We would like to thank the reviewers for their constructive comments that helped to
improve the manuscript ‘Extended enthalpy formulations in the ice flow model ISSM
version 4.17: discontinuous conductivity and anisotropic SUPG’. We have revised the
manuscript accordingly and will be happy to provide a new manuscript.

Please find below the reviewer's comments in black and a point-by-point response in
blue.

Review #1
1 General comments

This paper introduces two improvements to the thermodynamics represented in the
ISSM (Ice Sheet System Model). ISSM is one of most widely used and advanced
largescale ice sheet models in the world, and correct treatment of the thermodynamics is
needed for many applications. The improvements are related to the discretization
scheme rather than physics, but are analyzed in the context of the ice sheet physics.
They are well enough described for other developers to see how to implement them, and
examples are given that show their benefits. Given that, | think this is a suitable paper for
inclusion in GMD. | do think that some minor attention to the manuscript is in order.

We would like to thank Stephen Cornford for the positive feedback.
2 Specific comments

1. L17-20 - perhaps include some examples, e.g the thermomechanical instability
discussed by e.g Hindmarsh 2009.

Done. We included MacAyeal (1993), Hindmarsh 2009 and Feldmann and Leermann
(2017) as prominent examples.

2. L35 'Numerical instabilities inherent to the advection component of this equation tend
to occur without stabilizing the standard Galerkin finite element method.” And indeed, any
other method.

The paragraph is rewritten to: “In ISMs, the governing thermodynamic equation are
discretized, e.g. using the finite element method (FEM). Special care has to be taken to
the parabolic thermodynamic equation as numerical instabilities inherent to the advection
component of this equation tend to occur without stabilization. When employing the FEM
the standard Galerkin finite element method is often stabilized with the popular
Streamline Upwind Petrov—Galerkin (SUPG) method (Brooks Hughes, 1982).”

3. L82 “The temperate ice conductivity’. Expand on this a bit: say what it means
physically (e.g transport of latent heat down a moisture gradient and often against a
temperature gradient), and indicate typical literature value for Ko/Kc (including zero)

We expand and rephrased this section. See beginning of chapter 2.1 in the new version
of the manuscript or in the marked-up version attached to this response.

4. 1130. Are S1and S: introduced just fit the equations on the page? That is the
impression | get. But | wondered if the sources cited also split S this way and take some
specific interest in each term.

S1 and S, were just introduced for a clearer presentation. But you are right, there is no
need to split the equation into S1 and S. In the updated version we present SASYPC in
one single equation.



5. L140 (and after) How is 6 found? And is 6 a volume?
© is a volume fraction. We rephrased the sentences here and give an explanation how 6
is calculated.

6. 149 ‘The applicability of the three models is controversial in the literature and depends
strongly on the problem’ - citation/examples would help here.
You are right, we added a list of references.

7. ‘Since heat conduction through porous media is likely a combination of both
structures, a geometric mean can be interpreted as accounting for both processes as

it always results in a value in between an arithmetic and harmonic mean’ - but so would a
number of combinations, and you might imagine trying to weight them.

Yes, of course one could design a model as a combination of the arithmetic and
harmonic mean that gives similar/comparable results. Indeed, we found studies were
such combinations are proposed. We added a sentence and included the references.

8. Figure 1. It is hard to make out the order of the symbols especially for the geometric
mean (because they are close together) One solution could be to plot |CTS(Az,Ko) -
CTS(Ko= 0,Az= 0)| (Jnumerical solution - analytic solution|) on a log scale, though that
might only help with the smaller Ko cases. A sharp eye might then tell what the rate of
convergence was, both as Ko—0 and Az—0.

Thanks, that's a good recommendation. We updated the figure accordingly.

9. Figure 3. log scales for both x— and y—axes would help to make this figure clear,
perhaps with indicative rates (Az)" for suitable n. | would also plot 1/Az on the x—axis
rather than Az (so left -> right has increasing number of DoF but that really is a minor
detail)

Again, we updated the figure accordingly.

10. Figure 7 the caption does state that ASUPG and SUPG minK overlay one an-other,
but if one line was dashed (or thicker) that could be apparent in the figure.
In the updated figure, we draw the SUPG minK with a thicker line.

3 Technical corrections / very minor copy editing suggestions

1. Abstract, first line: ’ice sheets’ should be ’ice sheet’?
Done.

2. L.30 An increasing number of ice flow models is adopting — ...are adopting, or...have
adopted
We changed to “... are adopting ...".

3. L38 convection-dominated. You used ’advection’ in a previous line so | would stick
with it.
We sticked to “advection”.

4. The aspect ratio of anisotropic grid-cells in the FEM is particularly problematic’—’Low
aspect ratio mesh elements in the FEM are particularly problematic’?
Changed as suggested.

5. ISMs are dealing with very thin geometries - maybe say 'low aspect ratio’ here to be
clear.
Changed as suggested.



6. 'Forinstance,a...’'—>'A ...
Done.

7.’Our work is indeed inspired by the’—’Our work addresses’
Done.

8. L83 ’At the upper surface, Dirichlet boundary conditions are imposed’. In this case -
but potentially a heat flux might be imposed if coupled with a snow packmodel.

Well, to our knowledge most of the ISM application are not making use of a firnmodel.
Most of the ISMs prescribing temperature/climate data from GCM/RCM products, which
are imposed as Dirichlet. We think this is detail that should not be mentioned here.
However, we have rewritten the sentence to: “Dirichlet boundary conditions are imposed
at the upper surface in all setups.”

9. L100 ’bilinear elements’—Piecewise linear?
Changed as suggested.

10. L111 ’Once the elements become anisotropic or distorted’. Is the 'distorted’ helpful
here?
We dropped “distorted”.

11. L159 "We run’ or 'We ran’ - not so important | guess but 'methods in the past, results
in the present’
Done.

12. L165 ‘The setup poses a *reasonable* situation in glacier modelling’ typical?
representative?
Yes, maybe ‘representative’ applies better.

13. L167 "The horizontal velocity...” (and does not vary horizontally)
Done.

14. 174 In this set-up, no stabilization is applied, i.e. the term S(E,w) in Eq. 4 is ignored.
(Because Pe is small | suppose? but is that the case below the CTS?)

We applied no stabilization in order to be comparable to the ISSM results already
published in Kleiner et al. (2015). The Pe number would require some stabilization in
particular for small Keff values (below the CTS). However, adding some consistent
stabilization (SUPG or ASUPG) does not alter the results drastically. We clarified that in
the updated version of the manuscript.

15. L214 'without *the* necessarily reaching a steady state’ (remove the)
Done.

16. L221 (and onward) 'CTS position’. CTS elevation?
Done. Changed in the whole manuscript.

17. L245 ’Due to symmetry reason, only’—’Due to symmetry, only’
Done.

18. 'too much diffusion’—’far more diffusion than the other choices?’
Changed as suggested.



19. L265 ’the oscillations could cause the temperature to diverge’. From what? In one
sense they do already (from the solution, ash k grows), but | think you mean numerical
error so severe that it becomes grossly unphysical (e.g E <0, or E very large) and/or
numerical error so severe it causes an iterative solver to produce successively worse
approximations (blow up).

We have rephrased it to: “...the oscillations could cause unphysical values or the solver
to diverge.”

20. L277 ‘Treating the discontinuous conductivity as a geometric mean’. A bit of
rephrasing is needed: the conductivity is not treated as any kind of mean, rather, a
particular formula is used when estimating Keff at various points.

We added ‘Treating ... at the CTS as geometric mean’.

Review #2

This manuscript describes the formulation of the thermodynamics-enthalpy solver in the
ice-sheet model ISSM, including a novel numerical treatment of the discontinuous
boundary between temperate and frozen ice within an ice column (known as the CTS).
This problem is very important and relevant for ice-sheet modeling today, as more
models begin to make use of the enthalpy formulation to simulate polythermal ice. | find
the manuscript well written and clear. The methods, including new parameterizations
applied here, and the results are straightforward to understand. The benchmark tests
make the problem clear, and show the impact of the solution proposed by the authors. |
therefore suggest that the manuscript be published with only very minor technical
revisions.

We would like to thank Alex Robinson for his positive evaluation.
Minor copy editing comments:

P1L10: are not accounting for => do not account for
Done.

P10L240: wen => when
Done.

P10L241: is flipping => flips
Done.

P11L245: symmetry reason => symmetry
Done.

P11L249: whole ice column => whole ice profile [| don’t see oscillations within a given
column]
Yes, you are right.

P13L271: euclidean => Euclidean
Done.

Figures: consider using a different/darker color than yellow for the geometric mean
points/curves. Since this is the novel result, it would be valuable for it to stand out a bit
more in the figures.

We changed the colors: the geometric mean appears a red points/line in the updated
figures.
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Abstract. The thermal state of an ice sheet is an important control on its past and future evolution. Some parts of the ice
sheets-sheet may be polythermal, leading to discontinuous properties at the cold—temperate transition surface (CTS). These
discontinuities require a careful treatment in ice sheet models (ISMs). Additionally, the highly anisotropic geometry of the
3D elements in ice sheet modelling poses a problem for stabilization approaches in advection dominated problems. Here, we
present extended enthalpy formulations within the finite-element Ice Sheet System Model (ISSM) that show a better perfor-
mance to earlier implementations. In a first polythermal-slab experiment, we found that the treatment of the discontinuous
conductivities at the CTS with a geometric mean produce more accurate results compared to the arithmetic or harmonic mean.
This improvement is particularly efficient when applied to coarse vertical resolutions. In a second ice dome experiment, we
find that the numerical solution is sensitive to the choice of stabilization parameters in the well-established Streamline Upwind
Petrov—Galerkin (SUPG) method. As standard literature values for the SUPG stabilization parameter are-not-aceounting-do not
account for the highly anisotropic geometry of the 3D elements in ice sheet modelling, we propose a novel Anisotropic SUPG
(ASUPG) formulation. This formulation circumvents the problem of high aspect-ratio by treating the horizontal and vertical
directions separately in the stabilization coefficients. The ASUPG method provides accurate results for the thermodynamic

equation on geometries with very small aspect ratios like ice sheets.

Copyright statement.

1 Introduction

Ice sheets and glaciers are important components of the climate system. Their evolution is one of the primary sources of sea-

level change (Church et al., 2013). Besides the interactions of the ice sheet with the environment, changes in ice flow can alter

the internal thermal state of the ice, which in turn can affect ice dynamics (e.g. MacAyeal, 1993; Hindmarsh, 2009; Feldmann and Levermat

. Therefore thermo-mechanical numerical modelling of ice sheets is a crucial tool to understand both their past and future evo-

lution.
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Ice sheets and glaciers can exhibit a polythermal state that includes both cold (below the pressure melting point) and tem-
perate (at the pressure melting point) domains, separated by the cold-temperate transition surface (CTS) (Blatter and Hutter,
1991). In temperate ice, the heat generated by viscous deformation leads to a change of phase (Fowler, 1984; Blatter and Hut-
ter, 1991), hence temperate ice contains liquid water. The decrease of the ice viscosity with increasing content of liquid water
in temperate ice in turn enhances ice flow (Duval, 1977), especially if the temperate ice is present in basal layers, where shear
deformation is largest.

Modern state-of-the-art ice sheet models (ISMs) simulate the thermal state according to the enthalpy method originally
formulated in Aschwanden et al. (2012) and further developed and verified in Kleiner et al. (2015), Blatter and Greve (2015),
Greve and Blatter (2016) and Hewitt and Schoof (2017). The main advantage of this formulation is the elimination of tracking
the CTS, as both cold and temperate ice domains are handled within one equation for the enthalpy E; temperature 7' and
liquid water fraction w are diagnostically computed from enthalpy. An increasing number of ice flow models s-are adopting
an enthalpy scheme (e.g. Aschwanden et al., 2012; Brinkerhoff and Johnson, 2013; Seroussi et al., 2013; Kleiner et al., 2015;
Greve and Blatter, 2016; Hoffman et al., 2018).

In ISMs, the governing thermodynamic equation are discretized, e.g. using the finite element method (FEM). Special care
has to be taken wher-emptoying—the FEM-to the parabolic thermodynamic equation —Numerieal-as numerical instabilities
inherent to the advection component of this equation tend to occur without stabilizing-the-stabilization. When employing the
FEM the standard Galerkin finite element method —TFo-maintain-stabilization;-is often stabilized with the popular Streamline
Upwind Petrov—Galerkin (SUPG) method is-eftenemployed-te-the-diserete-problem-(Brooks and Hughes, 1982). Although the
SUPG method is well-established for eenveetion-dominated-advection-dominated problems, the optimal parameter choices are
still subject of extensive research (e.g. Tezduyar and Osawa, 2000; John and Knobloch, 2007). The-aspectratio-of-anisotropie
grid-eels-Low aspect ratio mesh elements in the FEM is-are particularly problematic, and error analysis is often restricted to
two dimensions (e.g. John et al., 2018). Moreover, current mathematical and numerical analyses are not always general enough
to apply to real-world applications (John et al., 2018).

ISMs are dealing with very-thin-geometrieslow aspect ratio, since the ice vertical extent (up to ~4 km) is much smaller than
its lateral extent (up to several thousands of kilometres). As a consequence, 3D elements are frequently highly anisotropic and
pose a challenging problem in order to maintain stabilization. Ferinstanee;a-A non-optimal choice of stabilization parameters
could result either in under- or over-stabilization of the numerical solution. As a consequence of increasing computer power
and modern models frequently relying on the FEM, Helanow and Ahlkrona (2018) investigated the accuracy and robustness of
linear equal order finite elements discretization with Galerkin least-squares (GLS) stabilization on the Stokes equation system
with anisotropic meshes. They found that common literature values for this stabilization scheme perform well on simple
domains. However, on more complex geometries, in particular, at the ice margin of outlet glaciers, the choice of standard
parameters results in significant oscillations in the vertical component of the surface velocity.

Beside the need for efficient stabilization in FEM, the phase change in the enthalpy formation leads to discontinuous thermal
properties. This feature needs to be handled with care when seeking a numerical solution. Of particular concern are discontinu-

ities of the thermal conductivity (Patankar, 1980; Voller and Swaminathan, 1993; Voller, 2001; Nield and Bejan, 2013). Kleiner
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et al. (2015) mentioned, that treating the discontinuous conductivity at the CTS as an arithmetic mean causes non-plausible
oscillations in the enthalpy solution that are visible, e.g. in a time-varying CTS pesitionelevation. Our work is-indeed-inspired
by-addresses the current lack of accuracy of the simulated vertical enthalpy profile to the analytical solution obtained with the
ice flow model ISSM with a coarse vertical resolution (Az=10m, Kleiner et al., 2015, see Fig. 4 (upper row) therein).

We describe and analyze here recent developments designed to obtain an enthalpy formulation within the finite-element
model ISSM (Ice Sheet System Model, Larour et al., 2012) that performs well over a wide range of grid aspect ratios in
advection dominated problems. The focus of this work is twofold: on the one hand, we focus on treatments of discontinuous
conductivities at the CTS. Here, we test three formulations for the discontinuous conductivity proposed in Nield and Bejan
(2013) for porous medium. On the other hand, we test SUPG formulations on thin geometries like ice sheets. Therefore, we run
sensitivity experiments to test distinct parameter choices. One component of this study is the presentation of a novel anisotropic
SUPG (ASUPG) method in ice sheet modelling that decouples the vertical from the horizontal direction to account for their
different scales. The formulations presented are extensions of the current implementations within the ice flow model ISSM

(version 4.17) compared to Seroussi et al. (2013) and Kleiner et al. (2015).

2 Theory and Background
2.1 Mathematical model

Let Q(t) C R3 be a three-dimensional domain with ¢ € [0, ,,.x]. The equations are given in Cartesian coordinates, in which z
and y are in the horizontal plane, and z is positive upward. The enthalpy balance equation reads

OF
0i <8t+v.VE):—V~qi+\If, (1

with the specific enthalpy (internal energy) E, the ice velocity vector v = (v, vy, ), the ice density p;, the conduetive-flux

g:non-advective enthalpy flux g, and the heat source by-internal-deformation-W. The enthalpy field equation of the ice-water
mixture depends on whether the mixture is cold er-temperate—The-conduetive- (I < I,,,) or temperate (F > Fyy0), with
E,mp the enthalpy at the pressure melting point. The non-advective enthalpy flux in cold ice is represented by Fourier’s law
but replacing temperature T" by E. In the temperate domain, the eenduetive-non-advective enthalpy flux is the tatent-heat-fux

(forsimplieity-we-ignere-here-the-sum of sensible and latent heat fluxes (e.g. Greve and Blatter, 2009, p. 239). The sensible

heat flux is caused by variations in the pressure melting point temperature L {p )=

K.NNE E<Epny
I(OVE D) > Epmp

q; = — Cﬂ'VE: -

T, according to the Clausius-Clapeyron relation. In contrast, the latent heat flux originates from liquid water mass flux 7. A
constitutive equation for this flux is needed but is not yet established based on observations and experiments. Here, the liquid



85 water mass flux is assumed to be of Fick-type diffusion (Hutter, 1982)

= v/ L, the latent heat of fusion L, the liquid water fraction w and liquid water diffusivity v. The diffusivity is assumed to
be constant although it could depend on w (Hutter, 1982). However, other approaches for the water mass flux, e.g. transport
90 according to Darcy’s law, are equally feasible (e.g. Fowler, 1984; Hewitt and Schoof, 2017). Sensible heat flux within_the
temperate ice is assumed to be small compared to heat production due to deformation and considered as a source term in

Eq. 1. Thus
K.VE FE<FE,mp
q=-—KegVE = — 3
KoVE E > FEpmp
with K = k;/c;, where k; is the temperature conductivity and ¢; the specific heat capacity of ice and
P E<FE
95 U= e )

d+V- (k’iVTpmp) E> Epmp

where @ is the heat production term due to deformation. The temperature dependence of the heat conductivity and spe-

cific heat capacity is neglected —Fhe-as well as the contribution of the liquid water conductivity to the ice/water mixture
In most cases, the liquid water fraction is increasing but temperature is decreasing towards the base, because of the Clausius-Clapeyron

100 relation. Therefore, the transport of latent heat down the liquid water fraction gradient (Eq. 2) occurs against the temperature

gradient. However, the temperate ice conductivity Ky remains poorly constrained as laboratory experiments and field ob-

servations are scarce. In the polythermal sided slab experiment proposed in Greve and Blatter (2009, sec. 9.3.6) the liquid

water diffusivity is neglected and thus Ko = 0. Nevertheless, numerical implementations will automatically generate some

numerical diffusion (Greve, 1997). Sometimes a small diffusivity is used for numerical stability rather than physical reasons,
=10"%kgm~'s~! (Greve and Blatter, 2016). In ISMs t Aschwanden et al., 2012
ML@@MMMMS study, Ky is simply varied to test its sensitivity on the polythermal structure.

At-the-uppersurface;Dirichlet boundary conditions are imposed at the upper surface in all setups. The type of basal bound-
ary condition (Neumann or Dirichlet) is time dependent and follows the decision chart for local basal conditions given in

105 ical ratios for /K are between 101

Aschwanden et al. (2012). However, the boundary conditions for the conducted experiments in this study are specified below.
110 2.2 Finite element formulation

In ISSM (Larour et al., 2012; Seroussi et al., 2013), the enthalpy equation (Eq. 1) is discretized with piecewise bilinearlinear
P1xP1 elements and stabilized using the SUPG method according to Franca et al. (2006). The stabilized finite element methods
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for Eq. 1 can be written as: find £ € H}(2) such that

B(E,w)=F(w) Ywe H}(Q), &)
where
OF
B(E,w) = (at o vm) + Kea(VE, V) + S(B,w), ©)
F(w) = (¥, w), (7

where (-, ) is the inner product of the Hilbert space Hg () of square integrable functions and derivatives, and are zero on the
domain boundary. The term S(E,w) is added to the standard variational formulation such that consistency is preserved and
numerical stability enhanced. There are different stabilization schemes that are usually considered (Franca et al., 2006); here

we rely on the SUPG method:

SSUPG(E,UJ):ZTK(—KeEAE+U'VE_\D’v'vw)K (®)
K

where K denotes an arbitrary element of the triangulation T}, 7k is a stability coefficient and (-,-) i denotes integration over
K. Please note, that for bilinear elements AFE = 0.

The stabilization parameter, 75 is formulated as follows (Brooks and Hughes, 1982; Franca et al., 2006)

hk

= K ep
i = g € (Pexc). ©
o mk\v|hK
Peg = K (10)
Pex 0<Peg <1
§(Peg) = (11)
1 PeK Z 1

h is a characteristic dimension of element K (referred to as local mesh parameter), £ is an upwind function and Pe is the
local Peclet number. The usual Peclet definition is modified by including my, which takes into account the effect of the degree
of interpolation, k. For linear interpolations, my—1 is 1/3 (Franca et al., 1992). For the velocity norm |v| we use the euclidean

norm.
2.3 Anisotropic SUPG

The standard stabilization techniques were initially developed for isotropic meshes, which essentially require that the ele-
ments have a similar size in all spatial directions. Once the elements become anisotropicer-disterted, the local mesh parameter
plays an important role in the calculation of stabilizing coefficients. Various definitions have been utilized based on e.g. the
maximum edge length, minimum edge length, circumradius of an element, and the element length aligned with the upwind
direction (e.g., Mittal, 2000; Knobloch, 2008; Brinkerhoff and Johnson, 2015). Apart from that, Becker and Rannacher (1995)

and Blasco (2008) introduced stabilization coefficients for GLS diffusion that cover geometrical information from different
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spatial directions. These definitions do not cover the element characteristic that stems from thin 3D elements. In ice sheet mod-
elling, 3D meshes are generally formed by extruding vertically triangular meshes, leading to prismatic elements that are highly
anisotropic since the vertical extent is typically one or two orders of magnitude smaller than the horizontal extent. Typically,
15 to 20 horizontal layers are used, with thinner layers close to the base. Considering a one-kilometer thick ice sheet, that is
discretized in the horizontal direction between 0.5 km and 20 km, aspect ratios could exceed 100. Taking the maximum edge
length as the local mesh parameter h g, which is a default choice for isotropic elements, would lead to over-stabilization, while
taking the minimum edge length as hx would result in under-stabilization.

In order to develop a new SUPG stabilized method for anisotropic meshes, which accounts for geometrical information from
the mesh, we consider a Cartesian three-dimensional mesh with prismatic elements. In doing so, we split the traditional SUPG
formulation into a horizontal and vertical direction with the stabilization parameters T}é‘”izonml and T}?rtical, respectively.
Relying on the ideas for stabilization parameters in different spatial direction by Becker and Rannacher (1995) and Blasco

(2008), the anisotropic SUPG (ASUPG) stabilization term S(E, w) is written as

SASUPG(E,HJ) = S1(FE,w) + S2(FE,w),

Vg / T[ll{orizontal Vg / T}h{orizontal

WZ vy /Tih(orizontal VE,| v, /T?(orizontal Vw | + (12)
K v /T}/ézrtical v, /T}/(ertical .
vxTI}éorizontal
> (~KegAE -V, |y, ghorizontal | 7y) . (13)
K UZT}/(crtical

Uy / T}éorizouta‘l Vg /T}é'orizontal
an) — s horizontal . horizontal X
Si(Ew)= > g vy T VE, | wvyy/T Vw |
., vertical vertical
Vo) THE V[T P

p horizontal
Ve Tg

Sy (B w) = Yok (—KegAE -, |y, rhorizontal ). Vw)g.

v, T;l{(‘,l‘tl(ﬁ‘dl

The stabilization parameters T}l{orizonml and T}’(emc"l are similar to those calculated in Eqgs. 9, 10, and 11, but the ASUPG
approach replaces the local mesh parameter hx with the characteristic horizontal and vertical dimension of the element K.
That means hy, is replaced by hhorizontal and pyertical i the two spatial directions. Here, both are calculated as the maximum

extent of the element K in the respective directions.



2.4 Treatment of discontinuous conductivity

Since the conductivity is discontinuous at the CTS, special attention must be paid to the treatment of the effective conductivity
165 K.g in Eq. 3. The effective thermal conductivity of the solid-fluid system is related to the conductivity of the solid (ice), K,
and to the conductivity of the fluid (water), K, and depends in a complex way on the geometry of the medium. In Nield and

Bejan (2013), three models are proposed:

1. The effective thermal conductivity is the weighted arithmetic mean:

Kgfrfithmetic — GKO + (1 _ Q)Kc- (14)
170 2. The effective thermal conductivity is the weighted harmonic mean:
1 0 1-6
L1-9 (15)

Kélf’?rmonic = ?O K.
3. The effective thermal conductivity is given by the weighted geometric mean:

ngometric _ KgKél_e). (16)

The weighting term #-¢ € [0,1] indicates the volume fraction occupied by liquid water —The-in a grid cell K. The volume

175 fraction of K is defined as the sum of the enthalpy in the temperate phase, £y = >  F if £ > E,..,, divided by sum of the

F, with 7 the number of nodes of K. It follows that (a) 6 is zero if I, = 0 and (b) 0 is one if the whole grid
cell is temperate (i.e. I, = I;). The discontinuous conductivity model is only evaluated for elements that contain a CTS.

The applicability of the three models is controversial in the literature and depends strongly on the problem (e.g. Midttgmme and Roaldset,

. However, Nield and Bejan (2013) recommend the arithmetic mean if the heat conduction in the solid and fluid phases occurs
180 in parallel. On the other hand, the harmonic mean is appropriate if the structure and orientation of the porous medium is such
that the heat conduction takes place in series, with all of the heat flux passing through both solid and fluid. Since heat conduc-
tion through porous media is likely a combination of both structures, a geometric mean can be interpreted as accounting for

both processes as it always results in a value in between an arithmetic and harmonic mean (assuming K. # Kj). Instead of

employing a geometric mean a combination of the arithmetic and harmonic mean models may reveal comparable results for
185 the effective conductivity (e.g. combinatory rules are used by Wang et al., 2006; Reddy and Karthikeyan, 2010). When K. and

K are equal, the three models give the same effective thermal conductivity. For the limit case, where Ky — 0, the harmonic
and geometric mean imply insulating properties as K.g — 0 and no heat flux occurs across the interface; the arithmetic mean

retains a non-zero flux.

3 Experiments

190 We runran several experiments with the emphasis to test our modifications in ISSM on accuracy and on stability. The dis-

continuous conductivity treatments are verified against an analytical solution within a polythermal slab experiment. As this
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experiment results effectively in a one-dimensional vertical experiment, it is not suitable to test the SUPG parameter choices.
Therefore, we setup a synthetic second ice dome experiment with variations in the topography. Constants and model parameters

used in the experiments are summarized in Tab. 1.
3.1 Polythermal slab

We repeat the well-established polythermal sided slab experiment proposed in Greve and Blatter (2009) and already applied to
ISSM in Kleiner et al. (2015). The setup poses a reasenable-representative situation in glacier modelling with an intra-glacial
CTS. The model domain consists of a 200 m thick and 4° downward inclined ice slab. The horizontal velocity v, is prescribed
as an analytical expression (from 5Sma~"! at the base towards ~~38ma~" at the surface ;-whilev;=0ma—1)-andthe-and
does not vary horizontally. The vertical velocity is set to be constant and equal to v, = —0.2ma~! while v, =0ma_!). In
addition, the geothermal heat flux is set to be zero during the model run so that the englacial strain heating is the only source
of energy in the enthalpy balance equation.

An analytical solution for the steady-state enthalpy profile based on the solution of Greve and Blatter (2009) leads to a CTS
pesition-elevation 18.95 m above the bed. In our experiments, the conductivity ratio Ko/ K. is varied from 10~ to 107°. The
simulations are performed on equidistant horizontal layers using different vertical resolutions Az = (10,5,2,0.5) m. Ia-this
set-up-"To be comparable (o the ISSM results published in Kleiner et al. (2015)) no stabilization is applied in this setup, i.c.
the term S(E,w) in Eq. 6 is ignored. Please note that the analytical solution considers K = Okgm~!s~. In this experiment,
we apply a thermal steady-state solver (i.e. 8/8t=0-0E /0t = 0 in Eq. 1). Comparisons of results when applying a transient

solver or a steady-state solver revealed no difference in the steady-state enthalpy profile.
3.2 Ice dome

In this experiment, a more realistic set-up than the polythermal slab experiment is considered with a three-dimensional ice
dome based on the Vialov profile (Vialov, 1958). Other settings and parameters are borrowed from the EISMINT Phase 2

benchmark (Payne et al., 2000). The surface z, and bedrock z; of the entire ice sheet are defined as:

Zb(xay):07 (17)
zs(2,y) = h(z,y)

n/(2n+2)
) ) (18)

= 10+ s (1= (/i) "D/
with the ice thickness h(z,y), the maximum ice thickness hnax, the radius 7 = y/x2 + y2, the maximum extent 7., and the
Glen exponent n. The summit of the ice dome is located at (x,y) = (0,0).

In this experiment, a thermo-mechanical coupling is considered. The Glen—Steinemann power-law rheology (Steinemann,

1954; Glen, 1955) is used for the deformation of ice. The ice viscosity reads

1 im—2/m
=g AT e, (19)
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where A is the flow rate factor and .5 the effective strain rate (considered as the second invariant of the strain-rate tensor). A
is assumed to be dependent on the temperature T (temperature relative to the pressure melting point T},,,,) and liquid water

fraction w:

A= AT )= Ao e—Qa/RT" T* < Tymp | 00,
Ab(14181.25w)  T* = Tpmp
where Ag and A} are constants, @, is the activation energy for creep, and R is the gas constant. The constant Af) is equal to
A(T* = Tpmp,w = 0). The upper bound of the water fraction w is 0.01 to ensure validity of the flow rate factor parameterization
in the temperate part with the experimental dataset (Duval, 1977; Lliboutry and Duval, 1985).
For the dynamical model, we employ the higher-order Blatter-Pattyn approximation (Blatter, 1995; Pattyn, 2003). Basal

sliding is allowed everywhere and the basal drag, 7}, is written as:
Toi = —k*Nuy, 4, (21

where v, ; is the basal velocity component in the horizontal plane and i = x,y and k? the friction coefficient. The effective
pressure is defined as N = p; g h. At the ice front a zero pressure boundary condition is applied as all the ice is above sea level.
A traction-free boundary condition is imposed at the ice/air interface.

For the thermal model, we impose a Dirichlet condition at the surface:
T(x,y) =238.15K +1.67x 107 °Km™'r. (22)

The ice sheet base is subject to the decision chart presented in Aschwanden et al. (2012). In this implementation, the basal
boundary condition is allowed to switch between Neumann and Dirichlet type dependending on the thermal basal conditions.
The geothermal flux, ggco, is considered spatially constant.

To investigate the sensitivity of over- and under-stabilization, we perform experiments with three different stabilization
formulations (Tab. 2). The setup SUPG maxK is the standard SUPG setup based on the maximum edge length of an element
K for the local mesh parameter hy. In contrast, the SUPG minK uses the minimum edge length as, however, recommended
for anisotropic 2D meshes (Harari and Hughes, 1992; Mittal, 2000). Finally, the ASUPG is employed.

To study whether the stabilization is dependent on different mesh resolutions and the amount of advection, we vary the
horizontal grid size and the amount of sliding. Here, we use a base mesh of 20km in the interior, which is subsequently
refined to i, = (10,5,1) km towards the glacier margin. The friction coefficient is treated as spatially constant and several
experiments are performed with k% = (400, 100,50) am ™. For the three sliding cases, this results in frontal velocities of about
50, 350 and 1100m a~!, respectively. We use 15 layers refined close to the base to account for the high velocity gradients
and vertical shearing near the base in the vertical direction. The simulations are run 2000 years forward in time without the

necessarily reaching a steady state.
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Figure 1. Comparison-Difference of simulated steady state CTS peositions—elevations to the analytical CTS elevation for different values of
the temperate ice conductivity, Ko, for the polythermal slab experiment. The analytical CTS elevation is 18.95 m. The different conductivity
models are shown as: arithmetie-harmonic mean (btueyellow), harmenie-geometric mean (red) and geemetrie-arithmetic mean (yeHewblue).

Results of different models are slightly shifted on the z-axis to not overlay each other. The dashed black line indicates the CTS pesition

elevation of the analytical solution derived for Ko = Okg m sl

4 Results and Discussion
4.1 Polythermal slab

The final steady-state CTS peositions-elevations for all simulations are shown in Fig. 1. For the maximum value of temperate
ice conductivity (Ky/K. = 1071), the models result in a CTS pesition—elevation around 36-39 m. With decreasing Ko/ K.,
the temperate ice layer thickness consistently decreases for the harmonic and geometric mean models and is almost halved for
the lowest conductivity ratio Ko/ K. = 107°; the solution converges to the analytical CTS pesition-elevation for the high mesh
resolution. However, for the harmonic mean, we detect a larger spread over the grid-resolutions at low K /K. compared to the
geometric mean. The simulations with the arithmetic mean yield a completely different picture. The range in the CTS pesition
elevation increases considerably with decreasing K /K. and the analytical CTS pesition-clevation is met for the highest mesh
resolution, below 2 m.

The steady-state results of the three conductivity models are verified with the analytical solution of the vertical enthalpy

profile. Figure 2 shows the simulated vertical enthalpy profiles for Az =10 and 0.5m and the lowest conductivity ratio

10
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Figure 2. Simulated steady-state profiles of the enthalpy E computed with the three conductivity models with Ko /K. = 1075 and a vertical
resolution of Az = 10m (a) and Az = 0.5m (b) compared to the analytical profile.

Ko/K.=107°. The results of all models agree well with the analytical solution for high resolutions. At coarser resolu-
tions however, the simulated enthalpy profiles differ noticeably from the analytical solution for the arithmetic and the harmonic
mean, while the geometric mean coincides well with the analytical solution. Please note, that the results for the harmonic mean
are similar to those presented in Kleiner et al. (2015) for ISSM.

The accuracy of the simulations with the lowest conductivity ratio is measured with the root-mean-square error (RMSE) to
the analytical solution. The RMSE as a function of vertical resolution is shown in Fig. 3. All three models exhibit different
behaviors. The arithmetic mean reveals a somewhat inconsistent behavior, while the harmonic mean shows approximately
first-order convergence as Az — 0. Overall, the geometric mean shows low errors, and the error remains on a similarly low
level even for coarse resolutions.

The different behaviors highlight the dependency of the solution on the CTS implementation details. As already identified
by Kleiner et al. (2015) the usage of an arithmetic mean leads to oscillations in the enthalpy solution that are visible e.g. in
a time-varying CTS pesitienelevation. Consequently, no steady-state solution is reached under these conditions. Here, wen
when applying a steady-state solver, the solver does not converge and the CTS peosition-isflipping-elevation flips between the

non-linear iterations.
4.2 Ice dome

In this experiment, we explore the impact of the parameter choices in the SUPG formulation on the reliability and accuracy
of the results. In Fig. 4 the simulated basal enthalpy field is shown for the lowest resolution /,,;;, = 10km and high sliding
case k2 = 50am™! for the three employed stabilization formulations. Due to symmetryreasen, only the upper-right part of the
domain is shown. As expected, the SUPG minK produces unphysical oscillations in the simulated enthalpy field. SUPG maxK

and ASUPG reveal a smooth result with merely minor oscillations a the ice front, where the surface slopes becomes singular.

11



285

290

295

RMSE (kJ kg™
S

1072 H-e-arithmetic
harmonic
—8—-geometric

0.1 0.2 0.5 1 2
1/Az (1/m)

Figure 3. Root-mean-square error (RMSE) for the polythermal slab experiment. The RMSE is computed between the modeled enthalpy
result and the analytical solution for different vertical grid resolutions Az and for each conductivity parameterization. Model results for

are obtained for the lowest conductivity ratio Ko/ K. = 107°. The

respectively.

The same picture is observed along a vertical-profile-cross-section of the ice sheet interior (Fig. 5). For the SUPG minK, the
numerical oscillations in the enthalpy field are visible in the whole ice eetumnprofile. The same qualitative behavior among
the SUPG formulations is detected for all employed grid resolutions and sliding cases (Fig. 6). Increasing the mesh resolution
leads to a significant reduction in upstream oscillations. However, oscillations still occur close to the ice margin. This is in line
with the theory that 7, must vanish as grid refinement increases, and no stabilization may be necessary for sufficiently fine
meshes. The amount of basal sliding, which controls the amount of advection, plays a secondary role.

Surprisingly, SUPG maxK and ASUPG are visually indistinguishable and result in qualitatively similar results. How-
ever, when re-running the polythermal slab experiment with the three SUPG formulations, distinct differences in the sim-
ulated enthalpy are obtained (Fig. 7). The simulations with ASUPG and SUPG minK both match the analytical solution
with RMSE=0.01 and 0.01kJ kg !, respectively. The simulation with SUPG maxK deviates considerably from the analyti-
cal solution with RMSE=0.48 kJ kg~'. Overall, we find that (1) using SUPG maxK as the local mesh parameter results in
an oscillation-free enthalpy field but tends to produce too-much-diffusion—far more diffusion than the other choices, (2) us-
ing SUPG minK as the local mesh parameter results in unphysically large oscillations for more complex geometries, and (3)

ASUPG provided realistic solutions in all conducted experiments.

12
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Figure 5. Simulated enthalpy (kJ kg™ ") for the ice dome experiment with /i, = 10km and k% = 50am ™" along a vertical cross section.

(a) SUPG maxK, (b) SUPG minK, (c) ASUPG. The location of the vertical-profile-cross-section is shown in Fig. 4c.

Our results demonstrate that choosing the stabilization parameter in a heuristic or ad-hoc manner, without knowledge of the
possible effects, can impact the solution significantly. Choosing a sub-optimal value for the stabilization parameter can affect
the accuracy of the solution, and result in over- or under-stabilization. The viability of the SUPG formulation strongly depends
on appropriate parameter choices and in a worst-case scenario, the oscillations could cause the-temperature-unphysical values
or the solver to diverge. However, we have not investigated how the solution differences propagate to other components of an
ice sheet model, e.g., by coupling to the evolution of the ice thickness.

Since the above-presented solutions for the ASUPG method are excellent, the parameter choices for the local mesh param-
eters phorizontal - pyertical “and the velocity norm |v| are not further investigated. The velocity norm is here treated equally
in both directions (Eq. 9), and no differentiation is made between the horizontal and vertical direction. Some test runs (not
shown here) applying direction-dependent euelideanEuclidean norms of the velocity revealed no discernible differences to
the above-presented results. Additionally, in the current implementation, the local mesh parameter in the horizontal direction,
pherizontal "qoes not cover anisotropy of elements in the horizontal plane. However, these simplifications have so far not led to

numerical problems, but might be subject to future work.

13
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Figure 7. Simulated steady-state profiles of the enthalpy E for the three different SUPG models by employing the geometric mean (Eq. 16)
and a vertical resolution of Az = 0.5m (a). Zoom to CTS region (b). Please note that ASUPG and SUPG minK overlay each other.

5 Conclusions

We presented extended enthalpy formulations within the ice flow model ISSM compared to Seroussi et al. (2013) and Kleiner
et al. (2015). Treating the discontinuous eenrduetivity-conductivities at the CTS as a geometric mean results in a good solution
for coarse resolutions compared to the analytical solution. This treatment is an improvement compared to earlier ISSM results
presented in Kleiner et al. (2015) and based on a harmonic mean.

Additionally, we tested various SUPG stabilization formulations on their ability to deal with the high aspect ratio of 3D
elements in glaciological applications. We found that the traditional parameters in the SUPG stabilization coefficients are
susceptible to stabilization parameter choices, here the local mesh parameter which is easily adjustable. We propose a novel
anisotropic SUPG (ASUPG) method that circumvents the high aspect-ratio problem in ice sheet modelling by treating the
horizontal and vertical direction separately in the stabilization coefficients. The ASUPG method provides accurate results for

the thermodynamic equation on geometries with very small aspect ratios like ice sheets.
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Table 1. Used constants and model parameters.

Quantity Value Unit
Seconds per year, spy 31556926 sa”?
Gravitational acceleration, g 9.81 ms™?
Density of ice, o; 910 kgm 3
Density of water, 0., 1000 kgm 3
Reference temperature, Tret 223.15 K

Melting point at

standard pressure, 7o 273.15 K

Specific heat capacity, ¢; 2009.0 Jkg 'K
Thermal conductivity, k; 2.1 WmK™!
Glen exponent, n 3

Polythermal slab: ¢

Ice thickness, H 200 m
Geothermal heat flux, ggeo 0.0 Wm™2
Latent heat of fusion, L 3.35 x 10° Jkg™!
Clausius-Clapeyron constant, 5 0.0 KPa™!
Rate-factor, A 5.3 x 1072 Pa 357!

Temperate ice conductivity, Ko ki/ci x 107+

ki/ci x 1075 kgm™'s™!
Ice dome:
Maximum thickness, hAmax 3575.1 m
Maximum extent, 7max 750 km
Geothermal heat flux, ggco 0.042 Wm?
Latent heat of fusion, L 3.34 x 10° Jkg™!
Clausius-Clapeyron constant, 3 9.8 x 1078 KPa™!
Temperate ice conductivity, Ko ki/ci X 1072 kg m~ts!
Universal gas constant, R 8.314 Jmol'K~!
Activation energy for creep, Q, 6 x 10% if T* < 263.15K kJmol !

13.9 x 10* if T* > 263.15K kJmol ™!
Constant of proportionality, A9 3.61 x 1073 if T* < 263.15K  Pa 357!
1.73 x 103 if T* > 263.15K Pa—3s7!

“pased on Greve and Blatter (2009)
’based on Vialov (1958) and Payne et al. (2000)
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Table 2. List of employed stabilization approaches

experiment label ~ description

SUPG maxK SUPG formulation (Eq. 8) with hy as the maximum edge of the 3D element K
SUPG minK SUPG formulation (Eq. 8) with hy as the minimum edge of the 3D element K
ASUPG anisotropic SUPG (EgsEq. 13;+4-and-+4) formulation with h5™#°%! and pygrtical
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