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Abstract. Factorisation (also known as ‘factor separation’) is widely used in the analysis of numerical simulations. It allows

changes in properties of a system to be attributed to changes in multiple variables associated with that system. There are many

possible factorisation methods; here we discuss three previously-proposed factorisations that have been applied in the field of

climate modelling: the linear factorisation, the Stein and Alpert (1993) factorisation, and the Lunt et al. (2012) factorisation.

We show that, when more than two variables are being considered, none of these three methods possess all four properties of5

‘uniqueness’, ‘symmetry’, ‘completeness’, and ‘purity’. Here, we extend each of these factorisations so that they do possess

these properties for any number of variables, resulting in three factorisations – the ‘linear-sum’ factorisation, the ‘shared-

interaction’ factorisation, and the ‘scaled-residual’ factorisation. We show that the linear-sum factorisation and the shared-

interaction factorisation reduce to be identical in the case of four or fewer variables, and we conjecture that this holds for any

number of variables. We present the results of the factorisations in the context of three past studies that used the previously-10

proposed factorisations.

Copyright statement. TEXT

1 Introduction

Factorisation (also known as ‘factor separation’) consists of attributing the total change of some property of a system to

multiple components, each component being associated with a change to an internal variable of the system. Multiple tests15

can be carried out to inform this factorisation, with each test (or simulation in the case of numerical applications) consisting

of different combinations of variables. Factorisation experiments are used in many disciplines, with early applications being

in agricultural field experiments (Fisher, 1926), and widespread application in industrial and engineering design (Box et al.,

2005) and other fields such as medicine (e.g. Smucker et al., 2019). The experiments that underpin such analysis are called
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‘factorial experiments’. In some cases, in particular when there are a large number of variables, not all combinations of all20

variables are tested (usually due to practical or computational limitations), and some previous work has focused on optimising

the experimental design of such ‘fractional factorial’ experiments (e.g. Domagni et al., 2021). Furthermore, each test often has

an associated error or uncertainty, and may be carried out multiple times. Analysis of such experimental designs is typically

carried out using analysis of variance (ANOVA), in which the total change is represented as a model consisting of a series of

‘main effects’, one for each factor, and ‘interaction effects’ between the factors (Montgomery, 2013).25

In this paper, we focus on factorisation of numerical model simulations of the climate system; in this case, the factorisation

typically consists of attributing a fundamental property of the climate system to multiple internal model parameters and/or

boundary conditions. In common with previously proposed factorisation methods in this field (Stein and Alpert, 1993; Lunt

et al., 2012), we limit our analysis to the case where there are two possible values for each variable, and where all combina-

tions of all variables have been simulated; such an experimental design is called a 2k (or two-level) full factorial experiment30

(Montgomery, 2013). Also in common with these studies, we assume that there is zero (or negligible) uncertainty in each sim-

ulation, which is consistent with the deterministic nature of most climate models. Factorisation has been applied extensively in

the climate literature; some examples include Claussen et al. (2001), Hogrefe et al. (2004), van den Heever et al. (2006), and

Schmidt et al. (2010); see also the collected studies in Alpert and Sholokhman (2011). The factorisation method proposed by

Stein and Alpert (1993) has currently been cited more than 280 times according to Web of Science.35

2 Previous factorisation methods

In order to introduce and discuss previous factorisation methods, we use an example case study from the field of climate

science. We turn to the Pliocene,∼3 million years ago (Haywood et al., 2016, 2020; Dowsett et al., 2016), the most recent time

of prolonged natural global warmth relative to pre-industrial (Burke et al., 2018). The Pliocene oceans were on average about

2.5–3.5 ◦C warmer than pre-industrial (McClymont et al., 2020); for this example, we would like to know how much of this40

warmth was due to an increase in atmospheric CO2 concentration and how much was due to the reduction in extent and volume

of large ice sheets. In this case we would use a climate model to carry out simulations with combinations of high and low CO2

concentrations, and with two different configurations of ice sheets. In general there are interactions between the variables so

that the contributions from them do not sum linearly.

It is worth at this stage introducing some notation. Here, we restrict ourselves to the case where there are two possible values45

for each variable, denoted ‘0’ and ‘1’; having more than two values increases the computational cost of a factorisation, and

can reduce the number of factors that can be assessed in a fixed computing budget. We name the fundamental property of

the climate system that we are factorising as T . If there are N variables, then the results of all possible simulations can be

uniquely identified by T followed by N subscripts of either 0 or 1, with each subscript representing the value of a variable,

with the variables in some predefined order. For our Pliocene example with two variables (N = 2), we have CO2 (variable50

1) and ice (variable 2) contributing to a global mean temperature (T ); in this case there are 4 possible model simulations: a

control (pre-industrial) simulation with pre-industrial CO2 and pre-industrial ice (T00), a second simulation with Pliocene CO2
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Figure 1. Three different factorisation methods of temperature, T , for two variables (CO2 and ice sheets). (a) Linear factorisation, (b) Stein

and Alpert (1993) factorisation, (c) Lunt et al. (2012) factorisation. The temperature, T can be considered as a surface in a third dimension

sitting above the 2-dimensional plane of CO2 and ice sheets. In Equations 1,3, and 4, ∆T1 = ∆TCO2 and ∆T2 = ∆Tice.

and pre-industrial ice (T10), a third simulation with pre-industrial CO2 and Pliocene ice (T01), and a Pliocene simulation with

Pliocene CO2 and Pliocene ice (T11) (see Figure 1a).

2.1 The linear factorisation55

The simplest factorisation that can be carried out is a linear one. For the Pliocene example with 2 factors, 3 simulations are

carried out in which variables are changed consecutively; for example, T00, T10, and T11. The factorisation of the total change,

∆T , between contributions due to CO2 (∆T1) and ice (∆T2) would then be:

∆T1 = T10−T00

∆T2 = T11−T10. (1)60

This factorisation is illustrated graphically in Figure 1(a). However, an equally valid linear factorisation would be

∆T1 = T11−T01

∆T2 = T01−T00, (2)

and in a non-linear system this would in general give a different answer to Equation 1. In this sense, the linear factorisation

method is not ‘unique’. However, it is ‘complete’ in the sense that the individual factors sum to the total change, ∆T exactly, i.e.65

∆T1+∆T2 = T11−T00. Considering the linear factorisation as a ‘path’ starting at T00 and ending at T11, it is also ‘symmetric’,

in that if we instead started from T11 we would retrieve the same numerical values for the two linear factorisations (differing

just by a minus sign for the numerical value of each factor). It is also ‘pure’ in that it does not need additional interaction terms

(see Section 2.2 and Section 2.3) in order to make it complete.

2.2 The Stein and Alpert (1993) factorisation70

Stein and Alpert (1993) proposed an alternative factorisation method, illustrated in Figure 1(b). In this, for the Pliocene case,

all four possible simulations are carried out, and the factorisation performed relative to the pre-industrial case (T00) for all
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variables. The non-linear terms are then all grouped together in an interaction term (sometimes called the ‘synergy’), S:

∆T1 = T10−T00

∆T2 = T01−T0075

S = T11−T10−T01 +T00. (3)

In contrast to the linear factorisation, the Stein and Alpert (1993) factorisation is unique. It is also complete because ∆T1 +

∆T2+S = T11−T00 (in fact, S is defined such that the factoristion is complete). As a result of the interaction term, S, it is not

‘pure’. In addition, it is not symmetric; if we instead performed the factorisation relative to T11, we would in general obtain a

different numerical value of the factorisation (i.e. ∆T1 = T01−T11).80

2.3 The Lunt et al (2012) factorisation

Lunt et al. (2012) proposed another factorisation, in which the factorisation for a particular variable is defined as the mean of the

difference between each pair of simulations that differ by just that variable. This is illustrated in Figure 1(c); the factorisation

of ice is represented by the mean of the two blue lines and the factorisation of CO2 is represented by the mean of the two red

lines:85

∆T1 =
1

2
{(T10−T00) + (T11−T01)}

∆T2 =
1

2
{(T01−T00) + (T11−T10)} . (4)

The N = 2 factorisation in Equation 4 is unique, complete, symmetric, and pure. It is worth noting that Equation 4 can be

interpreted in multiple ways – either (i) as described above, the factorisation averages all the possible pairs of simulations that

differ solely by a change in that variable, i.e. for a particular variable it is the mean of either the horizontal or vertical edges90

of the square in Figure 1(c); or (ii) it is the average of the two possible linear factorisations in Equations 1 and 2; or (iii) it is

the average of the two possible Stein and Alpert (1993) factorisations obtained by swapping the Pliocene and pre-industrial (in

which case the interaction terms cancel); or (iv) it is the Stein and Alpert (1993) factorisation but with the interaction term, S,

shared equally between the two factors.

In extending to N = 4 variables, Lunt et al. (2012) assumed that the first of these interpretations would still hold for any95

number of variables. However, consider the N = 3 case illustrated in Figure 2, in which we have added vegetation as a third

variable to contribute to Pliocene warming. Averaging the edges (interpretation (i) above) would result in a factorisation:

∆T ′1 =
1

4
{(T100−T000) + (T110−T010) + (T101−T001) + (T111−T011)}

∆T ′2 =
1

4
{(T010−T000) + (T110−T100) + (T011−T001) + (T111−T101)}

∆T ′3 =
1

4
{(T001−T000) + (T101−T100) + (T011−T010) + (T111−T110)} (5)100

Although this is unique, symmetric, and pure, it is not complete, because ∆T ′1+∆T ′2+∆T ′3 6= T111−T000. This is apparent by

considering the T111 terms; the three lines in Equation 5 each include a term equal to 1
4T111, which sum to 3

4T111, whereas they
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Figure 2. Simulations and linear factorisations in an N = 3 factorisation. Edges that represent changes in CO2 are in red, changes in ice are

in blue, and edges in vegetation are in green. The paths associated with all three possible linear factorisations are shown with dotted lines.

are required to sum to T111 for a complete factorisation. As such, an additional interaction term, in the sense of S in Equation

3, would be required for the factorisation to be complete in N = 3 dimensions (in which case it would no longer be pure). Note

that the Lunt et al. (2012) factorisation is complete for N = 2 without such an interaction term, but this is a case specific to105

N = 2 as a result of cancellation of terms in Equation 4.

2.4 Summary of previous factorisations

As shown above, neither the linear, or the Stein and Alpert (1993), or the Lunt et al. (2012) factorisation methods possess all

four properties of uniqueness, symmetry, purity, and completeness in N > 2 dimensions. These properties are often desirable

in a factorisation, because any factorisation that lacks one of these properties is less easy to interpret. For example, for the110

Pliocene example above, uniqueness means that we can have a single answer to the question “why is the Pliocene warmer

than the pre-industrial”. Symmetry means that we obtain the same answer to the question “why is the Pliocene warmer than

the pre-industrial” as to the question “why is the pre-industrial colder than the Pliocene”. Completeness means that the answer

to the question “how much warmer is the Pliocene than the pre-industrial” is equal to the sum of the individual factors (plus

an interaction term if one exists). “Purity” means that we can answer the question “why is the Pliocene warmer than the pre-115

industrial” by referring solely to contributions from our fundamental factors CO2, ice, and vegetation, i.e. without including

additional interaction terms that are not attributed to a single factor. These interaction terms are important and interesting, but

there are cases where it can be useful or essential to only include attributable terms in the factorisation.
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3 Extensions to the previous factorisations

Here we discuss possible extensions to the three previous factorisations discussed above, that are unique, symmetric, pure, and120

complete in N dimensions.

3.1 Extension to the linear factorisation: The linear-sum factorisation

The linear-sum factorisation arises from a generalisation to N > 2 dimensions of the second interpretation of Equation 4; i.e.

it arises from averaging all the possible linear factorisations. This will result in a complete and pure factorisation because each

individual linear factorisation is itself complete and pure. For three dimensions, this is illustrated by the dotted lines in Figure125

2.

Each possible linear factorisation can be represented as a non-returning ‘path’ from the vertex T000 to the opposite vertex

T111, traversing edges along the way (dotted lines in Figure 2). When considering the sum of all possible paths, some edges are

traversed more than others. In general, those edges near the initial or final vertices are traversed more times than edges that are

further away from these vertices. As such, when we average the possible linear factorisations, different edges (corresponding130

to different terms in the factorisation) will have different weightings. This is in contrast to Equation 5 where each term (i.e.

edge of the cube) has the same weighting. For three dimensions, Figure 2 shows that the 6 edges adjacent to the initial and final

vertex are traversed twice, whereas the 6 other edges are traversed only once. Therefore, the factorisation is :

∆T1 =
1

6
{2(T100−T000) + (T110−T010) + (T101−T001) + 2(T111−T011)}

∆T2 =
1

6
{2(T010−T000) + (T110−T100) + (T011−T001) + 2(T111−T101)}135

∆T3 =
1

6
{2(T001−T000) + (T101−T100) + (T011−T010) + 2(T111−T110)} . (6)

This factorisation is complete (∆T1 + ∆T2 + ∆T3 = T111−T000), unique, symmetric, and pure.

To generalise to N dimensions, consider an N -dimensional cube, which has a total of 2N vertices and N × 2N−1 edges.

There are 2N−1 edges in each dimension. There are N ! paths from the initial vertex of the cube to the final opposite vertex,

each of which consists of a traverse along N edges. Therefore, in each dimension there are a total of N ! edges traversed for all140

paths combined.

As for the 3-dimensional case above, let us label each vertex, V , of this N -dimensional cube as Va1···aN
, where each ai is

either 0 or 1. A value ai = 0 represents the first value for variable i, and ai = 1 represents the second value for variable i. Each

vertex is also associated with a system value, denoted Ta1···aN
(see Figure 2 for the case N = 3).

All factorisations consist of partitioning the total change, ∆T = T1···1−T0···0 between N factors. Each factor is associated145

with a dimension, i, in the N -dimensional cube. The factorisation for dimension i is ∆Ti.

For the linear-sum factorisation, all paths that we consider start at the origin vertex, 0 · · ·0, and end at the opposite vertex

1 · · ·1, and are made up of a series of edges. For all edges on the N -dimensional cube, let us define X as the set of all possible

starting vertices, for a given N . For example, for N = 3, X = {000,001,010,011,100,101,110}. Let us define Xi as the set

of all possible starting vertices for an edge that is oriented in the ith dimension, i.e. all those vertices that have a 0 in the150
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ith subscript. For example, for N = 3 and i = 2, X2 = {000,001,100,101}. Let us define Yi as the set of all possible ending

vertices for an edge that is oriented in the ith dimension, so that Yi is related to Xi by changing the ith subscript of each

element from 0 to 1. For example, for N = 3 and i = 2, Y2 = {010,011,110,111}. Order Xi and Yi so that their elements

correspond. Then we write Xj
i to indicate the jth element of Xi, and Y j

i as indicating the jth element of Yi. For example, for

the X2 defined above, X3
2 = 100.155

The Lunt et al. (2012) factorisation averages along each edge oriented in dimension i:

∆T ′i =
1

2N−1

2N−1∑
j=1

(
TY j

i
−TXj

i

)
(7)

For the linear-sum factorisation, we instead carry out a weighted average, with the weight for each edge in dimension i given

by how many times it is traversed in all N ! paths. Consider all the paths that traverse an edge which starts at a vertex defined

by k subscripts of ‘1’ and N − k subscripts of ‘0’. There are k! possible paths to the start of this edge, and (N − k− 1)! paths160

from the end of this edge to the final corner (defined by N subscripts of ‘1’). Therefore, there are k!×(N − k− 1)! paths that

use this edge. As such, we can write the linear-sum factorisation as:

∆Ti =
1

N !

2N−1∑
j=1

{
kji ! (N − 1− kji )! (TY j

i
−TXj

i
)
}
, (8)

where kji is the number of subscripts of ‘1’ in Xj
i .

For example, for N = 4 and i = 1, we have N != 24 edges traversed in this dimension, and 2N−1 = 8 edges.165

X1 = {0000,0001,0010,0100,0011,0101,0110,0111}, and Y1 = {1000,1001,1010,1100,1011,1101,1110,1111}. For those

edges with a starting subscript with k = 0 subscripts of ‘1’ (i.e. 0000), the weighting k! (N −1−k)!= 0! (4−1−0)!= 6. For

those edges with a starting subscript with k = 1 subscripts of ‘1’ (i.e. 0001,0010,0100), the weighting k! (N − 1− k)!=

1! (4− 1− 1)!= 2. For those edges with a starting subscript with k = 2 subscripts of ‘1’ (i.e. 0011,0101,0110), the weighting

k! (N − 1− k)!= 2! (4− 1− 2)!= 2. For those edges with a starting subscript with k = 3 subscripts of ‘1’ (i.e. 0111), the170

weighting k! (N − 1− k)!= 3! (4− 1− 3)!= 6. Therefore, for N = 4 and i = 1, we have:

∆T1 =
1

24
{6(T1000−T0000) + 2(T1001−T0001) + 2(T1010−T0010) + 2(T1100−T0100)+

2(T1011−T0011) + 2(T1101−T0101) + 2(T1110−T0110) + 6(T1111−T0111)} . (9)

3.2 Extension to the Stein and Alpert (1993) factorisation: the shared-interactions factorisation

As stated in Section 2.3, the Lunt et al. (2012) factorisation for N = 2 can be interpreted as being identical to the Stein and175

Alpert (1993) factorisation but with the interaction term shared between the two factors (thereby removing the interaction term,

resulting in a pure factorisation). Here we explore what happens when this interpretation is generalised to N > 2 dimensions.

For consistency, we use the same notation as Stein and Alpert (1993). In their notation, f̂1 represents the difference between

a simulation in which only factor i is modified with a simulation in which no factors are modified, and f̂ijk··· represents

interaction terms between the different factors. For example, for our original N = 2 example illustrated in Figure 1 and given180

in Equation 3, ∆T1 ≡ f̂1, ∆T2 ≡ f̂2, and S ≡ f̂12.
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For our LGM example for N = 3, f̂12 is the interaction term between factors 1212

and 2 (CO2 and ice), f̂13 is the interaction term between factors 1 and 3 (CO2 and veg-213

etation), f̂23 is the interaction term between factors 2 and 3 (ice and vegetation), and214

f̂123 is the interaction term between all three factors. In this case, Stein and Alpert (1993)215

give that216

�T = f̂1 + f̂2 + f̂3 + f̂12 + f̂13 + f̂23 + f̂123

f̂1 = T100 � T000

f̂2 = T010 � T000

f̂3 = T001 � T000

f̂12 = T110 � (T100 + T010) + T000

f̂13 = T101 � (T100 + T001) + T000

f̂23 = T011 � (T010 + T001) + T000

f̂123 = T111 � (T110 + T101 + T011) + (T100 + T010 + T001)� T000. (10)

As discussed in Section 2.2, this factorisation is not symmetric or unique (e.g. we could217

define f̂1 = T011�T111), and it is only complete if we include all the interaction terms,218

which are not attributed to any particular factor. By extending the interpretation of shared219

synergy in 2 dimensions discussed in Section 2.3, we can choose to share the interaction220

terms equally between their contributing factors, an approach applied by Schmidt et al.221

(2010). This results in a factorisation that is complete (because we are just re-partitioning222

the interaction terms). It turns out that it is also symmetric, but this is not immediately223

self-evident. For example for CO2,224

�T1 = f̂1 +
1

2
f̂12 +

1

2
f̂13 +

1

3
f̂123. (11)

Equations 10 and 11 give that, for CO2,225

�T1 =
1

6
(2(T100 � T000) + (T110 � T010) + (T101 � T001) + 2(T111 � T011)). (12)

This is identical to the equivalent term in Equation 6, indicating that the shared-interaction226

and linear-sum interpretations are identical for N = 3, and that therefore for N = 3227

the shared-interaction factorisation is unique, symmetric, and complete.228
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(b)

1

Figure 3. (a) Visual representation of the shared-interaction factorisation for N = 3, as given by Equation 10. The straight dotted lines

represent the sharing of the interactions according to Equation 11. (b) Visual representation of the shared-interaction factorisation for N = 4.

The straight dotted lines represent the sharing of the interactions according to Equation 13.

For our Pliocene example for N = 3, f̂12 is the interaction between factors 1 and 2 (CO2 and ice), f̂13 is the interaction

between factors 1 and 3 (CO2 and vegetation), f̂23 is the interaction between factors 2 and 3 (ice and vegetation), and f̂123 is

the interaction between all three factors. In this case, Stein and Alpert (1993) give that

∆T = f̂1 + f̂2 + f̂3 + f̂12 + f̂13 + f̂23 + f̂123185

f̂1 = T100−T000

f̂2 = T010−T000

f̂3 = T001−T000

f̂12 = T110− (T100 +T010) +T000

f̂13 = T101− (T100 +T001) +T000190

f̂23 = T011− (T010 +T001) +T000

f̂123 = T111− (T110 +T101 +T011) + (T100 +T010 +T001)−T000. (10)

As discussed in Section 2.2, this factorisation is not symmetric or unique (e.g. we could define f̂1 = T011−T111) or pure,

but it is complete if we include all the interaction terms, which are not attributed to any particular factor. By extending the

interpretation of the shared interaction term in 2 dimensions discussed in Section 2.3, we can choose to share the interaction195

terms equally between their contributing factors, an approach applied by Schmidt et al. (2010) (although they carried out a

fractional factorisation in which not all combinations of all variables were included). This results in a factorisation that is

complete and pure (because we are just re-partitioning the interaction terms). It turns out that it is also symmetric. For example
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This factorisation for N = 3 is represented visually in Figure 3(a). Equations 10 and 11 give that, for CO2,

∆T1 =
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{2(T100−T000) + (T110−T010) + (T101−T001) + 2(T111−T011)} . (12)

This is identical to the equivalent term in Equation 6, indicating that the shared-interaction and linear-sum interpretations are

identical for N = 3, and that therefore for N = 3 the shared-interaction factorisation is unique, symmetric, pure, and complete.

Stein and Alpert (1993) give the generalisation of their factorisation to N factors (their Equations 11-16). For N = 4, the205

interaction terms are shared so that, for example for CO2,

∆T1 = f̂1 +
1

2
(f̂12 + f̂13 + f̂14) +

1

3
(f̂123 + f̂124 + f̂134) +

1

4
f̂1234.

(13)

This factorisation for N = 4 is represented visually in Figure 3(b). Again, for N = 4 this is identical to the linear-sum inter-

pretation (Equation 9). We conjecture that for any N these two interpretations will give identical results.210

3.3 Extension to the Lunt et al (2012) factorisation: The scaled-residual factorisation

In the scaled-residual factorisation, the Lunt et al. (2012) factorisation is modified so that it is complete (and remains pure).

This is achieved by taking the total residual term required for completeness, and sharing this between the factors in proportion

to the magnitude of their Lunt et al. (2012) factorisation. For the N = 3 example of the Pliocene, we have that the residual

term, R, is defined such that215

∆T ′1 + ∆T ′2 + ∆T ′3 +R = T111−T000, (14)

where the ∆T ′i are defined in Equation 5. We then share this residual proportionally across the three factors, such that

∆T1 = ∆T ′1 +
R|∆T ′1|

|∆T ′1|+|∆T ′2|+|∆T ′3|

∆T2 = ∆T ′2 +
R|∆T ′2|

|∆T ′1|+|∆T ′2|+|∆T ′3|

∆T3 = ∆T ′3 +
R|∆T ′3|

|∆T ′1|+|∆T ′2|+|∆T ′3|
(15)220

In N dimensions, this is:

∆Ti = ∆T ′i +
R|∆T ′i |∑N
j=1|∆T ′i |

(16)

where ∆T ′i is defined in Equation 7, and

R = T1···1−T0···0−
N∑
j=1

∆T ′i . (17)
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For example, for N = 4 and i = 1 we have:225

∆T ′1 =
1

8
{(T1000−T0000) + (T1001−T0001) + (T1010−T0010) + (T1100−T0100)+

(T1011−T0011) + (T1101−T0101) + (T1110−T0110) + (T1111−T0111)}

R = T1111−T0000− (∆T ′1 + ∆T ′2 + ∆T ′3 + ∆T ′4)

∆T1 = ∆T ′1 +
R|∆T ′1|

|∆T ′1|+|∆T ′2|+|∆T ′3|+|∆T ′4|
; (18)

and similarly for ∆T ′2, ∆T ′3, and ∆T ′4.230

4 Implications for previous published work

Here we discuss three examples of papers in which the Lunt et al. (2012) factorisation has been used. For each, we show how

using our factorisations would affect the results in that paper.

4.1 Implications for Lunt et al (2012)

Lunt et al. (2012) presented a factorisation of global mean temperature change in the Pliocene into four variables: CO2,235

orography, ice, and vegetation. As described in Section 2.3, in extending to N = 4 variables, the Lunt et al. (2012) factorisation

is unique, symmetric, and pure, but not complete. Using their notation, their factorisation for the CO2 variable is (equivalent to

Equation 9 in their paper):

dT ′CO2
=

1

8

{
(Tc−T ) + (Toc−To) + (Tic−Ti) + (Tvc−Tv) +

(Tocv −Tov) + (Toci−Toi) + (Tciv −Tiv) + (Tociv −Toiv)
}
. (19)240

The equivalent linear-sum/shared-interaction factorisation is given by Equation 9, which in the notation of Lunt et al. (2012)

is:

dTCO2 =
1

24

{
6(Tc−T ) + 2(Toc−To) + 2(Tic−Ti) + 2(Tvc−Tv) +

2(Tocv −Tov) + 2(Toci−Toi) + 2(Tciv −Tiv) + 6(Tociv −Toiv)
}
, (20)

and similarly for the other three variables.245

The equivalent scaled-residual factorisation is given by Equation 18, which in the notation of Lunt et al. (2012) is:

R = Tociv −T − (dT ′CO2
+ dT ′orog + dT ′ice + dT ′veg)

dTCO2
= dT ′CO2

+
R|dT ′CO2

|
|dT ′CO2

|+|dT ′orog|+|dT ′ice|+|dT ′veg
(21)

where dT ′CO2
is given in Equation 19; and similarly for the other three variables.

In Lunt et al. (2012), although Equation 19 (Equation 9 in their paper) was presented, the four variables were actually250

factorised by two N = 2 factorisations for all the analysis in that paper (Equation 13 in their paper). Because for N = 2
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dimensions the Lunt et al. (2012), linear-sum/shared-interaction, and scaled-residual factorisations are identical, the actual

results related to Pliocene temperature change presented in Lunt et al. (2012) would not be affected by using our proposed new

factorisations.

4.2 Implications for Haywood et al (2016)255

Haywood et al. (2016), in the context of the experimental design for model simulations of the Pliocene in the PlioMIP project,

presented a 3-variable factorisation of Pliocene warming into components due to CO2, topography, and ice, based on the Lunt

et al. (2012) factorisation (presented in their Section 3.2).

An alternative, using the linear-sum/shared-interaction factorisation that is complete, is obtained from Equation 6, which in

their notation is, for CO2 (and analogously for the other two components):260

dTCO2
=

1

6

{
2(E400−E280) + (Eo400−Eo280) + (Ei400−Ei280) + 2(Eoi400−Eoi280)

}
(22)

Another alternative, using the scaled-residual factorisation that is complete, is obtained from Equations 14 and 15, which in

their notation is, for CO2 (and analogously for the other two components):

dT ′CO2
=

1

4

{
(E400−E280) + (Eo400−Eo280) + (Ei400−Ei280) + (Eoi400−Eoi280)

}
R = Eoi400−E280− (dT ′CO2

+ dT ′orog + dT ′ice)265

dTCO2
= dT ′CO2

+
R|dT ′CO2

|
|dT ′CO2

|+|dT ′orog|+|dT ′ice|
. (23)

4.3 Implications for Chandan and Peltier (2018)

Chandan and Peltier (2018) applied the N = 3 factorisation of Lunt et al. (2012) (Equation 5), as also given by Haywood et al.

(2016) (first line of Equation 23), to their suite of Pliocene simulations. The factorisation was applied to each gridcell in the

model, resulting in 192×288 = 55,296 factorisations over the globe. The two-dimensional mid-Pliocene minus pre-industrial270

temperature anomaly, reproduced here in Figure 4(a), was factorised into contributions originating from a change in CO2,

orography and ice sheets. Figure 4(b–d) shows the results of the original factorisation and is identical to those presented in

Figure 7 of Chandan and Peltier (2018). Figure 4(f–h) shows the factorisation of the same anomaly using the linear-sum/shared-

interaction method (Equation 22) while Figure 4(j–m) shows the results of employing the scaled-residual method (Equations

23). The first thing to note is that the three factorisations all have very similar results; visually it is difficult to tell them apart on275

a regional scale, and they result in global means for each factor that differ by less than 10%. This is because, in this example,

the non-linearities (i.e. the interaction terms) are relatively small. As such, the main conclusions of the Chandan and Peltier

(2018) study are robust to a change in factorisation methodology.

The bottom row in Figure 4 shows, for the case of each method, the residual difference between the sum of all the factors

and the total change (i.e. the interaction/synergy terms in the sense of Stein and Alpert (1993)). The Lunt et al. (2012) method280

yields spatially coherent structures in the residual whose magnitude can be comparable to those of the factorized components,

whereas the residuals for the other two methods are zero by definition, because they are pure (in the Figures they are very close
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Figure 4. Comparison of various factorisation methods. (a) The mid-Pliocene minus pre-industrial anomaly (T111 −T000) modelled by

Chandan and Peltier (2017). (b–m) The top three rows present factorisations of the total anomaly into contributions arising from changes

to CO2 (upper, (b,f,j)), orography (middle, (c,g,k)) and ice sheets (lower, (d,h,l)), while the bottom row shows the residual required for

completeness (e,i,m). Note that the residual term, R, for panel (e) is given by Equation 14, and is equal to T111 −T000 − (∆T ′CO2
+

∆T ′orog + ∆T ′ice). The first column (b,c,d,e) shows results using the methodology of Lunt et al. (2012) and is identical to results reported

in Figure 7 of Chandan and Peltier (2018). The second column (f,g,h,i) shows results from the linear-sum/shared-interaction factorisation

(Equation 6) and the third column (j,k,l,m) shows results of the scaled-residual factorisation (Equation 15). The values at the top-right of

each panel give the global mean, in units of ◦C.
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to zero – essentially numerical noise due to round-off error). The non-linearity (indicated by the magnitude of the residual

term associated with the Lunt et al. (2012) factorisation) is greatest in the North Atlantic (Figure 4d), and is likely associated

with changes in the sea-ice margin that are non-linearly influenced by all three boundary conditions (CO2, orography, and ice285

sheets).

We also explored using a version of the scaled-residual factorisation in which the residual terms was shared, not by the

absolute magnitude of the individual factors, but by their relative values, so that Equation 15 became:

∆T1 = ∆T ′1 +
R∆T ′1

∆T ′1 + ∆T ′2 + ∆T ′3
, (24)

and similarly for the other variables. However, at a small number of gridcells this produced highly divergent results, when the290

denominator in Equation 24 became very close to zero (see Supp Info, Figure 1).

5 Conclusions

In this paper, we have reviewed three previously-proposed factorisations, and extended them to produce factorisations that

are unique, symmetric, pure, and complete. We have presented them for 3 dimensions (i.e. 3 factors), and generalised to

N dimensions. The first factorisation, ‘linear-sum’ (Equation 8), averages all the possible linear factorisations on the N -295

dimensional cube. The second factorisation, ‘shared-interaction’, shares the interaction terms between each corresponding

factor equally. The linear-sum and shared-interaction factorisations are shown to reduce to be identical for N ≤ 4, and we

conjecture that this holds for any N . The third factorisation, ‘scaled-residual’ (Equation 16), takes the residual term required

for completeness in the Lunt et al. (2012) factorisation, and shares it between the factors, in proportion to their magnitude.

We have presented results of these extended factorisations in the context of previous work carried out by Lunt et al. (2012),300

Haywood et al. (2016), and Chandan and Peltier (2018) in the context of Pliocene climate change. We recommend the use of

the linear-sum/shared-interaction factorisation or the scaled-residual factorisation for cases where the properties of uniqueness,

symmetry, purity, and completeness, are desirable. In some cases, the interaction terms may, of course, be of great interest, and

in such cases a non-pure factorisation (e.g. Stein and Alpert, 1993) can be very informative. Also, it is worth noting that if the

interaction terms are zero, i.e. we have a completely linear system, then all the factorisation methods reduce to be identical.305

The properties of all the factorisations discussed in this paper are shown in Table 1 for 2,3,4, and N dimensions. The methods

that we present here will be of particular use in the analysis of systems with multiple variables, and have application beyond

solely climate science.

Code and data availability. The model fields underlying Figure 4 are available from the University of Toronto Dataverse in netcdf for-

mat: https://doi.org/10.5683/SP2/QGK5B0 . The code used to calculate the factorisations illustrated in Figure 4 is available in the Supple-310

ment, in both python and ncl. They are also available on github, here: https://github.com/danlunt1976/factor_separation/blob/master/factor_

separation.ncl and here: https://github.com/danlunt1976/factor_separation/blob/master/factorize_gmd.py .
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Table 1. Properties of the factorisations discussed in this paper.
a For these properties, we show that the properties hold for the linear-sum factorisation for N factors, and conjecture that the linear-sum and

shared-interaction factorisations are identical.

Factorisation Dimension Complete Unique Pure Symmetric

Linear

2 X X X

3 X X X

4 X X X

N X X X

Stein and Alpert (1993)

2 X X

3 X X

4 X X

N X X

Lunt et al. (2012)

2 X X X X

3 X X X

4 X X X

N X X X

linear-sum/shared-interaction

2 X X X X

3 X X X X

4 X X X X

N X X X Xa

scaled-residual

2 X X X X

3 X X X X

4 X X X X

N X X X X
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