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Abstract. Data assimilation (DA) provides initial states of model runs by combining observational information and models. 

Ensemble-based DA methods that depend on the ensemble run of a model have been widely used. In response to the 

development of seamless prediction based on coupled models or even Earth system models, coupled DA is now in the 15 

mainstream of DA development. In this paper, we focus on the technical challenges in developing a coupled ensemble DA 

system, especially how to conveniently achieve efficient interaction between the ensemble of the coupled model and the DA 

methods. We first propose a new DA framework DAFCC1 (Data Assimilation Framework based on C-Coupler2.0, version 1) 

for weakly coupled ensemble DA, which enables users to conveniently integrate a DA method into a model as a procedure 

that can be directly called by the model ensemble. DAFCC1 automatically and efficiently handles data exchanges between the 20 

model ensemble members and the DA method without global communications, and does not require users to develop extra 

codes for implementing the data exchange functionality. Based on DAFCC1, we then develop an example weakly coupled 

ensemble DA system by combining an ensemble DA system and a regional atmosphere-ocean-wave coupled model. This 

example DA system and our evaluations demonstrate the correctness of DAFCC1 in developing a weakly coupled ensemble 

DA system and the effectiveness in accelerating an offline DA system that uses disk files as the interfaces for the data exchange 25 

functionality. 

1 Introduction 

Data assimilation (DA) methods, which provide initial states of model runs by combining observational information and 

models, have been widely used in weather forecasting and climate prediction. The ensemble Kalman filter (EnKF; Houtekamer 

and Mitchell, 1998; Evensen, 2003; Lorenc, 2003a; Anderson and Collins, 2007; Whitaker, 2012) is a widely used DA method 30 

that depends on an ensemble run of members. Other DA methods that can be performed a single model run, such as the 
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Nudging method (Hoke and Anthes, 1976; Vidard et al., 2003), Optimal Interpolation (OI; Gandin, 1965), Ensemble OI (EnOI; 

Oke et al., 2002; Evensen, 2003), three-dimensional variational analysis (3D-Var; Anderson et al., 1998; Courtier et al.1998; 

Gauthier et al., 1999; Lorenc, 2000) and four-dimensional variational analysis (4D-Var; Courtier et al., 1994; Kalnay, 2003; 

Lorenc, 2003b; Rabier et al., 2007),) can be technically viewed as a special case of ensemble-based methods with only one 35 

member in the ensemble when we attempt to design and develop a software framework for data assimilation. Moreover, hybrid 

DA methods, such as hybrid Ensemble/3D-Var (Hamill, 2000; Etherton and Bishop, 2004; Wang et al., 2008, 2013; Ma et al., 

2014) and ensemble-based 4D-Var schemes (Fisher, 2003; Bishop and Hodyss, 2011; Bonavita et al., 2012, 2016; Buehner et 

al., 2015), also depend on the ensemble run of members from the same model.  

With the rapid development of science and technology, numerical forecasting systems are evolving from only an individual 40 

component model (such as an atmospheric model) to coupled models that can achieve better predictability (Brown et al., 2012; 

Mulholland et al., 2015), and earthEarth system models are being used to develop seamless prediction that spans timescales 

from minutes to months or even decades (Palmer et al., 2008; Hoskins, 2013). Along with the use of coupled models in 

numerical forecasting, common and flexible DA methods for coupled models are urgently needed (Brunet et al., 2015; Penny 

et al., 2017). Coupled DA technologies have already been investigated widely and DA systems have been constructed (Sugiura 45 

et al., 2008; Fujii et al., 2009, 2011; Saha et al., 2010, 2014; Sakov et al., 2012; Yang et al., 2013; Tardif et al., 2014, 2015; 

Lea et al., 2015; Lu et al., 2015a, b; Mochizuki et al., 2016; Laloyaux et al., 2016, 2018; Browne et al., 2019; Goodliff et al., 

2019; Skachko et al. 2019), in which ensemble based DA methods have already been applied (e.g., Zhang et al., 2005, 2007; 

Sluka et al., 2016).  

To develop a coupled ensemble DA system, besides the scientific challenges regarding DA methods, there are also technical 50 

challenges to be addressed, such as how to achieve an ensemble run of a coupled model, how to conveniently integrate the 

software of a coupled model and the software of ensemble DA methods into a robust system, and how to conveniently achieve 

efficient interaction between the ensemble of the coupled model and the DA methods. The existing ensemble DA frameworks 

supporting coupled DA such as the Data Assimilation Research Testbed (DART; Anderson et al., 2009) and the Grid point 

Statistical Interpolation (GSI; Shao et al., 2016) combined with EnKF (Liu et al., 2018a), employ disk files as the interfaces 55 

of data exchange between the model ensemble members and the DA methods, and iteratively switch between the run of the 

model ensemble and DA using software-based restart functionality that also relies on disk files. Such an implementation (called 

offline implementation hereafter) can guarantee software independence between the models and the DA methods, so as to 

achieve flexibility and convenience in software integration; however, the extra I/O accesses of disk files as well as the extra 

initialization of software modules introduced by the data exchange and the restarts are time-consuming and can be a severe 60 

performance bottleneck under finer model resolution (Heinzeller et al., 2016; Craig et al., 2017). The Parallel Data Assimilation 

Framework (PDAF; Nerger et al., 2005; Nerger and Hiller, 2013; Nerger et al., 2020) and the Employing Message Passing 

Interface for Researching Ensembles (EMPIRE; Browne and Wilson, 2015) framework have shown that MPI (Message 

Passing Interfaces)-based data exchanges between the model ensemble members and DA procedures can produce better 

performance for DA systems, because they do not require disk files or the restart operations.  65 
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Noting that most existing couplers for Earth system modeling have already achieved flexible MPI-based data exchanges 

between component models in a coupled system, we design and develop a common, flexible and efficient framework for 

coupled ensemble data assimilation, based on the latest version of the Community Coupler (C-Coupler2.0; Liu et al., 2018b). 

Considering that existing observation processing systems can introduce different observation frequencies corresponding to 

different component models, we take consideration of weakly coupled ensemble DA where the data from different component 70 

models are assimilated independently by separate DA methods (Zhang et al., 2005, 2007; Fujii et al., 2009, 2011; Saha et al., 

2010, 2014) in this work, and in further work will then target strongly coupled ensemble DA, which generally uses a cross-

domain error covariance matrix to account for the impact of the same observational information on different component models 

cooperatively (Tardif et al., 2014, 2015; Lu et al., 2015a, b; Sluka et al., 2016). 

The remainder of this paper is organized as follows. Section 2 introduces the overall design of the new DA framework 75 

named DAFCC1 (Data Assimilation Framework based on C-Coupler2.0, version 1). The implementation of DAFCC1 areis 

described in Section 3. Section 4 introduces the development of an example weakly coupled ensemble DA system based on 

DAFCC1. Section 5 evaluates DAFCC1. Finally, Section 6 contains a discussion and conclusions.  

2 Overall design of the new framework 

The experiences gained from PDAF and EMPIRE show that, a framework with an online implementation where all ensemble 80 

members of the model and all procedures of DA methods are combined into a single MPI programthat handles the data 

exchanges via MPI functionalities is essential for improving the interaction between the model and the DA software. There 

can be different strategies for the online implementation. In EMPIRE, a DA method is compiled into a standalone executable 

running on the processes distinct from the model ensemble, and global communications ofwith MPI_gatherv and MPI_scatterv 

are used for exchanging data between the model ensemble and the DA method. Such an implementation can maintain the 85 

independence between the DA software and the model, while thebut is inefficient because of inefficient global communications 

are generally inefficient and there are idle processes almost at any time because due to sequential running of the model 

ensemble and the DA method generally work sequentially but not simultaneouslymodules in the sequential DA systems. In 

PDAF, a DA method is transformed into a native procedure that is called by the corresponding models via the PDAF 

application programing interfaces (APIs). Thus, aThus, a model and a DA method can be compiled into the same executable, 90 

and the DA method can share the processes of the model ensemble. The code releases of PDAF (http://pdaf.awi.de/trac/wiki) 

provide template implementations of data exchanges for a default case where a DA method shares all is running on the 

processes of the first ensemble member of the corresponding model(for example, given that there are 10 ensemble members 

and keepseach member uses 100 processes, the DA method is running on 100 processes) and uses the same parallel 

decomposition (grid domain decomposition for parallelization) with the corresponding model. When users want a case 95 

different from the default (e.g., a DA method does not use the same processes with the first ensemble member or uses a parallel 

decomposition different from the corresponding model), users should develop new code implementations for the corresponding 

http://pdaf.awi.de/trac/wiki
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data exchange functionality following the rules of PDAF (e.g., using the PDAF communicators for the model, the filter and 

the coupling exchanges between them, and using the formats of PDAF APIs) will be developed.  

Most DA software consists of parallel programs that generally can be accelerated by using more processor cores. When 100 

running an ensemble DA algorithm for a component model in an ensemble run, all ensemble members of the component model 

are synchronously waiting for the resultresults of the DA algorithm. Therefore, all the processor cores corresponding to all 

ensemble members of the component model can be used to accelerate the DA algorithm. To develop a new framework for 

weakly coupled ensemble data assimilation, we should target an improved improve the implementation of the data exchange 

functionality, which in at least three aspects: 1) the new implementation does not use global communications ofwith 105 

MPI_gatherv and MPI_scatterv,; 2) the new implementation enables a DA method to share almost all run on the processes of 

the model ensemble and all ensemble members (for example, given that there are 10 ensemble members and each member 

uses 100 processes, the DA method can run on 1000 processes); 3) the new implementation does not require users to develop 

extra codes in any case. When a DA algorithm uses processes no matter whether a DA method and the corresponding model 

use the same of different from aparallel decompositions. A DA method requires to exchange data with each model ensemble 110 

member, the. When a DA algorithm will useuses a parallel decomposition that differs from the model ensemble members. 

Thus, the data exchange between the DA algorithm and a component modelan ensemble member will introduce a challenge 

of transferring fields between different process sets with different parallel decompositions.  

Fortunately, such a challenge has already been overcome by most existing couplers (Craig et al., 2012; Valcke, 2012; Liu 

et al., 2014; Craig et al., 2017; Liu et al., 2018b), each). Each of whichthese couplers can transfer data between different 115 

process sets with different parallel decompositions without the global communications. We therefore use the C-Coupler2.0 

(Liu et al., 2018b), the latest version of the Community Coupler (C-Coupler), as the foundation for developing DAFCC1. 

Moreover, C-Coupler2.0 has more functionalities that DAFCC1 can benefit from. For example, C-Coupler2.0 can handle data 

exchange of 3-D or even 4-D fields where the source and destination fields can have different dimension orders (e.g., 

vertical+horizontal at the source field, and horizontal+vertical at the destination field). It will be convenient to combine 120 

ensemble members of a coupled model into a single MPI program based on C-Coupler2.0 because each ensemble member can 

be registered as a component model of C-Coupler2.0. As shown in Fig. 1a, based on the coupling configurations registered to 

C-Coupler2.01a, most operations for achieving data exchanges can be generated automatically because C-Coupler2.0 can 

generate coupling procedures between two process sets even when the two sets are overlapping. 

A most significant challenge here is that C-Coupler2.0 can only handle coupling exchanges between two component models 125 

or intrawithin one component model, while coupled ensemble DA requiresbut cannot handle coupling exchanges between a 

DA algorithm and aeach model ensemble that includes a set of ensemble members each of which has been registered as a 

component model of C-Coupler2.0.member. To address this challenge, DAFCC1 automatically generates a special C-

Coupler2.0 component model (called ensemble-set component model hereafter) that covers all ensemble members for running 

a DA algorithm. Thus, coupling exchanges between a DA algorithm and each model ensemble member can be transformed 130 

into the coupling exchanges between the ensemble-set component and each ensemble member. Specifically, DAFCC1 
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introduces three new steps, i.e., initialization, running and finalization of DA instances (instances of DA algorithms), are 

inserted intoto the model flowchart with C-Coupler2.0 (Fig. 1b). These three steps enable a DA instance to run on the processes 

of all ensemble members in a, and achieve automatic coupling exchanges between a DA algorithm and each model ensemble 

to use a DA algorithm cooperativelymember. The software architecture of DAFCC1 based on C-Coupler2.0 is shown in Fig. 135 

2. It includes a set of new managers (i.e., DA algorithm integration manager, ensemble component manager, online DA 

procedure manager, and ensemble DA configuration manager) and the new APIs corresponding to these managers. The DA 

algorithm integration manager enables the user to conveniently develop driving interfaces for a DA algorithm based on a set 

of new APIs that enables the DA algorithm to registerdeclare its input and output fields and to obtain various information from 

the model. AWhen a DA algorithm can include a set of procedures includes multiple independent modules (such as observation 140 

operators and analysis modules,), each of whichmodule can be called separately by the model separately. The framework uses 

the dynamic link library (DLL) technique for the connection ofis used to connect a DA algorithm program to a model, where 

a program. The DA algorithm program is compiled into a DLL that is dynamically linked to a model when an instance of the 

DA algorithm is initialized. WithUsing the DLL technique, allows us to couple a new DA algorithm can be used byand a 

model without modifying and recompiling the model codes, and it provides greater independence and convenience because 145 

the original configuration and compilation systems of athe DA algorithm can generally be preserved for greater independence 

of the DA algorithms from the models and for less work in integrating a DA algorithm.. The ensemble component manager is 

responsible for generating and managing the communicatorgoverns the communicators of ensemble members of each 

component model. The online DA procedure manager provides several APIs that enable the ensemble members of a component 

model to initialize, run and finalize a DA algorithm instance cooperatively, automatically handles the. The data exchanges 150 

between the ensemble members and the DA algorithm with a set of operations.are also handled automatically in this manager. 

The ensemble DA configuration manager enables the user to flexibly specify thechoose DA algorithm, DA 

frequencyalgorithms and the operationsset parameters for the data exchange in a DA simulation throughvia a configuration 

file. 

Guided by With the software architecture in Fig. 2, we implemented and the new framework (seedetailed implementations 155 

in Section 3 for detailed implementation), which, DAFCC1 enables a coupled ensemble DA system to achieve the following 

features: 

1) Each component model can use different instances of DA algorithms online independently, and the execution of a DA 

algorithm in the MPI processes of a component model does not force other MPI processes to be idled. For example, 

components 1, 2, and 4 in Fig. 3 useperform DA algorithms atwith different frequencies,time periods (e.g., component 4 160 

performs DA more frequently than component 1 and 2), while component 3 does not use DA algorithms. 

2) Given a common DA algorithm, it can be used by different component models under different instances with different 

configurations;  (e.g., the fields assimilated, the observational information used, and the frequency.). In Fig. 3 for example, 

components 2 and 4 use different instances of the same DA algorithm 2 independently. 
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3) An instance of a DA algorithm can either use the processes of all ensemble members of the same component model 165 

cooperatively or use the processes of each ensemble member separately. For example, each DA algorithm instance in Fig. 

3 uses the processes of all ensemble members of the corresponding component model cooperatively, except procedure 1 

of DA algorithm 1 that uses the processes of each ensemble member of component 1 separately.  

4) Besides employing the DLL technique for integrating DA algorithm programs, a configuration file is designed for 

increasing the flexibility and convenience in using a DA algorithm (see Section 3.4 for detailed implementation). 170 

3 Implementation of DAFCC1  

In this section, we will detail the implementation of DAFCC1 in terms of the ensemble component manager, DA algorithm 

integration manager, online DA procedure manager, and ensemble DA configuration manager. Moreover, we will provide an 

example of how to use DAFCC1 to develop a DA system.  

3.1 Implementation of the ensemble component manager 175 

In C-Coupler2.0, the modelTo achieve coupling resources, including MPI communicators, time steps, timers, model grids, 

parallel decompositions, coupling field instances,exchanges between a DA algorithm and coupling interfaces, are associated 

with each component model that is registered to C-Coupler2.0 via the API CCPL_register_component. When running an 

ensemble of a model in a single MPI runeach ensemble member, each ensemble member should be used as a separate 

component model. registered to C-Coupler2.0 via the API CCPL_register_component (Please refer to Liu et al. 2018b for 180 

more details). In C-Coupler2.0, model names are used as the keywords to distinguish different component models. To 

distinguish different ensemble members of a model that generally share the same code or executable, we update the API 

CCPL_register_component to implicitly generate different names of ensemble members by appending the ID of each ensemble 

member to the model name (the parameter list of the API CCPL_register_component is unchanged). The ID of an ensemble 

member is given as the last argument (formatted as “CCPL_ensemble_{ensemble numbers}_{member ID}”) of the 185 

corresponding executable when submitting an MPI run (see Fig. 4 as an example), where “ensemble numbers” marks the 

number of ensemble members and “member ID” marks the ensemble member ID of the current component.  

C-Coupler2.0 can manage hierarchical relationship among models, where a model can have a set of children models. Given 

an ensemble run of a coupled model, although all ensemble members of theall component models of the coupled model can 

be organized as oneinto a single level of models (see Fig. 5a), although we recommend constructing two hierarchical levels of 190 

models with the first level corresponding to all ensemble members of the coupled model and(see Fig. 5b), where each ensemble 

member includingof the coupled model is at the first level while the component models of each ensemble member are at the 

second level (Fig. 5b), because the. This hierarchical organization retains the original architecture of the coupled model through 

a simple additional registration of, and only requires users to simply register the coupled model to C-Coupler2.0.  



 

7 

 

As In order to enable a DA algorithm that handles ensemble fields canto run on the MPI processes of all ensemble members 195 

of a component model (Fig. 3), a special C-Coupler2.0an ensemble-set component model that covers all ensemble members 

of the component model (this special component model is called ensemble-set component model hereafter) is required for 

usingcalling the DA algorithm (for example, the green box in Fig. 5b). corresponds to an ensemble-set component model). As 

the ensemble-set component model does not exist in the original hierarchical levels in Fig. 5b, it should be generated with 

extra efforts. The ensemble component manager provides the capability to generate an ensemble-set component model, which 200 

does not introduce global synchronization and only involvesof automatically generating the corresponding ensemble-set 

component model when initializing a DA instance. The MPI communicator of the ensemble-set component model is generated 

through unifying the communicators of the ensemble members of the corresponding component model that runs the DA 

instance.  

3.2 Implementation of the DA algorithm integration manager 205 

A pair of a model and When a DA algorithm have essentiallyruns on the relationship between processes of a component model, 

the model and the DA algorithm can be viewed as a caller and a callee respectively in a program, where the. A callee generally 

declares a list of arguments that includes a set of input and output variables, whileand a caller should match the argument list 

of the callee when calling the callee (herein, thea model that calls a DA algorithm is referred to ascalled the host model of the 

DA algorithm). For hereafter). When a caller and a callee that are in the same native code, a corresponding statically linked 210 

together, a compiler generally can guarantee the consistency of the argument list between them, regardless of the data structure 

of each argument.. However, it is a challenge that compilers cannot guarantee such consistency between a host model and a 

DA algorithm that is enclosed in a DLL but not in the native code ofand dynamically linked to the host model. 

To address the above challenge, we designed and developed a new solution in DAFCC1 for passing arguments between a 

host model and a DA algorithm, and tried to make such a solution as flexible as possible to improve the flexibility of DAFCC1 215 

in serving various DA algorithms.. There are three driving subroutines for initializing, running, and finalizing a DA algorithm; 

their subroutine. These subroutines are enclosed in the same DLL with the DA algorithm. Specifically, names of these 

subroutines share the name of the DA algorithm as the prefix and are distinguished by different suffixes. We tried to make the 

explicit argument list of each driving subroutine as simple as possible (e.g., the explicit argument list only includes a few 

integer arrays), and developed a set of C-Coupler APIs for flexibly passing implicit arguments between the host model and the 220 

DA algorithm.. Based on these APIs, the DA algorithm can obtain the required information fromof the host model and the 

grids via C-Coupler2.0, and can also declare any field instances that the DA algorithm has registered to C-Coupler2.0 asa set 

of implicit input or output arguments, at the initialization stage of the DA algorithm of fields. Figure 6 shows an example of 

the driving subroutines where the running and finalization driving subroutines are veryquite simple. In theThe initialization 

driving subroutine, besides includes the original functionalities of the DA algorithm such as determining parallel 225 

decompositions, allocating memory space for variables and other operations for initialization, there are . Moreover, it includes 

additional operations for obtaining the information fromof the host model and grids usingvia C-Coupler2.0, registering the 
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parallel decompositions, required grids, and field instances to C-Coupler2.0, and declaring thea set of field instances as implicit 

input or output arguments. InData exchanges between the host model and the DA algorithm are conducted automatically and 

implicitly by DAFCC1 (Section 3.3.2), so the running driving subroutine DA_CCPL_RUN, there are no does not include 230 

explicit calls for data exchange, because the data from the model ensemble to the DA algorithm is transferred automatically 

and implicitly by DAFCC1 before running DA_CCPL_RUN, while the data from the DA algorithm to the model ensemble is 

transferred automatically and implicitly after running DA_CCPL_RUNexchanges.  

The use of DAFCC1 requires some native codefurther changes to the codes of a DA algorithm to be further updated 

accordingly. For example, the original communicator of the DA algorithm needs to be replaced with the communicator of the 235 

host model that can be obtained throughvia the corresponding C-Coupler API, and the original I/O accesses for the model data 

in the DA algorithm can be turned off. 

3.3 Implementation of the online DA procedure manager 

To enablemake the same DA algorithm used by different component models to use the same DA algorithm but with different 

configurations,, DAFCC1 enables a component model canto use a distinctseparate instance of athe same DA algorithm with 240 

the corresponding configuration information. Corresponding to the three driving subroutines of a DA algorithm, there are three 

APIs (CCPL_ensemble_procedures_inst_init, CCPL_ensemble_procedures_inst_run, and 

CCPL_ensemble_procedures_inst_finalize) that enableare directly called by the code of a host model to. These APIs initialize, 

run, and finalize thea DA algorithm instance, and handle the data exchanges between the host model and the DA algorithm 

instance automatically. In a general case in Fig. 1b, the API CCPL_ensemble_procedures_inst_init is called when initializing 245 

the ensemble DA system before starting the time loop, the API CCPL_ensemble_procedures_inst_finalize is called after 

finishing the time loop, and the API CCPL_ensemble_procedures_inst_run is called in the time loop, which enables different 

assimilation cycleswindows to share the same DA instance without restarting the model and the DA algorithm. When a 

component model initializes, runs, or finalizes a DA algorithm instance, all ensemble members of this component model should 

call the corresponding API at the same time.  250 

3.3.1 API for initializing a DA algorithm instance 

The API CCPL_ensemble_procedures_inst_init includes the following steps for initializing a DA algorithm instance is 

designed and implemented with the following steps.: 

1) DetermineDetermining the host model of the DA algorithm instance according to the corresponding information in the 

configuration file. If the DA algorithm instance is an individual algorithm that operates on the data of each ensemble 255 

member separately (e.g., Procedure 1 of DA algorithm 1 in Fig. 3), each ensemble member will be a host model. Otherwise 

(i.e., the DA algorithm instance is an ensemble DA algorithm that operates on the data of the ensemble set; e.g., Procedure 

2 of DA algorithm 1 in Fig. 3), the host model will be the ensemble-set component model that will be generated 

automatically by the ensemble component manager. 
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2) PreparePreparing information from the host model, such as model grids, parallel decompositions, and field instances, 260 

which can be obtained by the initialization driving subroutine of the DA algorithm can obtain via the corresponding APIs. 

3) InitializeInitializing the corresponding DA algorithm instance according to the corresponding algorithm name and DLL 

name specified in the corresponding configuration file, (Section 3.4), where the corresponding DLL will be linked to the 

host model and the corresponding initialization driving subroutine in the DLL will be called. This implementation enables 

the user to conveniently change the DA algorithms used in different simulations via the configuration file without 265 

modifying the code of the model. 

4) SetSetting up data exchange operations according to the input or output fields of the DA algorithm instance declared in 

the initialization driving subroutine via the corresponding APIs. If the DA algorithm instance is specified as an individual 

algorithm via the ensemble DA configuration (Section 3.4), the data exchange is intra the component model ofwithin each 

ensemble member. Otherwise, the ensemble-set component model is involved in the data exchange. The data exchange is 270 

divided into two levels: the data exchange between the ensemble members and DAFCC1, and the data exchange between 

DAFCC1 and the DA algorithm. The data exchange between DAFCC1 and the DA algorithm instance is simply achieved 

by the import/export interfaces of C-Coupler2.0, which flexibly rearrange the fields in the same component model between 

different parallel decompositions. If the DA algorithm instance is an ensemble algorithm, the data exchange between the 

ensemble members and DAFCC1 is also handled by the import/export interfaces of C-Coupler2.0, which flexibly transfer 275 

the same fields between different component models (each ensemble member and the ensemble set are different 

component models). Otherwise, the data exchange between the ensemble members and DAFCC1 is simplified to a data 

copy. DAFCC1 will hold a separate memory space for each model field relevant to the DA algorithm, which enables a 

DA algorithm instance to use instantaneous model results or statistical results (i.e., mean, maximum, cumulative, and 

minimum) in a time window, and enables an ensemble DA algorithm instance to use aggregated results or statistical results 280 

(ensemble-mean, ensemble-anomaly, ensemble-maximum, or ensemble-minimum) from ensemble members. The sets of 

data exchange operations for the input and output fields of the DA algorithm instance are generated separately. 

Consistent with the functionalities in the above steps, the API CCPL_ensemble_procedures_inst_init includes the following 

arguments.:  

- The ID of the current ensemble member that calls thethis API, and the common full name of the ensemble members, 285 

which is used for determining the host model of the DA algorithm. When registering a component model to C-Coupler2.0, 

its ID is allocated and its unique full name formatted as “parent_full_name@model_name” is generated, where 

“model_name” is the name of the component model, and “parent_full_name” is the full name of the parent component 

model (if any). Given that the namesname of the coupled model and the component model 1 in Fig. 5 are “coupled” andis 

“comp1”, respectively, in the one-level model hierarchy in Fig. 5a, the full names of ensemble members of the component 290 

model 1 are “comp1_1” to “comp1_N”, and the common full name of the ensemble members is “comp1_*” where “*” is 

a wildcard,; while in the two-level model hierarchy in Fig. 5b, the full names of ensemble members of the component 

model 1 are “coupled_1@comp1” to “coupled_N@comp1” and the common full name is “coupled_*@comp1”. (given 
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that the name of the coupled model is “coupled”). Such a common full name can be used for generating the ensemble-set 

component model when the DA algorithm instance is an ensemble algorithm.  295 

- The name of the DA algorithm instance, which is the keyword of the DA algorithm instance and also specifies the 

corresponding configuration information. Different DA algorithm instances can correspond to different DA algorithms or 

the same DA algorithm. For example, the component models 2 and 4 use different instances of the same DA algorithm in 

Fig. 3. 

- AAn optional list of model grids and parallel decompositions, which are optional arguments that enable the DA algorithm 300 

instance to obtain the grid data and use the same parallel decompositions as the host model.  

- A list of field instances, which specify the model fields that can be used for assimilationDA. This list should cover all 

input or output fields of the DA algorithm.  

- An optional integer array of control variables that can be obtained by the DA algorithm instance via the corresponding 

APIs. 305 

- An annotation, which is a string giving a hint for locating the model code of the API call corresponding to an error or 

warning, is recommended but not mandatory, and should be provided by the user. 

3.3.2 API for running a DA algorithm instance 

The API CCPL_ensemble_procedures_inst_run is responsibleincludes the following steps for running a DA algorithm instance 

with the following steps.: 310 

1) Executing the data exchange operations for the input fields of the DA algorithm instance. This step automatically transfers 

the input fields from each ensemble member of the corresponding component model to DAFCC1 and then from DAFCC1 

to the DA algorithm instance, where the. The statistical processing regarding the time window or the ensemble is done at 

the same time. 

2) Executing the DA algorithm instance through calling the running driving subroutine of the DA algorithm. 315 

3) Executing the data exchange operations for the output fields of the DA algorithm instance. This step automatically 

transfers the output fields from the DA algorithm instance to DAFCC1 and then from DAFCC1 to each ensemble member 

of the corresponding component model. 

Each DA algorithm instance has a timer specified via the configuration information, which determines when the DA 

algorithm instance is run. The API CCPL_ensemble_procedures_inst_run can be called for thea DA algorithm instance can 320 

be called at each time step, while the above three steps will be executed only when the correspondingspecified timer is on. To 

store the input data such as the observational information, a DA algorithm instance can either share the working directory of 

its host model or use its own working directory specified via the configuration information. The API 

CCPL_ensemble_procedures_inst_run will change and then recover the current directory for calling the running driving 

subroutine of the DA algorithm, if necessary. 325 
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3.3.3 API for finalizing a DA algorithm instance 

The API CCPL_ensemble_procedures_inst_finalize is responsible for finalizing a DA algorithm instance through calling the 

finalization driving subroutine of the DA algorithm. 

3.4 Implementation of the ensemble DA configuration manager 

The configuration information of all DA algorithm instances used in a coupled DA simulation is containedenclosed in an XML 330 

configuration file (e.g., Fig. 7), and each). Each DA algorithm instance has a distinct XML node (e.g., the XML node 

“da_instance” in Fig. 7, where the attribute “name” is the name of the DA algorithm instance and also the keyword to match 

the name of the DA algorithm instance inassociated with the API “CCPL_ensemble_procedures_inst_init”), which enables 

the user to specify the following configurations.:  

1) The DA algorithm specified in the XML node “external_procedures” in Fig. 7, where the. The attribute “dll_name” in the 335 

XML node specifies the dynamic link library, and the attribute “procedures_name” specifies the name of the DA algorithm, 

which will be used to choose the’s name associated with the corresponding driving subroutines. When the user seeks to 

change the DA algorithm used by a component model, it is only necessary to modify the XML node “external_procedures” 

in most cases.  

2) The periodic timer specified in the XML node “periodic_timer” in Fig. 7, which enables usersthe user to flexibly set the 340 

frequency as well as theperiodic model time of running the corresponding DA algorithm. Besides the attribute “period_unit” 

and “period_count” for specifying the period of the timer, the user can specify a lag via the attribute “local_lag_count”. 

For example, given a periodic timer <“period_unit”=“hours”, “period_count”=6, “local_lag_count”=3>, its period is 6 

hours, and it will not be on at the 0th, 6th, and 12th hours, but instead on at the 3rd, 9th, and 15th hours due to the 

“local_lag_count” of 3. 345 

3) Statistical processing of input fields specified in the XML node “field_instances” in Fig. 7, where the. The attribute 

“time_processing” specifies the statistical processing in each time window determined by the periodic timer and the. The 

attribute “ensemble_operation” specifies the statistical processing among ensemble members. For an individual DA 

algorithm, the attribute “ensemble_operation” should be set to “none”. BesidesAll fields can share the default specification 

of statistical processing shared by all fields,, while a field can have its own statistical processing specified in a sub node 350 

of the XML node “field_instances”. 

4) The working directory and the scripts for pre- and post-assimilation analysis (e.g., for processing the data files of 

observational information) optionally specified in the XML node “processing_control” in Fig. 7. When the working 

directory is not specified, the DA algorithm instance will use the working directory of its host model. The script specified 

in the sub XML node “pre_instance_script” will be called by the root process of the host model before the API 355 

CCPL_ensemble_procedures_inst_run calls the DA algorithm, and the script specified in the sub XML node 

“post_instance_script” will be called by the root process of the host model after the DA algorithm run finishes. 
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4 An example weakly coupled ensemble DA system based on DAFCC1  

To provide further information on how to use DAFCC1 and for validating and evaluating DAFCC1, we developed an example 

weakly coupled ensemble DA system by combining the ensemble DA system GSI/EnKF (Shao et al., 2016; Liu et al., 2018b) 360 

and a regional First Institute of Oceanography Atmosphere-Ocean-Wave (FIO-AOW) coupled model (Zhao et al., 2017; Wang 

et al., 2018). GSI/EnKF mainly focuses on regional numerical weather prediction (NWP) applications coupled with the 

Weather Research and Forecasting (WRF) model (Wang et al., 2014), while FIO-AOW consists of WRF, the Princeton Ocean 

Model (POM; Blumberg and Mellor 1987; Wang et al., 2010), the MArine Science and NUmerical Modeling wave model 

(MASNUM; Yang et al., 2005; Qiao et al, 2016), and all the above three model components are coupled together by using C-365 

Coupler (Liu et al., 2014, 2018b). FIO-AOW has already been used in the research for exploring the sensitivity of typhoon 

simulation to physical processes and improving typhoon forecasting (Zhao et al, 2017; Wang et al., 2018). There are two main 

steps in developing the example system. 

1) We developed an ensemble DA sub-system of WRF by adapting GSI/EnKF to DAFCC1. This sub-system helps validate 

DAFCC1 and evaluate the improvement in performance obtained by DAFCC1 (Section 5).  370 

2) We merged the above sub-system and FIO-AOW to produce the example DA system that only computes atmospheric 

analyses corresponding to WRF currently. This system demonstrates the correctness of DAFCC1 in developing a weakly 

coupled ensemble DA system.  

4.1 An ensemble DA sub-system of WRF 

4.1.1 Brief introduction to GSI/EnKF 375 

GSI/EnKF combines a variational DA sub-system (GSI; Shao et al., 2016) and an ensemble DA sub-system (EnKF; Liu et al., 

2018a), which can be used as a variational, a pure ensemble or a hybrid DA system sharing the same observation operator in 

the GSI codes. It provides two options for calculating analysis increments for ensemble DA; i.e., a serial Ensemble Square 

Root Filter (EnSRF) algorithm (Whitaker et al., 2012) and a Local Ensemble Kalman Filter (LETKF) algorithm (Hunt et al., 

2007). In this paper, we use the pure ensemble DA system without using variational DA, where GSI is used as the observation 380 

operator that calculates the difference between model variables and observations on the observation space and EnSRF is chosen 

for calculating atmospheric analyses and updating atmosphere model variables.  

Figure 8a shows the flowchart for running the pure ensemble DA system of the WRF model in a DA window. It consists of 

the following main steps that are driven by scripts, while the data exchanges between these main steps are achieved via data 

files. 385 

1) Ensemble model forecast. An ensemble run of WRF is initiated or restarted from a set of input data files, and then is 

stopped after producing a set of output files (called model background files hereafter) for DA and for restarting the 

ensemble run in the next DA window. 
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2) Calculating the ensemble mean of model DA variables. A separate executable is initiated for calculating the ensemble 

mean of each DA variable based on the model background files, and then outputs the ensemble mean to a new background 390 

file. 

3) Observation operator for the ensemble mean. GSI is initiated as the observation operator for the ensemble mean. It takes 

the ensemble mean file, files of various observational data (e.g., conventional data, satellite radiance observations, GPS 

radio occultations, and radar data) and multiple fixed files (e.g., statistic files, configuration files, bias correction files, and 

CRTM coefficient files) as input, and produces an observation prior (observation innovation) file for the ensemble mean 395 

and files containing observational intermediate information (e.g., bias correction and thinning). 

4) Observation operator for each ensemble member. GSI is initiated as the observation operator for each ensemble member. 

It takes the background file of the corresponding ensemble member, the fixed files and the observational intermediate 

information files as input, and produces an observation prior file for the corresponding ensemble member. 

5) EnKF for calculating analysis increments. EnKF is initiated for calculating analysis increments of the whole ensemble. It 400 

takes the model background files, the observation prior files and the fixed files as input, and finally updates model 

background files with the analysis increments. The updated model background files are used for restarting the ensemble 

model forecast in the next DA window.  

4.1.2 Adapting GSI/EnKF to DAFCC1 

When adapting GSI/EnKF to DAFCC1, an ensemble-set component model derived from the ensemble forecast of WRF 405 

(corresponding to the first main step in Section 4.1.1) is generated as the host model that drives the DA algorithm instances 

corresponding to the remaining main steps. As shown in Fig. 9, three DA instances corresponding to the last three main steps 

in Section 4.1.1 (i.e., observation operator for the ensemble mean, observation operator for each ensemble member, and EnKF 

for calculating analysis increments) are enclosed in DLLs, without a DA algorithm instance corresponding to the second main 

step in Section 4.1.1. This is because the online DA procedure manager of DAFCC1 enables a DA algorithm instance to 410 

automatically obtain the ensemble mean of model DA variables (Section 3.3). Although both the third and fourth main steps 

correspond to the same GSI, they are transformed into two different DA algorithm instances, because the third is an ensemble 

algorithm (i.e., it operates on the data of the ensemble set) and the fourth is an individual algorithm (i.e., it operates on the data 

of each ensemble member). Moreover, we compiled the same GSI code into two separate DLLs, each of which corresponds 

to one of these two instances, to enable these two instances to use different memory space.  415 

For each DA algorithm instance, three driving subroutines and the corresponding configuration were developed (Fig. 9). In 

fact, the two instances corresponding to GSI share the same driving subroutines but use different configurations (especially 

regarding the specification of “ensemble_operation”). To enable the GSI code and EnKF code to be used as DLL, we made 

the following slight modifications to the code.  

1) We turned off the MPI initialization and finalized and replaced the original MPI communicator with the MPI 420 

communicator of the host model that can be obtained via DAFCC1.  
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2) We obtained the required model information and the declared input/output fields via DAFCC1, and turned off the 

corresponding I/O accesses. 

To drive the DA algorithm instances, the WRF code was updated with the new subroutines for initializing, running, and 

finalizing all DA algorithm instances. Moreover, the functionality of outputting model background files can be turned off, 425 

because the data exchanges between WRF and the DA algorithm instances are automatically handled by DAFCC1 and the 

WRF ensemble can be run continuously throughout DA windows without stopping and restarting. As a result, DAFCC1 saves 

sets of data files and the corresponding I/O access operations, while only the observation files, fixed files, and the files for the 

data exchanges among the DA algorithm instances are reserved (compare Fig. 8b and Fig. 8a). 

4.2 Example ensemble DA system of FIO-AOW 430 

FIO-AOW, which previously used C-Coupler1 (Liu et al., 2014) for model coupling, has already been upgraded to C-

Coupler2.0 by us (Fig. 10a). As GSI/EnKF and FIO-AOW share WRF, the development of the example ensemble DA system 

of FIO-AOW in Fig. 10b can significantly benefit from the DA system of WRF. In this ensemble DA system, the ensemble of 

WRF computes atmospheric analyses based on the ensemble DA sub-system in Section 4.1, while each ensemble member of 

other component models is impacted by the atmospheric analyses via model coupling. It only took the following steps to 435 

construct the example ensemble DA system. 

1) Using the ensemble component manager, set up the two hierarchical levels of models shown in Fig. 11; i.e., the first level 

corresponds to all ensemble members of FIO-AOW while each member includes its three component models at the second 

level. 

2) Merge the model code modifications, the DA algorithm instances, and configurations in the DA system of WRF into the 440 

example ensemble DA system FIO-AOW. 

As well as being described by the flowchart involving the WRF and the DA algorithm instances in Fig. 8b, the example 

ensemble DA system of FIO-AOW follows the process layout in Fig. 12, which is essentially a real case of the process layout 

in Fig. 3. 

5 Validation and evaluation of DAFCC1 445 

In this section, we evaluate the correctness of DAFCC1 in developing a weakly coupled ensemble DA system based on the 

example ensemble DA system (referred to as the full-example-DA-system hereafter) described in Section 4, and will also 

validate DAFCC1 and evaluate the impact of DAFCC1 in accelerating DA based on the sub-system with WRF and GSI/EnKF 

(WRF-GSI/EnKF hereafter). 
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5.1 Experimental setup 450 

The example ensemble DA system used in this validation and evaluation consists of WRF Version 4.0 (Wang et al., 2014), 

GSI version 3.6 and EnKF version 1.2, and the corresponding versions of POM and MASNUM used in FIO-AOW (Zhao et 

al., 2017; Wang et al., 2018). In EnKF version 1.2 the default settings are used; i.e., the EnSRF algorithm is used to calculate 

analysis increments for ensemble DA, the inflation factor is 0.9 without smoothing, and the covariance is localized by distance 

correlation function with horizontal localization radius of 400 km and vertical localization scale coefficient of 0.4. The example 455 

ensemble DA system is run on a supercomputer of the Beijing Super Cloud Computing Center (BSCC) with the lustre file 

system. Each computing node on the supercomputer includes two Intel Xeon E5-2678 v3 CPUs (Intel(R) Xeon(R) CPU), with 

24 processor cores in total, and all computing nodes were connected with an InfiniBand network. The codes were compiled by 

an Intel Fortran and C++ compiler at the optimization level O2, using an Intel MPI library. A maximum 3200 cores are used 

for running the example ensemble DA system. 460 

The WRF-GSI/EnKF integrates over an approximate geographical area generated from a Lambertian projection of the area 

0°–50°N, 99°–160°E with center point at 35°N, 115°E. Initial fields and lateral boundary conditions (at 6 hour intervals) for 

the ensemble run of WRF are taken from the NCEP Global Ensemble Forecast System (GEFS) (at 1°  1° resolution) 

(https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-ensemble-forecast-system-gefs). To configure 

WRF, an existing physics suite ‘CONUS’ (https://www2.mmm.ucar.edu/wrf/users/ncar_convection_suite.php) and 32 vertical 465 

sigma layers with the model top at 50 hPa are used. One-day integration on June 1st, 2016 is used for running the WRF-

GSI/EnKF. NCEP global GDAS Binary Universal Form for the Representation of meteorological data (BUFR; 

https://www.emc.ncep.noaa.gov/mmb/data_processing/NCEP_BUFR_File_Structure.htm) and Prepared BUFR 

(https://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/document.htm), including conventional observation 

data and satellite radiation data, are assimilated every 6 hours (i.e., at 0000, 0600, 1200, and 1800 UTC). The air temperature 470 

(T), specific humidity (QVAPOR), longitude and latitude wind (UV), and column disturbance dry air quality (MU) are the 

variables analyzed in the data assimilation. The WRF-GSI/EnKF experiments are classified into four sets, where variations of 

horizontal resolution (and the corresponding time step), number of ensemble members and process number (each process runs 

on a distinct processor core) are considered (Tables 1 and 2).  

All component models of the full-example-DA-system integrate over the same geographical area (0°–50°N, 99°–150°E) 475 

with the same horizontal resolution of 0.5°  0.5° but different time steps (100 s for WRF and 300 s for POM and MASNUM, 

coupled by C-Coupler2.0 at 300 s intervals). More details of the model configurations can be found in Zhao et al. (2017). The 

configuration of initial fields, lateral boundary conditions, and observations of WRF for the ensemble run of the full-example-

DA-system are the same as for WRF-GSI/EnKF. The full-example-DA-system integrates over 3 days (June 1st to 3rd, 2016), 

while the first model day is considered as spin-up, and DA is performed every 6 hours in the last two model days with T, UV 480 

and MU as DA variables. 

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-ensemble-forecast-system-gefs
https://www2.mmm.ucar.edu/wrf/users/ncar_convection_suite.php
https://www.emc.ncep.noaa.gov/mmb/data_processing/NCEP_BUFR_File_Structure.htm
https://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/document.htm
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5.2 Validation of DAFCC1  

To validate DAFCC1, we compare the outputs of the two versions of WRF-GSI/EnKF: the original WRF-GSI/EnKF (hereafter 

offline WRF-GSI/EnKF; https://dtcenter.org/community-code/gridpoint-statistical-interpolation-gsi/community-gsi-version-

3-6-enkf-version-1-2) and the new version of WRF-GSI/EnKF with DAFCC1 (hereafter online WRF-GSI/EnKF) introduced 485 

in Section 4.1. As DAFCC1 improves only the data exchanges between a model and the DA algorithms, the simulation results 

of an existing DA system should not change when it is adapted to use DAFCC1. We therefore employ a validation standard 

that the WRF-GSI/EnKF with DAFCC1 keeps bit-identical result with the original offline WRF-GSI/EnKF. DAFCC1 passes 

the validation test with all experimental setups in Table 2, where the binary data files output by WRF at the end of the 1-day 

integration are used for the comparison.  490 

5.3 Impact in accelerating an offline DA 

WRF-GSI/EnKF is further used to evaluate the impact of DAFCC1 in accelerating an offline DA, by comparing the execution 

time of the offline and online WRF-GSI/EnKF under each experimental setup in Table 2. Considering that all ensemble 

members of the online WRF-GSI/EnKF are integrated simultaneously, we run all ensemble members of the offline WRF-

GSI/EnKF concurrently through a slight modification to the corresponding script, in order to make a fair comparison.  495 

The impact of varying the number of ensemble members is evaluated based on Set 1 in Table 2. DAFCC1 obviously 

accelerates WRF-GSI/EnKF, and can achieve higher performance speedup with more ensemble members (Fig. 13a). This is 

because DAFCC1 significantly accelerates the DA for both GSI and EnKF (Fig. 13b-d). Similarly, DAFCC1 significantly 

accelerates the DA as well as WRF-GSI/EnKF under different process numbers (Fig. 14, corresponding to Set 2 in Table 2) 

and resolution (Fig. 15, corresponding to Set 3 in Table 2). Considering that more processor cores are generally required to 500 

accelerate the model run under higher resolution, we also make an evaluation based on Set 4 in Table 2, where concurrent 

changes in resolution and process number are made to achieve similar numbers of grid points per process throughout the 

experimental setups. This evaluation also demonstrates the correctness of DAFCC1 in accelerating the DA as well as WRF-

GSI/EnKF (Fig. 16). 

The performance speedups observed from Figs. 11-14 result mainly from the significant decrease in I/O accesses. Although 505 

the online WRF-GSI/EnKF still has to access the observation prior files (Section 4.1.1 and Fig. 8b), most I/O accesses 

correspond to the model ensemble background files and model ensemble analysis files, and these I/O accesses have been 

eliminated by DAFCC1 (Table 3). Moreover, more I/O accesses can be saved under higher resolution or more ensemble 

members.  

We note that, the execution time of the offline GSI in Fig. 13c increases when using more ensemble members. This is 510 

reasonable, because more ensemble members introduce more I/O accesses, as shown in Table 3. We also note that, the 

execution time of the offline and online EnKF in Fig. 13d and Fig. 14 increases when using more ensemble members. This is 
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because the current parallel version of EnKF does not achieve good scaling performance, and thus longer execution time can 

be observed when EnKF uses more processor cores.  

5.4 Correctness in developing a weakly coupled ensemble DA system 515 

We have successfully run the full-example-DA-system with ten ensemble members, which enables us to investigate the model 

fields before and after DA. We find that changes to the atmospheric fields resulting from DA can be observed; e.g., the bias 

regarding T is slightly decreased and the bias regarding UV is more obviously decreased after using DA, as shown in Fig. 17.   

Changes to the atmospheric fields predicted based on the initial fields updated with the atmospheric analyses can also be 

observed (e.g., the fields U and V in Fig. 18). Although only atmospheric analyses are computed currently, the model coupling 520 

in the weakly coupled DA system makes ocean and wave fields impacted by the atmospheric analyses, and therefore changes 

to the ocean and wave fields can be observed in a prediction (e.g., the fields SST and HS in Fig. 18). 

6 Conclusions and discussion 

In this paper, we propose a new common, flexible and efficient framework for weakly coupled ensemble data assimilation 

based on C-Coupler2.0, DAFCC1. It provides simple APIs and a configuration file format to enable users to conveniently 525 

integrate a DA method into a model as a procedure that can be directly called by the model, while still guaranteeing the 

independence of configuration and compilation systems between the model and the DA method. The example weakly coupled 

ensemble DA system in Section 4 and the evaluations in Section 5 demonstrate the correctness of DAFCC1 in both developing 

a weakly coupled ensemble DA system and accelerating an offline DA system. The development of a DA system that only 

employs a single model run but not an ensemble run can also benefit from the advantages of DAFCC1, while the functionality 530 

of data exchanges will be automatically simplified without generating ensemble-set component models for saving extra 

overhead.  

DAFCC1 is able to automatically handle data exchanges between a model ensemble and a DA algorithm because its design 

and implementation significantly benefit from C-Coupler2.0, which already has the functionalities of automatic coupling 

generation and automatic data exchanges between different component models or within the same component model. DAFCC1 535 

will therefore be an important functionality of the next generation of C-Coupler (C-Coupler3) that is planned to be released no 

later than 2022. Although the example ensemble DA system of FIO-AOW developed in this work only computes atmospheric 

analyses currently, the future work similar to adapting GSI/EnKF to DAFCC1 can be conducted to further enable the 

computation of ocean or wave analyses. Moreover, we have considered software extendibility when designing and 

implementing DAFCC1, which will enable us to conveniently achieve upgrades either for strongly coupled ensemble DA 540 

systems or for more types of data exchange operations in the future. As shown in Fig. 8, the I/O accesses to the observation 

prior files for the data exchanges between DA algorithms are still retained after using DAFCC1. Although they are not currently 
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a performance bottleneck (Table 3), we will investigate how to avoid these types of I/O accesses when further upgrading 

DAFCC1.  

Regarding the evaluations in Section 5, we can only use at most 3200 processor cores, which limits the maximum number 545 

of cores per ensemble member. Consequently, we use relatively coarse resolutions of WRF and FIO-AOW. However, the 

results in Fig. 16 from the experiment Set 4 in Table 2 indicate that DAFCC1 will also obviously accelerate the DA system 

when using a finer resolution and more processor cores, because it will also significantly decrease I/O accesses. DAFCC1 can 

tackle the technical challenges in developing or accelerating a DA system, but cannot contribute to improvements in simulation 

results that generally depend on scientific settings which must be determined in the research environment (e.g., the DA 550 

algorithm configuration, the inflation factor, localization settings, initial states of the model ensemble run). Consequently, we 

did not examine the improvements in simulation results resulting from the full-example-DA-system based on various variables 

in Section 5.4, but only made a simple comparison of simulation results demonstrating that the full-example-DA-system can 

successfully run and produce simulation results. 

The offline implementation of a DA system that relies on disk files and restart functionalities of models and DA algorithms 555 

can be a robust strategy when it comes to massively parallel computing where the risk of random task failures generally 

increases with more processor cores used by a task, because a failed task that corresponds to an ensemble member can be 

resumed from the corresponding restart files. The online implementation that unifies all ensemble members into a task enables 

to significantly increase the number of cores used by a task. At the same time of enlarging the risk of random task failures, the 

online implementation can decrease such risk because it can significantly reduce disk file accesses that are generally an 560 

important source of task failures. The robustness of an online implementation can be further improved through developing the 

restart capability of the DA system based on the restart capabilities of the model and C-Coupler2, while users are enabled to 

flexibly set the restart-file-writing frequency for the online implementation that can be lower than the corresponding frequency 

for an online implementation generally determined by observation data frequencies. Moreover, the impact of the overhead of 

writing restart files in an online implementation can be further decreased via asynchronous I/O support.  565 

Code availability. The source code of DAFCC1 can be viewed via https://doi.org/10.5281/zenodo.3739729 (please contact us 

for authorization before using DAFCC1 for developing a system). The original source code and scripts corresponding to WRF 

and GSI/EnKF can be download from https://www2.mmm.ucar.edu/wrf/users/downloads.html and https://dtcenter.org/com-

GSI/users/downloads/index.php respectively. For the source code of FIO-AOW, please contact the authors of (Zhao et al., 

2017; Wang et al., 2018). The additional codes, configurations, scripts and guidelines for developing and running the example 570 

weakly coupled ensemble DA system can also be download from https://doi.org/10.5281/zenodo.3774710.  
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Figure 1. Model flowchart with C-Coupler2.0 (a) and new model flowchart with ensemble DA based on C-Coupler2.0 (b). Black font 755 
indicates the major steps in the original flowchart of a component model without coupling, red font indicates the major steps for 

achieving coupling exchanges among component models with C-Coupler2.0, and green font indicates the new steps for achieving 

coupling exchanges between a DA algorithm and a model ensemble. The gray shadow in a dashed rectangle indicates that all 

members in a model ensemble cooperatively work together for the corresponding step. 
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 760 

Figure 2. Architecture of DAFCC1.  
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Figure 3. Example of running a DAFCC1-based weakly coupled ensemble DA system with three ensemble members. (a) Each 

ensemble member of the coupled model (yellow series) uses 8 MPI processes, where component 1 (blue series) uses three MPI 

processes, component 2 (green series) uses two MPI processes, component 3 (orange series) uses two MPI processes, and component 765 
4 (grey series) uses one MPI process. (b) DA algorithm 1 and two instances of DA algorithm 2 (purple series) are used in this DA 

system, where DA algorithm 1 includes procedure 1 (pink series) and procedure 2 (red). (c) Execution of the DA system: the process 

layout of ensemble members of component models, the process layout of DA algorithms, and the alternative execution of a DA 

algorithm and the corresponding component model. Each number in the colored box in (a) and (c) indicates the process ID in the 

corresponding local communicator of a member of the coupled model, a member of a component model, or all members of a 770 
component model.  

 

 

 

Figure 4. Example of the command for submitting an MPI run of three ensemble members of a coupled model that consists of Comp1 775 
and Comp2. Comp1 can be before Comp2 at the second ensemble member, and the process numbers N1_1, N2_1, and N3_1 of 

Comp1 at different ensemble members can be different.  
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Figure 5. Two examples of the organization of N ensemble members of a coupled model consisting of M component models. (a) 780 
Single-level organizational architecture of all ensemble members of the component models in the coupled model. (b) Two-

hierarchical-levels organizational architecture. All ensemble members of the coupled model are organized as the first level with all 

component models from each ensemble member of the coupled model at the second level. An ensemble-set component model that 

covers all ensemble members of component model 1 is generated as an example for using the DA algorithm in ensemble component 

manager.  785 
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Figure 6. Example of the driving subroutines in a DA algorithm. (a) Initialization driving subroutine. (b) Running driving subroutine. 790 
(c) Finalization driving subroutine. The name of the DA algorithm “DA” is used as the prefix of the three driving subroutines; 

different suffixes are used for distinction. Black font indicates original functionalities of the DA algorithm, while red font indicates 

additional operations to perform online data exchanges between the model and DA algorithm.   
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Figure 7. Example of the XML configuration for a DA experiment. 795 
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Figure 8. Running processes and data scheduling for (a) original GSI/EnKF used as a pure ensemble DA system, and (b) modified 

GSI/EnKF based on DAFCC1. Orange rectangles in the Processes panel indicate different running processes, while thick blue arrows 800 
mark data scheduling based on DAFCC1. Rectangles of various colors with a curved lower edge in the File Storage panel indicate 

different files, while arrows of different colors indicate the scheduling of corresponding files. 
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Figure 9. Modifications of model code and the invoking of relationships to the DA algorithm in the example ensemble DA system. 805 
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Figure 10. Architecture of FIO-AOW (a) and the corresponding example ensemble DA system (b). The gray shadow in a dashed 

rectangle in (b) indicates that atmospheric analyses are computed by GSI/EnKF that has been coupled with the ensemble of WRF 

based on DAFCC1. 810 
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Figure 11. Two-hierarchical-level organizational architecture for N ensemble members of FIO-AOW consisting of WRF, POM, and 

MASNUM. All ensemble members of FIO-AOW are organized as the first level with all component models in each ensemble member 

at the second level. An ensemble-set that covers all ensemble members of component model WRF is generated by the ensemble 815 
component manager. 
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Figure 12. Example of the process layout of the example ensemble DA system FIO-AOW. (a) Each ensemble member of FIO-AOW 

(yellow series) uses 7 MPI processes, where WRF (blue series) uses 3 MPI processes, POM (green series) uses 2 MPI processes, and 820 
MASNUM (orange series) uses 2 MPI processes. (b) Two DA algorithm instances of GSI are adopted for each member (pink series) 

and ensemble mean (red) respectively following another DA algorithm instance of EnKF in this DA system. (c) Process layout of the 

DA system: the process layout of ensemble members of component models and the process layout of DA algorithms. Each number 

in the colored boxes in (a) and (c) indicates the process ID in the corresponding local communicator of a member of the coupled 

model, a member of a component model, or all members of a component model. 825 
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Figure 13. Execution time (colored bars) corresponding to the online and offline WRF-GSI/EnKF and the corresponding speedup 830 
(gray line, ratio of offline execution time to online execution time) from experiment set 1 in Table 2. (a) Total run (including model 

run and DA algorithms run). (b) DA algorithms (including GSI and EnKF) run. (c) GSI run. (d) EnKF run.  
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Figure 14. As in Fig. 13, but from experiment set 2 in Table 2. 835 
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Figure 15. As in Fig. 13, but from experiment set 3 in Table 2. 840 
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Figure 16. As in Fig. 13, but from experiment set 4 in Table 2. 845 
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Figure 17. Total bias of assimilated variables relative to corresponding observations before and after DA for (a) T and (b) UV at 850 
each DA time from the EnKF standard output file. The dotted lines indicate the bias of assimilated variables before DA and the solid 

lines indicate the bias of assimilated variables after DA. Blue lines are the bias in the area of 0°–25° N, and orange lines are the bias 

in the area of 25°–50° N. 
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 855 
 
Figure 18. Simulation results of FIO-AOW (at 06:00 on June 3rd, 2016) about the fields of meridional wind (U; the first column) and 

zonal wind (V; the second column) produced by WRF, sea surface temperature (SST; the third column) produced by POM, and sea 

surface significant wave height (HS; the fourth column) produced by MASNUM. The first row shows the results of the full-example-

DA-system predicted since 00:00 on June 3rd, based on the DA experimental setup in Section 5.1, the second row shows the results 860 
without DA and the third row is the corresponding differences. 
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 865 
Table 1. Horizontal resolutions and time steps of WRF. 

Horizontal 

Resolution  

Total Horizontal 

Grid Points 
Time Step 

45 km 160×120 180 s 

30 km 240×180 120 s 

15 km 480×360 60 s 

 

 

 

Table 2. Setup of four experiment sets in terms of horizontal resolution, number of ensemble members and number of processes 870 

Experiment set 
Horizontal 

resolution 

Number of 

ensemble members  

Processes for each 

ensemble member 
Label marks 

Set 1 15 km 

5 

160 

15KM_5mem_160proc 

10 15KM_10mem_160proc 

15 15KM_15mem_160proc 

20 15KM_20mem_160proc 

Set 2 15 km 10 

40 15KM_10mem_40proc 

80 15KM_10mem_80proc 

160 15KM_10mem_160proc 

320 15KM_10mem_320proc 

Set 3 

45 km 

10 80 

45KM_10mem_80proc 

30 km 30KM_10mem_80proc 

15 km 15KM_10mem_80proc 

Set 4 

45 km 

10 

40 45KM_10mem_40proc 

30 km 80 30KM_10mem_80proc 

15 km 320 15KM_10mem_320proc 
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Table 3. I/O access statistics corresponding to WRF-GSI/EnKF 

Horizontal 

resolution 

Number of 

ensemble 

members 

Number of 

observation prior 

files 

Total I/O 

accesses to 

observation priors 

Number of model 

ensemble 

background & 

analysis files 

Total I/O accesses to 

model ensemble 

background & 

analysis files 

15 km 5 12  0.11 GB  324  129.13 GB 

15 km 10 22  0.21 GB  624  251.30 GB 

15 km 15 32  0.30 GB  924  373.48 GB 

15 km 20 42  0.39 GB  1224  495.65 GB 

30 km 10 22  0.18 GB  624  62.86 GB 

45 km 10 22  0.17 GB  624  27.96 GB 

 


