUPG are visually indistinguishable and result in qualitatively similar results. How-

ever, when re-running the polythermal slab experiment with the three SUPG formulations, distinct differences in the sim-

ulated enthalpy are obtained (Fig. 7). The simulations with ASUPG and SUPG minK both match the analytical solution280

with RMSE=0.01 and 0.01 kJ kg−1, respectively. The simulation with SUPG maxK deviates considerably from the analytical

solution with RMSE=0.48 kJ kg−1. Overall, we find that (1) using SUPG maxK as the local mesh parameter results in an

oscillation-free enthalpy field but tends to produce far more diffusion than the other choices, (2) using SUPG minK as the local

mesh parameter results in unphysically large oscillations for more complex geometries, and (3) ASUPG provided realistic

solutions in all conducted experiments.285

Our results demonstrate that choosing the stabilization parameter in a heuristic or ad-hoc manner, without knowledge of the

possible effects, can impact the solution significantly. Choosing a sub-optimal value for the stabilization parameter can affect
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Figure 6. Simulated depth-averaged enthalpy (kJ kg−1) for the ice dome experiment along a cross section. (a) SUPG maxK, (b) SUPG minK,

(c) ASUPG. The location of the cross-section is shown in Fig. 4c.

Figure 7. Simulated steady-state profiles of the enthalpy E for the three different SUPG models by employing the geometric mean (Eq. 16)

and a vertical resolution of ∆z = 0.5m (a). Zoom to CTS region (b). Please note that ASUPG and SUPG minK overlay each other.

the accuracy of the solution, and result in over- or under-stabilization. The viability of the SUPG formulation strongly depends

on appropriate parameter choices and in a worst-case scenario, the oscillations could cause unphysical values or the solver to

diverge. However, we have not investigated how the solution differences propagate to other components of an ice sheet model,290

e.g., by coupling to the evolution of the ice thickness.

Since the above-presented solutions for the ASUPG method are excellent, the parameter choices for the local mesh param-

eters hhorizontal
K , hvertical

K , and the velocity norm |v| are not further investigated. The velocity norm is here treated equally in

both directions (Eq. 9), and no differentiation is made between the horizontal and vertical direction. Some test runs (not shown

here) applying direction-dependent Euclidean norms of the velocity revealed no discernible differences to the above-presented295

results. Additionally, in the current implementation, the local mesh parameter in the horizontal direction, hhorizontal
K , does not

cover anisotropy of elements in the horizontal plane. However, these simplifications have so far not led to numerical problems,

but might be subject to future work.
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5 Conclusions

We presented extended enthalpy formulations within the ice flow model ISSM compared to Seroussi et al. (2013) and Kleiner300

et al. (2015). Treating the discontinuous conductivities at the CTS as a geometric mean results in a good solution for coarse

resolutions compared to the analytical solution. This treatment is an improvement compared to earlier ISSM results presented

in Kleiner et al. (2015) and based on a harmonic mean.

Additionally, we tested various SUPG stabilization formulations on their ability to deal with the high aspect ratio of 3D

elements in glaciological applications. We found that the traditional parameters in the SUPG stabilization coefficients are305

susceptible to stabilization parameter choices, here the local mesh parameter which is easily adjustable. We propose a novel

anisotropic SUPG (ASUPG) method that circumvents the high aspect-ratio problem in ice sheet modelling by treating the

horizontal and vertical direction separately in the stabilization coefficients. The ASUPG method provides accurate results for

the thermodynamic equation on geometries with very small aspect ratios like ice sheets.
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Table 1. Used constants and model parameters.

Quantity Value Unit

Seconds per year, spy 31556926 sa−1

Gravitational acceleration, g 9.81 ms−2

Density of ice, %i 910 kgm−3

Density of water, %w 1000 kgm−3

Reference temperature, Tref 223.15 K

Melting point at

standard pressure, T0 273.15 K

Specific heat capacity, ci 2009.0 Jkg−1K−1

Thermal conductivity, ki 2.1 Wm−1K−1

Glen exponent, n 3

Polythermal slab: a

Ice thickness, H 200 m

Geothermal heat flux, qgeo 0.0 Wm−2

Latent heat of fusion, L 3.35× 105 Jkg−1

Clausius-Clapeyron constant, β 0.0 KPa−1

Rate-factor, A 5.3× 10−24 Pa−3 s−1

Temperate ice conductivity, K0 ki/ci × 10−1

...

ki/ci × 10−5 kgm−1 s−1

Ice dome: b

Maximum thickness, hmax 3575.1 m

Maximum extent, rmax 750 km

Geothermal heat flux, qgeo 0.042 Wm−2

Latent heat of fusion, L 3.34× 105 Jkg−1

Clausius-Clapeyron constant, β 9.8× 10−8 KPa−1

Temperate ice conductivity, K0 ki/ci × 10−2 kgm−1 s−1

Universal gas constant, R 8.314 Jmol−1 K−1

Activation energy for creep, Qa 6× 104 if T ∗ < 263.15K kJmol−1

13.9× 104 if T ∗ > 263.15K kJmol−1

Constant of proportionality, A0 3.61× 10−13 if T ∗ < 263.15K Pa−3 s−1

1.73× 103 if T ∗ > 263.15K Pa−3 s−1

abased on Greve and Blatter (2009)
bbased on Vialov (1958) and Payne et al. (2000)
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Table 2. List of employed stabilization approaches

experiment label description

SUPG maxK SUPG formulation (Eq. 8) with hk as the maximum edge of the 3D element K

SUPG minK SUPG formulation (Eq. 8) with hk as the minimum edge of the 3D element K

ASUPG anisotropic SUPG (Eq. 13) formulation with hhorizontal
K and hvertical

K
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