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Abstract 20 

The synchronous increase of model complexity and data volume in Earth system 21 

science challenges using observations to evaluate Earth system models (ESMs). The 22 

challenge mainly stems from the untraceable of model outputs, the lack of automatic 23 

algorithms, and the high computational costs. Here, we built up an online Traceability 24 

analysis system for Model Evaluation (TraceME), which is traceable, automatic and 25 

shareable. The TraceME (v1.0) can trace the structural uncertainty of simulated carbon 26 

(C) storage in the state-of-the-art ESMs into gross primary production (GPP), carbon 27 

use efficiency (CUE), baseline residence time and environmental scalars (temperature 28 

and precipitation). The cloud-based framework used in TraceME provides the scientific 29 

workflows and a shareable platform to achieve the automated analysis and distributed 30 

data storage to greatly improve the efficiency of model evaluation. Then, we set up a 31 

worker node in TraceME (v1.0) to store the data from Coupled Model Intercomparison 32 

Project (CMIP6), and submitted tasks through browser to analyze the uncertainties of 33 

CMIP6 models in the TraceME system. Overall, this new tool can greatly facilitate 34 

model evaluation to identify sources of model uncertainty and provide some new 35 

implications for the next generation of model evaluation. 36 

37 
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1. Introduction 38 

Inter-comparisons among Earth system models (ESMs) as well as between ESMs and 39 

data are an essential process to understand the performance of models, reduce their 40 

uncertainty, and provide a clear roadmap for model development (Todd-Brown et al., 41 

2013; Eyring et al., 2016a; Getz et al., 2018). As both of the complexity of ESMs 42 

increases and the data volume expands rapidly in recent years, the ESMs’ evaluation 43 

faces many new challenges. For example, the traditional methods used in model 44 

evaluation, mainly using statistical approaches, generally treat all metrics equally and 45 

ignore their indirect effects on model performance (Schwalm et al., 2010; Xia et al., 46 

2013). Eyring et al. (2019a) has suggested that it is suboptimal to give each model equal 47 

weight in model evaluation because it is not independence among models. Moreover, 48 

model structure contributes approximately 80% of the variance in simulating the land 49 

carbon (C) cycle (Bonan and Doney, 2018; Bonan et al., 2019). The climate forcings 50 

and model parameters also contribute considerable uncertainty to the performance of 51 

ESMs (Ahlström et al., 2012; Shi et al., 2018; Luo and Schuur., 2020). These challenges 52 

call for new approaches of model evaluation which can systematically trace and 53 

quantify the structural sources of the uncertainty of the componentized models. In 54 

addition, the dramatically increase of data in observation and simulation pushes 55 

ecological research into a data-rich era (Luo et al., 2011), making it difficult for 56 

individuals to do research entirely locally to meet the computational requirements. Thus, 57 

an automated computation and shareable platform become essential for a rapid and 58 

comprehensive model evaluation. In general, the future approach of model evaluation 59 

requires many new characteristics, such as traceable, automatic and shareable. 60 

A few efforts have been made to develop new analytical tools for evaluating ESMs, 61 

such as the International Land Model Benchmarking (ILAMB) System (Hoffman et al., 62 

2016; Collier et al., 2018), the ESMValTool as a community diagnostic tool with 63 

performance metrics for evaluating ESMs (Eyring et al., 2016b), and the Land surface 64 

Verification Toolkit (LVT) (Kumar et al., 2012). These analytical tools mainly use many 65 
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statistical methods and multiple observations as benchmarks to evaluate the complex 66 

ESMs. For example, the ILAMB system uses a set of statistical methods to construct a 67 

scoring system based on observations as benchmarks to reflect the uncertainties among 68 

ESMs (Collier et al., 2018). This benchmarking framework can directly demonstrate 69 

the ability of models to simulate given ecological variables through its scores. 70 

ESMValTool provides a very comprehensive model evaluation system for ESMs using 71 

model outputs from the Coupled Model Intercomparison Project (CMIP) (Eyring et al., 72 

2016b). The LVT can fuse more information to evaluate land surface models, such as 73 

remote sensing products and land information system (Kumar et al., 2012). These 74 

model evaluation tools can effectively assess the differences between models and 75 

observations, as well as the uncertainty among ESMs. Currently, these tools have not 76 

yet focused on tracing the uncertainties in land models to their sources in model 77 

structures, parameters and external forcings.  78 

A traceable model evaluation tool is featured by its ability to systematically 79 

quantify model uncertainty source. The traceability analysis method developed by Xia 80 

et al. (2013) and Luo et al. (2017) is a systematic and effective approach to diagnose 81 

the uncertainties of terrestrial C-cycle models. It decomposes the C dynamics into C 82 

storage and C storage capacity, and uses C storage potential to represent the difference 83 

between them. Then, those three variables can be further decomposed into a few 84 

traceable components to trace the sources of model uncertainty, such as net primary 85 

productivity (NPP), C residence time and environmental factors (temperature and 86 

precipitation). This framework has been applied to some model evaluation studies 87 

(Rafique et al., 2016; Jiang et al., 2017; Rafique et al., 2017). For example, Xia et al. 88 

(2013) applied this framework to analyze the differences in modeled C processes among 89 

biomes and the effect of nitrogen processes. Du et al. (2018) explored the effect of three 90 

different carbon-nitrogen coupling schemes on C storage capacity and its responses to 91 

atmospheric CO2 enrichment. Zhou et al. (2018) applied the traceability analysis to 92 

compare the simulated terrestrial C cycle across 25 models in three MIPs (i.e., CMIP, 93 

TRENDY, and MsTMIP). Overall, this traceability analysis framework has the 94 
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advantage of providing a simple way to explain model variations by using a few 95 

traceable components (Xia et al., 2013). Developing it as an available tool for model 96 

evaluation can effectively trace and quantify the structural sources of uncertainty in 97 

models. 98 

Traditional model evaluations need to download large volumes of data from 99 

multiple data centers to analyze it locally. For example, the individual users have to 100 

repeatedly download model outputs of CMIP5 and CMIP6 from the servers of Earth 101 

System Grid Federation (ESGF) for different analyses. However, the data volumes of 102 

model outputs and data products both have been increased rapidly in the recent years. 103 

For example, the size of database has been increased from 36 TB in CMIP3 to 2.5 PB 104 

in CMIP5, and the volume of climate data is expected to 350 PB by 2030 (Overpeck et 105 

al., 2011). Thus, it is more and more time-consuming for future researchers to download, 106 

manage, preprocess and analyze the CMIP data on their local equipment (Xu et al., 107 

2019). To improve the computational efficiency of processing the data from distributed 108 

data sources, it needs a new platform for model evaluation especially in the data 109 

computing and storage. Bai et al. (2012) has shown that using “everything-shared-over-110 

the-web” to replace the common paradigm of “everything-locally-owned-and-operated” 111 

is a promising solution to process distributed data. To achieve this goal, we need to 112 

develop the model evaluation tools to be automatic and shareable platform. Thus, a 113 

cloud-based framework with the scientific workflow is a good choice for model 114 

evaluation. Cloud-based system can combine web-based technology to provide user-115 

friendly web interfaces and automatic workflows. Such web-based technology has been 116 

used in the field of ecological modelling and model evaluation. For example, 117 

Abramowitz. (2012) has introduced an online model evaluation tool, the Protocol for 118 

Analysis of Land Surface models (PALS), to automatically evaluate the performance of 119 

model. In addition, Huang et al. (2019) has developed a web-based software system 120 

(i.e., Ecological Platform for Assimilating Data; EcoPad v1.0) to realize ecological 121 

forecasting. The advantage of the web-based cloud technology can help the researchers 122 

to focus on scientific problem of ESMs rather than processing the data. 123 

The aim of this paper is to present an online traceability analysis system for model 124 

evaluation (TraceME v1.0) to evaluate the ESMs based on the traceability analysis. We 125 

first describe the technical aspects of the software system, include the traceability 126 
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method and data used in the tool, and then use part of the CMIP6 data as examples to 127 

demonstrate the functionality of the TraceME. Finally, we discuss the implications of 128 

TraceME (v1.0) for the next generation model evaluation and its future developments. 129 

2. TraceME (v1.0): 130 

2.1 Overview of the TraceME 131 

TraceME (v1.0) is an online framework for automatically analyzing and evaluating the 132 

performance of models using the traceability analysis method. It builds on a 133 

collaborative analysis framework for distributed gridded environmental data (CAFE; 134 

Xu et al. 2019), which consists of at least one central server and more than one worker 135 

node. The central node is used to manage the descriptive information about each node, 136 

and the data and the available analytic scripts are stored on each worker node. Each 137 

node (center and work node) consists of web-based User Interface (UI), data index 138 

module, task-managing module and data analysis module. This multi-node structure 139 

can realize collaborative analysis of distributed data (More details are described in Xu 140 

et al., 2019). TraceME inherits CAFE’s ability to collaborate on distributed data, but 141 

has different core functions and focuses (Fig. 1). It integrates the traceability analysis 142 

and focuses on analyzing and tracing the sources of model uncertainty rather than the 143 

flexible data preprocessing in CAFE. In addition, TraceME makes several technical 144 

updates to accommodate the processing of multivariate data for the systematic analysis 145 

of uncertainty of models. When a user selects the data of interest and sends a request 146 

through the web browser, the scientific workflow is triggered. The corresponding tasks 147 

are assigned by the central node to the worker node containing the corresponding data, 148 

and then running the traceability analysis and returning the results to the user interface 149 

(Fig. 1). The major components of Web-based UI, data analysis module and data 150 

management module are described below. 151 

The web-based UI provides a straightforward way for users to interact with the 152 

system through a web browser. It can select data of interest, submit tasks, check the 153 

status of tasks and present the results of traceability analysis. The registered users can 154 

filter the data of interest by institute, model, frequency and other information of the 155 

dataset. After submitting the task, the web-based UI sends requests to the connected 156 

node and run the data analysis module. The results of traceability analysis will be saved 157 

https://doi.org/10.5194/gmd-2020-76
Preprint. Discussion started: 27 April 2020
c© Author(s) 2020. CC BY 4.0 License.



and a relational database is used to store that information. User can retrieve and 158 

visualize the results of both figures and NetCDF files according to traceability analysis 159 

through the web-based UI.  160 

The data analysis module is to realize the traceability analysis, which can 161 

systematically analyze the uncertainty of models and output the corresponding analysis 162 

results. It consists of an analysis launcher, a command executor and the traceability 163 

analytic script. When the real-time monitoring of the analysis launcher picks up the task, 164 

it parses the information of task and instantiates it as a Java command executor. The 165 

command executor invokes the analytic script written by Python to run the traceability 166 

analysis. 167 

The data managing module includes data index submodule and task managing 168 

submodule. The data index submodule manages the descriptive information about data 169 

(data file name, storage path and data attributes) stored on each worker node. Task 170 

managing module is used to task submission, task dispatching, and task status/results 171 

query services on each node. The data managing module in the central node is used to 172 

maintain the global data and task information. User can scan and update data 173 

information by the web-based UI supported by data index module. When user sends the 174 

task-by-task managing submodule, the task information will be dispatched to a node 175 

and maintained in the database on that node. The task managing submodule in the 176 

central server provides global task information retrieval. 177 

2.2 Traceability analysis framework 178 

The core functionality of TraceME is based on traceability analysis framework of C 179 

storage (X) at steady state that developed by Xia et al. (2013). This framework is 180 

extended to transient dynamic by decomposing the C storage dynamics into a three-181 

dimensional parameter space (Luo et al., 2017). The latter can be further partitioned 182 

into traceable components to track the sources of model uncertainty. In the framework 183 

of Traceability analysis, terrestrial C storage is at dynamic disequilibrium, which is 184 

collectively influenced by internal C-related processes, environmental forces, and their 185 

interactions (Luo and Weng, 2011). Under given environmental conditions, the C 186 

storage of an ecosystem can reach the steady state, which can be defined as C storage 187 

capacity (XC). In ESMs, we can obtain the XC by spinning up the model to the steady 188 
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state (Xia et al., 2012). Because the externally forces, such as climate, are never at 189 

steady state, so the XC is always deviate from the realistic C storage in natural 190 

ecosystems. Such deviation or difference between the transient C storage and XC was 191 

defined as C storage potential (XP) (Luo et al., 2017). Hence, the transient C storage of 192 

an ecosystem can be determined by XC and XP. Then, XC is jointly determined by 193 

ecosystem C input (e.g., net primary production, NPP) and ecosystem C residence time; 194 

(τ𝐸). As the net ecosystem C input, NPP is determined by gross primary production 195 

(GPP) and C use efficiency (CUE). CUE describes the capacity of an ecosystem to 196 

effectively absorb C from the atmosphere (DeLucia et al., 2007; Xia et al., 2017). The 197 

τE can be further traced to the baseline C residence time (𝜏𝐸
′ ) and the environmental 198 

scalar (ξ). 𝜏𝐸
′  represents the ecosystem C residence time under optimal environmental 199 

conditions, which is usually determined by the preset soil properties and vegetation 200 

characteristic in the model (Xia et al., 2013). The ξ is influenced by several factors, 201 

such as climate, oxygen, and land cover. The climate is the most common limiting factor 202 

in ESMs. In this study, we focus on the effect of climate forcing (i.e., temperature and 203 

precipitation) on the 𝜏𝐸
′ . The detail of Traceability analysis method is descripted in Xia 204 

et al. (2013), Luo et al. (2017) and Zhou et al. (2018). 205 

In the framework of traceability analysis, land C storage is ultimately attributed to 206 

its traceable components, which are related to the natural properties expressed by the 207 

model (Fig. 2). For example, GPP is the photosynthetic property of vegetation; baseline 208 

residence time is related to the soil attributes (Fig. 2). In order to quantify the 209 

contributions of these traceable components to the uncertainty of models, we use a 210 

hierarchical partitioning method (Chevan and Sutherland, 1991) to decompose the 211 

uncertainty of simulated C storage dynamics. This method can be used to calculate the 212 

independent effect of each explanatory variable (x1, x2, x3 … xk) on a single dependent 213 

variable (y). The independent effect of xl (Ixl) means the contribution of xl to the variable 214 

y, which is calculated by comparing the fit of all models (2k possible models) including 215 

xl to that lacking xl by the hierarchical partitioning (Chevan and Sutherland, 1991; 216 

Murray and Conner, 2009). In our system, we calculate the variance contribution of the 217 

variables using the ‘hier.part’ package in R. First, the C storage can be decomposed into 218 

carbon storage capacity and potential. The relative contribution of XC and XP to X are 219 

estimated. Second, the carbon storage capacity is decomposed into NPP and residence 220 
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time. To apply this method, all variables are their logarithmic form: ln⁡(𝑋𝐶), ln⁡(NPP) 221 

and ln⁡(𝜏𝐸) . The contributions of NPP and 𝜏𝐸  to XC are calculated. Third, NPP is 222 

further decomposed into GPP and CUE, and residence time is decomposed into baseline 223 

residence time and environmental scalars (temperature and precipitation). Convert them 224 

into logarithmic form. The contributions of GPP and CUE to NPP are calculated. The 225 

contributions of baseline residence time, temperature and precipitation to residence 226 

time are calculated as the same way. Finally, the contributions of these traceable 227 

components (GPP, CUE, baseline residence time, temperature and precipitation) can be 228 

calculated. 229 

2.3 Data 230 

In this study, the TraceME (v1.0) used CMIP6 model outputs as examples to describe 231 

the workflow of this platform. The TraceME can be compatible with any model output 232 

that follows the Network Common Data Format (netCDF) Climate and Forecast (CF) 233 

Metadata Convention (http://cfconventions.org/). The data is stored in the database of 234 

each node, and the information of data in each node is aggregated to the central node, 235 

where users can access and handle all data stored on all nodes of the whole system. On 236 

the other hand, TraceME (v1.0) is a systematic framework for uncertainty analysis on 237 

the terrestrial carbon cycle for CMIPs. It requires a multivariable dataset to analyze and 238 

trace the sources of uncertainty in simulating ecosystem carbon storage. The time series 239 

data of total ecosystem carbon storage are needed, which generally consist of vegetation 240 

carbon (leaf, woody and root carbon pools), soil carbon (fast, slow and passive soil 241 

carbon pools) and/or litter carbon pools (litter and/or coarse woody debris) in the model 242 

outputs. The time series data of NPP, GPP and forcing data (temperature and 243 

precipitation) are also used for further model intercomparisons. All data used in this 244 

study is from 7 CMIP6 models (the release data before July, 2019) and collected from 245 

ESGF (http://esgf.llnl.gov/) as shown in Table 1. 246 

3. Applications of TraceME (v1.0) 247 

3.1 Temporal dynamics of land carbon storage in CMIP6 models 248 

TraceME (v1.0) provided an automatic traceability analysis for data of temporal interest, 249 

which can be used to evaluate the temporal dynamics of land C storage simulated by 250 
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models. We used 7 models that had been submitted results in CMIP6 to analyze the 251 

uncertainty of these models in simulating historical land carbon storage from 1850 to 252 

2014. Once we selected the data of interest through the browser and submitted the task, 253 

the daemon automatically preprocessed the data and ran the temporal traceability script, 254 

and returned the results in the forms of figures and data in netCDF format. Under the 255 

traceability analysis system, the temporal dynamics of global annual C storage 256 

simulated by different models were first calculated (Fig. 3a). The global annual C 257 

storage varied greatly among the 7 models, ranging from 938.76±11.36 to 258 

2206.76±50.14 Pg C (Fig. 3a). Decomposing the C storage into C storage capacity and 259 

potential, the C storage potential ranged considerably from about -21.66±54.39 to 260 

58.07±57.62 (Fig. 3a). And the C storage capacity of different models in response to 261 

external force was also quite different. For example, the lowest simulated C storage 262 

capacity was IPSL-CM6A-LR during 1850 to 2014, which was 944±27.14 Pg C, and 263 

the other models were from about 1677.57±57.21 to 2263.43±106.61 Pg C (Fig. 3a). To 264 

further analyze the uncertainty of C storage capacity, this framework decomposed it 265 

into NPP and residence time. These two variables reflected the net C input capacity 266 

(38.48±2.72 to 68.74±5.88 Pg C yr-1) and the C turnover time of ecosystem (23.22±1.75 267 

to 56.23±3.10 years) in the models (Fig. 3b-c and 4a). In details, the lowest simulated 268 

NPP was CESM2 and the shortest residence time was IPSL-CM6A-LR, while 269 

CanESM5 had the largest NPP and residence time among all models (Fig. 3b-c and 4a).  270 

To further trace the uncertainty sources of NPP simulated by models, TraceME 271 

(v1.0) decomposed it into GPP and CUE (Fig. 3d-e and 4b). The differences of GPP 272 

and CUE in different models reflected the model’s photosynthetic capacity and C 273 

transfer efficiency from atmosphere to ecosystem biomass. Based on this process, 274 

TraceME could quantify the effects of models simulating photosynthesis and 275 

respiration on the uncertainty of NPP. For example, NPP simulated by CanESM5 and 276 

EC-Earth3-Veg had larger uncertainty, which were 68.74±5.88 and 48.96±2.78 Pg C yr-277 

1 respectively during 1850 to 2014, whereas their GPP was similar, which were 278 

132.22±8.18 and 127.72±4.38 Pg C yr-1 respectively (Fig. 3b-e and 4b). Therefore, the 279 

uncertainty of NPP between the two models mainly came from CUE (0.52±0.01 and 280 

0.38±0.02, respectively), which was related to autotrophic respiration. In addition, 281 

residence time was traced to baseline residence time and environmental scalars in 282 

TraceME. Baseline residence time explained the uncertainty of some preset attributes 283 
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in the model structure, such as soil C decomposition rate, and the environmental scalar 284 

reflected the impact of external forces on the performance of model. For example, 285 

IPSL-CM6A-LR had the shortest residence time (23.22 1.75 years) than other models 286 

during 1850 to 2014, and compared with external forces, the main reason was it had the 287 

shortest baseline residence time (18 years) among all models (Fig. 3c, 3f-i and 4c). 288 

Hence, the development of IPSL-CM6A-LR was suggested to pay more attention to 289 

some preset attributes of soil. Furthermore, the environmental scalar in TraceME here 290 

was the global annual scale. Its uncertainty reflected the variability of interannual 291 

variation of temperature and precipitation used in each model over all models rather 292 

than the direct difference of external forces among models (Fig. 3f-h and 4c-d).  293 

Overall, after analyzing the uncertainties of all traceable components, TraceME 294 

summarized the variance contributions of the components to the uncertainty of land C 295 

storage among models. This framework traced the uncertainty of land C storage to 296 

several sources, and the hierarchical partitioning method could be used to decompose 297 

the variation in it into the traceable components. For example, the variation of land C 298 

storage among 7 CMIP6 models was mainly from residence time and NPP, and the C 299 

storage potential contributed about 4.5% (Fig. 5). Comparing all traceable components, 300 

the variation in C storage simulated by these models was dominated by baseline 301 

residence time (Fig. 5). 302 

3.2 Spatial distribution of land carbon storage uncertainties in CMIP6 models 303 

TraceME (v1.0) provided the ability to analyze spatial uncertainty of models. It could 304 

trace the sources of the uncertainty of models in simulating C storage at each grid. The 305 

region of interest in TraceME (v1.0) could be selected by latitude and longitude. Here, 306 

we selected global data of 7 CMIP6 models by setting the spatial range according to 307 

longitude and latitude through the browser and submitted this task of spatial traceability 308 

analysis. When the task was submitted, TraceME (v1.0) extracted data from the entire 309 

system for processing and called for spatial traceability analysis scripts. The mean 310 

spatial pattern of the 7 models showed C storage in boreal regions was higher than in 311 

other regions (Fig. 6a). However, some models, such as IPSL-CM6A-LR, had no such 312 

spatial pattern (Fig. 7), and the high variability of C storage simulated by these models 313 

also appeared in the boreal regions, such as Siberia and northern North America (Fig. 314 

6b). To further research the sources of the uncertainty of models in simulating C storage, 315 
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TraceME (v1.0) provided the spatial patterns of C storage capacity and C storage 316 

potential (Fig. 6c-f and 7).  317 

According to traceability framework, TraceME (v1.0) provided the spatial 318 

distributions of NPP and residence time to explain the uncertainty of land C storage 319 

capacity among models (Fig. 7). From the results of 7 CMIP7 models, the distribution 320 

of the variation in NPP among these models occurred in the lower latitude region, while 321 

the variation of residence time was mainly distributed in northern high latitude region 322 

(Fig. 8a and 8d). Following the workflow of TraceME (v1.0), the uncertainties of global 323 

distributions of NPP and residence time were further decomposed into the spatial 324 

variations of their traceable components: GPP, CUE, baseline residence time and 325 

environmental scalars (Fig. 8b-c and 8e-f). To better guide model development, it is 326 

important for model evaluation to provide the information of the spatial distribution of 327 

the dominant factor influencing the simulation of land C storage. TraceME (v1.0) could 328 

analyze the variation contributions of all traceable components to land C storage at each 329 

grid, and offered the spatial pattern of the dominant factor (Fig 9). For example, the 330 

baseline residence time and GPP were the major contributors to the global distribution 331 

of the variation of simulated C storage by the 7 models from CMIP6 (Fig. 9). Compared 332 

to GPP, baseline residence time dominated the uncertainties of simulated land carbon 333 

storage in northern high latitude, eastern Asian and the northern part of South America 334 

(Fig. 9).  335 

3.3 Uncertainty analysis of simulated carbon storage from models at different 336 

periods 337 

Assessing the performances of model over different periods could provide a more 338 

comprehensive understanding of the model’s ability to simulate land C storage. For 339 

example, the environmental scalars among the 7 CMIP6 models had larger variability 340 

at initial state (e.g. from 1850 to 1860) than those at current state (e.g. 2004 to 2014) 341 

(Fig. 3f). It was necessary to research in detail the sources of uncertainty that different 342 

models simulated at different periods. It was convenient for TraceME (v1.0) to submit 343 

multiple tasks and perform them simultaneously. We submitted four tasks for temporal 344 

and spatial analysis of the performance of 7 CMIP6 models at two periods (1850 to 345 

1860 and 2004 to 2014 presenting initial and current conditions respectively). From the 346 

results, the dominant contributor of initial state of models was baseline residence time 347 
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that was similar to that at current period (Fig. 10). The variance contribution of C 348 

storage potential to C storage simulated by the models at the two periods had larger 349 

difference, which was 5.2% and 19.1% at initial and current periods respectively (Fig. 350 

10). In addition, GPP and residence time were also the major contributors to the global 351 

distribution of the uncertainty of simulated land C storage at the two periods (Fig. 10). 352 

However, the regions where GPP was the dominant contributor of carbon storage 353 

variability at initial period were larger than that at current period, especially in the high 354 

northern latitudes (Fig. 10).  355 

4. Discussion 356 

4.1 Facilitating the next generation of model evaluation 357 

The increase of model complexity and the expansion of observation promote the model 358 

evaluation into the next generation. In our study, we propose that the next generation of 359 

model evaluation needs to some new characteristics, including traceable, automatic and 360 

shareable. TraceME (v1.0) is designed to meet these three characteristics, and can 361 

provide complementary functions to those existing model-evaluation tools. For 362 

example, ESMValTool (v1.0) uses observational data (e.g. observations for Model 363 

Intercomparison Projections and re-analyses data, obs4MIPs and ana4MIPs) as 364 

diagnostics and performance metrics to measure the uncertainty in ESMs (Eyring et al., 365 

2016b). ILAMB constructs a comprehensive set of observation data (e.g. Fluxnet and 366 

MODIS) as benchmarks and a scoring system to evaluate the performance of land 367 

models (Collier et al., 2018). As the core function of TraceME, the traceability analysis 368 

is helpful for extending current model evaluations to quantify the structural sources of 369 

the uncertainty of model (Lovenduski et al., 2016). Rather than simply comparing the 370 

differences in simulated C storage among models, this method can trace the 371 

uncertainties to the carbon storage potential, GPP, CUE, baseline residence time and 372 

environmental factors (temperature and precipitation), and quantify the relative 373 

variance contributions of these traceable components (Fig. 4 and 8). For example, the 374 

annual C storage simulated by IPSL-CM6A-LR is much lower than other models, and 375 

TraceME can track it to C storage capacity (Fig. 3a). After a further systematic analysis 376 

on C storage capacity, TraceME tracks the low estimates on the global scale in IPSL-377 

CM6A-LR to C residence time, especially the baseline C residence time (Fig. 3-4). 378 

Thus, TraceME can not only show the structure sources of the disagreement on global 379 
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C storage between ESMs, but also identify the key uncertain component for a specific 380 

model to facilitate its development. 381 

The cloud-based framework adopted by TraceME (v1.0) provides a web-based 382 

scientific workflow and shareable platform for automated computation. Compared with 383 

the rapid acquisition of observational data, the slow development of ESMs has become 384 

one of the bottlenecks to a deeper understanding of ecosystem. As an important part of 385 

model development, model evaluation also needs higher computational efficiency. In 386 

the absence of automated computation, model evaluation is usually computationally 387 

low-efficient due to the repeated computation for each model output. Therefore, 388 

automation is a crucial property for an efficient model evaluation. Most model 389 

evaluation tools have implemented automation by encapsulating workflows as offline 390 

software packages. For example, both ILAMB and ESMValTool have released their 391 

second version packages (Collier et al., 2016; Eyring et al., 2019b). TraceME (v1.0) 392 

uses the web-based technology to integrate a user-friendly interface and automated 393 

computation in background. Users can complete all steps of data processing including 394 

submitting task, processing data and managing results through a web browser with a 395 

unique ID and web address. The web-based workflow has the advantages of 396 

convenience, timeliness and visualization (LeBauer et al., 2013), avoiding the need for 397 

technical training for scientific researchers to run packages. 398 

Both modeling outputs and observation data come from multiple data sources. For 399 

example, model comparison projects have data sources of CMIP, TRENDY and 400 

MISMIP. As shown by Song et al. (2019), more than one thousand global-change 401 

experiments have been done in the ecology field to monitor the responses of terrestrial 402 

C processes to global change. In order to more fully evaluate the performance of models, 403 

researchers need to collect large amounts of data from different data sources. The cloud-404 

based technology is considered to be the most effective means to solve the distributed 405 

geospatial big data (Bai and Di, 2012; Li et al., 2016). TraceME (v1.0) uses the cloud-406 

based framework that consists of a center node and multiple worker nodes set at 407 

different data sources, and the user can use and share the data in this system. With the 408 

increase in the amount of model simulations and observations, and the tediousness of 409 

processing data, the shareable approach would be a good way to improve the efficiency 410 

of model evaluation. Meanwhile, it can help researchers who develop models focus 411 
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more on the scientific issues rather than the technical problems. 412 

4.2 Future work 413 

Although TraceME (v1.0) provides a complete and comprehensive system for model 414 

evaluation, there are still several aspects must be developed and this work is ongoing. 415 

The first one is the traceability analysis method used in TraceME (v1.0). In our current 416 

version of TraceME, NPP is finally decomposed into GPP and CUE. However, Xia et 417 

al. (2015) has shown GPP is joint controlled by plant phenology and physiology, and it 418 

can be decomposed into the carbon dioxide uptake period (CUP; number of days per 419 

year) and the maximal daily rate of gross photosynthesis during the CUP (GPPmax) that 420 

represents a property of plant canopy physiology. GPPmax is a critical indicator to 421 

quantify the capacity of terrestrial ecosystem productivity (Huang et al., 2018). CUP is 422 

related to phenology, which is mainly influenced by environmental factors, such as 423 

temperature and water availability (Jaworski and Hilszczański, 2013; Xie et al., 2015; 424 

Piao et al., 2019). In addition, Cui et al. (2019) indicates that GPP can be further 425 

explained by the subsequent carbon cycle processes and related vegetation functional 426 

properties, such as leaf area index and leaf-level photosynthesis. Other environmental 427 

factors also affect carbon residence time and NPP, such as atmospheric CO2, land-use 428 

change, and nitrogen availability (Tian et al., 1999; Wu et al., 2003; Melillo et al., 2011; 429 

Van Groenigen et al., 2014; Wieder et al., 2015). These traceable processes can be 430 

further added to the traceability analysis framework and applied to TraceME. 431 

Secondly, the current version of TraceME focuses on the comparative analysis 432 

among multiple models and does not use observation data as benchmarks to analyze 433 

model uncertainty. Since the traceability analysis is a systematic analysis method, it 434 

requires the time-series observations of all variables used in this system to form a 435 

complete benchmarking dataset, such as NPP, GPP and/or net ecosystem exchange 436 

(NEE). Some model evaluation systems (e.g. ILAMB and ESMValTool) have built 437 

large datasets of observation data (Eyring et al., 2016b; Collier et al., 2018). Particularly, 438 

in TraceME, residence time is an important variable for the traceability analysis, and 439 

more efforts are still needed to construct a global database of measured C residence 440 

time. Wang et al. (2019) have constructed a global soil C residence time database, and 441 

used it to evaluate the simulated mean soil C transit times by ESMs. More works are 442 

needed to develop the database for TraceME. On the other hand, observed data may 443 
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have different spatial scales ranging from globe to site, so the future version of TraceME 444 

should adapt model evaluation at different scales. Some recent studies have applied the 445 

traceability method to analyze the land C storage dynamic at different scales. For 446 

example, Jiang et al. (2017) has applied the transient traceability analysis method to 447 

compare the difference in ecosystem C dynamics between Duke forest and Harvard 448 

forest. Cui et al. (2019) has analyzed the performances of MsTMIP models in 449 

simulating ecosystem productivity in the East Asian monsoon region. These analyses 450 

could be efficiently applied with the TraceME if the datasets are implemented in the 451 

future versions. 452 

Lastly, the cyberinfrastructure of TraceME (v1.0) is derived from CAFE. CAFE is 453 

a multi-node collaborative platform that can increase the efficiency of performing batch 454 

analyses and comparing data from multi-node (Xu et al., 2019). To install CAFE 455 

software package in more data centrals is an important goal of the development of 456 

CAFE, and it involved many computer techniques. For example, Java, Tomcat and 457 

MySQL running in a Linux environment are necessary for a CAFE node, and some 458 

tools, such as NetCDF Operators (NCO) and Climate Data Operators (CDO), are 459 

expected to fulfill data analysis (Xu et al., 2019). Moreover, to better accommodate 460 

more data centers, some aspects of CAFE also need further improvement and 461 

development. For example, the community tools for publishing new analysis functions, 462 

version-control mechanism, intermediate analysis result, and encryption techniques 463 

(Xu et al., 2019). The infrastructure of TraceME inherits from CAFE and it is expected 464 

to evolve into a more open community for users and developers. These problems in 465 

CAFE also need to be addressed in TraceME. Developing more worker nodes is also 466 

the inherent requirements for the shareable trait of TraceME, and we also need to 467 

develop the infrastructure of TraceME to adapt more data centers. For example, CAFE 468 

cannot directly process data from multiple databases on different nodes in a single task 469 

because it does not currently have this requirement (Xu et al., 2019). However, in the 470 

system of TraceME, there is a need to compare models across data sources, such as 471 

models between TRENDY and CMIP. We are working to develop TraceME to support 472 

for accessing multiple databases from different nodes in one task. One possible solution 473 

is to develop standard interfaces for the results of traceability analysis method on each 474 

node, and then aggregate them into one node for the final comparative analysis to 475 

reduce data transfers between different nodes. Moreover, the databases in TraceME 476 
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(v1.0) need to be updated in a timely and automated manner, especially the amount of 477 

benchmarking data products is increasing rapidly (Hoffman et al., 2016). Updating 478 

databases more convenient is also a requirement for TraceME’s automated computing. 479 

Overall, we hope that TraceME can provide a new tool to evaluate global land models 480 

and drives the model evaluations on terrestrial biogeochemistry towards traceable in 481 

the near future.  482 
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Table 1 The list of seven ESMs used in this study from CMIP6.  666 

ESM Land Model Variables 

BCC-ESM1 BCC-AVIM2 

GPP, NPP 

Total vegetation C pool (cVeg) 

Total litter C pool (cLitter) 

Total soil C pool (cSoil) 

Precipitation (pr) 

Temperature (tas) 

CanESM5 CLASS-CTEM 

CESM2 CLM5.0 

IPSL-CM6A-LR ORCHIDEE 

MIROC-ES2L VISIT-e 

CNRM-ESM2-1 ISBA 

EC-Earth3-Veg LPJ-GUESS 
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 668 

Figure. 1 Schematic overview of TraceME (v1.0). 669 
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  671 

Figure. 2 The theoretical framework of traceability analysis. The transient carbon 672 

storage dynamic can be decomposed into carbon storage capacity and potential. Then 673 

the NPP and residence time can explain the carbon storage capacity. NPP can be traced 674 

to GPP and carbon use efficiency (CUE). Residence time can be traced to environmental 675 

scalars and baseline residence time. These traceable components can be explained by 676 

related attributions. 677 
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 679 

Figure. 3 The time series of annual carbon storage (solid lines) and carbon storage 680 

capacity (the contour lines) (a), and the traceable components: (b)-(h) for NPP, 681 

residence time, GPP, CUE, environmental scalars, temperature and precipitation 682 

simulated by 7 CMIP6 models, respectively. (i) is the baseline residence time for each 683 

model. The shades in (a) represent the annual variation in carbon storage potential for 684 

models (positive above the soil lines, and negative below the solid lines). 685 
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 687 

Figure. 4 The traceability decomposition of carbon storage capacity. The contours lines 688 

in (a)-(c) represent carbon storage capacity, NPP and residence time respectively. Points 689 

represent the global annual values for variables. 690 
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 692 

Figure. 5 Variation decomposition of the carbon storage based on annual data from 693 

models (CMIP6). The inner circle indicates the carbon storage is composed into carbon 694 

storage capacity and carbon storage potential, and their variance contributions. The 695 

middle circle represents the carbon storage capacity is decomposed into NPP and 696 

residence time, and their variance contributions. The outside circle indicates that the 697 

NPP is decomposed into GPP and CUE, and residence time is decomposed into baseline 698 

residence time and environmental scalars (temperature and precipitation), and their 699 

variation contributions to carbon storage. 700 
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 702 

Figure. 6 The spatial distribution of the mean land carbon storage (a), land carbon 703 

storage capacity (c) and potential (e) simulated by 7 models from CMIP6 during 1850 704 

to 2014, and the standard deviation of land carbon storage (b), land carbon storage 705 

capacity (d) and potential (f) from these models. 706 
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 708 

Figure. 7 The mean of carbon storage and its traceable components: carbon storage 709 

capacity, carbon storage potential, NPP, residence time, GPP, CUE, baseline residence 710 

time and scalars (temperature and precipitation) simulated by 7 CMIP6 models for the 711 

historical period 1850-2014.  712 
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 714 

Figure. 8 The global distribution of the variations of the traceable variables simulated 715 

by 7 models from CMIP6 for the historical period 1850-2014. (a)-(f) represent the 716 

standard deviation of NPP, GPP, CUE, residence time, baseline residence time and 717 

environmental scalars, respectively.  718 
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 720 

Figure. 9 The global distribution of the dominant variable for the variation in simulated 721 

land carbon storage by the models from CMIP6 during 1850 to 2014. 722 
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 724 

Figure. 10 The traceability analysis results of land carbon storage simulated by 7 models 725 

from CMIP6 at different periods: (a) 1850-1860; (b) 2004-2014. The subplot of each 726 

panel is the variation decomposition of the carbon storage based on annual data. 727 
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