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Part 1: Responses to Topical Editor  

 

1. I agree with referee #2 that the clarity and structure of the manuscript still needs to be improved. 

This is especially the case for sections 2 and 3. A suggestion from my side would be to first provide 

a general introduction how the C-Coupler works in a technical sense (e.g. with an example for two 

models) mentioning required coding steps for coupling, details on data transfer etc. Then you could 

introduce the changes you made for allowing ensemble propagation and the use of DA algorithms 

and explain the details of the implementation. Some additional comments and suggestions are given 

below. I would like to ask you to include these comments in a further revision of your manuscript.  

Response: Thanks a lot for your suggestions. A new figure (Fig. 1 in the revised manuscript) about the 

model flowchart with C-Coupler2.0 and new model flowchart with ensemble DA based on C-Coupler2.0 

is added to Section 2, which introduces the major model steps for achieving coupling exchanges among 

component models with C-Coupler2.0 and the new steps for achieving coupling exchanges between a 

DA algorithm and a model ensemble. We have modified the corresponding statements. Please refer to 

P4L114~L122.  

 

2. Line 35-36: This statement is a bit misleading as it gives the impression that from a methodological 

point of view variational methods are a subset of ensemble methods, which is not quite correct. To 

me it seems that the statement is more from a technical perspective (--> managing the ensemble 

propagation). I would suggest to rephrase this statement in order to avoid confusion. 

Response: We have rephrased the statement. Please refer to P2L35~L36. 



3. Line 40: involving --> evolving 

Response: We have corrected it. 

4. Line 52-53: What do you mean with 'coupled DA system' in this context? Does 'coupling' refer here 

to DA with coupled models or to the coupling of a DA framework to a model? For example, DART 

is a quite generic DA framework, that can do DA with any kind of model (be it a single compartment 

model or a coupled earth system model). Please specify. 

Response: Here we refer to the ensemble DA frameworks supporting coupled DA. We have modified 

the statement. Please refer to P2L52~L53. 

5. Line 93-96: I would not call this 'extra coding'. The choice of processor/ communicator layout is a 

regular part of the implementation of a DA system (e.g. the coupling of PDAF with a user code) and 

this somehow depends on the users needs and preferences. It's just that the template files in PDAF 

include a standard example with the described processor layout that can be relatively easily adapted 

to user needs as suggested by Dr. Nerger's short comments. 

Response: We have revised the statements of this section. Please refer to P3L88~L95. 

6. Line 96: COMM_COUPLE, COMM_FILTER, etc. is a quite specific nomenclature for PDAF which 

is probably not known to the reader. Please explain this in a more general sense. 

Response: We have added general descriptions about the specific communicators for PDAF. Please refer 

to P3L93~L95. 

7. Line 101-102: '..which does not use global communications,...': It is not quite clear to me what you 

mean here (i.e. what 'global communication' you refer to). Ensemble filters always require a step 

where the data from the different realizations are collected. How would the implementation with C-

Coupler differ in that respect (as compared to other already existing frameworks)? 

Response: Global communications here refers to communications among all processes in the global 

communicator, e.g., MPI_gatherv and MPI_scatterv. Although ensemble filters always require a step for 

collecting the data from the different realizations of a model, a process of the ensemble filter only 

calculates the analyses on a part of grid points, and thus a process only requires to collect the data from 

a part of processes of the model. PDAF and DAFCC1 adopt this communication mode. We have revised 

the corresponding statements. Please refer to P4L101 and P4L108.  

8. Line 102-103: '...and does not require users to develop extra codes...': With reference to your 

statements in lines 93-96, how does the implementation with C-Coupler differ in that respect? Please 



provide more details how your implementation can handle different processor layouts for models 

and DA algorithms. For example, in Figure 2, how would C-Coupler handle a case where you want 

to run DA algorithm 1 with all available processors instead of the ones shown in the figure? 

Response: More details about the data exchanges between models and the DA algorithms are introduced 

in P8L236~L246, which can be easily achieved by the import/export interfaces of C-Coupler2.0, as they 

are all coupled as component models.  

9. Line 92/103: It is not clear what you mean with 'process sets'. Please provide more details. 

Response: “process set” means a set of processes. The manuscript has been modified accordingly. Please 

refer to P3L93 and P4L101. 

10. Line 123: Please explain in more detail what you mean with the DLL technique. 

Response: More details about the DLL technique have been added into the manuscript. Please refer to 

P4L128~P5133. 

11. Line 168: What do you mean with 'ensemble-set component model'? Please explain more clearly. 

Response: We have added more introductions to 'ensemble-set component model'. Please refer to 

P6L174~L176. 

12. Line 201-207: Does that mean that the DA software component is restarted at every assimilation 

cycle (as suggested by keywords initialize, run, finalize)? 

Response: The DA software component can be reused across assimilation cycles with restart. The 

manuscript has been modified accordingly. Please refer to P7L213~L216. 

13. Section 5.4: This is rather short. Please provide a more detailed analysis and description here as a 

main focus of the paper (already mentioned in the title) is on weakly coupled DA systems. 

Response: We have added more analysis of the results from the weakly coupled DA system (including 

Fig. 18). Please refer to P16L482-L485. 

14. Line 468-470: '...while still guaranteeing software independence between model and the DA 

method.': As I understand the coupling approach, you would still need to adapt the model code when 

using a different DA software (as suggested e.g. by lines 364-377). Please clarify. 

Response: We have revised this statement. Please refer to P16L489~L490. 

 

 

 



Part 2: Responses to Anonymous Referee #2  

 

1. The introduction contains now a reasonable overview and references of the currently used coupled 

data assimilation systems. The motivation of the authors seems also clearer than is the previous 

version. Though, you could add some words about your intention to provide a flexible tool for the 

scientific community that needs minimum programming efforts (as you did in the response to the 

referee). However, my major concern of the previous version persists. Except the introduction, there 

is no difference with the previous version. The text of the article is not structured, especially the 

section 3, contains long difficult-to-understand sentences. Many acronyms and terms are not 

properly introduced. The authors do not provide a reasonable description of the systems and models 

used, but mention some data assimilation parameters like localization length scale and inflation 

factors that doesn’t make sense in isolation. I would suggest you to put some additional efforts on 

the text of the article. 

Response: Thanks a lot for your suggestions. Combined with Topical Editor's comments and suggestions, 

we have added a new figure (Fig. 1 in the manuscript) about the model flowchart with C-Coupler2.0 and 

new model flowchart with ensemble DA based on C-Coupler2.0 in section 2, which introduces the major 

model steps for achieving coupling exchanges among component models with C-Coupler2.0 and the new 

steps for achieving coupling exchanges between a DA algorithm and a model ensemble. Please refer to 

P4L114~L122 for more details. We have checked and added more introductions about some acronyms 

or special terms in Section 3, e.g., P6L175~L176. The details of some DA parameters are mentioned for 

the reproducibility of the experiment, and we have also added more introductions about the coupled 

model. Please refer to P11L329~L330. 

 

2. Besides, introduce properly your weakly coupled data assimilation. What is the data assimilation 

system number one, say atmospheric, what is number two (ocean or wave DA?). How the DA 

systems talk to each other? Did you put the calls for both DA systems into the PDAF code? Maybe, 

a good idea would be to add a figure showing the scheme of the WCDA. Please work also on the 

description of the experiments, extend the discussion of results and conclusions. 



Response: We have added a new figure (Fig. 10 in the manuscript) about the architecture of FIO-AOW 

and the corresponding weakly coupled ensemble DA system, where the atmospheric analyses are 

computed by GSI/EnKF that has been coupled with the ensemble of WRF based on DAFCC1, while 

each ensemble member of other component models is impacted by the atmospheric analyses via model 

coupling. Please refer to P13L395~L398 for more details. 

 

3. L39 : … on an ensemble run 

Response: We have revised it to “…the ensemble run”, please refer to P2L39 in the manuscript. 

4. L100 : To develop a new framework… The fact that you mention here a WCDA may be misleading 

for readers. Flexible manipulation of MPI tasks may be beneficial for any sequential data 

assimilation. 

Response: Our motivation for this work is from WCDA, while DAFCC1 can also be beneficial for the 

DA of a single-component-model system (Section 4.1 and Section 5.3 is an example).  
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Abstract. Data assimilation (DA) provides initial states of model runs by combining observational information and models. 

Ensemble-based DA methods that depend on the ensemble run of a model have been widely used. In response to the 

development of seamless prediction based on coupled models or even Earth system models, coupled DA is now in the 15 

mainstream of DA development. In this paper, we focus on the technical challenges in developing a coupled ensemble DA 

system, especially how to conveniently achieve efficient interaction between the ensemble of the coupled model and the DA 

methods. We first propose a new DA framework DAFCC1 (Data Assimilation Framework based on C-Coupler2.0, version 1) 

for weakly coupled ensemble DA, which enables users to conveniently integrate a DA method into a model as a procedure 

that can be directly called by the model ensemble. DAFCC1 automatically and efficiently handles data exchanges between the 20 

model ensemble members and the DA method without global communications, and does not require users to develop extra 

codes for implementing the data exchange functionality. Based on DAFCC1, we then develop an example weakly coupled 

ensemble DA system by combining an ensemble DA system and a regional atmosphere-ocean-wave coupled model. This 

example DA system and our evaluations demonstrate the correctness of DAFCC1 in developing a weakly coupled ensemble 

DA system and the effectiveness in accelerating an offline DA system that uses disk files as the interfaces for the data exchange 25 

functionality. 

1 Introduction 

Data assimilation (DA) methods, which provide initial states of model runs by combining observational information and 

models, have been widely used in weather forecasting and climate prediction. The ensemble Kalman filter (EnKF; Houtekamer 

and Mitchell, 1998; Evensen, 2003; Lorenc, 2003a; Anderson and Collins, 2007; Whitaker, 2012) is a widely used DA method 30 

that depends on an ensemble run of members. Other DA methods that can be performed a single model run, such as the 
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Nudging method (Hoke and Anthes, 1976; Vidard et al., 2003), Optimal Interpolation (OI; Gandin, 1965), Ensemble OI (EnOI; 

Oke et al., 2002; Evensen, 2003), three-dimensional variational analysis (3D-Var; Anderson et al., 1998; Courtier et al.1998; 

Gauthier et al., 1999; Lorenc, 2000) and four-dimensional variational analysis (4D-Var; Courtier et al., 1994; Kalnay, 2003; 

Lorenc, 2003b; Rabier et al., 2007), can be technically viewed as a special case of ensemble-based methods with only one 35 

member in the ensemble when we attempt to design and develop a software framework for data assimilation. Moreover, hybrid 

DA methods, such as hybrid Ensemble/3D-Var (Hamill, 2000; Etherton and Bishop, 2004; Wang et al., 2008, 2013; Ma et al., 

2014) and ensemble-based 4D-Var schemes (Fisher, 2003; Bishop and Hodyss, 2011; Bonavita et al., 2012, 2016; Buehner et 

al., 2015), also depend on an the ensemble run of members from the same model.  

With the rapid development of science and technology, numerical forecasting systems are evolvinginvolving from only an 40 

individual component model (such as an atmospheric model)  to coupled models that can achieve better predictability (Brown 

et al., 2012; Mulholland et al., 2015), and earth system models are being used to develop seamless prediction that spans 

timescales from minutes to months or even decades (Palmer et al., 2008; Hoskins, 2013). Along with the use of coupled models 

in numerical forecasting, common and flexible DA methods for coupled models are urgently needed (Brunet et al., 2015; 

Penny et al., 2017). Coupled DA technologies have already been investigated widely and DA systems have been constructed 45 

(Sugiura et al., 2008; Fujii et al., 2009, 2011; Saha et al., 2010, 2014; Sakov et al., 2012; Yang et al., 2013; Tardif et al., 2014, 

2015; Lea et al., 2015; Lu et al., 2015a, b; Mochizuki et al., 2016; Laloyaux et al., 2016, 2018; Browne et al., 2019; Goodliff 

et al., 2019; Skachko et al. 2019), in which ensemble based DA methods have already been applied (e.g., Zhang et al., 2005, 

2007; Sluka et al., 2016).  

To develop a coupled ensemble DA system, besides the scientific challenges regarding DA methods, there are also technical 50 

challenges to be addressed, such as how to achieve an ensemble run of a coupled model, how to conveniently integrate the 

software of a coupled model and the software of ensemble DA methods into a robust system, and how to conveniently achieve 

efficient interaction between the ensemble of the coupled model and the DA methods. The existing ensemble DA frameworks 

supporting coupled DA coupled ensemble DA systems such as the Data Assimilation Research Testbed (DART; Anderson et 

al., 2009) , the ensemble coupled data assimilation system (ECDA; Zhang et al., 2005, 2007), and the Grid point Statistical 55 

Interpolation (GSI; Shao et al., 2016) combined with EnKF (Liu et al., 2018a), employ disk files as the interfaces of data 

exchange between the model ensemble members and the DA methods, and iteratively switch between the run of the model 

ensemble and DA using software-based restart functionality that also relies on disk files. Such an implementation (called 

offline implementation hereafter) can guarantee software independence between the models and the DA methods, so as to 

achieve flexibility and convenience in software integration; however, the extra I/O accesses of disk files as well as the extra 60 

initialization of software modules introduced by the data exchange and the restarts are time-consuming and can be a severe 

performance bottleneck under finer model resolution (Heinzeller et al., 2016; Craig et al., 2017). The Parallel Data Assimilation 

Framework (PDAF; Nerger et al., 2005; Nerger and Hiller, 2013; Nerger et al., 2020) and the Employing Message Passing 

Interface for Researching Ensembles (EMPIRE; Browne and Wilson, 2015) framework have shown that MPI (Message 
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Passing Interfaces)-based data exchanges between the model ensemble members and DA procedures can produce better 65 

performance for DA systems, because they do not require disk files or the restart operations.  

Noting that most existing couplers for Earth system modeling have already achieved flexible MPI-based data exchanges 

between component models in a coupled system, we design and develop a common, flexible and efficient framework for 

coupled ensemble data assimilation, based on the latest version of the Community Coupler (C-Coupler2.0; Liu et al., 2018b). 

Considering that existing observation processing systems can introduce different observation frequencies corresponding to 70 

different component models, we take consideration of weakly coupled ensemble DA where the data from different component 

models are assimilated independently by separate DA methods (Zhang et al., 2005, 2007; Fujii et al., 2009, 2011; Saha et al., 

2010, 2014) in this work, and in further work will then target strongly coupled ensemble DA, which generally uses a cross-

domain error covariance matrix to account for the impact of the same observational information on different component models 

cooperatively (Tardif et al., 2014, 2015; Lu et al., 2015a, b; Sluka et al., 2016). 75 

The remainder of this paper is organized as follows. Section 2 introduces the overall design of the new DA framework 

named DAFCC1 (Data Assimilation Framework based on C-Coupler2.0, version 1). The implementation of DAFCC1 are 

described in Section 3. Section 4 introduces the development of an example weakly coupled ensemble DA system based on 

DAFCC1. Section 5 evaluates DAFCC1. Finally, Section 6 contains a discussion and conclusions.  

2 Overall design of the new framework 80 

The experiences gained from PDAF and EMPIRE show that, a framework with an online implementation where all ensemble 

members of the model and all procedures of DA methods are combined into a single MPI program is essential for improving 

the interaction between the model and the DA software. There can be different strategies for the online implementation. In 

EMPIRE, a DA method is compiled into a standalone executable running on the processes distinct from the model ensemble, 

and global communications of MPI_gatherv and MPI_scatterv are used for exchanging data between the model ensemble and 85 

the DA method. Such an implementation can maintain the independence between the DA software and the model, while the 

global communications are generally inefficient and there are idle processes almost at any time because the model ensemble 

and the DA method generally work sequentially but not simultaneously. In PDAF, a DA method is transformed into a native 

procedure that is called by the corresponding models via the PDAF application programing interfaces (APIs). Thus, a DA 

method can share the processes of the model ensemble. The code releases of PDAF (http://pdaf.awi.de/trac/wiki) provide 90 

template implementations of data exchanges for a default case where a DA method shares all processes of the first ensemble 

member of the corresponding model and keeps the same parallel decomposition (grid domain decomposition for parallelization) 

with the corresponding model. When users want For a case different from the default (e.g., a DA method does not use the same 

processes  set with the first ensemble member or uses a parallel decomposition different from the corresponding model), code 

implementations users will be required to develop extra codes for implementing the corresponding data exchange functionality 95 

following the rules of PDAF ( (e.g., using the PDAF communicators for the model, the filter and the coupling exchanges 

http://pdaf.awi.de/trac/wiki
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between them, of COMM_COUPLE, COMM_FILTER, COMM_CPLMOD and COMM_MODEL, and using the formats of 

PDAF APIs)) will be developed.  

Most DA software consists of parallel programs that generally can be accelerated by using more processor cores. When 

running an ensemble DA algorithm for a component model in an ensemble run, all ensemble members of the component model 100 

are synchronously waiting the result of the DA algorithm. Therefore, all the processor cores corresponding to all ensemble 

members of the component model can be used to accelerate the DA algorithm. To develop a new framework for weakly 

coupled ensemble data assimilation, we should target an improved implementation of the data exchange functionality, which 

does not use global communications of MPI_gatherv and MPI_scatterv, enables a DA method to share almost all the processes 

of the model ensemble and does not require users to develop extra codes in any case. When a DA algorithm uses a processes 105 

set different from a model ensemble member, the DA algorithm will use a parallel decomposition that differs from the model 

ensemble members. Thus, the data exchange between the DA algorithm and a component model ensemble member will 

introduce a challenge of transferring fields between different process sets with different parallel decompositions.  

Fortunately, such a challenge has already been overcome by most existing couplers (Craig et al., 2012; Valcke, 2012; Liu 

et al., 2014; Craig et al., 2017; Liu et al., 2018b), each of which can transfer data between different process sets with different 110 

parallel decompositions without the global communications. We therefore use the C-Coupler2.0 (Liu et al., 2018b), the latest 

version of the Community Coupler (C-Coupler), as the foundation for developing DAFCC1. Moreover, C-Coupler2.0 has 

more functionalities that DAFCC1 can benefit from. For example, C-Coupler2.0 can handle data exchange of 3-D or even 4-

D fields where the source and destination fields can have different dimension orders (e.g., vertical+horizontal at the source 

field, and horizontal+vertical at the destination field). It will be convenient to combine ensemble members of a coupled model 115 

into a single MPI program based on C-Coupler2.0 because each ensemble member can be registered as a component model of 

C-Coupler2.0. As shown in Fig. 1a, based on the coupling configurations registered to C-Coupler2.0, mMost operations for 

achieving data exchanges can be generated automatically because C-Coupler2.0 can generate coupling procedures between 

two process sets even when the two sets are overlapping. 

 A most significant challenge here is that C-Coupler2.0 can only handle coupling exchanges between two component 120 

models or intra one component model, while coupled ensemble DA requires coupling exchanges between a DA algorithm and 

a model ensemble that includes a set of ensemble members each of which has been registered as a component model of C-

Coupler2.0. To address this challenge, three new steps, i.e., initialization, running and finalization of DA instances (instances 

of DA algorithms), are inserted into the model flowchart with C-Coupler2.0 (Fig. 1b). These three steps enable all members 

in a model ensemble to use a DA algorithm cooperatively.  125 

The software architecture of DAFCC1 based on C-Coupler2.0 is shown in Fig. 21. It includes a set of new managers (i.e., 

DA algorithm integration manager, ensemble component manager, ensemble data exchange operation manager, online DA 

procedure manager, and ensemble DA configuration manager) and the new APIs corresponding to these managers. The DA 

algorithm integration manager enables the user to conveniently develop driving interfaces for a DA algorithm based on a set 

of new APIs that enables the DA algorithm to register its input and output fields and to obtain various information from the 130 
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model. A DA algorithm can include a set of procedures such as observation operators and analysis modules, each of which 

can be called by the model separately. The framework uses the dynamic link library (DLL) technique for the connection of a 

DA algorithm program to a model, where a DA algorithm program is compiled into a DLL that is dynamically linked to a 

model when an instance of the DA algorithm is initialized. With the DLL technique, a new DA algorithm can be used by a 

model without modifying and recompiling the model codes, , so thatand the original configuration and compilation systems of 135 

a DA algorithm can generally be preserved for greater independence of the DA algorithms from the models, and for less work 

in integrating a DA algorithm. The ensemble component manager is responsible for generating and managing the 

communicator of ensemble members of each component model. The online DA procedure manager provides several APIs that 

enable the ensemble members of a component model to initialize, run and finalize a DA instancea DA algorithm cooperatively, 

and automatically handles the data exchanges between the ensemble members and the DA algorithm with a set of operations. 140 

The ensemble DA configuration manager enables the user to flexibly specify the DA algorithm, DA frequency and the 

operations for the data exchange in a DA simulation through a configuration file. 

Guided by the architecture in Fig. 21, we implemented the new framework (see Section 3 for detailed implementation), 

which enables a coupled ensemble DA system to achieve the following features: 

1) Each component model can use different instances of DA algorithms online independently, and the execution of a DA 145 

algorithm in the MPI processes of a component model does not force other MPI processes to be idled. For example, 

components 1, 2, and 4 in Fig. 2Fig. 3 use DA algorithms at different frequencies, while component 3 does not use DA. 

2) Given a common DA algorithm, it can be used by different component models under different instances with different 

configurations; e.g., the fields assimilated, the observational information used, and the frequency. In Fig. 2Fig. 3 for 

example, components 2 and 4 use different instances of the same DA algorithm 2 independently. 150 

3) An instance of a DA algorithm can either use the processes of all ensemble members of the same component model 

cooperatively or use the processes of each ensemble member separately. For example, each DA algorithm instance in Fig. 

2Fig. 3 uses the processes of all ensemble members of the corresponding component model cooperatively, except 

procedure 1 of DA algorithm 1 that uses the processes of each ensemble member of component 1 separately.  

4) Besides employing the DLL technique for integrating DA algorithm programs, a configuration file is designed for 155 

increasing the flexibility and convenience in using a DA algorithm (see Section 3.4 for detailed implementation). 

4)  

3 Implementation of DAFCC1  

In this section, we will detail the implementation of DAFCC1 in terms of the ensemble component manager, DA algorithm 

integration manager, online DA procedure manager, and ensemble DA configuration manager. Moreover, we will provide an 160 

example of how to use DAFCC1 to develop a DA system.  
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3.1 Implementation of the ensemble component manager 

In C-Coupler2.0, the model coupling resources, including MPI communicators, time steps, timers, model grids, parallel 

decompositions, coupling field instances, and coupling interfaces, are associated with each component model that is registered 

to C-Coupler2.0 via the API CCPL_register_component. When running an ensemble of a model in a single MPI run, each 165 

ensemble member should be used as a separate component model. In C-Coupler2.0, model names are the keywords to 

distinguish different component models. To distinguish different ensemble members of a model that generally share the same 

code or executable, we update the API CCPL_register_component to implicitly generate different names of ensemble members 

by appending the ID of each ensemble member to the model name (the parameter list of the API CCPL_register_component 

is unchanged). The ID of an ensemble member is given as the last argument (formatted as “CCPL_ensemble_{ensemble 170 

numbers}_{member ID}”) of the corresponding executable when submitting an MPI run (see Fig. 3Fig. 4 as an example), 

where “ensemble numbers” marks the number of ensemble members and “member ID” marks the ensemble member ID of the 

current component.  

Given an ensemble run of a coupled model, all ensemble members of the component models of the coupled model can be 

organized as one level of models (see Fig. 4Fig. 5a), although we recommend constructing two hierarchical levels of models 175 

with the first level corresponding to all ensemble members of the coupled model and each ensemble member including the 

component models at the second level (Fig. 4Fig. 5b), because the hierarchical organization retains the original architecture of 

the coupled model through a simple additional registration of the coupled model to C-Coupler2.0. 

As a DA algorithm that handles ensemble fields can run on the MPI processes of all ensemble members of a component 

model (Fig. 2Fig. 3), a special C-Coupler2.0an ensemble-set component model that covers all ensemble members of the 180 

component model (this special component model is called ensemble-set component model hereafter) is required forto usinge 

the DA algorithm (Fig. 4Fig. 5b). The ensemble component manager provides the capability to generate an ensemble-set 

component model, which does not introduce global synchronization and only involves the ensemble members of the 

corresponding component model.  

3.2 Implementation of the DA algorithm integration manager 185 

A pair of a model and a DA algorithm have essentially the relationship between a caller and a callee in a program, where the 

callee generally declares a list of arguments that includes a set of input and output variables, while a caller should match the 

argument list of the callee when calling the callee (herein, the model is referred to as the host model of the DA algorithm). For 

a caller and a callee that are in the same native code, a corresponding compiler can guarantee the consistency of the argument 

list between them, regardless of the data structure of each argument. However, compilers cannot guarantee such consistency 190 

between a host model and a DA algorithm that is enclosed in a DLL but not in the native code of the host model. 

To address the above challenge, we designed and developed a new solution for passing arguments between a host model 

and a DA algorithm, and tried to make such a solution as flexible as possible to improve the flexibility of DAFCC1 in serving 
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various DA algorithms. There are three driving subroutines for initializing, running, and finalizing a DA algorithm; their 

subroutine names share the name of the DA algorithm as the prefix and are distinguished by different suffixes. We tried to 195 

make the explicit argument list of each driving subroutine as simple as possible (e.g., only a few integer arrays), and developed 

a set of C-Coupler APIs for flexibly passing implicit arguments between the host model and the DA algorithm. Based on these 

APIs, the DA algorithm can obtain the required information from the host model and the grids via C-Coupler2.0 and can also 

declare any field instances that the DA algorithm has registered to C-Coupler2.0 as implicit input or output arguments, at the 

initialization stage of the DA algorithm. Figure 65 shows an example of the driving subroutines where the running and 200 

finalization driving subroutines are very simple. In the initialization driving subroutine, besides the original functionalities of 

the DA algorithm such as determining parallel decompositions, allocating memory space for variables and other operations 

for initialization, there are additional operations for obtaining information from the host model and grids using C-Coupler2.0, 

registering the parallel decompositions, required grids, and field instances to C-Coupler2.0, and declaring the field instances 

as implicit input or output arguments. In the running driving subroutine DA_CCPL_RUN, there are no explicit calls for data 205 

exchange, because the data from the model ensemble to the DA algorithm is transferred automatically and implicitly by 

DAFCC1 before running DA_CCPL_RUN, while the data from the DA algorithm to the model ensemble is transferred 

automatically and implicitly after running DA_CCPL_RUN.  

The use of DAFCC1 requires some native code of a DA algorithm to be further updated accordingly. For example, the 

original communicator of the DA algorithm needs to be replaced with the communicator of the host model that can be obtained 210 

through the corresponding C-Coupler API, and the original I/O accesses for the model data in the DA algorithm can be turned 

off. 

3.3 Implementation of the online DA procedure manager 

To enable different component models to use the same DA algorithm but with different configurations, a component model 

can use a distinct instance of a DA algorithm with the corresponding configuration information. Corresponding to the three 215 

driving subroutines of a DA algorithm, there are three APIs (CCPL_ensemble_procedures_inst_init, 

CCPL_ensemble_procedures_inst_run, and CCPL_ensemble_procedures_inst_finalize) that enable a host model to initialize, 

run, and finalize the DA algorithm instance, and handle the data exchanges between the host model and the DA algorithm 

instance automatically. In a general case in Fig. 1b, the API CCPL_ensemble_procedures_inst_init is called when initializing 

the ensemble DA system before starting the time loop, the API CCPL_ensemble_procedures_inst_finalize is called after 220 

finishing the time loop, and the API CCPL_ensemble_procedures_inst_run is called in the time loop, which enables different 

assimilation cycles to share the same DA instance without restarting the model and DA algorithm. When a component model 

initializes, runs, or finalizes a DA algorithm instance, all ensemble members of this component model should call the 

corresponding API at the same time.  
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3.3.1 API for initializing a DA algorithm instance 225 

The API CCPL_ensemble_procedures_inst_init for initializing a DA algorithm instance is designed and implemented with the 

following steps. 

1) Determine the host model of the DA algorithm instance according to the corresponding information in the configuration 

file. If the DA algorithm instance is an individual algorithm that operates on the data of each ensemble member separately 

(e.g., Procedure 1 of DA algorithm 1 in Fig. 2Fig. 3), each ensemble member will be a host model. Otherwise (i.e., the 230 

DA algorithm instance is an ensemble DA algorithm that operates on the data of the ensemble set; e.g., Procedure 2 of 

DA algorithm 1 in Fig. 2Fig. 3), the host model will be the ensemble-set component model that will be generated 

automatically by the ensemble component manager. 

2) Prepare information from the host model, such as model grids, parallel decompositions, and field instances, which the 

initialization driving subroutine of the DA algorithm can obtain via the corresponding APIs. 235 

3) Initialize the corresponding DA algorithm instance according to the corresponding algorithm name and DLL name 

specified in the corresponding configuration file, where the corresponding DLL will be linked to the host model and the 

corresponding initialization driving subroutine in the DLL will be called. This implementation enables the user to 

conveniently change the DA algorithms used in simulations via the configuration file without modifying the code of the 

model. 240 

4) Set up data exchange operations according to the input or output fields of the DA algorithm instance declared in the 

initialization driving subroutine via the corresponding APIs. If the DA algorithm instance is specified as an individual 

algorithm via the ensemble DA configuration (Section 3.4), the data exchange is intra the component model of each 

ensemble member. Otherwise, the ensemble-set component model is involved in the data exchange. The data exchange is 

divided into two levels: the data exchange between the ensemble members and DAFCC1, and the data exchange between 245 

DAFCC1 and the DA algorithm. The data exchange between DAFCC1 and the DA algorithm instance is simply achieved 

by the import/export interfaces of C-Coupler2.0, which flexibly rearrange the fields in the same component model between 

different parallel decompositions. If the DA algorithm instance is an ensemble algorithm, the data exchange between the 

ensemble members and DAFCC1 is also handled by the import/export interfaces of C-Coupler2.0, which flexibly transfer 

the same fields between different component models (each ensemble member and the ensemble set are different 250 

component models). Otherwise, the data exchange between the ensemble members and DAFCC1 is simplified to a data 

copy. DAFCC1 will hold a separate memory space for each model field relevant to the DA algorithm, which enables a 

DA algorithm instance to use instantaneous model results or statistical results (i.e., mean, maximum, cumulative, and 

minimum) in a time window, and enables an ensemble DA algorithm instance to use aggregated results or statistical results 

(ensemble-mean, ensemble-anomaly, ensemble-maximum, or ensemble-minimum) from ensemble members. The sets of 255 

data exchange operations for the input and output fields of the DA algorithm instance are generated separately. 
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Consistent with the functionalities in the above steps, the API CCPL_ensemble_procedures_inst_init includes the following 

arguments. 

- The ID of the current ensemble member that calls the API, and the common full name of the ensemble members, which 

is used for determining the host model of the DA algorithm. When registering a component model to C-Coupler2.0, its ID 260 

is allocated and its unique full name formatted as “parent_full_name@model_name” is generated, where “model_name” 

is the name of the component model, and “parent_full_name” is the full name of the parent component model (if any). 

Given that the names of the coupled model and the component model 1 in Fig. 4Fig. 5 are “coupled” and “comp1”, 

respectively, in the one-level model hierarchy in Fig. 4Fig. 5a, the full names of ensemble members of the component 

model 1 are “comp1_1” to “comp1_N” and the common full name is “comp1_*” where “*” is a wildcard, while in the 265 

two-level model hierarchy in Fig. 4Fig. 5b the full names of ensemble members of the component model 1 are 

“coupled_1@comp1” to “coupled_N@comp1” and the common full name is “coupled_*@comp1”. 

- The name of the DA algorithm instance, which is the keyword of the DA algorithm instance and also specifies the 

corresponding configuration information. Different DA algorithm instances can correspond to different DA algorithms or 

the same DA algorithm. For example, the component models 2 and 4 use different instances of the same DA algorithm in 270 

Fig. 2Fig. 3. 

- A list of model grids and parallel decompositions, which are optional arguments that enable the DA algorithm instance to 

obtain grid data and use the same parallel decompositions as the host model.  

- A list of field instances, which specify the model fields that can be used for assimilation. This list should cover all input 

or output fields of the DA algorithm.  275 

- An optional integer array of control variables that can be obtained by the DA algorithm instance via the corresponding 

APIs. 

- An annotation, which is a string giving a hint for locating the model code of the API call corresponding to an error or 

warning, is recommended but not mandatory, and should be provided by the user. 

3.3.2 API for running a DA algorithm instance 280 

The API CCPL_ensemble_procedures_inst_run is responsible for running a DA algorithm instance with the following steps. 

1) Executing the data exchange operations for the input fields of the DA algorithm instance. This step automatically transfers 

the input fields from each ensemble member of the corresponding component model to DAFCC1 and then from DAFCC1 

to the DA algorithm instance, where the statistical processing regarding the time window or the ensemble is done at the 

same time. 285 

2) Executing the DA algorithm instance through calling the running driving subroutine of the DA algorithm. 

3) Executing the data exchange operations for the output fields of the DA algorithm instance. This step automatically 

transfers the output fields from the DA algorithm instance to DAFCC1 and then from DAFCC1 to each ensemble member 

of the corresponding component model. 
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Each DA algorithm instance has a timer specified via the configuration information, which determines when the DA 290 

algorithm instance is run. The CCPL_ensemble_procedures_inst_run can be called for the DA algorithm instance at each time 

step, while the above three steps will be executed only when the corresponding timer is on. To store the input data such as the 

observational information, a DA algorithm instance can either share the working directory of its host model or use its own 

working directory specified via the configuration information. The API CCPL_ensemble_procedures_inst_run will change 

and then recover the current directory for calling the running driving subroutine of the DA algorithm, if necessary. 295 

3.3.3 API for finalizing a DA algorithm instance 

The API CCPL_ensemble_procedures_inst_finalize is responsible for finalizing a DA algorithm instance through calling the 

finalization driving subroutine of the DA algorithm. 

3.4 Implementation of the ensemble DA configuration manager 

The configuration information of all DA algorithm instances used in a coupled DA simulation is contained in an XML 300 

configuration file (e.g., Fig. 6Fig. 7), and each DA algorithm instance has a distinct XML node (e.g., the XML node 

“da_instance” in Fig. 6Fig. 7, where the attribute “name” is the name of the DA algorithm instance and also the keyword to 

match the name of the DA algorithm instance in API “CCPL_ensemble_procedures_inst_init”), which enables the user to 

specify the following configurations. 

1) The DA algorithm specified in the XML node “external_procedures” in Fig. 6Fig. 7, where the attribute “dll_name” 305 

specifies the dynamic link library, and the attribute “procedures_name” specifies the name of the DA algorithm, which 

will be used to choose the driving subroutines. When the user seeks to change the DA algorithm used by a component 

model, it is only necessary to modify the XML node “external_procedures” in most cases.  

2) The periodic timer specified in the XML node “periodic_timer” in Fig. 6Fig. 7, which enables users to flexibly set the 

frequency as well as the model time of running the corresponding DA algorithm. Besides the attribute “period_unit” and 310 

“period_count” for specifying the period of the timer, the user can specify a lag via the attribute “local_lag_count”. For 

example, given a periodic timer <“period_unit”=“hours”, “period_count”=6, “local_lag_count”=3>, its period is 6 hours, 

and it will not be on at the 0th, 6th, and 12th hours, but instead on at the 3rd, 9th, and 15th hours due to the “local_lag_count” 

of 3. 

3) Statistical processing of input fields specified in the XML node “field_instances” in Fig. 6Fig. 7, where the attribute 315 

“time_processing” specifies the statistical processing in each time window determined by the periodic timer and the 

attribute “ensemble_operation” specifies the statistical processing among ensemble members. For an individual DA 

algorithm, the attribute “ensemble_operation” should be set to “none”. Besides the default specification of statistical 

processing shared by all fields, a field can have its own statistical processing specified in a sub node of the XML node 

“field_instances”. 320 
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4) The working directory and the scripts for pre- and post-assimilation analysis (e.g., for processing the data files of 

observational information) optionally specified in the XML node “processing_control” in Fig. 6Fig. 7. When the working 

directory is not specified, the DA algorithm instance will use the working directory of its host model. The script specified 

in the sub XML node “pre_instance_script” will be called by the root process of the host model before the API 

CCPL_ensemble_procedures_inst_run calls the DA algorithm, and the script specified in the sub XML node 325 

“post_instance_script” will be called by the root process of the host model after the DA algorithm run finishes. 

4 An example weakly coupled ensemble DA system based on DAFCC1  

To provide further information on how to use DAFCC1 and for validating and evaluating DAFCC1, we developed an example 

weakly coupled ensemble DA system by combining the ensemble DA system GSI/EnKF (Shao et al., 2016; Liu et al., 2018b) 

and a regional First Institute of Oceanography Atmosphere-Ocean-Wave (FIO-AOW) coupled model (Zhao et al., 2017; Wang 330 

et al., 2018). GSI/EnKF mainly focuses on regional numerical weather prediction (NWP) applications coupled with the 

Weather Research and Forecasting (WRF) model (Wang et al., 2014), while FIO-AOW consists of WRF, the Princeton Ocean 

Model (POM; Blumberg and Mellor 1987; Wang et al., 2010), the MArine Science and NUmerical Modeling wave model 

(MASNUM; Yang et al., 2005; Qiao et al, 2016), and all the above three model components are coupled together by using C-

Coupler (Liu et al., 2014, 2018b). FIO-AOW has already been used in the research for exploring the sensitivity of typhoon 335 

simulation to physical processes and improving typhoon forecasting (Zhao et al, 2017; Wang et al., 2018). There are two main 

steps in developing the example system. 

1) We developed an ensemble DA sub-system of WRF by adapting GSI/EnKF to DAFCC1. This sub-system helps validate 

DAFCC1 and evaluate the improvement in performance obtained by DAFCC1 (Section 5).  

2) We merged the above sub-system and FIO-AOW to produce the example DA system that only computes atmospheric 340 

analyses corresponding to WRF currently. This system demonstrates the correctness of DAFCC1 in developing a weakly 

coupled ensemble DA system.  

4.1 An ensemble DA sub-system of WRF 

4.1.1 Brief introduction to GSI/EnKF 

GSI/EnKF combines a variational DA sub-system (GSI; Shao et al., 2016) and an ensemble DA sub-system (EnKF; Liu et al., 345 

2018a), which can be used as a variational, a pure ensemble or a hybrid DA system sharing the same observation operator in 

the GSI codes. It provides two options for calculating analysis increments for ensemble DA; i.e., a serial Ensemble Square 

Root Filter (EnSRF) algorithm (Whitaker et al., 2012) and a Local Ensemble Kalman Filter (LETKF) algorithm (Hunt et al., 

2007). In this paper, we use the pure ensemble DA system without using variational DA, where GSI is used as the observation 

operator that calculates the difference between model variables and observations on the observation space and EnSRF is chosen 350 

for calculating atmospheric analyses and updating atmosphere model variables.  
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Figure 87a shows the flowchart for running the pure ensemble DA system of the WRF model in a DA window. It consists 

of the following main steps that are driven by scripts, while the data exchanges between these main steps are achieved via data 

files. 

1) Ensemble model forecast. An ensemble run of WRF is initiated or restarted from a set of input data files, and then is 355 

stopped after producing a set of output files (called model background files hereafter) for DA and for restarting the 

ensemble run in the next DA window. 

2) Calculating the ensemble mean of model DA variables. A separate executable is initiated for calculating the ensemble 

mean of each DA variable based on the model background files, and then outputs the ensemble mean to a new background 

file. 360 

3) Observation operator for the ensemble mean. GSI is initiated as the observation operator for the ensemble mean. It takes 

the ensemble mean file, files of various observational data (e.g., conventional data, satellite radiance observations, GPS 

radio occultations, and radar data) and multiple fixed files (e.g., statistic files, configuration files, bias correction files, and 

CRTM coefficient files) as input, and produces an observation prior (observation innovation) file for the ensemble mean 

and files containing observational intermediate information (e.g., bias correction and thinning). 365 

4) Observation operator for each ensemble member. GSI is initiated as the observation operator for each ensemble member. 

It takes the background file of the corresponding ensemble member, the fixed files and the observational intermediate 

information files as input, and produces an observation prior file for the corresponding ensemble member. 

5) EnKF for calculating analysis increments. EnKF is initiated for calculating analysis increments of the whole ensemble. It 

takes the model background files, the observation prior files and the fixed files as input, and finally updates model 370 

background files with the analysis increments. The updated model background files are used for restarting the ensemble 

model forecast in the next DA window.  

4.1.2 Adapting GSI/EnKF to DAFCC1 

When adapting GSI/EnKF to DAFCC1, an ensemble-set component model derived from the ensemble forecast of WRF 

(corresponding to the first main step in Section 4.1.1) is generated as the host model that drives the DA algorithm instances 375 

corresponding to the remaining main steps. As shown in Fig. 8Fig. 9, three DA instances corresponding to the last three main 

steps in Section 4.1.1 (i.e., observation operator for the ensemble mean, observation operator for each ensemble member, and 

EnKF for calculating analysis increments) are enclosed in DLLs, without a DA algorithm instance corresponding to the second 

main step in Section 4.1.1. This is because the online DA procedure manager of DAFCC1 enables a DA algorithm instance to 

automatically obtain the ensemble mean of model DA variables (Section 3.3). Although both the third and fourth main steps 380 

correspond to the same GSI, they are transformed into two different DA algorithm instances, because the third is an ensemble 

algorithm (i.e., it operates on the data of the ensemble set) and the fourth is an individual algorithm (i.e., it operates on the data 

of each ensemble member). Moreover, we compiled the same GSI code into two separate DLLs, each of which corresponds 

to one of these two instances, to enable these two instances to use different memory space.  
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For each DA algorithm instance, three driving subroutines and the corresponding configuration were developed (Fig. 8Fig. 385 

9). In fact, the two instances corresponding to GSI share the same driving subroutines but use different configurations 

(especially regarding the specification of “ensemble_operation”). To enable the GSI code and EnKF code to be used as DLL, 

we made the following slight modifications to the code.  

1) We turned off the MPI initialization and finalized and replaced the original MPI communicator with the MPI 

communicator of the host model that can be obtained via DAFCC1.  390 

2) We obtained the required model information and the declared input/output fields via DAFCC1, and turned off the 

corresponding I/O accesses. 

To drive the DA algorithm instances, the WRF code was updated with the new subroutines for initializing, running, and 

finalizing all DA algorithm instances. Moreover, the functionality of outputting model background files can be turned off, 

because the data exchanges between WRF and the DA algorithm instances are automatically handled by DAFCC1 and the 395 

WRF ensemble can be run continuously throughout DA windows without stopping and restarting. As a result, DAFCC1 saves 

sets of data files and the corresponding I/O access operations, while only the observation files, fixed files, and the files for the 

data exchanges among the DA algorithm instances are reserved (compare Fig. 7Fig. 8b and Fig. 7Fig. 8a). 

4.2 Example ensemble DA system of FIO-AOW 

FIO-AOW, which previously used C-Coupler1 (Liu et al., 2014) for model coupling, has already been upgraded to C-400 

Coupler2.0 by us (Fig. 10a). As GSI/EnKF and FIO-AOW share WRF, the development of the example ensemble DA system 

of FIO-AOW in Fig. 10b can significantly benefit from the DA system of WRF,. and iIn this ensemble DA system, the 

ensemble of WRF computes atmospheric analyses based on the ensemble DA sub-system in Section 4.1, while each ensemble 

member of other component models is impacted by the atmospheric analyses via model coupling. It only took the following 

steps to construct the example ensemble DA system. 405 

1) Using the ensemble component manager, set up the two hierarchical levels of models shown in Fig. 9Fig. 11; i.e., the first 

level corresponds to all ensemble members of FIO-AOW while each member includes its three component models at the 

second level. 

2) Merge the model code modifications, the DA algorithm instances, and configurations in the DA system of WRF into the 

example ensemble DA system FIO-AOW. 410 

As well as being described by the flowchart involving the WRF and the DA algorithm instances in Fig. 7Fig. 8b, the example 

ensemble DA system of FIO-AOW follows the process layout in Fig. 10Fig. 12, which is essentially a real case of the process 

layout in Fig. 2Fig. 3. 
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5 Validation and evaluation of DAFCC1 

In this section, we evaluate the correctness of DAFCC1 in developing a weakly coupled ensemble DA system based on the 415 

example ensemble DA system (referred to as the full-example-DA-system hereafter) described in Section 4, and will also 

validate DAFCC1 and evaluate the impact of DAFCC1 in accelerating DA based on the sub-system with WRF and GSI/EnKF 

(WRF-GSI/EnKF hereafter). 

5.1 Experimental setup 

The example ensemble DA system used in this validation and evaluation consists of WRF Version 4.0 (Wang et al., 2014), 420 

GSI version 3.6 and EnKF version 1.2, and the corresponding versions of POM and MASNUM used in FIO-AOW (Zhao et 

al., 2017; Wang et al., 2018). In EnKF version 1.2 the default settings are used; i.e., the EnSRF algorithm is used to calculate 

analysis increments for ensemble DA, the inflation factor is 0.9 without smoothing, and the covariance is localized by distance 

correlation function with horizontal localization radius of 400 km and vertical localization scale coefficient of 0.4. The example 

ensemble DA system is run on a supercomputer of the Beijing Super Cloud Computing Center (BSCC) with the lustre file 425 

system. Each computing node on the supercomputer includes two Intel Xeon E5-2678 v3 CPUs (Intel(R) Xeon(R) CPU), with 

24 processor cores in total, and all computing nodes were connected with an InfiniBand network. The codes were compiled by 

an Intel Fortran and C++ compiler at the optimization level O2, using an Intel MPI library. A maximum 3200 cores are used 

for running the example ensemble DA system. 

The WRF-GSI/EnKF integrates over an approximate geographical area generated from a Lambertian projection of the area 430 

0°–50°N, 99°–160°E with center point at 35°N, 115°E. Initial fields and lateral boundary conditions (at 6 hour intervals) for 

the ensemble run of WRF are taken from the NCEP Global Ensemble Forecast System (GEFS) (at 1°  1° resolution) 

(https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-ensemble-forecast-system-gefs). To configure 

WRF, an existing physics suite ‘CONUS’ (https://www2.mmm.ucar.edu/wrf/users/ncar_convection_suite.php) and 32 vertical 

sigma layers with the model top at 50 hPa are used. One-day integration on June 1st, 2016 is used for running the WRF-435 

GSI/EnKF. NCEP global GDAS Binary Universal Form for the Representation of meteorological data (BUFR; 

https://www.emc.ncep.noaa.gov/mmb/data_processing/NCEP_BUFR_File_Structure.htm) and Prepared BUFR 

(https://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/document.htm), including conventional observation 

data and satellite radiation data, are assimilated every 6 hours (i.e., at 0000, 0600, 1200, and 1800 UTC). The air temperature 

(T), specific humidity (QVAPOR), longitude and latitude wind (UV), and column disturbance dry air quality (MU) are the 440 

variables analyzed in the data assimilation. The WRF-GSI/EnKF experiments are classified into four sets, where variations of 

horizontal resolution (and the corresponding time step), number of ensemble members and process number (each process runs 

on a distinct processor core) are considered (Tables 1 and 2).  

All component models of the full-example-DA-system integrate over the same geographical area (0°–50°N, 99°–150°E) 

with the same horizontal resolution of 0.5°  0.5° but different time steps (100 s for WRF and 300 s for POM and MASNUM, 445 

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-ensemble-forecast-system-gefs
https://www2.mmm.ucar.edu/wrf/users/ncar_convection_suite.php
https://www.emc.ncep.noaa.gov/mmb/data_processing/NCEP_BUFR_File_Structure.htm
https://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/document.htm


15 

 

coupled by C-Coupler2.0 at 300 s intervals). More details of the model configurations can be found in Zhao et al. (2017). The 

configuration of initial fields, lateral boundary conditions, and observations of WRF for the ensemble run of the full-example-

DA-system are the same as for WRF-GSI/EnKF. The full-example-DA-system integrates over 3 days (June 1st to 3rd, 2016), 

while the first model day is considered as spin-up, and DA is performed every 6 hours in the last two model days with T, UV 

and MU as DA variables. 450 

5.2 Validation of DAFCC1  

To validate DAFCC1, we compare the outputs of the two versions of WRF-GSI/EnKF: the original WRF-GSI/EnKF (hereafter 

offline WRF-GSI/EnKF; https://dtcenter.org/community-code/gridpoint-statistical-interpolation-gsi/community-gsi-version-

3-6-enkf-version-1-2) and the new version of WRF-GSI/EnKF with DAFCC1 (hereafter online WRF-GSI/EnKF) introduced 

in Section 4.1. As DAFCC1 improves only the data exchanges between a model and the DA algorithms, the simulation results 455 

of an existing DA system should not change when it is adapted to use DAFCC1. We therefore employ a validation standard 

that the WRF-GSI/EnKF with DAFCC1 keeps bit-identical result with the original offline WRF-GSI/EnKF. DAFCC1 passes 

the validation test with all experimental setups in Table 2, where the binary data files output by WRF at the end of the 1-day 

integration are used for the comparison.  

5.3 Impact in accelerating an offline DA 460 

WRF-GSI/EnKF is further used to evaluate the impact of DAFCC1 in accelerating an offline DA, by comparing the execution 

time of the offline and online WRF-GSI/EnKF under each experimental setup in Table 2. Considering that all ensemble 

members of the online WRF-GSI/EnKF are integrated simultaneously, we run all ensemble members of the offline WRF-

GSI/EnKF concurrently through a slight modification to the corresponding script, in order to make a fair comparison.  

The impact of varying the number of ensemble members is evaluated based on Set 1 in Table 2. DAFCC1 obviously 465 

accelerates WRF-GSI/EnKF, and can achieve higher performance speedup with more ensemble members (Fig. 11Fig. 13a). 

This is because DAFCC1 significantly accelerates the DA for both GSI and EnKF (Fig. 11Fig. 13b-d). Similarly, DAFCC1 

significantly accelerates the DA as well as WRF-GSI/EnKF under different process numbers (Fig. 12Fig. 14, corresponding 

to Set 2 in Table 2) and resolution (Fig. 13Fig. 15, corresponding to Set 3 in Table 2). Considering that more processor cores 

are generally required to accelerate the model run under higher resolution, we also make an evaluation based on Set 4 in Table 470 

2, where concurrent changes in resolution and process number are made to achieve similar numbers of grid points per process 

throughout the experimental setups. This evaluation also demonstrates the correctness of DAFCC1 in accelerating the DA as 

well as WRF-GSI/EnKF (Fig. 14Fig. 16). 

The performance speedups observed from Figs. 11-–14 result mainly from the significant decrease in I/O accesses. Although 

the online WRF-GSI/EnKF still has to access the observation prior files (Section 4.1.1 and Fig. 7Fig. 8b), most I/O accesses 475 

correspond to the model ensemble background files and model ensemble analysis files, and these I/O accesses have been 
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eliminated by DAFCC1 (Table 3). Moreover, more I/O accesses can be saved under higher resolution or more ensemble 

members.  

We note that, the execution time of the offline GSI in Fig. 11Fig. 13c increases when using more ensemble members. This 

is reasonable, because more ensemble members introduce more I/O accesses, as shown in Table 3. We also note that, the 480 

execution time of the offline and online EnKF in Fig. 11Fig. 13d and Fig. 12Fig. 14 increases when using more ensemble 

members. This is because the current parallel version of EnKF does not achieve good scaling performance, and thus longer 

execution time can be observed when EnKF uses more processor cores.  

5.4 Correctness in developing a weakly coupled ensemble DA system 

We have successfully run the full-example-DA-system with ten ensemble members, which enables us to investigate the model 485 

variables fields before and after DA. We find that changes to the atmosphericmodel variables fields resulting from DA can be 

observed; e.g., the bias regarding T is slightly decreased and the bias regarding UV is more obviously decreased after using 

DA, as shown in Fig. 15Fig. 17.   

Changes to the atmospheric fields predicted based on the initial fields updated with the atmospheric analyses can also be 

observed (e.g., the fields U and V in Fig. 18). Although only atmospheric analyses are computed currently, the model coupling 490 

in the weakly coupled DA system makes ocean and wave fields impacted by the atmospheric analyses, and therefore changes 

to the ocean and wave fields can be observed in a prediction (e.g., the fields SST and HS in Fig. 18). 

6 Conclusions and discussion 

In this paper, we propose a new common, flexible and efficient framework for weakly coupled ensemble data assimilation 

based on C-Coupler2.0, DAFCC1. It provides simple APIs and a configuration file format to enable users to conveniently 495 

integrate a DA method into a model as a procedure that can be directly called by the model, while still guaranteeing the 

software independence of configuration and compilation systems  between the model and the DA method. The example weakly 

coupled ensemble DA system in Section 4 and the evaluations in Section 5 demonstrate the correctness of DAFCC1 in both 

developing a weakly coupled ensemble DA system and accelerating an offline DA system. The development of a DA system 

that only employs a single model run but not an ensemble run can also benefit from the advantages of DAFCC1, while the 500 

functionality of data exchanges will be automatically simplified without generating ensemble-set component models for saving 

extra overhead.  

DAFCC1 is able to automatically handle data exchanges between a model ensemble and a DA algorithm because its design 

and implementation significantly benefit from C-Coupler2.0, which already has the functionalities of automatic coupling 

generation and automatic data exchanges between different component models or within the same component model. DAFCC1 505 

will therefore be an important functionality of the next generation of C-Coupler (C-Coupler3) that is planned to be released no 

later than 2022. Although the example ensemble DA system of FIO-AOW developed in this work only computes atmospheric 
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analyses currently, the future work similar to adapting GSI/EnKF to DAFCC1 can be conducted to further enable the 

computation of ocean or wave analyses. Moreover, we have considered software extendibility when designing and 

implementing DAFCC1, which will enable us to conveniently achieve upgrades either for strongly coupled ensemble DA 510 

systems or for more types of data exchange operations in the future. As shown in Fig. 7Fig. 8, the I/O accesses to the 

observation prior files for the data exchanges between DA algorithms are still retained after using DAFCC1. Although they 

are not currently a performance bottleneck (Table 3), we will investigate how to avoid these types of I/O accesses when further 

upgrading DAFCC1.  

Regarding the evaluations in Section 5, we can only use at most 3200 processor cores, which limits the maximum number 515 

of cores per ensemble member. Consequently, we use relatively coarse resolutions of WRF and FIO-AOW. However, the 

results in Fig. 14Fig. 16 from the experiment Set 4 in Table 2 indicate that DAFCC1 will also obviously accelerate the DA 

system when using a finer resolution and more processor cores, because it will also significantly decrease I/O accesses. 

DAFCC1 can tackle the technical challenges in developing or accelerating a DA system, but cannot contribute to improvements 

in simulation results that generally depend on scientific settings which must be determined in the research environment (e.g., 520 

the DA algorithm configuration, the inflation factor, localization settings, initial states of the model ensemble run). 

Consequently, we did not examine the improvements in simulation results resulting from the full-example-DA-system based 

on various variables in Section 5.4, but only made a simple comparison of simulation results demonstrating that the full-

example-DA-system can successfully run and produce simulation results. 

The offline implementation of a DA system that relies on disk files and restart functionalities of models and DA algorithms 525 

can be a robust strategy when it comes to massively parallel computing where the risk of random task failures generally 

increases with more processor cores used by a task, because a failed task that corresponds to an ensemble member can be 

resumed from the corresponding restart files. The online implementation that unifies all ensemble members into a task enables 

to significantly increase the number of cores used by a task. At the same time of enlarging the risk of random task failures, the 

online implementation can decrease such risk because it can significantly reduce disk file accesses that are generally an 530 

important source of task failures. The robustness of an online implementation can be further improved through developing the 

restart capability of the DA system based on the restart capabilities of the model and C-Coupler2, while users are enabled to 

flexibly set the restart-file-writing frequency for the online implementation that can be lower than the corresponding frequency 

for an online implementation generally determined by observation data frequencies. Moreover, the impact of the overhead of 

writing restart files in an online implementation can be further decreased via asynchronous I/O support.  535 

Code availability. The source code of DAFCC1 can be viewed via https://doi.org/10.5281/zenodo.3739729 (please contact us 

for authorization before using DAFCC1 for developing a system). The original source code and scripts corresponding to WRF 

and GSI/EnKF can be download from https://www2.mmm.ucar.edu/wrf/users/downloads.html and https://dtcenter.org/com-

GSI/users/downloads/index.php respectively. For the source code of FIO-AOW, please contact the authors of (Zhao et al., 

https://doi.org/10.5281/zenodo.3739729
https://www2.mmm.ucar.edu/wrf/users/downloads.html
https://dtcenter.org/com-GSI/users/downloads/index.php
https://dtcenter.org/com-GSI/users/downloads/index.php
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2017; Wang et al., 2018). The additional codes, configurations, scripts and guidelines for developing and running the example 540 

weakly coupled ensemble DA system can also be download from https://doi.org/10.5281/zenodo.3774710.  
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Figure 1. Model flowchart with C-Coupler2.0 (a) and new model flowchart with ensemble DA based on C-Coupler2.0 (b). Black font 725 
indicates the major steps in the original flowchart of a component model without coupling, red font indicates the major steps for 

achieving coupling exchanges among component models with C-Coupler2.0, and green font indicates the new steps for achieving 

coupling exchanges between a DA algorithm and a model ensemble. The gray shadow in a dashed rectangle indicates that all 

members in a model ensemble cooperatively work together for the corresponding step. 
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Figure 12. Architecture of DAFCC1.  
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Figure 23. Example of running a DAFCC1-based weakly coupled ensemble DA system with three ensemble members. (a) Each 

ensemble member of the coupled model (yellow series) uses 8 MPI processes, where component 1 (blue series) uses three MPI 735 
processes, component 2 (green series) uses two MPI processes, component 3 (orange series) uses two MPI processes, and component 

4 (grey series) uses one MPI process. (b) DA algorithm 1 and two instances of DA algorithm 2 (purple series) are used in this DA 

system, where DA algorithm 1 includes procedure 1 (pink series) and procedure 2 (red). (c) Execution of the DA system: the process 

layout of ensemble members of component models, the process layout of DA algorithms, and the alternative execution of a DA 

algorithm and the corresponding component model. Each number in the colored box in (a) and (c) indicates the process ID in the 740 
corresponding local communicator of a member of the coupled model, a member of a component model, or all members of a 

component model.  

 

 

 745 

Figure 43. Example of the command for submitting an MPI run of three ensemble members of a coupled model that consists of 

Comp1 and Comp2. Comp1 can be before Comp2 at the second ensemble member, and the process numbers N1_1, N2_1, and N3_1 

of Comp1 at different ensemble members can be different.  
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 750 

Figure 54. Two examples of the organization of N ensemble members of a coupled model consisting of M component models. (a) 

Single-level organizational architecture of all ensemble members of the component models in the coupled model. (b) Two-

hierarchical-levels organizational architecture. All ensemble members of the coupled model are organized as the first level with all 

component models from each ensemble member of the coupled model at the second level. An ensemble that covers all ensemble 

members of component model 1 is generated as an example for using the DA algorithm in ensemble component manager.  755 
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Figure 65. Example of the driving subroutines in a DA algorithm. (a) Initialization driving subroutine. (b) Running driving 760 
subroutine. (c) Finalization driving subroutine. The name of the DA algorithm “DA” is used as the prefix of the three driving 

subroutines; different suffixes are used for distinction. Black font indicates original functionalities of the DA algorithm, while red 

font indicates additional operations to perform online data exchanges between the model and DA algorithm.   
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Figure 76. Example of the XML configuration for a DA experiment. 765 
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Figure 87. Running processes and data scheduling for (a) original GSI/EnKF used as a pure ensemble DA system, and (b) modified 

GSI/EnKF based on DAFCC1. Orange rectangles in the Processes panel indicate different running processes, while thick blue arrows 770 
mark data scheduling based on DAFCC1. Rectangles of various colors with a curved lower edge in the File Storage panel indicate 

different files, while arrows of different colors indicate the scheduling of corresponding files. 
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Figure 98. Modifications of model code and the invoking of relationships to the DA algorithm in the example ensemble DA system. 775 
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Figure 10. Architecture of FIO-AOW (a) and the corresponding example ensemble DA system (b). The gray shadow in a dashed 

rectangle in (b) indicates that atmospheric analyses are computed by GSI/EnKF that has been coupled with the ensemble of WRF 

based on DAFCC1. 780 
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Figure 911. Two-hierarchical-level organizational architecture for N ensemble members of FIO-AOW consisting of WRF, POM, 

and MASNUM. All ensemble members of FIO-AOW are organized as the first level with all component models in each ensemble 

member at the second level. An ensemble-set that covers all ensemble members of component model WRF is generated by the 785 
ensemble component manager. 

  



35 

 

 

Figure 120. Example of the process layout of the example ensemble DA system FIO-AOW. (a) Each ensemble member of FIO-AOW 

(yellow series) uses 7 MPI processes, where WRF (blue series) uses 3 MPI processes, POM (green series) uses 2 MPI processes, and 790 
MASNUM (orange series) uses 2 MPI processes. (b) Two DA algorithm instances of GSI are adopted for each member (pink series) 

and ensemble mean (red) respectively following another DA algorithm instance of EnKF in this DA system. (c) Process layout of the 

DA system: the process layout of ensemble members of component models and the process layout of DA algorithms. Each number 

in the colored boxes in (a) and (c) indicates the process ID in the corresponding local communicator of a member of the coupled 

model, a member of a component model, or all members of a component model. 795 
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Figure 131. Execution time (colored bars) corresponding to the online and offline WRF-GSI/EnKF and the corresponding speedup 800 
(gray line, ratio of offline execution time to online execution time) from experiment set 1 in Table 2. (a) Total run (including model 

run and DA algorithms run). (b) DA algorithms (including GSI and EnKF) run. (c) GSI run. (d) EnKF run.  
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Figure 142. As in Fig. 11Fig. 13, but from experiment set 2 in Table 2. 805 
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Figure 153. As in Fig. 11Fig. 13, but from experiment set 3 in Table 2. 810 
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Figure 164. As in Fig. 11Fig. 13, but from experiment set 4 in Table 2. 815 
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Figure 175. Total bias of assimilated variables relative to corresponding observations before and after DA for (a) T and (b) UV at 820 
each DA time from the EnKF standard output file. The dotted lines indicate the bias of assimilated variables before DA and the solid 

lines indicate the bias of assimilated variables after DA. Blue lines are the bias in the area of 0°–25° N, and orange lines are the bias 

in the area of 25°–50° N. 
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 825 

 
Figure 18. Simulation results of FIO-AOW (at 06:00 on June 3rd, 2016) about the fields of meridional wind (U; the first column) and 

zonal wind (V; the second column) produced by WRF, sea surface temperature (SST; the third column) produced by POM, and sea 

surface significant wave height (HS; the fourth column) produced by MASNUM. The first row shows the results of the full-example-

DA-system predicted since 00:00 on June 3rd, based on the DA experimental setup in Section 5.1, the second row shows the results 830 
without DA and the third row is the corresponding differences. 
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 835 
Table 1. Horizontal resolutions and time steps of WRF. 

Horizontal 

Resolution  

Total Horizontal 

Grid Points 
Time Step 

45 km 160×120 180 s 

30 km 240×180 120 s 

15 km 480×360 60 s 

 

 

 

Table 2. Setup of four experiment sets in terms of horizontal resolution, number of ensemble members and number of processes 840 

Experiment set 
Horizontal 

resolution 

Number of 

ensemble members  

Processes for each 

ensemble member 
Label marks 

Set 1 15 km 

5 

160 

15KM_5mem_160proc 

10 15KM_10mem_160proc 

15 15KM_15mem_160proc 

20 15KM_20mem_160proc 

Set 2 15 km 10 

40 15KM_10mem_40proc 

80 15KM_10mem_80proc 

160 15KM_10mem_160proc 

320 15KM_10mem_320proc 

Set 3 

45 km 

10 80 

45KM_10mem_80proc 

30 km 30KM_10mem_80proc 

15 km 15KM_10mem_80proc 

Set 4 

45 km 

10 

40 45KM_10mem_40proc 

30 km 80 30KM_10mem_80proc 

15 km 320 15KM_10mem_320proc 
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Table 3. I/O access statistics corresponding to WRF-GSI/EnKF 

Horizontal 

resolution 

Number of 

ensemble 

members 

Number of 

observation prior 

files 

Total I/O 

accesses to 

observation priors 

Number of model 

ensemble 

background & 

analysis files 

Total I/O accesses to 

model ensemble 

background & 

analysis files 

15 km 5 12  0.11 GB  324  129.13 GB 

15 km 10 22  0.21 GB  624  251.30 GB 

15 km 15 32  0.30 GB  924  373.48 GB 

15 km 20 42  0.39 GB  1224  495.65 GB 

30 km 10 22  0.18 GB  624  62.86 GB 

45 km 10 22  0.17 GB  624  27.96 GB 
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