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Abstract. Factorisation is widely used in the analysis of numerical simulations. It allows changes in properties of a system

to be attributed to changes in multiple variables associated with that system. There are many possible factorisation methods;

here we discuss three previously-proposed factorisations that have been applied in the field of climate modelling: the linear

factorisation, the Stein and Alpert (1993) factorisation, and the Lunt et al. (2012) factorisation. We show that, when more

than two variables are being considered, none of these three methods possess all three properties of ‘uniqueness’, ‘symmetry’,5

and ‘completeness’. Here, we extend each of these factorisations so that they do possess these properties for any number of

variables, resulting in three factorisations – the ‘linear-sum’ factorisation, the ‘shared-interaction’ factorisation, and the ‘scaled-

total’ factorisation. We show that the linear-sum factorisation and the shared-interaction factorisation reduce to be identical.

We present the results of the factorisations in the context of studies that used the previously-proposed factorisations. This

reveals that only the linear-sum/shared-interaction factorisation possesses a fourth property – ‘boundedness’, and as such we10

recommend the use of this factorisation in applications for which these properties are desirable.

1 Introduction

Factorisation consists of attributing the total change of some property of a system to multiple components, each component

being associated with a change to an internal variable of the system. Factorisation experiments are used in many disciplines,15

with early applications being in agricultural field experiments (Fisher, 1926), and widespread application in industrial and

engineering design (Box et al., 2005). In this paper, we focus on factorisation of numerical model simulations of the climate

system; in this case, the factorisation typically consists of attributing a fundamental property of the climate system to multiple

internal model parameters and/or boundary conditions (Stein and Alpert, 1993; Lunt et al., 2012). Factorisation has been used

1

https://doi.org/10.5194/gmd-2020-69
Preprint. Discussion started: 5 June 2020
c© Author(s) 2020. CC BY 4.0 License.



extensively in the climate literature; some key examples include Claussen et al. (2001), Hogrefe et al. (2004), van den Heever20

et al. (2006), and Schmidt et al. (2010). The factorisation proposed by Stein and Alpert (1993) has been cited more than 250

times according to Web of Science.

2 Previous factorisation methods

In order to introduce and discuss previous factorisation methods, we use an example case study from the field of climate

science. We turn to the Last Glacial Maximum (LGM), 21,000 years ago, the most recent time that the Earth has experienced25

a large-scale ice age. The LGM was 4–6 ◦C colder than pre-industrial (Annan and Hargreaves, 2013; Snyder, 2016); for this

example, we would like to know how much of this cooling was due to a decrease in atmospheric CO2 concentration and how

much due to the presence of large ice sheets. In this case we would use a climate model to carry out simulations with various

combinations of high and low CO2 concentrations, and with and without ice sheets. In general there are interactions between

the variables so that the contributions from them do not add linearly.30

It is worth at this stage introducing some notation. Here, we restrict ourselves to the case where there are two possible values

for each variable, denoted ‘0’ and ‘1’; having more than two values increases the computational cost of a factorisation, and

can reduce the number of factors that can be assessed in a fixed computing budget. We name the fundamental property of

the climate system that we are factorising as T . If there are N variables, then the results of all possible simulations can be

uniquely identified by T followed by N subscripts of either 0 or 1, with each subscript representing the value of a variable,35

with the variables in some predefined order. For our LGM example with two variables (N = 2), we have CO2 (variable 1) and

ice (variable 2) contributing to a global mean temperature (T ); in this case there are 4 possible model simulations: a control

simulation with pre-industrial CO2 and pre-industrial ice (T00), a second simulation with LGM CO2 and pre-industrial ice

(T10), a third simulation with pre-industrial CO2 and LGM ice (T01), and an LGM simulation with LGM CO2 and LGM ice

(T11) (see Figure 1a).40

2.1 The linear factorisation

The simplest factorisation that can be carried out is a linear one. For the LGM example with 2 factors, 3 simulations are carried

out in which variables are changed consecutively; for example, T00, T10, and T11. The factorisation of the total change, ∆T ,

between contributions due to CO2 (∆T1) and ice (∆T2) would then be:

∆T1 = T10−T0045

∆T2 = T11−T10. (1)

This factorisation is illustrated graphically in Figure 1(a). However, an equally valid linear factorisation would be

∆T1 = T11−T01

∆T2 = T01−T00, (2)
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Figure 1. 3 different factorisation methods, for 2 variables (CO2 and ice sheets). (a) Linear factorisation, (b) Stein and Alpert (1993)

factorisation, (c) Lunt et al. (2012) factorisation.

and in a non-linear system this would in general give a different answer to Equation 1. In this sense, the linear factorisation50

method is not ‘unique’. However, it is ‘complete’ in the sense that the individual factors sum to the total change, ∆T exactly, i.e.

∆T1+∆T2 = T11−T00. Considering the linear factorisation as a ‘path’ starting at T00 and ending at T11, it is also ‘symmetric’,

in that if we instead started from T11 we would retrieve the same numerical values for the two linear factorisations (differing

just by a minus sign for the numerical value of each factor).

2.2 The Stein and Alpert (1993) factorisation55

Stein and Alpert (1993) proposed an alternative factorisation method, illustrated in Figure 1(b). In this, for the LGM case,

all four possible simulations are carried out, and the factorisation performed relative to the preindustrial case (T00) for all

variables. The non-linear terms are then all grouped together in a term which is named ‘synergy’, S:

∆T1 = T10−T00

∆T2 = T01−T0060

S = T11−T10−T01 + T00. (3)

In contrast to the linear factorisation, the Stein and Alpert (1993) factorisation is unique. It is also complete because ∆T1 +

∆T2 + S = T11−T00 (in fact, S is defined such that the factoristion is complete). However, it is not symmetric; if we instead

performed the factorisation relative to T11, we would in general obtain a different numerical value of the factorisation (i.e.

∆T1 = T01−T11).65

2.3 The Lunt et al (2012) factorisation

Lunt et al. (2012) proposed another factorisation, in which the factorisation for a particular variable is defined as the mean of the

difference between each pair of simulations that differ by just that variable. This is illustrated in Figure 1(c); the factorisation

of ice is represented by the mean of the two blue lines and the factorisation of CO2 is represented by the mean of the two red
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Figure 2. Simulations and linear factorisations in an N = 3 factorisation. Edges that represent changes in CO2 are in red, changes in ice are

in blue, and edges in vegetation are in green. The paths associated with all three possible linear factorisations are shown with dotted lines.

lines:70

∆T1 =
1
2
{(T10−T00) + (T11−T01)}

∆T2 =
1
2
{(T01−T00) + (T11−T10)} . (4)

The N = 2 factorisation in Equation 4 is unique, complete, and symmetric. It is worth noting that Equation 4 can be interpreted

in multiple ways – either (i) as described above, the factorisation averages all the possible pairs of simulations that differ solely

by a change in that variable, i.e. for a particular variable it is the mean of either the horizontal or vertical edges of the square75

in Figure 1(c); or (ii) it is the average of the two possible linear factorisations in Equations 1 and 2; or (iii) it is the average

of the two possible Stein and Alpert (1993) factorisations obtained by swapping the LGM and pre-industrial (in which case

the synergy terms cancel); or (iv) it is the Stein and Alpert (1993) factorisation but with the synergy term, S, shared equally

between the two factors.

In extending to N = 4 variables, Lunt et al. (2012) assumed that the first of these interpretations would still hold for any80

number of variables. However, consider the N = 3 case illustrated in Figure 2, in which we have added vegetation as a third

variable to contribute to LGM cooling. Averaging the edges (interpretation (i) above) would result in a factorisation:

∆T ′1 =
1
4
{(T100−T000) + (T110−T010) + (T101−T001) + (T111−T011)}

∆T ′2 =
1
4
{(T010−T000) + (T110−T100) + (T011−T001) + (T111−T101)}

∆T ′3 =
1
4
{(T001−T000) + (T101−T100) + (T011−T010) + (T111−T110)} (5)85
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Although this is unique and symmetric, it is not complete, because ∆T ′1 + ∆T ′2 + ∆T ′3 6= T111−T000 (this is immediately

apparent by considering the T111 term, for which the three lines in Equation 5 sum to 3
4T111, whereas they are required to sum

to T111 for a complete factorisation). As such, an additional synergy term, S, in the sense of Equation 3, would be required for

the factorisation to be complete in N = 3 dimensions.

2.4 Summary of previous factorisations90

As shown above, neither the linear, or the Stein and Alpert (1993), or the Lunt et al. (2012) factorisation methods possess

all three properties of uniqueness, symmetry, and completeness in N > 2 dimensions. These properties are often desirable

in a factorisation, because any factorisation that lacks one of these properties is less easy to interpret. For example, for the

LGM example above, uniqueness means that we can have a single answer to the question “why is the LGM colder than the

preindustrial”. Symmetry means that we obtain the same answer to the question “why is the LGM colder than the preindustrial”95

as to the question “why is the pre-industrial warmer than the LGM”. Completeness means that we can answer the question

“why is the LGM colder than the pre-industrial” by referring solely to contributions from our fundamental factors CO2, ice,

and vegetation, i.e. without including additional synergistic terms that are not attributed to a single factor. These synergistic

terms are important and interesting, but there are cases where it can be useful or essential to only include attributable terms in

the factorisation.100

3 Extensions to the previous factorisations

Here we discuss possible extensions to the three previous factorisations discussed above, that are unique, symmetric, and

complete in N dimensions.

3.1 Extension to the linear factorisation: The linear-sum factorisation

The linear-sum factorisation arises from a generalisation to N > 2 dimensions of the second interpretation of Equation 4; i.e. it105

arises from averaging all the possible linear factorisations. This will result in a complete factorisation because each individual

linear factorisation is itself complete. For three dimensions, this is illustrated by the dotted lines in Figure 2.

Each possible linear factorisation can be represented as a non-returning ‘path’ from the vertex T000 to the opposite vertex

T111, traversing edges along the way (dotted lines in Figure 2). When considering the sum of all possible paths, some edges are

traversed more than others. In general, those edges near the initial or final vertices are traversed more times than edges that are110

further away from these vertices. As such, when we average the possible linear factorisations, different edges (corresponding

to different terms in the factorisation) will have different weightings. This is in contrast to Equation 5 where each term (i.e.

edge of the cube) has the same weighting. For three dimensions, Figure 2 shows that the 6 edges adjacent to the initial and final

5
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vertex are traversed twice, whereas the 6 other edges are traversed only once. Therefore, the factorisation is :

∆T1 =
1
6
{2(T100−T000) + (T110−T010) + (T101−T001) + 2(T111−T011)}115

∆T2 =
1
6
{2(T010−T000) + (T110−T100) + (T011−T001) + 2(T111−T101)}

∆T3 =
1
6
{2(T001−T000) + (T101−T100) + (T011−T010) + 2(T111−T110)} . (6)

This factorisation is complete (∆T1 + ∆T2 + ∆T3 = T111−T000), unique, and symmetric.

To generalise to N dimensions, consider an N -dimensional cube, which has a total of 2N vertices and N × 2N−1 edges.

There are 2N−1 edges in each dimension. There are N ! paths from the initial vertex of the cube to the final opposite vertex,120

each of which consists of a traverse along N edges. Therefore, in each dimension there are a total of N ! edges traversed for all

paths combined.

As for the 3-dimensional case above, let us label each vertex, V , of this N -dimensional cube as Va1···aN
, where each ai is

either 0 or 1. A value ai = 0 represents the first value for variable i, and ai = 1 represents the second value for variable i. Each

vertex is also associated with a system value, denoted Ta1···aN
(see Figure 2 for the case N = 3).125

All factorisations consist of partitioning the total change, ∆T = T1···1−T0···0 between N factors. Each factor is associated

with a dimension, i, in the N -dimensional cube. The factorisation for dimension i is ∆Ti.

For the linear-sum factorisation, all paths that we consider start at the origin vertex, 0 · · ·0, and end at the opposite vertex

1 · · ·1, and are made up of a series of edges. For all edges on the N -dimensional cube, let us define X as the set of all possible

starting vertices, for a given N . For example, for N = 3, X = {000,001,010,011,100,101,110}. Let us define Xi as the set130

of all possible starting vertices for an edge that is oriented in the ith dimension, i.e. all those vertices that have a 0 in the

ith subscript. For example, for N = 3 and i = 2, X2 = {000,001,100,101}. Let us define Yi as the set of all possible ending

vertices for an edge that is oriented in the ith dimension, so that Yi is related to Xi by changing the ith subscript of each

element from 0 to 1. For example, for N = 3 and i = 2, Y2 = {010,011,110,111}. Order Xi and Yi so that their elements

correspond. Then we write Xj
i to indicate the jth element of Xi, and Y j

i as indicating the jth element of Yi. For example, for135

the X2 defined above, X3
2 = 100.

The Lunt et al. (2012) factorisation averages along each edge oriented in dimension i:

∆T ′i =
1

2N−1

2N−1∑

j=1

(
TY j

i
−TXj

i

)
(7)

For the linear-sum factorisation, we instead carry out a weighted average, with the weight for each edge in dimension i given

by how many times it is traversed in all N ! paths. Consider all the paths that traverse an edge which starts at a vertex defined140

by k subscripts of ‘1’ and N − k subscripts of ‘0’. There are k! possible paths to the start of this edge, and (N − k− 1)! paths

from the end of this edge to the final corner (defined by N subscripts of ‘1’). Therefore, there are k!×(N − k− 1)! paths that

use this edge. As such, we can write the linear-sum factorisation as:

∆Ti =
1

N !

2N−1∑

j=1

{
kj

i ! (N − 1− kj
i )! (TY j

i
−TXj

i
)
}

, (8)
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where kj
i is the number of subscripts of ‘1’ in Xj

i .145

For example, for N = 4 and i = 1, we have N != 24 edges traversed in this dimension, and 2N−1 = 8 edges.

X1 = {0000,0001,0010,0100,0011,0101,0110,0111}, and Y1 = {1000,1001,1010,1100,1011,1101,1110,1111}. For those

edges with a starting subscript with k = 0 subscripts of ‘1’ (i.e. 0000), the weighting k! (N −1−k)!= 0! (4−1−0)!= 6. For

those edges with a starting subscript with k = 1 subscripts of ‘1’ (i.e. 0001,0010,0100), the weighting k! (N − 1− k)!=

1! (4− 1− 1)!= 2. For those edges with a starting subscript with k = 2 subscripts of ‘1’ (i.e. 0011,0101,0110), the weighting150

k! (N − 1− k)!= 2! (4− 1− 2)!= 2. For those edges with a starting subscript with k = 3 subscripts of ‘1’ (i.e. 0111), the

weighting k! (N − 1− k)!= 3! (4− 1− 3)!= 6. Therefore, for N = 4 and i = 1, we have:

∆T1 =
1
24
{6(T1000−T0000) + 2(T1001−T0001) + 2(T1010−T0010) + 2(T1100−T0100)+

2(T1011−T0011) + 2(T1101−T0101) + 2(T1110−T0110) + 6(T1111−T0111)} . (9)

3.2 Extension to the Stein and Alpert (1993) factorisation: the shared-interactions factorisation155

As stated in Section 2.3, the Lunt et al. (2012) factorisation for N = 2 can be interpreted as being identical to the Stein and

Alpert (1993) factorisation but with the synergy term shared between the two factors. Here we explore what happens when this

interpretation is generalised to N > 2 dimensions. For consistency, we use the same notation as (Stein and Alpert, 1993). In

their notation, f̂1 represents the difference between a simulation in which only factor i is modified with a simulation in which

no factors are modified, and f̂ijk··· represents interaction terms between the different factors. For example, for our original160

N = 2 example illustrated in Figure 1 and given in Equation 3, ∆T1 ≡ f̂1, ∆T2 ≡ f̂3, and S ≡ f̂12.

For our LGM example for N = 3, f̂12 is the interaction term (i.e. the synergy) between factors 1 and 2 (CO2 and ice), f̂13 is

the interaction term between factors 1 and 3 (CO2 and vegetation), f̂23 is the interaction term between factors 2 and 3 (ice and

vegetation), and f̂123 is the interaction term between all three factors. In this case, Stein and Alpert (1993) give that

∆T = f̂1 + f̂2 + f̂3 + f̂12 + f̂13 + f̂23 + f̂123165

f̂1 = T100−T000

f̂2 = T010−T000

f̂3 = T001−T000

f̂12 = T110− (T100 + T010) + T000

f̂13 = T101− (T100 + T001) + T000170

f̂23 = T011− (T010 + T001) + T000

f̂123 = T111− (T110 + T101 + T011) + (T100 + T010 + T001)−T000. (10)

As discussed in Section 2.2, this factorisation is not symmetric or unique (e.g. we could define f̂1 = T011−T111), and it

is only complete if we include all the interaction terms, which are not attributed to any particular factor. By extending the

interpretation of shared synergy in 2 dimensions discussed in Section 2.3, we can choose to share the interaction terms equally175
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a simulation in which only factor i is modified with a simulation in which no factors are208
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ample, for our original N = 2 example illustrated in Figure 1 and given in Equation210

3, �T1 ⌘ f̂1, �T2 ⌘ f̂3, and S ⌘ f̂12.211

For our LGM example for N = 3, f̂12 is the interaction term between factors 1212

and 2 (CO2 and ice), f̂13 is the interaction term between factors 1 and 3 (CO2 and veg-213

etation), f̂23 is the interaction term between factors 2 and 3 (ice and vegetation), and214

f̂123 is the interaction term between all three factors. In this case, Stein and Alpert (1993)215

give that216

�T = f̂1 + f̂2 + f̂3 + f̂12 + f̂13 + f̂23 + f̂123

f̂1 = T100 � T000

f̂2 = T010 � T000
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As discussed in Section 2.2, this factorisation is not symmetric or unique (e.g. we could217

define f̂1 = T011�T111), and it is only complete if we include all the interaction terms,218

which are not attributed to any particular factor. By extending the interpretation of shared219

synergy in 2 dimensions discussed in Section 2.3, we can choose to share the interaction220

terms equally between their contributing factors, an approach applied by Schmidt et al.221

(2010). This results in a factorisation that is complete (because we are just re-partitioning222

the interaction terms). It turns out that it is also symmetric, but this is not immediately223

self-evident. For example for CO2,224

�T1 = f̂1 +
1

2
f̂12 +

1

2
f̂13 +

1

3
f̂123. (11)

Equations 10 and 11 give that, for CO2,225

�T1 =
1

6
(2(T100 � T000) + (T110 � T010) + (T101 � T001) + 2(T111 � T011)). (12)

This is identical to the equivalent term in Equation 6, indicating that the shared-interaction226

and linear-sum interpretations are identical for N = 3, and that therefore for N = 3227

the shared-interaction factorisation is unique, symmetric, and complete.228
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(b)

1

Figure 3. (a) Visual representation of the shared-interaction factorisation for N = 3, as given by Equation 10. The straight dotted lines

represent the sharing of the interactions according to Equation 11. (b) Visual representation of the shared-interaction factorisation for N = 4.

The straight dotted lines represent the sharing of the interactions according to Equation 13.

between their contributing factors, an approach applied by Schmidt et al. (2010) (although they carried out a partial factorisation

in which not all combinations of all variables were included). This results in a factorisation that is complete (because we are

just re-partitioning the interaction terms). It turns out that it is also symmetric. For example for CO2,

∆T1 = f̂1 +
1
2
f̂12 +

1
2
f̂13 +

1
3
f̂123. (11)

This factorisation for N = 3 is represented visually in Figure 3(a). Equations 10 and 11 give that, for CO2,180

∆T1 =
1
6
{2(T100−T000) + (T110−T010) + (T101−T001) + 2(T111−T011)} . (12)

This is identical to the equivalent term in Equation 6, indicating that the shared-interaction and linear-sum interpretations are

identical for N = 3, and that therefore for N = 3 the shared-interaction factorisation is unique, symmetric, and complete.

Stein and Alpert (1993) give the generalisation of their factorisation to N factors (their Equations 11-16). For N = 4, the

interaction terms are shared so that, for example for CO2,185

∆T1 = f̂1 +
1
2

(f̂12 + f̂13 + f̂14) +
1
3

(f̂123 + f̂124 + f̂134) +
1
4
f̂1234.

(13)

This factorisation for N = 4 is represented visually in Figure 3(b). Again, for N = 4 this is the same as the linear-sum inter-

pretation (Equation 9). We conjecture that for any N these two interpretations will give identical results.

8

https://doi.org/10.5194/gmd-2020-69
Preprint. Discussion started: 5 June 2020
c© Author(s) 2020. CC BY 4.0 License.



3.3 Extension to the Lunt et al (2012) factorisation: The scaled-total factorisation190

In the scaled-total factorisation, the Lunt et al. (2012) factorisation is modified so that it is complete. This is achieved by taking

the total residual term required for completeness (the ‘synergy’, S in the sense of (Stein and Alpert, 1993)), and sharing this

between the factors in proportion to the sign and magnitude of their Lunt et al. (2012) factorisation. For the N = 3 example of

the LGM, we have that the synergy, S, is defined such that

∆T ′1 + ∆T ′2 + ∆T ′3 + S = T111−T000, (14)195

where the ∆T ′i are defined in Equation 5. We then share the synergy proportionally across the three factors, such that

∆T1 = ∆T ′1 +
S∆T ′1

∆T ′1 + ∆T ′2 + ∆T ′3

∆T2 = ∆T ′2 +
S∆T ′2

∆T ′1 + ∆T ′2 + ∆T ′3

∆T3 = ∆T ′3 +
S∆T ′3

∆T ′1 + ∆T ′2 + ∆T ′3
(15)

Equations 14 and 15 reduce to:200

∆T1 = ∆T ′1
T111−T000

∆T ′1 + ∆T ′2 + ∆T ′3

∆T2 = ∆T ′2
T111−T000

∆T ′1 + ∆T ′2 + ∆T ′3

∆T3 = ∆T ′3
T111−T000

∆T ′1 + ∆T ′2 + ∆T ′3
. (16)

This shows that this factorisation can also be interpreted as simply scaling the Lunt et al. (2012) factorisation so that the sum

of the factors equals T111−T000. In N dimensions, this generalises to:205

∆Ti = ∆T ′i
T1···1−T0···0∑N

j=1 ∆T ′i
(17)

where ∆T ′i is defined in Equation 7.

For example, for N = 4 and i = 1 we have:

∆T ′1 =
1
8
{(T1000−T0000) + (T1001−T0001) + (T1010−T0010) + (T1100−T0100)+

(T1011−T0011) + (T1101−T0101) + (T1110−T0110) + (T1111−T0111)}210

∆T1 = ∆T ′1
T1111−T0000

∆T ′1 + ∆T ′2 + ∆T ′3 + ∆T ′4
;

(18)

and similarly for ∆T ′2, ∆T ′3, and ∆T ′4.

4 Implications for previous published work

Here we discuss three examples of papers in which the Lunt et al. (2012) factorisation has been used. For each, we show how215

using our factorisations would affect the results in that paper.
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4.1 Implications for Lunt et al (2012)

Lunt et al. (2012) presented a factorisation of global mean temperature change in the Pliocene (3 million years ago, the

most recent time of prolonged natural global warmth relative to pre-industrial) into four variables: CO2, orography, ice, and

vegetation. As described in Section 2.3, in extending to N = 4 variables, the Lunt et al. (2012) factorisation is unique and220

symmetric, but not complete. Using their notation, their factorisation for the CO2 variable is (equivalent to Equation 9 in their

paper):

dT ′CO2
=

1
8

{
(Tc−T ) + (Toc−To) + (Tic−Ti) + (Tvc−Tv) +

(Tocv −Tov) + (Toci−Toi) + (Tciv −Tiv) + (Tociv −Toiv)
}

. (19)

The equivalent linear-sum/shared-interaction factorisation is given by Equation 9, which in the notation of Lunt et al. (2012)225

is:

dTCO2 =
1
24

{
6(Tc−T ) + 2(Toc−To) + 2(Tic−Ti) + 2(Tvc−Tv) +

2(Tocv −Tov) + 2(Toci−Toi) + 2(Tciv −Tiv) + 6(Tociv −Toiv)
}

, (20)

and similarly for the other three variables.

The equivalent scaled-total factorisation is given by Equation 18, which in the notation of Lunt et al. (2012) is:230

dTCO2 = dT ′CO2

Tociv −T

dT ′CO2
+ dT ′orog + dT ′ice + dT ′veg

(21)

where dT ′CO2
is given in Equation 19; and similarly for the other three variables.

In Lunt et al. (2012), although Equation 19 (Equation 9 in their paper) was presented, the four variables were actually

factorised by two N = 2 factorisations for all the analysis in that paper (Equation 13 in their paper). Because for N = 2 dimen-235

sions the Lunt et al. (2012), linear-sum/shared-interaction, and scaled-total factorisations are identical, the actual results related

to Pliocene temperature change presented in Lunt et al. (2012) would not be affected by using our proposed factorisations.

4.2 Implications for Haywood et al (2016)

Haywood et al. (2016), in the context of the experimental design for model simulations of the Pliocene in the PlioMIP project,

presented a 3-variable factorisation of Pliocene warming into components due to CO2, topography, and ice, based on the Lunt240

et al. (2012) factorisation (presented in their Section 3.2).

An alternative, using the linear-sum/shared-interaction factorisation that is complete, is obtained from Equation 6, which in

their notation is, for CO2 (and analogously for the other two components):

dTCO2 =
1
6
{

2(E400−E280) + (Eo400−Eo280) + (Ei400−Ei280) + 2(Eoi400−Eoi280)
}

(22)245
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Another alternative, using the scaled-total factorisation that is complete, is obtained from Equation 16, which in their notation

is, for CO2 (and analogously for the other two components):

dT ′CO2
=

1
4
{

(E400−E280) + (Eo400−Eo280) + (Ei400−Ei280) + (Eoi400−Eoi280)
}

dTCO2 = dT ′CO2

Eoi400−E280

dT ′CO2
+ dT ′orog + dT ′ice

. (23)

4.3 Implications for Chandan and Peltier (2018)250

Chandan and Peltier (2018) applied the N = 3 factorisation of Lunt et al. (2012) (Equation 5), as also given by Haywood et al.

(2016) (first line of Equation 23), to their suite of Pliocene simulations. The factorisation was applied to each gridcell in the

model, resulting in 192× 288 = 55,296 factorisations over the globe. The two-dimensional mid-Pliocene minus preindustrial

temperature anomaly was factorised into contributions originating from a change in CO2, orography and ice sheets, and is

reproduced here in Figure 4(a). Figure 4(b–d) shows the results of the original factorisation and is identical to those presented in255

Figure 7 of Chandan and Peltier (2018). Figure 4(f–h) shows the factorisation of the same anomaly using the linear-sum/shared-

interaction method (Equations 22) while Figure 4(j–m) shows the results of employing the scaled-total method (Equations 23).

The bottom row in Figure 4 shows, for the case of each method, the residual difference between the sum of all the factors

and the total change (i.e. the synergy in the sense of Stein and Alpert (1993)). The Lunt et al. (2012) method yields spatially

coherent structures in the residual whose magnitude can be comparable to those of the factorized components, whereas the260

residuals for the other two methods are zero by definition, because they are complete (in the Figures they are very close to zero

– essentially numerical noise due to round-off error). The non-linearity (indicated by the magnitude of the synergy associated

with the Lunt et al. (2012) factorisation) is greatest in the North Atlantic (Figure 4d), and is likely associated with changes in

the sea-ice margin that are non-linearly influenced by all three boundary conditions (CO2, orography, and ice sheets).

Figure 4(j–l) reveals a problem with the scaled-total method. In these panels, the pink circles show regions where the scaled-265

total factorisation has very large negative or positive values for the three factors. At these locations the denominator in Eq. 16 is

very small, resulting in very large magnitude positive or negative results for each factorised components, which sum to a much

smaller number. This is clearly not a meaningful result (because the values in the same region in Figure 4(a) are not unusual),

and although in this analysis these issues are found to occur only at isolated locations, in other cases there is potential for the

problem to be more widespread. In response to this, we introduce an a fourth property of factorisations – ‘boundedness’. A270

factorisation is bounded if the factorisation for a particular variable (e.g. ∆T1) is bounded by the minimum and maximum of

all the possible single-factor factorisations for that variable. For example, for four dimensions, a factorisation is bounded if

∆T1 has a value that is not greater than the largest, or smaller than the smallest, term in Equation 18. The linear-sum/shared-

interaction factorisation is by definition bounded, because it consists of a weighted average of those very terms. In contrast,

the scaled-total factorisation is not bounded, and as such it should only be used with caution. It is worth noting that if absolute275

weightings were used in Equation 15, such that the scaled-total factorisation became (e.g. for CO2):

∆T1 = ∆T ′1 +
S|∆T ′1|

|∆T ′1|+|∆T ′2|+|∆T ′3|
, (24)
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Figure 4. Comparison of various factorisation methods. (a) The mid-Pliocene minus preindustrial anomaly modeled by Chandan and Peltier

(2017). (b–m) The top three rows present factorisations of the total anomaly into contributions arising from changes to CO2 (upper, (b,f,j)),

orography (middle, (c,g,k)) and ice sheets (lower, (d,h,l)), while the bottom row shows the residual (‘synergy’), T111−T000− (∆TCO2 +

∆Torog + ∆Tice), (e,i,m)). The first column (b,c,d,e) shows results using the methodology of Lunt et al. (2012) and is identical to results

reported in Figure 7 of Chandan and Peltier (2018). The second column (f,g,h,i) shows results from the linear-sum/shared-interaction factori-

sation (Eq. 6) and the third column (j,k,l,m) shows results of the scaled-total factorisation (Eq. 16). The pink circles in the factorized results

shown in the rightmost column highlight regions where the scaled-total factorisation has very large negative or positive compensating values

for the three factors, due to the very small values of denominator term appearing in Eq. 16 at those locations.
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then the factorisation would not result in spuriously large values (because the denominator could never approach zero). How-

ever, the factorisation would still not be bounded in our definition. For example, if ∆T ′1 were negative and consisted of all

negative terms in the first line of Equation 5, ∆T1 could still be positive if S were sufficiently large.280

5 Conclusions

In this paper, we have reviewed three previously-proposed factorisations, and extended them to produce factorisations that are

unique, symmetric, and complete. We have presented them for 3 dimensions (i.e. 3 factors), and generalised to N dimensions.

The first factorisation, ‘linear-sum’ (Equation 8), averages all the possible linear factorisations on the N -dimensional cube. The

second factorisation, ‘shared-interaction’, shares the interaction terms between each corresponding factor equally. The linear-285

sum and shared-interaction factorisations are shown to reduce to be identical. The third factorisation, ‘scaled-total’ (Equation

17), averages all the contributions associated with the edges of the N -dimensional cube, and scales them by the total change

in the property being factorised. We have presented results of these extended factorisations in the context of previous work

carried out by Lunt et al. (2012), Haywood et al. (2016), and Chandan and Peltier (2018) in the context of Pliocene climate

change. This reveals that the scaled-total factorisation is not bounded, and therefore can lead to anomalous results that are hard290

to interpret. Therefore we recommend the use of the linear-sum/shared-interaction factorisation for cases where the properties

of uniqueness, symmetry, and completeness, and boundedness are desirable. The properties of all the factorisations discussed

in this paper are shown in Table 1 for 2,3, and N dimensions. The methods that we present here will be of particular use in the

analysis of systems with multiple variables, and have application beyond solely climate science.

Code and data availability. The model fields underlying Figure 4 are available from the University of Toronto Dataverse in netcdf for-295

mat: https://doi.org/10.5683/SP2/QGK5B0 . The python code used to calculate the factorisations illustrated in Figure 4 is available in the

Supplement.
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Table 1. Properties of the factorisations discussed in this paper.

Factorisation Dimension Complete Unique Symmetric Bounded

Linear

2 X X X
3 X X X
4 X X X

Stein and Alpert (1993)

2 Xa X X
3 Xa X X
4 Xa X X

Lunt et al. (2012)

2 X X X X
3 X X X
N X X X

scaled-total

2 X X X X
3 X X X
N X X X

linear-sum/shared-interaction

2 X X X X
3 X X X X
N X X X X

aIf synergy term included.
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