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Abstract. Factorisation (also known as ‘factor separation’) is widely used in the analysis of numerical simulations. It allows
changes in properties of a system to be attributed to changes in multiple variables associated with that system. There are many
possible factorisation methods; here we discuss three previously-proposed factorisations that have been applied in the field of
climate modelling: the linear factorisation, the Stein and Alpert (1993) factorisation, and the Lunt et al. (2012) factorisation. We
show that, when more than two variables are being considered, none of these three methods possess all three-four properties
of ‘uniqueness’, ‘symmetry’, and-‘completeness’, and ‘purity’. Here, we extend each of these factorisations so that they do
possess these properties for any number of variables, resulting in three factorisations — the ‘linear-sum’ factorisation, the
‘shared-interaction’ factorisation, and the ‘seated-totalscaled-residual’ factorisation. We show that the linear-sum factorisation
and the shared-interaction factorisation reduce to be identical in the case of four or fewer variables, and we conjecture that
this holds for any number of variables. We present the results of the factorisations in the context of three past studies that used

the previously-proposed factorisations. Thisreveals-thatenly-the linear-sum/shared-interactionfactorisation-possesses-a-fou

Copyright statement. TEXT

1 Introduction

Factorisation (also known as ‘factor separation’) consists of attributing the total change of some property of a system to
multiple components, each component being associated with a change to an internal variable of the system. Multiple tests

can be carried out to inform this factorisation, with each test (or simulation in the case of numerical applications) consistin

of different combinations of variables. Factorisation experiments are used in many disciplines, with early applications being
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in agricultural field experiments (Fisher, 1926), and widespread application in industrial and engineering design (Box et al.,

2005) ~-and other fields such as medicine (e.g. Smucker et al., 2019). The experiments that underpin such analysis are called
“factorial experiments’. In some cases, in particular when there are a large number of variables, not all combinations of all
variables are tested (usually due to practical or computational limitations), and some previous work has focused on optimising
the experimental design of such “fractional factorial’ experiments (e.g. Domagni et al., 2021). Furthermore, each test often has
an associated error or uncertainty, and may be carried out multiple times. Analysis of such experimental designs is typically
carried out using analysis of variance (ANOVA), in which the total change is represented as a model consisting of a series of
“main effects’. one for each factor, and ‘interaction effects’ between the factors (Montgomery, 2013).

In this paper, we focus on factorisation of numerical model simulations of the climate system; in this case, the factorisation
typically consists of attributing a fundamental property of the climate system to multiple internal model parameters and/or
boundary conditionstStein-and-Alpert; 1993; Luntetal>2042)— In common with previously proposed factorisation methods
in this field (Stein and Alpert. 1993; Lunt et al., 2012), we limit our analysis to the case where there are two possible values for
each variable, and where all combinations of all variables have been simulated; such an experimental design is called a 2 (or
two-level) full factorial experiment (Montgomery, 2013). Also in common with these studies, we assume that there is zero (or

negligible) uncertainty in each simulation, which is consistent with the deterministic nature of most climate models. Factorisa-

tion has been used-applied extensively in the climate literature; some key-examples include Claussen et al. (2001), Hogrefe et al.

(2004), van den Heever et al. (2006), and Schmidt et al. (2010); see also the collected studies in Alpert and Sholokhman (2011
. The factorisation method proposed by Stein and Alpert (1993) has currently been cited more than 256-280 times according to

Web of Science.

2 Previous factorisation methods

In order to introduce and discuss previous factorisation methods, we use an example case study from the field of climate science.

We turn to the East-Glacial- Maximum-(EGM);24Pliocene, ~3 million years ago (Haywood et al., 2016, 2020; Dowsett et al., 2016

, 000-years-ago—~-the most recent time the

natural global warmth relative to pre-industrial (Burke et al., 2018). The Pliocene oceans were on average about 2.5-3.5 °C
eotder-warmer than pre-industrial tAnnan-and-Hargreaves; 2643-Snyder; 2646)(McClymont et al., 2020); for this example, we

would like to know how much of this eoeling-warmth was due to a-deerease-an increase in atmospheric CO5 concentration and

how much was due to the preseneereduction in extent and volume of large ice sheets. In this case we would use a climate model
to carry out simulations with varieus-combinations of high and low CO; concentrations, and with and-witheut-two different
configurations of ice sheets. In general there are interactions between the variables so that the contributions from them do not
add-sum linearly.

It is worth at this stage introducing some notation. Here, we restrict ourselves to the case where there are two possible values
for each variable, denoted ‘0’ and ‘1’; having more than two values increases the computational cost of a factorisation, and

can reduce the number of factors that can be assessed in a fixed computing budget. We name the fundamental property of the
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Figure 1. 3-Three different factorisation methods of temperature, T', for 2-two variables (CO2 and ice sheets). (a) Linear factorisation,
(b) Stein and Alpert (1993) factorisation, (c) Lunt et al. (2012) factorisation. The temperature, 7" can be considered as a surface in a third

dimension sitting above the 2-dimensional plane of CO» and ice sheets. In Equations 1,3, and 4, AT} = ATcos2 and ATy = AT;...

climate system that we are factorising as 7'. If there are [N variables, then the results of all possible simulations can be uniquely
identified by T followed by N subscripts of either 0 or 1, with each subscript representing the value of a variable, with the
variables in some predefined order. For our EGM-Pliocene example with two variables (N = 2), we have CO» (variable 1) and
ice (variable 2) contributing to a global mean temperature (7"); in this case there are 4 possible model simulations: a control
(pre-industrial) simulation with pre-industrial CO and pre-industrial ice (1), a second simulation with EGM-Pliocene CO-
and pre-industrial ice (T'), a third simulation with pre-industrial CO, and EGM-Pliocene ice (Tp1), and an-EGM-simulation
with-26M-a Pliocene simulation with Pliocene CO, and EGM-Pliocene ice (T'1) (see Figure 1a).

2.1 The linear factorisation

The simplest factorisation that can be carried out is a linear one. For the EGM-Pliocene example with 2 factors, 3 simulations
are carried out in which variables are changed consecutively; for example, 7o, 110, and T71. The factorisation of the total

change, AT, between contributions due to COy (AT}) and ice (AT5) would then be:

ATy

T19 —Too
ATy, = Ty —Tho. (D

This factorisation is illustrated graphically in Figure 1(a). However, an equally valid linear factorisation would be

ATy T —Tor

ATy, = To1 —Too, ()

and in a non-linear system this would in general give a different answer to Equation 1. In this sense, the linear factorisation
method is not ‘unique’. However, it is ‘complete’ in the sense that the individual factors sum to the total change, AT exactly, i.e.
AT+ ATy =Ty, —Tyo. Considering the linear factorisation as a ‘path’ starting at T and ending at 774, it is also ‘symmetric’,

in that if we instead started from 7%; we would retrieve the same numerical values for the two linear factorisations (differing

just by a minus sign for the numerical value of each factor). It is also ‘pure’ in that it does not need additional interaction terms
see Section 2.2 and Section 2.3) in order to make it complete.

2.2 The Stein and Alpert (1993) factorisation

Stein and Alpert (1993) proposed an alternative factorisation method, illustrated in Figure 1(b). In this, for the EGM-Pliocene
case, all four possible simulations are carried out, and the factorisation performed relative to the preindustrial-pre-industrial
case (Tpo) for all variables. The non-linear terms are then all grouped together in a-term-which-is-named-an interaction term
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Figure 2. Simulations and linear factorisations in an /N = 3 factorisation. Edges that represent changes in CO2 are in red, changes in ice are

in blue, and edges in vegetation are in green. The paths associated with all three possible linear factorisations are shown with dotted lines.

sometimes called the ‘synergy’), .S:

ATy = Tio—Too
ATy, = To1—Too
S = Ti1—To—"To1+Too. 3)

In contrast to the linear factorisation, the Stein and Alpert (1993) factorisation is unique. It is also complete because AT} +
AT+ 8 =Ty —Tyo (in fact, S is defined such that the factoristion is complete). However;-As a result of the interaction term,
S, itis not ‘pure’. In addition, it is not symmetric; if we instead performed the factorisation relative to 7, we would in general

obtain a different numerical value of the factorisation (i.e. AT} = Tp1 — T11).
2.3 The Lunt et al (2012) factorisation

Lunt et al. (2012) proposed another factorisation, in which the factorisation for a particular variable is defined as the mean of the
difference between each pair of simulations that differ by just that variable. This is illustrated in Figure 1(c); the factorisation

of ice is represented by the mean of the two blue lines and the factorisation of COs is represented by the mean of the two red

lines:
1
AT = 5{(Tio = Too) + (11 = Ton)}
1
ATy, = 5{(T01—T00)+(T11—T10)}~ @

The N = 2 factorisation in Equation 4 is unique, complete, and-symmetriesymmetric, and pure. It is worth noting that Equa-
tion 4 can be interpreted in multiple ways — either (i) as described above, the factorisation averages all the possible pairs of
simulations that differ solely by a change in that variable, i.e. for a particular variable it is the mean of either the horizontal or
vertical edges of the square in Figure 1(c); or (ii) it is the average of the two possible linear factorisations in Equations 1 and
2; or (iii) it is the average of the two possible Stein and Alpert (1993) factorisations obtained by swapping the EGM-Pliocene
and pre-industrial (in which case the syrergy-interaction terms cancel); or (iv) it is the Stein and Alpert (1993) factorisation but
with the synergy-interaction term, S, shared equally between the two factors.

In extending to N = 4 variables, Lunt et al. (2012) assumed that the first of these interpretations would still hold for any
number of variables. However, consider the [N = 3 case illustrated in Figure 2, in which we have added vegetation as a third

variable to contribute to EGM-eoolingPliocene warming. Averaging the edges (interpretation (i) above) would result in a
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factorisation:

1
AT = 1 {(Tr00 — Tooo) + (T110 — To10) + (Tr01 — Too1) + (Th11 — To11)}
1
AT, = 1 {(To10 — Tooo) + (Th10 — Thoo) + (To11 — Too1) + (Th11 — Tho1) }
1
ATy = 1 {(Too1 — Tooo) + (Tho1 — Thoo) + (To11 — To10) + (Th11 — Th1o0) } )

Although this is uniqueand-symmetrier, symmetric, and pure, it is not complete, because AT + ATy + AT4 # T111 — Toootthis
is-tmmediately-. This is apparent by considering the T, term;fer-which-terms; the three lines in Equation 5 each include a

term equal to 17711, which sum to %Tnl, whereas they are required to sum to 7717 for a complete factorisation). As such,
an additional synergy-term;-Sinteraction term, in the sense of S in Equation 3, would be required for the factorisation to be

complete in N = 3 dimensions —(in which case it would no longer be pure). Note that the Lunt et al. (2012) factorisation is
complete for N = 2 without such an interaction term, but this is a case specific to N = 2 as a result of cancellation of terms in
Eguation 4,

2.4 Summary of previous factorisations

As shown above, neither the linear, or the Stein and Alpert (1993), or the Lunt et al. (2012) factorisation methods possess
all three-four properties of uniqueness, symmetry, purity, and completeness in /N > 2 dimensions. These properties are often
desirable in a factorisation, because any factorisation that lacks one of these properties is less easy to interpret. For example,

for the EGM-Pliocene example above, uniqueness means that we can have a single answer to the question “why is the EGM

colder-than-the-preindustriatPliocene warmer than the pre-industrial”. Symmetry means that we obtain the same answer to the
question “why is the EGM-colder-than-the-preindustrialPliocene warmer than the pre-industrial” as to the question “why is
the pre-industrial warmer-than-the--GMcolder than the Pliocene”. Completeness means that the answer to the question “how
much warmer is the Pliocene than the pre-industrial” is equal to the sum of the individual factors (plus an interaction term if
one exists). “Purity” means that we can answer the question ““‘why is the EGM-eelderPliocene warmer than the pre-industrial”
” by referring solely to contributions from our fundamental factors COs, ice, and vegetation, i.e. without including additional
synergistie-interaction terms that are not attributed to a single factor. These synergistie-interaction terms are important and

interesting, but there are cases where it can be useful or essential to only include attributable terms in the factorisation.

3 Extensions to the previous factorisations

Here we discuss possible extensions to the three previous factorisations discussed above, that are unique, symmetric, pure, and

complete in N dimensions.
3.1 Extension to the linear factorisation: The linear-sum factorisation

The linear-sum factorisation arises from a generalisation to /N > 2 dimensions of the second interpretation of Equation 4; i.e.

it arises from averaging all the possible linear factorisations. This will result in a complete and pure factorisation because each
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individual linear factorisation is itself complete and pure. For three dimensions, this is illustrated by the dotted lines in Figure
2.

Each possible linear factorisation can be represented as a non-returning ‘path’ from the vertex 7o to the opposite vertex
T111, traversing edges along the way (dotted lines in Figure 2). When considering the sum of all possible paths, some edges are
traversed more than others. In general, those edges near the initial or final vertices are traversed more times than edges that are
further away from these vertices. As such, when we average the possible linear factorisations, different edges (corresponding
to different terms in the factorisation) will have different weightings. This is in contrast to Equation 5 where each term (i.e.
edge of the cube) has the same weighting. For three dimensions, Figure 2 shows that the 6 edges adjacent to the initial and final

vertex are traversed twice, whereas the 6 other edges are traversed only once. Therefore, the factorisation is :

1
ATy = 6 {2(T100 — Tooo) + (T110 — To10) + (Tho1 — Too1) + 2(Th11 — To11) }
1
AT, = 6 {2(To10 — Tooo) + (T110 — Thoo) + (Tor1 — Toor) + 2(Th11 — Tio1) }
1
AT; = 5 {2(Too1 — Tooo) + (Tr01 — Tho0) + (To11 — Toro) + 2(Th11 — T110) } - (6)

This factorisation is complete (AT} + AT, + ATs =Ty11 — Tooo), unique, and-symmetriesymmetric, and pure.

To generalise to N dimensions, consider an N-dimensional cube, which has a total of 2%V vertices and N x
2N —1

2N -1 edges.

There are edges in each dimension. There are N! paths from the initial vertex of the cube to the final opposite vertex,
each of which consists of a traverse along /N edges. Therefore, in each dimension there are a total of N! edges traversed for all
paths combined.

As for the 3-dimensional case above, let us label each vertex, V, of this N-dimensional cube as V..., where each a; is
either O or 1. A value a; = 0 represents the first value for variable ¢, and a; = 1 represents the second value for variable <. Each
vertex is also associated with a system value, denoted 7y, ..., (see Figure 2 for the case NV = 3).

All factorisations consist of partitioning the total change, AT = T...; — Tj...q between N factors. Each factor is associated
with a dimension, ¢, in the N-dimensional cube. The factorisation for dimension 7 is AT;.

For the linear-sum factorisation, all paths that we consider start at the origin vertex, 0---0, and end at the opposite vertex
1---1, and are made up of a series of edges. For all edges on the N-dimensional cube, let us define X as the set of all possible
starting vertices, for a given N. For example, for N = 3, X = {000,001,010,011,100,101,110}. Let us define X; as the set
of all possible starting vertices for an edge that is oriented in the ith dimension, i.e. all those vertices that have a O in the
ith subscript. For example, for N = 3 and ¢ = 2, X» = {000,001, 100,101}. Let us define Y; as the set of all possible ending
vertices for an edge that is oriented in the ith dimension, so that Y; is related to X; by changing the ¢th subscript of each
element from 0 to 1. For example, for N =3 and i = 2, Y2 = {010,011,110,111}. Order X; and Y; so that their elements
correspond. Then we write X f to indicate the jth element of X, and Yij as indicating the jth element of Y;. For example, for

the X» defined above, X3 = 100.
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The Lunt et al. (2012) factorisation averages along each edge oriented in dimension ¢:

2N—1
1
AT = s 3 (T =) ¢
j=1

For the linear-sum factorisation, we instead carry out a weighted average, with the weight for each edge in dimension ¢ given
by how many times it is traversed in all N! paths. Consider all the paths that traverse an edge which starts at a vertex defined
by k subscripts of ‘1’ and N — k subscripts of ‘0’. There are k! possible paths to the start of this edge, and (N — k — 1)! paths
from the end of this edge to the final corner (defined by N subscripts of ‘1°). Therefore, there are k! x (N — k — 1)! paths that

use this edge. As such, we can write the linear-sum factorisation as:
1 2N71
AT = > {kf!(N—l—kf)!(TYij—TXg)}, ®)
et

where kf is the number of subscripts of ‘1" in X Z .

For example, for N =4 and ¢ = 1, we have N!= 24 edges traversed in this dimension, and gN-1
X1 ={0000,0001,0010,0100,0011,0101,0110,0111}, and Y7 = {1000,1001,1010,1100,1011,1101,1110,1111}. For those
edges with a starting subscript with k£ = 0 subscripts of ‘1’ (i.e. 0000), the weighting k! (N —1—k)!=0! (4 —1—0)!= 6. For

those edges with a starting subscript with & =1 subscripts of ‘1’ (i.e. 0001,0010,0100), the weighting k! (N —1—k)!=

= 8 edges.

1! (4 — 1 —1)!= 2. For those edges with a starting subscript with k = 2 subscripts of ‘1’ (i.e. 0011,0101,0110), the weighting
EU(N —1—k)!=2!(4—1—2)!=2. For those edges with a starting subscript with k& = 3 subscripts of ‘1’ (i.e. 0111), the
weighting k! (N —1 —k)!=3! (4 — 1 — 3)!= 6. Therefore, for N =4 and i = 1, we have:

1
ATl = ﬁ {G(TIOOO — TO()()()) + 2(T1001 — T()()()l) + 2(T1010 - TOOIO) + 2(T1100 - T0100)+
2(Tho11 — Too11) +2(Th101 — Tor01) + 2(Th110 — To110) + 6(Th111 — To111) }- 9)

3.2 Extension to the Stein and Alpert (1993) factorisation: the shared-interactions factorisation

As stated in Section 2.3, the Lunt et al. (2012) factorisation for /N = 2 can be interpreted as being identical to the Stein and Alpert
(1993) factorisation but with the synergy-interaction term shared between the two factors (thereby removing the interaction
term, resulting in a pure factorisation). Here we explore what happens when this interpretation is generalised to N > 2 di-
mensions. For consistency, we use the same notation as (Stein-and-Adpert; 1993)Stein and Alpert (1993). In their notation, fi
represents the difference between a simulation in which only factor ¢ is modified with a simulation in which no factors are
modified, and f, jk... TEpresents interaction terms between the different factors. For example, for our original N = 2 example
illustrated in Figure 1 and given in Equation 3, AT} = fl, A%%fv{év%vfg, and S = fu.

For our EGM-Pliocene example for N = 3, flg is the interaction term-(i-e—the-synergy)-between factors 1 and 2 (CO- and

ice), f13 is the interaction term-between factors 1 and 3 (CO, and vegetation), f23 is the interaction term-between factors 2 and
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Figure 3. (a) Visual representation of the shared-interaction factorisation for N = 3, as given by Equation 10. The straight dotted lines
represent the sharing of the interactions according to Equation 11. (b) Visual representation of the shared-interaction factorisation for N = 4.

The straight dotted lines represent the sharing of the interactions according to Equation 13.

3 (ice and vegetation), and f123 is the interaction term-between all three factors. In this case, Stein and Alpert (1993) give that

AT = fi+fot fs+ fra+ fis+ fas + fros
fi = Tioo—Tooo
fo = Toio—Tooo
f3 Too1 —Tooo
fiz = Tio— (Tioo + To10) + Tooo
fis = Tion — (Tio0 + Toor) + Tooo
fos = Tour — (Too + Toor) + Tooo
fizs = T — (Tiio + Tio1 + To11) + (Troo + Toto + Too1) — Tooo- (10)

As discussed in Section 2.2, this factorisation is not symmetric or unique (e.g. we could define fl =To11 —T111) Tanditis
only-or pure, but it is complete if we include all the interaction terms, which are not attributed to any particular factor. By
extending the interpretation of shared-synergy-the shared interaction term in 2 dimensions discussed in Section 2.3, we can
choose to share the interaction terms equally between their contributing factors, an approach applied by Schmidt et al. (2010)
(although they carried out a partialfractional factorisation in which not all combinations of all variables were included). This
results in a factorisation that is complete and pure (because we are just re-partitioning the interaction terms). It turns out that it

is also symmetric. For example for COq,
A~ 1 14 1.
ATy = fi+zfiz+ 5 i3+ 5 123 (11)
2 2 3
This factorisation for N = 3 is represented visually in Figure 3(a). Equations 10 and 11 give that, for COs,
1
ATy = G {2(T100 — Tooo) + (T110 — To10) + (T101 — Toor) + 2(T111 — To11) } - (12)

This is identical to the equivalent term in Equation 6, indicating that the shared-interaction and linear-sum interpretations are
identical for N = 3, and that therefore for IV = 3 the shared-interaction factorisation is unique, symmetric, pure, and complete.
Stein and Alpert (1993) give the generalisation of their factorisation to NN factors (their Equations 11-16). For N =4, the

interaction terms are shared so that, for example for COs,
PO N A 1, . A A 1.
ATy = fi+ §(f12 + fi3+ f14) + g(f123 + fi2a + fiza) + Zf1234~
(13)

This factorisation for N = 4 is represented visually in Figure 3(b). Again, for N = 4 this is the-same-as-the-identical to the

linear-sum interpretation (Equation 9). We conjecture that for any N these two interpretations will give identical results.
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3.3 Extension to the Lunt et al (2012) factorisation: The sealed-total-scaled-residual factorisation

In the sealed-total-scaled-residual factorisation, the Lunt et al. (2012) factorisation is modified so that it is complete (and

remains pure). This is achieved by taking the total residual term required for completenesstthe—synergys-S-in-the-sense-of
(Steinand-Alpert; 1993));-, and sharing this between the factors in proportion to the sign-and-magnitude of their Lunt et al.
(2012) factorisation. For the N = 3 example of the EGMPliocene, we have that the synergy;-Sresidual term, R, is defined such
that

AT{+AT£+AT§+§B:T111 —Tooo, (14)

where the AT are defined in Equation 5. We then share the-synergy-this residual proportionally across the three factors, such

that

ATy = AT+ 5 +SAA1€{+ ATy AT{:IHAATZT/LMTQ
AT = AL+ 3 +SAA7§2/+ ATéAﬂﬁ?éﬁléﬂéi
ATy = AT{AT{T EZ}Q/T O+OOAT;§

ATy = ATy

ATy = AT; AT{TEZ_T;F 3?0AT§'

HS—SRHOWStia S—TactortSatron—<€an—arSo»o Rtetp

of-the-factorsequals Fr—Fygo—In N dimensions, this
Tl.ulfTo..Ao R|ATZ/‘

AT, = AT, “2L . (16)
L OLIAT] 3 |ATY
where AT/ is defined in Equation 7—, and_
N
R=Ty.1—Thp.o—y AT/ (17)
j=1
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For example, for N =4 and ¢ = 1 we have:

1
AT] = 3 {(T1000 — To000) + (T1001 — Tooo1) + (Tro10 — Too10) + (1100 — To100)+
(Tro11 — Too11) + (Th101 — To101) + (Th110 — Tor10) + (Thi11 — Toinn) }

R = Tun - Tom - (AT +ATL+ AT{ 4 AT)
T — T AT}
AT, = ar— T =Tomo RIATY "

h AT/ + ATS + AT} + AT’+ | ATY|+| AT} |+ AT+ |AT]|’

and similarly for AT}, AT}, and AT).

4 Implications for previous published work

Here we discuss three examples of papers in which the Lunt et al. (2012) factorisation has been used. For each, we show how

using our factorisations would affect the results in that paper.
4.1 Implications for Lunt et al (2012)

Lunt et al. (2012) presented a factorisation of global mean temperature change in the Pliocene (3-million—years-ago-the-mest
tab-into four variables: CO5, orography, ice, and vegeta-
tion. As described in Section 2.3, in extending to N = 4 variables, the Lunt et al. (2012) factorisation is uniqueand-symmetrie;
. symmetric, and pure, but not complete. Using their notation, their factorisation for the CO5 variable is (equivalent to Equation

9 in their paper):
1
dTéOz = g{(Tc - T) + (Toc - To) + (Tic - Tz) + (Tvc - Tv) +
(Tocv - Tov) + (Toci - Toi) + (Tciv - ,Tw) + (Tociv - Toiv)}~ (19)

The equivalent linear-sum/shared-interaction factorisation is given by Equation 9, which in the notation of Lunt et al. (2012)

is:

1
dTco, = 5r{6(T—T)+2(Toc—To) +2(Tic = T)) +2(Toe— Tu) +
2(Tocv - Tov) + 2(Toci - Toi) + Q(Tciv - w) + 6( ociv — Toiv)}a (20)

and similarly for the other three variables.
The equivalent sealed-total-scaled-residual factorisation is given by Equation 18, which in the notation of Lunt et al. (2012)

is:

B = Do 2T (AT 00ntdTrog F ATice + dTocy)
Toein —T R|dT},|
dT = dT} oy 21
00 = OO o Ty 0T+ 0Ty W, AT, o AT THAT o

10



where dT},, is given in Equation 19; and similarly for the other three variables.
In Luntet al. (2012), although Equation 19 (Equation 9 in their paper) was presented, the four variables were actually
factorised by two N = 2 factorisations for all the analysis in that paper (Equation 13 in their paper). Because for N =2
270 dimensions the Lunt et al. (2012), linear-sum/shared-interaction, and sealed-total-scaled-residual factorisations are identical,
the actual results related to Pliocene temperature change presented in Lunt et al. (2012) would not be affected by using our

proposed new factorisations.
4.2 TImplications for Haywood et al (2016)

Haywood et al. (2016), in the context of the experimental design for model simulations of the Pliocene in the PlioMIP project,

275 presented a 3-variable factorisation of Pliocene warming into components due to COs, topography, and ice, based on the
Lunt et al. (2012) factorisation (presented in their Section 3.2).

An alternative, using the linear-sum/shared-interaction factorisation that is complete, is obtained from Equation 6, which in

their notation is, for CO2 (and analogously for the other two components):

1
dTeo, = ¢ {2B™ = E*)+ (B0 — Eo™) + (Ei" — Ei*™) +2(Eoi"™ — Eoi™™)}

280 (22)

Another alternative, using the seated-totat-scaled-residual factorisation that is complete, is obtained from Egtation24Equations
14 and 15, which in their notation is, for CO; (and analogously for the other two components):

1

dTéOQ _ Z {<E4OO _ EQSO) =+ (EO400 _ EOQSO) + (EZ'400 _ EiQSO) + (E0i400 _ EOZ-ZSO)}
B = Boil® - E°7 - (dT"co, +dT5, +dT},,)
Eoi 5400 E280 R|dTéO |
285 dTpo, — dT! 2 . (23)
Teor = 0Ty, T, +TL, T T 11T

4.3 Implications for Chandan and Peltier (2018)

Chandan and Peltier (2018) applied the /N = 3 factorisation of Lunt et al. (2012) (Equation 5), as also given by Haywood et al.
(2016) (first line of Equation 23), to their suite of Pliocene simulations. The factorisation was applied to each gridcell in the
model, resulting in 192 x 288 = 55,296 factorisations over the globe. The two-dimensional mid-Pliocene minus preindustrial
290 temperature-anomabypre-industrial temperature anomaly, reproduced here in Figure 4(a), was factorised into contributions
originating from a change in COs, orography and ice sheets;and-isreproduced-here-inFigure-4(a). Figure 4(b—d) shows the

results of the original factorisation and is identical to those presented in Figure 7 of Chandan and Peltier (2018). Figure 4(f-
h) shows the factorisation of the same anomaly using the linear-sum/shared-interaction method (Equations 22) while Figure
4(j—m) shows the results of employing the sealed-total-scaled-residual method (Equations 23). The first thing to note is that

295 the three factorisations all have very similar results; visually it is difficult to tell them apart on a regional scale, and they result
in global means for each factor that differ by less than 10%. This is because, in this example, the non-linearities (i.e. the
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300

305

310

315

Figure 4. Comparison of various factorisation methods. (a) The mid-Pliocene minus preindustrial—pre-industrial anomaly medeled
(Th11 = Tooo) modelled by Chandan and Peltier (2017). (b-m) The top three rows present factorisations of the total anomaly into contri-
butions arising from changes to CO» (upper, (b,f,j)), orography (middle, (c,g,k)) and ice sheets (lower, (d,h,l)), while the bottom row shows
the residual required for completeness (“synergy ) Frrr—Tooo—(AFcog+AT ooy AT ree)e.i.m). Note that the residual term, R, for
panel (e) is given by Equation 14, and is equal to Tiy1 — Tooo — (ATG o, + AT hreg + AT, ). The first column (b,c,d,e) shows results us-

ing the methodology of Lunt et al. (2012) and is identical to results reported in Figure 7 of Chandan and Peltier (2018). The second column
(f,g,h,i) shows results from the linear-sum/shared-interaction factorisation (Eg—Equation 6) and the third column (j,k,I,m) shows results of
the %e&leé—fe%a%sg@g@\ggsvlgg/& factorisation (Eq—%41§gy\g\t}gg\/l\§) The pmlee&ele%m%he—f&eteﬂ%edfe%ﬂlﬂ—%hemﬁhﬁtgh&me%%e}umﬁ

ating-values for-at the three-factors-dueto

the-very-smalth-values-top-right of deneminator-term-appearing-each panel give the global mean, in Equnits of °C 24-at-these-locations:

interaction terms) are relatively small. As such, the main conclusions of the Chandan and Peltier (2018) study are robust to a

change in factorisation methodology.
The bottom row in Figure 4 shows, for the case of each method, the residual difference between the sum of all the factors

and the total change (i.e. the synergy-interaction/synergy terms in the sense of Stein and Alpert (1993)). The Lunt et al. (2012)
method yields spatially coherent structures in the residual whose magnitude can be comparable to those of the factorized
components, whereas the residuals for the other two methods are zero by definition, because they are eemplete-pure (in the
Figures they are very close to zero — essentially numerical noise due to round-off error). The non-linearity (indicated by the
magnitude of the synergy-residual term associated with the Lunt et al. (2012) factorisation) is greatest in the North Atlantic

(Figure 4d), and is likely associated with changes in the sea-ice margin that are non-linearly influenced by all three boundary

conditions (COs, orography, and ice sheets).

also explored using a version of the scaled-residual factorisation in which the residual terms was shared, not by the absolute
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320 magnitude of the individual factors, but by their relative values, so that Equation 15 became:

S|ATY| RAT]
AT{HATIHAT] AT{ 4 ATy + AT

AT, = AT+

o v b

325 Jargeat a small number of gridcells this produced highly divergent results, when the denominator in Equation 24 became ve

close to zero (see Supp Info, Figure 1).

5 Conclusions

In this paper, we have reviewed three previously-proposed factorisations, and extended them to produce factorisations that are
unique, symmetric, pure, and complete. We have presented them for 3 dimensions (i.e. 3 factors), and generalised to N dimen-
330 sions. The first factorisation, ‘linear-sum’ (Equation 8), averages all the possible linear factorisations on the N-dimensional
cube. The second factorisation, ‘shared-interaction’, shares the interaction terms between each corresponding factor equally.
The linear-sum and shared-interaction factorisations are shown to reduce to be identical for N < 4, and we conjecture that this
holds for any IN. The third factorisation, ‘seated-totalscaled-residual’ (Equation 16), averages-al-the-contributions-assoctated

e-and-scales-them-by-the-total-change-inthe property-being factorisedtakes the residual

335 term required for completeness in the Lunt et al. (2012) factorisation, and shares it between the factors, in proportion to their

magnitude. We have presented results of these extended factorisations in the context of previous work carried out by Lunt et al.
(2012), Haywood et al. (2016), and Chandan and Peltier (2018) in the context of Pliocene climate change. Fhisreveals-thatthe

h tha adoacofthe A-dimencion

and ore-canlead-to-anomalousresults-thatare-hard-to+ pret: ore-we-We

recommend the use of the linear-sum/shared-interaction factorisation or the scaled-residual factorisation for cases where the

340 properties of uniqueness, symmetry, purity, and completeness, and-boundedness-are desirable. In some cases, the interaction

terms may, of course, be of great interest, and in such cases a non-pure factorisation (e.g2. Stein and Alpert, 1993) can be ve

informative. Also, it is worth noting that if the interaction terms are zero, i.e. we have a completely linear system, then all the
factorisation methods reduce to be identical. The properties of all the factorisations discussed in this paper are shown in Table

?? for 2,3,4, and N dimensions.
345 The methods that we present here will be of particular use in the analysis of systems with multiple variables, and have

application beyond solely climate science.

Code and data availability. The model fields underlying Figure 4 are available from the University of Toronto Dataverse in netcdf format:
https://doi.org/10.5683/SP2/QGKSBO . The code used to calculate the factorisations illustrated in Figure 4 is available in the Supplement, in

both python and ncl. The ncl version is also available on github, here: https://github.com/danlunt1976/factor_separation/blob/master/factor_separation.ncl
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