
We would like to thank the reviewers for their constructive comments that helped to 
improve the manuscript ‘Extended enthalpy formulations in the ice flow model ISSM 
version 4.17: discontinuous conductivity and anisotropic SUPG’. We have revised the 
manuscript accordingly and will be happy to provide a new manuscript.  

Please find below the reviewer’s comments in black and a point-by-point response in 
blue.  

Review #1 
 
1 General comments 
 
This paper introduces two improvements to the thermodynamics represented in the 
ISSM (Ice Sheet System Model). ISSM is one of most widely used and advanced 
largescale ice sheet models in the world, and correct treatment of the thermodynamics is 
needed for many applications. The improvements are related to the discretization 
scheme rather than physics, but are analyzed in the context of the ice sheet physics. 
They are well enough described for other developers to see how to implement them, and 
examples are given that show their benefits. Given that, I think this is a suitable paper for 
inclusion in GMD. I do think that some minor attention to the manuscript is in order. 
 
We would like to thank Stephen Cornford for the positive feedback. 
 
2 Specific comments 
 
1. L17-20 - perhaps include some examples, e.g the thermomechanical instability 
discussed by e.g Hindmarsh 2009. 
Done. We included MacAyeal (1993), Hindmarsh 2009 and Feldmann and Leermann 
(2017) as prominent examples. 
 
2. L35 ’Numerical instabilities inherent to the advection component of this equation tend 
to occur without stabilizing the standard Galerkin finite element method.’ And indeed, any 
other method. 
The paragraph is rewritten to: “In ISMs, the governing thermodynamic equation are 
discretized, e.g. using the finite element method (FEM). Special care has to be taken to 
the parabolic thermodynamic equation as numerical instabilities inherent to the advection 
component of this equation tend to occur without stabilization. When employing the FEM 
the standard Galerkin finite element method is often stabilized with the popular 
Streamline Upwind Petrov–Galerkin (SUPG) method (Brooks_Hughes, 1982).” 
 
3. L82 ‘The temperate ice conductivity’. Expand on this a bit: say what it means 
physically (e.g transport of latent heat down a moisture gradient and often against a 
temperature gradient), and indicate typical literature value for K0/Kc (including zero) 
We expand and rephrased this section. See beginning of chapter 2.1 in the new version 
of the manuscript or in the marked-up version attached to this response. 
 
4. L130. Are S1and S2 introduced just fit the equations on the page? That is the 
impression I get. But I wondered if the sources cited also split S this way and take some 
specific interest in each term. 
S1 and S2 were just introduced for a clearer presentation. But you are right, there is no 
need to split the equation into S1 and S1. In the updated version we present SASUPG in 
one single equation. 
 



5. L140 (and after) How is θ found? And is θ a volume? 
Θ is a volume fraction. We rephrased the sentences here and give an explanation how θ 
is calculated. 
 
6. 149 ‘The applicability of the three models is controversial in the literature and depends 
strongly on the problem’ - citation/examples would help here. 
You are right, we added a list of references. 
 
7. ‘Since heat conduction through porous media is likely a combination of both 
structures, a geometric mean can be interpreted as accounting for both processes as 
it always results in a value in between an arithmetic and harmonic mean’ - but so would a 
number of combinations, and you might imagine trying to weight them. 
Yes, of course one could design a model as a combination of the arithmetic and 
harmonic mean that gives similar/comparable results. Indeed, we found studies were 
such combinations are proposed. We added a sentence and included the references. 
 
8. Figure 1. It is hard to make out the order of the symbols especially for the geometric 
mean (because they are close together) One solution could be to plot |CTS(∆z,K0) - 
CTS(K0= 0,∆z= 0)| (|numerical solution - analytic solution|) on a log scale, though that 
might only help with the smaller K0 cases. A sharp eye might then tell what the rate of 
convergence was, both as K0→0 and ∆z→0. 
Thanks, that's a good recommendation. We updated the figure accordingly. 
 
9. Figure 3. log scales for both x− and y−axes would help to make this figure clear, 
perhaps with indicative rates (∆z)n for suitable n. I would also plot 1/∆z on the x−axis 
rather than ∆z (so left -> right has increasing number of DoF but that really is a minor 
detail) 
Again, we updated the figure accordingly. 
 
10. Figure 7 the caption does state that ASUPG and SUPG minK overlay one an-other, 
but if one line was dashed (or thicker) that could be apparent in the figure. 
In the updated figure, we draw the SUPG minK with a thicker line. 
 
3 Technical corrections / very minor copy editing suggestions 
 
1. Abstract, first line: ’ice sheets’ should be ’ice sheet’? 
Done. 
 
2. L30 An increasing number of ice flow models is adopting → ...are adopting, or...have 
adopted 
We changed to “… are adopting ...”. 
 
3. L38 convection-dominated. You used ’advection’ in a previous line so I would stick 
with it. 
We sticked to “advection”. 
 
4. ’The aspect ratio of anisotropic grid-cells in the FEM is particularly problematic’→’Low 
aspect ratio mesh elements in the FEM are particularly problematic’? 
Changed as suggested. 
 
5. ISMs are dealing with very thin geometries - maybe say ’low aspect ratio’ here to be 
clear. 
Changed as suggested. 



 
6. ’For instance, a . . . ’→’A . . . ’ 
Done. 
 
7. ’Our work is indeed inspired by the’→’Our work addresses’ 
Done. 
 
8. L83 ’At the upper surface, Dirichlet boundary conditions are imposed’. In this case - 
but potentially a heat flux might be imposed if coupled with a snow packmodel. 
Well, to our knowledge most of the ISM application are not making use of a firnmodel. 
Most of the ISMs prescribing temperature/climate data from GCM/RCM products, which 
are imposed as Dirichlet. We think this is detail that should not be mentioned here. 
However, we have rewritten the sentence to: “Dirichlet boundary conditions are imposed 
at the upper surface in all setups.” 
 
9. L100 ’bilinear elements’→Piecewise linear? 
Changed as suggested. 
 
10. L111 ’Once the elements become anisotropic or distorted’. Is the ’distorted’ helpful 
here? 
We dropped “distorted”. 
 
11. L159 ’We run’ or ’We ran’ - not so important I guess but ’methods in the past, results 
in the present’ 
Done. 
 
12. L165 ‘The setup poses a *reasonable* situation in glacier modelling’ typical? 
representative? 
Yes, maybe ‘representative’ applies better. 
 
13. L167 ’The horizontal velocity...’ (and does not vary horizontally) 
Done. 
  
14. 174 In this set-up, no stabilization is applied, i.e. the term S(E,w) in Eq. 4 is ignored. 
(Because Pe is small I suppose? but is that the case below the CTS?) 
We applied no stabilization in order to be comparable to the ISSM results already 
published in Kleiner et al. (2015). The Pe number would require some stabilization in 
particular for small Keff values (below the CTS). However, adding some consistent 
stabilization (SUPG or ASUPG) does not alter the results drastically. We clarified that in 
the updated version of the manuscript. 
 
15. L214 ’without *the* necessarily reaching a steady state’ (remove the) 
Done. 
 
16. L221 (and onward) ’CTS position’. CTS elevation? 
Done. Changed in the whole manuscript. 
 
17. L245 ’Due to symmetry reason, only’→’Due to symmetry, only’ 
Done. 
 
18. ’too much diffusion’→’far more diffusion than the other choices?’ 
Changed as suggested. 
 



19. L265 ’the oscillations could cause the temperature to diverge’. From what? In one 
sense they do already (from the solution, ash K grows), but I think you mean numerical 
error so severe that it becomes grossly unphysical (e.g E <0, or E very large) and/or 
numerical error so severe it causes an iterative solver to produce successively worse 
approximations (blow up). 
We have rephrased it to: “…the oscillations could cause unphysical values or the solver 
to diverge.” 
 
20. L277 ‘Treating the discontinuous conductivity as a geometric mean’. A bit of 
rephrasing is needed: the conductivity is not treated as any kind of mean, rather, a 
particular formula is used when estimating Keff at various points. 
We added ‘Treating … at the CTS as geometric mean’. 
 
Review #2 
 
This manuscript describes the formulation of the thermodynamics-enthalpy solver in the 
ice-sheet model ISSM, including a novel numerical treatment of the discontinuous 
boundary between temperate and frozen ice within an ice column (known as the CTS). 
This problem is very important and relevant for ice-sheet modeling today, as more 
models begin to make use of the enthalpy formulation to simulate polythermal ice. I find 
the manuscript well written and clear. The methods, including new parameterizations 
applied here, and the results are straightforward to understand. The benchmark tests 
make the problem clear, and show the impact of the solution proposed by the authors. I 
therefore suggest that the manuscript be published with only very minor technical 
revisions. 
 
We would like to thank Alex Robinson for his positive evaluation. 
 
Minor copy editing comments: 
 
P1L10: are not accounting for => do not account for 
Done. 
 
P10L240: wen => when 
Done. 
 
P10L241: is flipping => flips 
Done. 
 
P11L245: symmetry reason => symmetry 
Done. 
 
P11L249: whole ice column => whole ice profile [I don’t see oscillations within a given 
column] 
Yes, you are right. 
 
P13L271: euclidean => Euclidean 
Done. 
 
Figures: consider using a different/darker color than yellow for the geometric mean 
points/curves. Since this is the novel result, it would be valuable for it to stand out a bit 
more in the figures. 
We changed the colors: the geometric mean appears a red points/line in the updated 
figures. 
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Abstract. The thermal state of an ice sheet is an important control on its past and future evolution. Some parts of the ice

sheets
::::
sheet may be polythermal, leading to discontinuous properties at the cold–temperate transition surface (CTS). These

discontinuities require a careful treatment in ice sheet models (ISMs). Additionally, the highly anisotropic geometry of the

3D elements in ice sheet modelling poses a problem for stabilization approaches in advection dominated problems. Here, we

present extended enthalpy formulations within the finite-element Ice Sheet System Model (ISSM) that show a better perfor-5

mance to earlier implementations. In a first polythermal-slab experiment, we found that the treatment of the discontinuous

conductivities at the CTS with a geometric mean produce more accurate results compared to the arithmetic or harmonic mean.

This improvement is particularly efficient when applied to coarse vertical resolutions. In a second ice dome experiment, we

find that the numerical solution is sensitive to the choice of stabilization parameters in the well-established Streamline Upwind

Petrov–Galerkin (SUPG) method. As standard literature values for the SUPG stabilization parameter are not accounting
::
do

:::
not10

::::::
account

:
for the highly anisotropic geometry of the 3D elements in ice sheet modelling, we propose a novel Anisotropic SUPG

(ASUPG) formulation. This formulation circumvents the problem of high aspect-ratio by treating the horizontal and vertical

directions separately in the stabilization coefficients. The ASUPG method provides accurate results for the thermodynamic

equation on geometries with very small aspect ratios like ice sheets.

Copyright statement.15

1 Introduction

Ice sheets and glaciers are important components of the climate system. Their evolution is one of the primary sources of sea-

level change (Church et al., 2013). Besides the interactions of the ice sheet with the environment, changes in ice flow can alter

the internal thermal state of the ice, which in turn can affect ice dynamics
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. MacAyeal, 1993; Hindmarsh, 2009; Feldmann and Levermann, 2017)

. Therefore thermo-mechanical numerical modelling of ice sheets is a crucial tool to understand both their past and future evo-20

lution.

1



Ice sheets and glaciers can exhibit a polythermal state that includes both cold (below the pressure melting point) and tem-

perate (at the pressure melting point) domains, separated by the cold–temperate transition surface (CTS) (Blatter and Hutter,

1991). In temperate ice, the heat generated by viscous deformation leads to a change of phase (Fowler, 1984; Blatter and Hut-

ter, 1991), hence temperate ice contains liquid water. The decrease of the ice viscosity with increasing content of liquid water25

in temperate ice in turn enhances ice flow (Duval, 1977), especially if the temperate ice is present in basal layers, where shear

deformation is largest.

Modern state-of-the-art ice sheet models (ISMs) simulate the thermal state according to the enthalpy method originally

formulated in Aschwanden et al. (2012) and further developed and verified in Kleiner et al. (2015), Blatter and Greve (2015),

Greve and Blatter (2016) and Hewitt and Schoof (2017). The main advantage of this formulation is the elimination of tracking30

the CTS, as both cold and temperate ice domains are handled within one equation for the enthalpy E; temperature T and

liquid water fraction ω are diagnostically computed from enthalpy. An increasing number of ice flow models is
::
are

:
adopting

an enthalpy scheme (e.g. Aschwanden et al., 2012; Brinkerhoff and Johnson, 2013; Seroussi et al., 2013; Kleiner et al., 2015;

Greve and Blatter, 2016; Hoffman et al., 2018).

In ISMs, the governing thermodynamic equation are discretized, e.g. using the finite element method (FEM). Special care35

has to be taken when employing the FEM to the parabolic thermodynamic equation . Numerical
::
as

:::::::::
numerical instabilities

inherent to the advection component of this equation tend to occur without stabilizing the
::::::::::
stabilization.

::::::
When

:::::::::
employing

:::
the

::::
FEM

:::
the

:
standard Galerkin finite element method . To maintain stabilization,

::
is

::::
often

:::::::::
stabilized

::::
with the popular Streamline

Upwind Petrov–Galerkin (SUPG) method is often employed to the discrete problem (Brooks and Hughes, 1982). Although the

SUPG method is well-established for convection-dominated
:::::::::::::::::
advection-dominated

:
problems, the optimal parameter choices are40

still subject of extensive research (e.g. Tezduyar and Osawa, 2000; John and Knobloch, 2007). The aspect ratio of anisotropic

grid-cells
::::
Low

:::::
aspect

:::::
ratio

::::
mesh

::::::::
elements

:
in the FEM is

:::
are particularly problematic, and error analysis is often restricted to

two dimensions (e.g. John et al., 2018). Moreover, current mathematical and numerical analyses are not always general enough

to apply to real-world applications (John et al., 2018).

ISMs are dealing with very thin geometries
:::
low

:::::
aspect

::::
ratio, since the ice vertical extent (up to ∼4 km) is much smaller than45

its lateral extent (up to several thousands of kilometres). As a consequence, 3D elements are frequently highly anisotropic and

pose a challenging problem in order to maintain stabilization. For instance, a
:
A

:
non-optimal choice of stabilization parameters

could result either in under- or over-stabilization of the numerical solution. As a consequence of increasing computer power

and modern models frequently relying on the FEM, Helanow and Ahlkrona (2018) investigated the accuracy and robustness of

linear equal order finite elements discretization with Galerkin least-squares (GLS) stabilization on the Stokes equation system50

with anisotropic meshes. They found that common literature values for this stabilization scheme perform well on simple

domains. However, on more complex geometries, in particular, at the ice margin of outlet glaciers, the choice of standard

parameters results in significant oscillations in the vertical component of the surface velocity.

Beside the need for efficient stabilization in FEM, the phase change in the enthalpy formation leads to discontinuous thermal

properties. This feature needs to be handled with care when seeking a numerical solution. Of particular concern are discontinu-55

ities of the thermal conductivity (Patankar, 1980; Voller and Swaminathan, 1993; Voller, 2001; Nield and Bejan, 2013). Kleiner

2



et al. (2015) mentioned, that treating the discontinuous conductivity at the CTS as an arithmetic mean causes non-plausible

oscillations in the enthalpy solution that are visible, e.g. in a time-varying CTS position
:::::::
elevation. Our work is indeed inspired

by
:::::::
addresses

:
the current lack of accuracy of the simulated vertical enthalpy profile to the analytical solution obtained with the

ice flow model ISSM with a coarse vertical resolution (∆z=10 m, Kleiner et al., 2015, see Fig. 4 (upper row) therein).60

We describe and analyze here recent developments designed to obtain an enthalpy formulation within the finite-element

model ISSM (Ice Sheet System Model, Larour et al., 2012) that performs well over a wide range of grid aspect ratios in

advection dominated problems. The focus of this work is twofold: on the one hand, we focus on treatments of discontinuous

conductivities at the CTS. Here, we test three formulations for the discontinuous conductivity proposed in Nield and Bejan

(2013) for porous medium. On the other hand, we test SUPG formulations on thin geometries like ice sheets. Therefore, we run65

sensitivity experiments to test distinct parameter choices. One component of this study is the presentation of a novel anisotropic

SUPG (ASUPG) method in ice sheet modelling that decouples the vertical from the horizontal direction to account for their

different scales. The formulations presented are extensions of the current implementations within the ice flow model ISSM

(version 4.17) compared to Seroussi et al. (2013) and Kleiner et al. (2015).

2 Theory and Background70

2.1 Mathematical model

Let Ω(t)⊆ R3 be a three-dimensional domain with t ∈ [0, tmax]. The equations are given in Cartesian coordinates, in which x

and y are in the horizontal plane, and z is positive upward. The enthalpy balance equation reads

%i

(
∂E

∂t
+v · ∇E

)
=−∇ · qi + Ψ, (1)

with the specific enthalpy (internal energy) E, the ice velocity vector v = (vx,vy,vz), the ice density %i, the conductive flux75

qi:::::::::::
non-advective

:::::::
enthalpy

::::
flux

::
q, and the heat source by internal deformation Ψ. The enthalpy field equation of the ice–water

mixture depends on whether the mixture is cold or temperate. The conductive
::::::::::
(E <Epmp)

:::
or

::::::::
temperate

::::::::::::
(E ≥ Epmp),

::::
with

:::::
Epmp :::

the
:::::::
enthalpy

::
at

:::
the

:::::::
pressure

:::::::
melting

:::::
point.

::::
The

::::::::::::
non-advective

:::::::
enthalpy

:
flux in cold ice is represented by Fourier’s law

but replacing temperature T by E. In the temperate domain, the conductive
:::::::::::
non-advective

::::::::
enthalpy flux is the latent heat flux

(for simplicity we ignore here the
::::
sum

::
of

:::::::
sensible

:::
and

::::::
latent

:::
heat

::::::
fluxes

::::::::::::::::::::::::::::::
(e.g. Greve and Blatter, 2009, p. 239)

:
.
::::
The sensible80

heat flux
::
is caused by variations in the pressure melting point temperature Tpmp(p)):

qi =−Keff∇E =−

 Kc∇E E <Epmp

K0∇E E ≥ Epmp

,

::::
Tpmp:::::::::

according
::
to

:::
the

::::::::::::::::
Clausius-Clapeyron

:::::::
relation.

::
In

::::::::
contrast,

:::
the

::::
latent

::::
heat

::::
flux

::::::::
originates

:::::
from

:::::
liquid

:::::
water

::::
mass

::::
flux

::
j.

::
A

:::::::::
constitutive

::::::::
equation

:::
for

:::
this

::::
flux

::
is

::::::
needed

:::
but

::
is

:::
not

:::
yet

:::::::::
established

:::::
based

:::
on

::::::::::
observations

::::
and

:::::::::::
experiments.

:::::
Here,

:::
the

:::::
liquid

3



::::
water

:::::
mass

::::
flux

:
is
::::::::
assumed

::
to

::
be

::
of

:::::::::
Fick-type

:::::::
diffusion

:::::::::::::
(Hutter, 1982)85

j =−ν∇ω =−K0∇E,
:::::::::::::::::::

(2)

where Epmp is the specific enthalpy at the pressure melting point and Kc = ki/ci the enthalpy conductivity in cold ice
::::
with

:::::::::
K0 = ν/L,

:::
the

:::::
latent

::::
heat

::
of

::::::
fusion

::
L,

:::
the

:::::
liquid

:::::
water

:::::::
fraction

::
ω

:::
and

:::::
liquid

:::::
water

:::::::::
diffusivity

::
ν.

::::
The

::::::::
diffusivity

::
is
::::::::
assumed

::
to

::
be

:::::::
constant

::::::::
although

::
it

:::::
could

::::::
depend

:::
on

:
ω
:::::::::::::

(Hutter, 1982).
::::::::
However,

:::::
other

::::::::::
approaches

:::
for

:::
the

:::::
water

::::
mass

::::
flux,

::::
e.g.

::::::::
transport

::::::::
according

::
to

:::::::
Darcy’s

::::
law,

::::
are

::::::
equally

:::::::
feasible

:::::::::::::::::::::::::::::::::::::
(e.g. Fowler, 1984; Hewitt and Schoof, 2017)

:
.
:::::::
Sensible

:::::
heat

::::
flux

:::::
within

::::
the90

::::::::
temperate

:::
ice

::
is

::::::::
assumed

::
to

::
be

::::::
small

::::::::
compared

::
to
::::

heat
::::::::::

production
:::
due

:::
to

::::::::::
deformation

::::
and

:::::::::
considered

:::
as

:
a
::::::
source

::::
term

:::
in

:::
Eq.

::
1.

:::::
Thus,

q =−Keff∇E =−

 Kc∇E E <Epmp

K0∇E E ≥ Epmp

,

:::::::::::::::::::::::::::::::::::::

(3)

::::
with

:::::::::
Kc = ki/ci, where ki is the temperature conductivity and ci the specific heat capacity

::
of

:::
ice

:::
and

Ψ =

 Φ E <Epmp

Φ +∇ · (ki∇Tpmp) E ≥ Epmp

,

:::::::::::::::::::::::::::::::::::

(4)95

:::::
where

::
Φ

::
is
::::

the
::::
heat

:::::::::
production

:::::
term

:::
due

:::
to

::::::::::
deformation. The temperature dependence of the heat conductivity and spe-

cific heat capacity is neglected . The
::
as

::::
well

:::
as

:::
the

::::::::::
contribution

:::
of

:::
the

:::::
liquid

:::::
water

:::::::::::
conductivity

::
to
::::

the
::::::::
ice/water

:::::::
mixture

:::::::::::::::::::::::::::::
(Eq. 71 in Aschwanden et al., 2012).

:

::
In

::::
most

:::::
cases,

:::
the

:::::
liquid

:::::
water

::::::
fraction

::
is

:::::::::
increasing

:::
but

:::::::::
temperature

::
is
:::::::::
decreasing

:::::::
towards

:::
the

::::
base,

:::::::
because

::
of

:::
the

::::::::::::::::
Clausius-Clapeyron

:::::::
relation.

:::::::::
Therefore,

:::
the

:::::::
transport

::
of

:::::
latent

::::
heat

:::::
down

:::
the

::::::
liquid

:::::
water

::::::
fraction

:::::::
gradient

::::
(Eq.

:::
2)

:::::
occurs

:::::::
against

:::
the

::::::::::
temperature100

:::::::
gradient.

::::::::
However,

::::
the temperate ice conductivity K0 remains poorly constrained as laboratory experiments and field ob-

servations are scarce. In
::
the

:::::::::::
polythermal

:::::
sided

::::
slab

::::::::::
experiment

::::::::
proposed

::
in

::::::::::::::::::::::::::::::
Greve and Blatter (2009, sec. 9.3.6)

::
the

::::::
liquid

::::
water

:::::::::
diffusivity

::
is
:::::::::

neglected
:::
and

::::
thus

::::::::
K0 = 0.

:::::::::::
Nevertheless,

:::::::::
numerical

::::::::::::::
implementations

::::
will

:::::::::::
automatically

::::::::
generate

:::::
some

::::::::
numerical

::::::::
diffusion

:::::::::::
(Greve, 1997)

:
.
:::::::::
Sometimes

::
a
:::::
small

:::::::::
diffusivity

:
is
:::::

used
:::
for

::::::::
numerical

:::::::
stability

:::::
rather

::::
than

::::::::
physical

:::::::
reasons,

:::
e.g.

:::::::::::::::::::
K0 = 10−6 kg m−1 s−1

:::::::::::::::::::::
(Greve and Blatter, 2016)

:
.
::
In

::::
ISMs

::::::
typical

:::::
ratios

:::
for

::::::
K0/Kc:::

are
:::::::
between

:::::
10−1

:::::::::::::::::::::
(Aschwanden et al., 2012)105

:::
and

:::::
10−3

:::::::::::::::::::::
(Greve and Blatter, 2016).

::
In

:
this study, K0 is simply varied to test its sensitivity on the polythermal structure.

At the upper surface, Dirichlet boundary conditions are imposed
:
at
:::
the

:::::
upper

:::::::
surface

::
in

::
all

::::::
setups. The type of basal bound-

ary condition (Neumann or Dirichlet) is time dependent and follows the decision chart for local basal conditions given in

Aschwanden et al. (2012). However, the boundary conditions for the conducted experiments in this study are specified below.

2.2 Finite element formulation110

In ISSM (Larour et al., 2012; Seroussi et al., 2013), the enthalpy equation (Eq. 1) is discretized with piecewise bilinear
:::::
linear

P1×P1 elements and stabilized using the SUPG method according to Franca et al. (2006). The stabilized finite element methods
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for Eq. 1 can be written as: find E ∈H1
0 (Ω) such that

B(E,w) = F (w) ∀w ∈H1
0 (Ω), (5)

where115

B(E,w) =

(
∂E

∂t
+v · ∇E,w

)
+Keff(∇E,∇w) +S(E,w), (6)

F (w) = (Ψ,w), (7)

where (·, ·) is the inner product of the Hilbert space H1
0 (Ω) of square integrable functions and derivatives, and are zero on the

domain boundary. The term S(E,w) is added to the standard variational formulation such that consistency is preserved and

numerical stability enhanced. There are different stabilization schemes that are usually considered (Franca et al., 2006); here120

we rely on the SUPG method:

SSUPG(E,w) =
∑
K

τK(−Keff∆E+v · ∇E−Ψ,v · ∇w)K (8)

where K denotes an arbitrary element of the triangulation Th, τK is a stability coefficient and (·, ·)K denotes integration over

K. Please note, that for bilinear elements ∆E = 0.

The stabilization parameter, τK is formulated as follows (Brooks and Hughes, 1982; Franca et al., 2006)125

τK =
hK
2|v|

ξ (PeK) , (9)

PeK =
mk|v|hK

2Keff
, (10)

ξ (PeK) =

 PeK 0≤ PeK < 1

1 PeK ≥ 1
. (11)

hK is a characteristic dimension of element K (referred to as local mesh parameter), ξ is an upwind function and PeK is the

local Peclet number. The usual Peclet definition is modified by including mk, which takes into account the effect of the degree130

of interpolation, k. For linear interpolations, mk=1 is 1/3 (Franca et al., 1992). For the velocity norm |v| we use the euclidean

norm.

2.3 Anisotropic SUPG

The standard stabilization techniques were initially developed for isotropic meshes, which essentially require that the ele-

ments have a similar size in all spatial directions. Once the elements become anisotropicor distorted, the local mesh parameter135

plays an important role in the calculation of stabilizing coefficients. Various definitions have been utilized based on e.g. the

maximum edge length, minimum edge length, circumradius of an element, and the element length aligned with the upwind

direction (e.g., Mittal, 2000; Knobloch, 2008; Brinkerhoff and Johnson, 2015). Apart from that, Becker and Rannacher (1995)

and Blasco (2008) introduced stabilization coefficients for GLS diffusion that cover geometrical information from different
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spatial directions. These definitions do not cover the element characteristic that stems from thin 3D elements. In ice sheet mod-140

elling, 3D meshes are generally formed by extruding vertically triangular meshes, leading to prismatic elements that are highly

anisotropic since the vertical extent is typically one or two orders of magnitude smaller than the horizontal extent. Typically,

15 to 20 horizontal layers are used, with thinner layers close to the base. Considering a one-kilometer thick ice sheet, that is

discretized in the horizontal direction between 0.5 km and 20 km, aspect ratios could exceed 100. Taking the maximum edge

length as the local mesh parameter hK , which is a default choice for isotropic elements, would lead to over-stabilization, while145

taking the minimum edge length as hK would result in under-stabilization.

In order to develop a new SUPG stabilized method for anisotropic meshes, which accounts for geometrical information from

the mesh, we consider a Cartesian three-dimensional mesh with prismatic elements. In doing so, we split the traditional SUPG

formulation into a horizontal and vertical direction with the stabilization parameters τhorizontal
K and τvertical

K , respectively.

Relying on the ideas for stabilization parameters in different spatial direction by Becker and Rannacher (1995) and Blasco150

(2008), the anisotropic SUPG (ASUPG) stabilization term S(E,w) is written as

SASUPG(E,w) = S1(E,w) +S2(E,w),

SASUPG(E,w) =
::::::::::::::

∑
K




vx

√
τhorizontal
K

vy

√
τhorizontal
K

vz

√
τvertical
K

 · ∇E,


vx

√
τhorizontal
K

vy

√
τhorizontal
K

vz

√
τvertical
K

 · ∇w

K

+

::::::::::::::::::::::::::::::::::::::::::::::::::::::

(12)

∑
K

(−Keff∆E−Ψ,


vxτ

horizontal
K

vyτ
horizontal
K

vzτ
vertical
K

 · ∇w)K .

:::::::::::::::::::::::::::::::::::::::

(13)155

where

S1(E,w) =
∑
K




vx

√
τhorizontal
K

vy

√
τhorizontal
K

vz

√
τvertical
K

 · ∇E,


vx

√
τhorizontal
K

vy

√
τhorizontal
K

vz

√
τvertical
K

 · ∇w

K

,

S2(E,w) =
∑
K(−Keff∆E−Ψ,


vxτ

horizontal
K

vyτ
horizontal
K

vzτ
vertical
K

 · ∇w)K .

The stabilization parameters τhorizontal
K and τvertical

K are similar to those calculated in Eqs. 9, 10, and 11, but the ASUPG

approach replaces the local mesh parameter hK with the characteristic horizontal and vertical dimension of the element K.160

That means hk is replaced by hhorizontal
K and hvertical

K in the two spatial directions. Here, both are calculated as the maximum

extent of the element K in the respective directions.
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2.4 Treatment of discontinuous conductivity

Since the conductivity is discontinuous at the CTS, special attention must be paid to the treatment of the effective conductivity

Keff in Eq. 3. The effective thermal conductivity of the solid-fluid system is related to the conductivity of the solid (ice), Kc,165

and to the conductivity of the fluid (water), K0, and depends in a complex way on the geometry of the medium. In Nield and

Bejan (2013), three models are proposed:

1. The effective thermal conductivity is the weighted arithmetic mean:

Karithmetic
eff = θK0 + (1− θ)Kc. (14)

2. The effective thermal conductivity is the weighted harmonic mean:170

1

Kharmonic
eff

=
θ

K0
+

(1− θ)
Kc

. (15)

3. The effective thermal conductivity is given by the weighted geometric mean:

Kgeometric
eff =Kθ

0K
(1−θ)
c . (16)

The weighting term θ
::::::::
θ ∈ [0,1] indicates the volume

::::::
fraction

:
occupied by liquid water . The

:
in

::
a
::::
grid

:::
cell

:::
K.

::::
The

:::::::
volume

::::::
fraction

::
of
:::
K

::
is

::::::
defined

:::
as

:::
the

::::
sum

::
of

:::
the

:::::::
enthalpy

:::
in

:::
the

::::::::
temperate

::::::
phase,

::::::::::
Et =

∑
iE :

if
::::::::::
E ≥ Epmp,

:::::::
divided

::
by

::::
sum

:::
of

:::
the175

:::::::
enthalpy

:::::::::::
Em =

∑
iE,

::::
with

:
i
:::
the

:::::::
number

::
of

:::::
nodes

::
of

:::
K.

::
It

::::::
follows

:::
that

:::
(a)

::
θ

:
is
::::
zero

::
if
::::::
Et = 0

::::
and

::
(b)

::
θ
::
is

:::
one

::
if

:::
the

:::::
whole

::::
grid

:::
cell

::
is

::::::::
temperate

::::
(i.e.

:::::::::
Em = Et).::::

The discontinuous conductivity model is only evaluated for elements that contain a CTS.

The applicability of the three models is controversial in the literature and depends strongly on the problem
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Midttømme and Roaldset, 1999; Wang et al., 2006; Reddy and Karthikeyan, 2010; Jorand et al., 2011; Nield and Bejan, 2013; Ghanbarian and Daigle, 2016)

. However, Nield and Bejan (2013) recommend the arithmetic mean if the heat conduction in the solid and fluid phases occurs

in parallel. On the other hand, the harmonic mean is appropriate if the structure and orientation of the porous medium is such180

that the heat conduction takes place in series, with all of the heat flux passing through both solid and fluid. Since heat conduc-

tion through porous media is likely a combination of both structures, a geometric mean can be interpreted as accounting for

both processes as it always results in a value in between an arithmetic and harmonic mean (assuming Kc 6=K0).
:::::
Instead

:::
of

:::::::::
employing

:
a
:::::::::
geometric

:::::
mean

:
a
:::::::::::
combination

::
of

:::
the

:::::::::
arithmetic

:::
and

::::::::
harmonic

:::::
mean

:::::::
models

::::
may

:::::
reveal

::::::::::
comparable

::::::
results

:::
for

::
the

::::::::
effective

::::::::::
conductivity

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. combinatory rules are used by Wang et al., 2006; Reddy and Karthikeyan, 2010).

:
WhenKc and185

K0 are equal, the three models give the same effective thermal conductivity. For the limit case, where K0→ 0, the harmonic

and geometric mean imply insulating properties as Keff → 0 and no heat flux occurs across the interface; the arithmetic mean

retains a non-zero flux.

3 Experiments

We run
::
ran

:
several experiments with the emphasis to test our modifications in ISSM on accuracy and on stability. The dis-190

continuous conductivity treatments are verified against an analytical solution within a polythermal slab experiment. As this
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experiment results effectively in a one-dimensional vertical experiment, it is not suitable to test the SUPG parameter choices.

Therefore, we setup a synthetic second ice dome experiment with variations in the topography. Constants and model parameters

used in the experiments are summarized in Tab. 1.

3.1 Polythermal slab195

We repeat the well-established polythermal sided slab experiment proposed in Greve and Blatter (2009) and already applied to

ISSM in Kleiner et al. (2015). The setup poses a reasonable
:::::::::::
representative situation in glacier modelling with an intra-glacial

CTS. The model domain consists of a 200 m thick and 4◦ downward inclined ice slab. The horizontal velocity vx is prescribed

as an analytical expression (from 5 m a−1 at the base towards ∼
:
≈38 m a−1 at the surface , while vy = 0ma−1), and the

:::
and

::::
does

:::
not

::::
vary

:::::::::::
horizontally.

:::
The

:
vertical velocity is set to be constant and equal to vz =−0.2ma−1

::::
while

::::::::::::
vy = 0ma−1). In200

addition, the geothermal heat flux is set to be zero during the model run so that the englacial strain heating is the only source

of energy in the enthalpy balance equation.

An analytical solution for the steady-state enthalpy profile based on the solution of Greve and Blatter (2009) leads to a CTS

position
:::::::
elevation

:
18.95 m above the bed. In our experiments, the conductivity ratio K0/Kc is varied from 10−1 to 10−5. The

simulations are performed on equidistant horizontal layers using different vertical resolutions ∆z = (10,5,2,0.5) m. In this205

set-up,
::
To

:::
be

::::::::::
comparable

::
to

:::
the

:::::
ISSM

::::::
results

::::::::
published

:::
in

::::::::::::::::
Kleiner et al. (2015)

:
)
:
no stabilization is applied

::
in

:::
this

:::::
setup, i.e.

the term S(E,w) in Eq. 6 is ignored. Please note that the analytical solution considers K0 = 0kgm−1 s−1. In this experiment,

we apply a thermal steady-state solver (i.e. ∂/∂t= 0
:::::::::
∂E/∂t= 0

:
in Eq. 1). Comparisons of results when applying a transient

solver or a steady-state solver revealed no difference in the steady-state enthalpy profile.

3.2 Ice dome210

In this experiment, a more realistic set-up than the polythermal slab experiment is considered with a three-dimensional ice

dome based on the Vialov profile (Vialov, 1958). Other settings and parameters are borrowed from the EISMINT Phase 2

benchmark (Payne et al., 2000). The surface zs and bedrock zb of the entire ice sheet are defined as:

zb(x,y) = 0, (17)

zs(x,y) = h(x,y)215

= 10 +hmax

(
1− (r/rmax)(n+1)/n

)n/(2n+2)

, (18)

with the ice thickness h(x,y), the maximum ice thickness hmax, the radius r =
√
x2 + y2, the maximum extent rmax, and the

Glen exponent n. The summit of the ice dome is located at (x,y) = (0,0).

In this experiment, a thermo-mechanical coupling is considered. The Glen–Steinemann power-law rheology (Steinemann,

1954; Glen, 1955) is used for the deformation of ice. The ice viscosity reads220

η =
1

2
A−1/nε̇

−2/n
eff , (19)
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where A is the flow rate factor and ε̇eff the effective strain rate (considered as the second invariant of the strain-rate tensor). A

is assumed to be dependent on the temperature T ∗ (temperature relative to the pressure melting point Tpmp) and liquid water

fraction ω:

A=A(T ∗,ω) =

 A0 e
−Qa/RT

∗
T ∗ < Tpmp

At0 (1 + 181.25ω) T ∗ = Tpmp

, (20)225

where A0 and At0 are constants, Qa is the activation energy for creep, and R is the gas constant. The constant At0 is equal to

A(T ∗ = Tpmp,ω = 0). The upper bound of the water fraction ω is 0.01 to ensure validity of the flow rate factor parameterization

in the temperate part with the experimental dataset (Duval, 1977; Lliboutry and Duval, 1985).

For the dynamical model, we employ the higher-order Blatter-Pattyn approximation (Blatter, 1995; Pattyn, 2003). Basal

sliding is allowed everywhere and the basal drag, τb, is written as:230

τb,i =−k2Nvb,i, (21)

where vb,i is the basal velocity component in the horizontal plane and i= x,y and k2 the friction coefficient. The effective

pressure is defined as N = %i gh. At the ice front a zero pressure boundary condition is applied as all the ice is above sea level.

A traction-free boundary condition is imposed at the ice/air interface.

For the thermal model, we impose a Dirichlet condition at the surface:235

T (x,y) = 238.15K + 1.67× 10−5 K m−1r. (22)

The ice sheet base is subject to the decision chart presented in Aschwanden et al. (2012). In this implementation, the basal

boundary condition is allowed to switch between Neumann and Dirichlet type dependending on the thermal basal conditions.

The geothermal flux, qgeo, is considered spatially constant.

To investigate the sensitivity of over- and under-stabilization, we perform experiments with three different stabilization240

formulations (Tab. 2). The setup SUPG maxK is the standard SUPG setup based on the maximum edge length of an element

K for the local mesh parameter hK . In contrast, the SUPG minK uses the minimum edge length as, however, recommended

for anisotropic 2D meshes (Harari and Hughes, 1992; Mittal, 2000). Finally, the ASUPG is employed.

To study whether the stabilization is dependent on different mesh resolutions and the amount of advection, we vary the

horizontal grid size and the amount of sliding. Here, we use a base mesh of 20 km in the interior, which is subsequently245

refined to lmin = (10,5,1)km towards the glacier margin. The friction coefficient is treated as spatially constant and several

experiments are performed with k2 = (400,100,50)am−1. For the three sliding cases, this results in frontal velocities of about

50, 350 and 1100m a−1, respectively. We use 15 layers refined close to the base to account for the high velocity gradients

and vertical shearing near the base in the vertical direction. The simulations are run 2000 years forward in time without the

necessarily reaching a steady state.250
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Figure 1. Comparison
:::::::
Difference

:
of simulated steady state CTS positions

:::::::
elevations

::
to
:::
the

::::::::
analytical

:::
CTS

:::::::
elevation

:
for different values of

the temperate ice conductivity, K0, for the polythermal slab experiment. The
:::::::
analytical

:::
CTS

:::::::
elevation

::
is

:::::::
18.95 m.

:::
The different conductivity

models are shown as: arithmetic
::::::
harmonic

:
mean (blue

:::::
yellow), harmonic

::::::::
geometric mean (red) and geometric

:::::::
arithmetic

:
mean (yellow

:::
blue).

Results of different models are slightly shifted on the x-axis to not overlay each other. The dashed black line indicates the CTS position

:::::::
elevation of the analytical solution derived for K0 = 0kgm−1 s−1.

4 Results and Discussion

4.1 Polythermal slab

The final steady-state CTS positions
::::::::
elevations

:
for all simulations are shown in Fig. 1. For the maximum value of temperate

ice conductivity (K0/Kc = 10−1), the models result in a CTS position
::::::::
elevation around 36–39 m. With decreasing K0/Kc,

the temperate ice layer thickness consistently decreases for the harmonic and geometric mean models and is almost halved for255

the lowest conductivity ratio K0/Kc = 10−5; the solution converges to the analytical CTS position
:::::::
elevation

:
for the high mesh

resolution. However, for the harmonic mean, we detect a larger spread over the grid-resolutions at low K0/Kc compared to the

geometric mean. The simulations with the arithmetic mean yield a completely different picture. The range in the CTS position

:::::::
elevation

:
increases considerably with decreasing K0/Kc and the analytical CTS position

:::::::
elevation is met for the highest mesh

resolution, below 2 m.260

The steady-state results of the three conductivity models are verified with the analytical solution of the vertical enthalpy

profile. Figure 2 shows the simulated vertical enthalpy profiles for ∆z = 10 and 0.5 m and the lowest conductivity ratio
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Figure 2. Simulated steady-state profiles of the enthalpy E computed with the three conductivity models withK0/Kc = 10−5 and a vertical

resolution of ∆z = 10m (a) and ∆z = 0.5m (b) compared to the analytical profile.

K0/Kc = 10−5. The results of all models agree well with the analytical solution for high resolutions. At coarser resolu-

tions however, the simulated enthalpy profiles differ noticeably from the analytical solution for the arithmetic and the harmonic

mean, while the geometric mean coincides well with the analytical solution. Please note, that the results for the harmonic mean265

are similar to those presented in Kleiner et al. (2015) for ISSM.

The accuracy of the simulations with the lowest conductivity ratio is measured with the root-mean-square error (RMSE) to

the analytical solution. The RMSE as a function of vertical resolution is shown in Fig. 3. All three models exhibit different

behaviors. The arithmetic mean reveals a somewhat inconsistent behavior, while the harmonic mean shows approximately

first-order convergence as ∆z→ 0. Overall, the geometric mean shows low errors, and the error remains on a similarly low270

level even for coarse resolutions.

The different behaviors highlight the dependency of the solution on the CTS implementation details. As already identified

by Kleiner et al. (2015) the usage of an arithmetic mean leads to oscillations in the enthalpy solution that are visible e.g. in

a time-varying CTS position
::::::::
elevation. Consequently, no steady-state solution is reached under these conditions. Here, wen

::::
when

:
applying a steady-state solver, the solver does not converge and the CTS position is flipping

::::::::
elevation

::::
flips between the275

non-linear iterations.

4.2 Ice dome

In this experiment, we explore the impact of the parameter choices in the SUPG formulation on the reliability and accuracy

of the results. In Fig. 4 the simulated basal enthalpy field is shown for the lowest resolution lmin = 10km and high sliding

case k2 = 50am−1 for the three employed stabilization formulations. Due to symmetryreason, only the upper-right part of the280

domain is shown. As expected, the SUPG minK produces unphysical oscillations in the simulated enthalpy field. SUPG maxK

and ASUPG reveal a smooth result with merely minor oscillations a the ice front, where the surface slopes becomes singular.
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Figure 3. Root-mean-square error (RMSE) for the polythermal slab experiment. The RMSE is computed between the modeled enthalpy

result and the analytical solution for different vertical grid resolutions ∆z and for each conductivity parameterization. Model results for

arithmetic mean (blue), harmonic mean (red) and geometric mean (black) are obtained for the lowest conductivity ratioK0/Kc = 10−5.
:::
The

:::::
dashed

::::
light

:::
and

:::::::
darkgrey

:::
line

:::::
shows

::
the

::::::::
indicative

:::
rate

::
for

::::::
(∆z)1

:::
and

:::::
(∆z)2,

::::::::::
respectively.

The same picture is observed along a vertical profile
::::::::::
cross-section

:
of the ice sheet interior (Fig. 5). For the SUPG minK, the

numerical oscillations in the enthalpy field are visible in the whole ice column
:::::
profile. The same qualitative behavior among

the SUPG formulations is detected for all employed grid resolutions and sliding cases (Fig. 6). Increasing the mesh resolution285

leads to a significant reduction in upstream oscillations. However, oscillations still occur close to the ice margin. This is in line

with the theory that τk must vanish as grid refinement increases, and no stabilization may be necessary for sufficiently fine

meshes. The amount of basal sliding, which controls the amount of advection, plays a secondary role.

Surprisingly, SUPG maxK and ASUPG are visually indistinguishable and result in qualitatively similar results. How-

ever, when re-running the polythermal slab experiment with the three SUPG formulations, distinct differences in the sim-290

ulated enthalpy are obtained (Fig. 7). The simulations with ASUPG and SUPG minK both match the analytical solution

with RMSE=0.01 and 0.01 kJ kg−1, respectively. The simulation with SUPG maxK deviates considerably from the analyti-

cal solution with RMSE=0.48 kJ kg−1. Overall, we find that (1) using SUPG maxK as the local mesh parameter results in

an oscillation-free enthalpy field but tends to produce too much diffusion
::
far

:::::
more

:::::::
diffusion

:::::
than

:::
the

::::
other

:::::::
choices, (2) us-

ing SUPG minK as the local mesh parameter results in unphysically large oscillations for more complex geometries, and (3)295

ASUPG provided realistic solutions in all conducted experiments.
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Figure 4. Simulated enthalpy (kJ kg−1) for the ice dome experiment with lmin = 10km and k2 = 50am−1. (a) SUPG maxK, (b) SUPG

minK, (c) ASUPG. Black line in (c) indicates the location of the vertical profile
:::::::::
cross-section

::
is shown in Fig. 5.

Figure 5. Simulated enthalpy (kJ kg−1) for the ice dome experiment with lmin = 10km and k2 = 50am−1 along a vertical cross section.

(a) SUPG maxK, (b) SUPG minK, (c) ASUPG. The location of the vertical profile
:::::::::
cross-section

:
is shown in Fig. 4c.

Our results demonstrate that choosing the stabilization parameter in a heuristic or ad-hoc manner, without knowledge of the

possible effects, can impact the solution significantly. Choosing a sub-optimal value for the stabilization parameter can affect

the accuracy of the solution, and result in over- or under-stabilization. The viability of the SUPG formulation strongly depends

on appropriate parameter choices and in a worst-case scenario, the oscillations could cause the temperature
:::::::::
unphysical

::::::
values300

::
or

:::
the

:::::
solver

:
to diverge. However, we have not investigated how the solution differences propagate to other components of an

ice sheet model, e.g., by coupling to the evolution of the ice thickness.

Since the above-presented solutions for the ASUPG method are excellent, the parameter choices for the local mesh param-

eters hhorizontal
K , hvertical

K , and the velocity norm |v| are not further investigated. The velocity norm is here treated equally

in both directions (Eq. 9), and no differentiation is made between the horizontal and vertical direction. Some test runs (not305

shown here) applying direction-dependent euclidean
::::::::
Euclidean

:
norms of the velocity revealed no discernible differences to

the above-presented results. Additionally, in the current implementation, the local mesh parameter in the horizontal direction,

hhorizontal
K , does not cover anisotropy of elements in the horizontal plane. However, these simplifications have so far not led to

numerical problems, but might be subject to future work.
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Figure 6. Simulated depth-averaged enthalpy (kJ kg−1) for the ice dome experiment along a vertical cross section. (a) SUPG maxK, (b)

SUPG minK, (c) ASUPG. The location of the vertical profile
::::::::::
cross-section is shown in Fig. 4c.

Figure 7. Simulated steady-state profiles of the enthalpy E for the three different SUPG models by employing the geometric mean (Eq. 16)

and a vertical resolution of ∆z = 0.5m (a). Zoom to CTS region (b). Please note that ASUPG and SUPG minK overlay each other.

5 Conclusions310

We presented extended enthalpy formulations within the ice flow model ISSM compared to Seroussi et al. (2013) and Kleiner

et al. (2015). Treating the discontinuous conductivity
:::::::::::
conductivities

::
at

:::
the

::::
CTS

:
as a geometric mean results in a good solution

for coarse resolutions compared to the analytical solution. This treatment is an improvement compared to earlier ISSM results

presented in Kleiner et al. (2015) and based on a harmonic mean.

Additionally, we tested various SUPG stabilization formulations on their ability to deal with the high aspect ratio of 3D315

elements in glaciological applications. We found that the traditional parameters in the SUPG stabilization coefficients are

susceptible to stabilization parameter choices, here the local mesh parameter which is easily adjustable. We propose a novel

anisotropic SUPG (ASUPG) method that circumvents the high aspect-ratio problem in ice sheet modelling by treating the

horizontal and vertical direction separately in the stabilization coefficients. The ASUPG method provides accurate results for

the thermodynamic equation on geometries with very small aspect ratios like ice sheets.320
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Table 1. Used constants and model parameters.

Quantity Value Unit

Seconds per year, spy 31556926 sa−1

Gravitational acceleration, g 9.81 ms−2

Density of ice, %i 910 kgm−3

Density of water, %w 1000 kgm−3

Reference temperature, Tref 223.15 K

Melting point at

standard pressure, T0 273.15 K

Specific heat capacity, ci 2009.0 Jkg−1K−1

Thermal conductivity, ki 2.1 Wm−1K−1

Glen exponent, n 3

Polythermal slab: a

Ice thickness, H 200 m

Geothermal heat flux, qgeo 0.0 Wm−2

Latent heat of fusion, L 3.35× 105 Jkg−1

Clausius-Clapeyron constant, β 0.0 KPa−1

Rate-factor, A 5.3× 10−24 Pa−3 s−1

Temperate ice conductivity, K0 ki/ci × 10−1

...

ki/ci × 10−5 kgm−1 s−1

Ice dome: b

Maximum thickness, hmax 3575.1 m

Maximum extent, rmax 750 km

Geothermal heat flux, qgeo 0.042 Wm−2

Latent heat of fusion, L 3.34× 105 Jkg−1

Clausius-Clapeyron constant, β 9.8× 10−8 KPa−1

Temperate ice conductivity, K0 ki/ci × 10−2 kgm−1 s−1

Universal gas constant, R 8.314 Jmol−1 K−1

Activation energy for creep, Qa 6× 104 if T ∗ < 263.15K kJmol−1

13.9× 104 if T ∗ > 263.15K kJmol−1

Constant of proportionality, A0 3.61× 10−13 if T ∗ < 263.15K Pa−3 s−1

1.73× 103 if T ∗ > 263.15K Pa−3 s−1

abased on Greve and Blatter (2009)
bbased on Vialov (1958) and Payne et al. (2000)
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Table 2. List of employed stabilization approaches

experiment label description

SUPG maxK SUPG formulation (Eq. 8) with hk as the maximum edge of the 3D element K

SUPG minK SUPG formulation (Eq. 8) with hk as the minimum edge of the 3D element K

ASUPG anisotropic SUPG (Eqs
::
Eq. 13, 14 and 14) formulation with hhorizontal

K and hvertical
K
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