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Abstract. Factorisation
:::

(also
::::::

known
:::

as
::::::

‘factor
::::::::::

separation’) is widely used in the analysis of numerical simulations. It allows

changes in properties of a system to be attributed to changes in multiple variables associated with that system. There are many

possible factorisation methods; here we discuss three previously-proposed factorisations that have been applied in the field of

climate modelling: the linear factorisation, the Stein and Alpert (1993) factorisation, and the Lunt et al. (2012) factorisation. We

show that, when more than two variables are being considered, none of these three methods possess all three
:::

four
:

properties5

of ‘uniqueness’, ‘symmetry’, and ‘completeness’,
::::

and
:::::::

‘purity’. Here, we extend each of these factorisations so that they do

possess these properties for any number of variables, resulting in three factorisations – the ‘linear-sum’ factorisation, the

‘shared-interaction’ factorisation, and the ‘scaled-total
::::::::::::

scaled-residual’ factorisation. We show that the linear-sum factorisation

and the shared-interaction factorisation reduce to be identical
:

in
:::

the
::::

case
:::

of
::::

four
::

or
:::::

fewer
:::::::::

variables,
:::

and
:::

we
:::::::::

conjecture
::::

that

:::

this
:::::

holds
:::

for
:::

any
:::::::

number
::

of
:::::::

variables. We present the results of the factorisations in the context of
::::

three
::::

past
:

studies that used10

the previously-proposed factorisations. This reveals that only the linear-sum/shared-interaction factorisation possesses a fourth

property – ‘boundedness’, and as such we recommend the use of this factorisation in applications for which these properties

are desirable.

Copyright statement. TEXT

1 Introduction15

Factorisation
::::

(also
::::::

known
:::

as
::::::

‘factor
::::::::::

separation’)
:

consists of attributing the total change of some property of a system to

multiple components, each component being associated with a change to an internal variable of the system.
::::::

Multiple
:::::

tests

:::

can
::

be
::::::

carried
::::

out
::

to
::::::

inform
:::

this
:::::::::::

factorisation,
::::

with
:::::

each
:::

test
:::

(or
:::::::::

simulation
::

in
:::

the
::::

case
:::

of
::::::::

numerical
:::::::::::

applications)
:::::::::

consisting

::

of
:::::::

different
:::::::::::

combinations
:::

of
::::::::

variables.
:

Factorisation experiments are used in many disciplines, with early applications being

1



in agricultural field experiments (Fisher, 1926), and widespread application in industrial and engineering design (Box et al.,20

2005) .
:::

and
:::::

other
:::::

fields
::::

such
::

as
::::::::

medicine
::::::::::::::::::::::

(e.g. Smucker et al., 2019)
:

.
:::

The
:::::::::::

experiments
:::

that
::::::::

underpin
::::

such
:::::::

analysis
:::

are
::::::

called

:::::::

‘factorial
::::::::::::

experiments’.
::

In
:::::

some
:::::

cases,
:::

in
::::::::

particular
:::::

when
:::::

there
:::

are
:

a
:::::

large
:::::::

number
::

of
::::::::

variables,
::::

not
::

all
::::::::::::

combinations
::

of
:::

all

:::::::

variables
:::

are
:::::

tested
:::::::

(usually
::::

due
::

to
:::::::

practical
::

or
::::::::::::

computational
::::::::::

limitations),
::::

and
::::

some
::::::::

previous
::::

work
:::

has
:::::::

focused
:::

on
:::::::::

optimising

::

the
:::::::::::

experimental
::::::

design
::

of
::::

such
:::::::::

‘fractional
::::::::

factorial’
::::::::::

experiments
::::::::::::::::::::::

(e.g. Domagni et al., 2021)
:

.
:::::::::::

Furthermore,
::::

each
:::

test
:::::

often
:::

has

::

an
:::::::::

associated
::::

error
::

or
::::::::::

uncertainty,
::::

and
::::

may
::

be
:::::::

carried
:::

out
:::::::

multiple
:::::

times.
::::::::

Analysis
::

of
:::::

such
:::::::::::

experimental
::::::

designs
::

is
::::::::

typically25

::::::

carried
:::

out
:::::

using
:::::::

analysis
::

of
:::::::

variance
:::::::::

(ANOVA),
::

in
::::::

which
:::

the
::::

total
::::::

change
::

is
::::::::::

represented
::

as
::

a
:::::

model
:::::::::

consisting
::

of
:

a
::::::

series
::

of

:::::

‘main
:::::::

effects’,
:::

one
:::

for
::::

each
::::::

factor,
:::

and
::::::::::

‘interaction
::::::

effects’
:::::::

between
:::

the
::::::

factors
:::::::::::::::::

(Montgomery, 2013)
:

.

In this paper, we focus on factorisation of numerical model simulations of the climate system; in this case, the factorisation

typically consists of attributing a fundamental property of the climate system to multiple internal model parameters and/or

boundary conditions(Stein and Alpert, 1993; Lunt et al., 2012).
:

.
::

In
::::::::

common
::::

with
:::::::::

previously
::::::::

proposed
::::::::::

factorisation
::::::::

methods30

::

in
:::

this
::::

field
::::::::::::::::::::::::::::::::::

(Stein and Alpert, 1993; Lunt et al., 2012)
:

,
::

we
:::::

limit
:::

our
:::::::

analysis
::

to
::

the
::::

case
::::::

where
::::

there
:::

are
:::

two
:::::::

possible
::::::

values
:::

for

::::

each
:::::::

variable,
:::

and
::::::

where
::

all
::::::::::::

combinations
::

of
::

all
::::::::

variables
::::

have
:::::

been
:::::::::

simulated;
::::

such
::

an
:::::::::::

experimental
::::::

design
::

is
:::::

called
:

a
:::

2k
:::

(or

::::::::

two-level)
:::

full
::::::::

factorial
:::::::::

experiment
:::::::::::::::::

(Montgomery, 2013)
:

.
::::

Also
::

in
::::::::

common
::::

with
::::

these
:::::::

studies,
:::

we
::::::

assume
::::

that
::::

there
::

is
::::

zero
:::

(or

:::::::::

negligible)
:::::::::

uncertainty
::

in
::::

each
::::::::::

simulation,
:::::

which
::

is
::::::::

consistent
::::

with
:::

the
:::::::::::

deterministic
::::::

nature
::

of
::::

most
:::::::

climate
::::::

models.
:

Factorisa-

tion has been used
::::::

applied extensively in the climate literature; some key examples include Claussen et al. (2001), Hogrefe et al.35

(2004), van den Heever et al. (2006), and Schmidt et al. (2010);
:::

see
::::

also
:::

the
:::::::

collected
::::::

studies
::

in
::::::::::::::::::::::::::

Alpert and Sholokhman (2011)

. The factorisation
::::::

method proposed by Stein and Alpert (1993) has
:::::::

currently
:

been cited more than 250
:::

280 times according to

Web of Science.

2 Previous factorisation methods

In order to introduce and discuss previous factorisation methods, we use an example case study from the field of climate science.40

We turn to the Last Glacial Maximum (LGM), 21
:::::::

Pliocene,
:::

∼3
::::::

million
:::::

years
:::

ago
:::::::::::::::::::::::::::::::::::::::::

(Haywood et al., 2016, 2020; Dowsett et al., 2016)

, 000 years ago , the most recent time that the Earth has experienced a large-scale ice age. The LGM was 4–6
::

of
:::::::::

prolonged

::::::

natural
:::::

global
:::::::

warmth
::::::

relative
:::

to
:::::::::::

pre-industrial
::::::::::::::::

(Burke et al., 2018)
:

.
::::

The
:::::::

Pliocene
::::::

oceans
:::::

were
::

on
:::::::

average
:::::

about
:::::::

2.5–3.5 ◦C

colder
:::::::

warmer than pre-industrial (Annan and Hargreaves, 2013; Snyder, 2016)
:::::::::::::::::::::

(McClymont et al., 2020); for this example, we

would like to know how much of this cooling
::::::

warmth was due to a decrease
::

an
:::::::

increase in atmospheric CO2 concentration and45

how much
:::

was due to the presence
:::::::

reduction
::

in
::::::

extent
:::

and
::::::

volume
:

of large ice sheets. In this case we would use a climate model

to carry out simulations with various combinations of high and low CO2 concentrations, and with and without
:::

two
::::::::

different

:::::::::::

configurations
:::

of ice sheets. In general there are interactions between the variables so that the contributions from them do not

add
::::

sum linearly.

It is worth at this stage introducing some notation. Here, we restrict ourselves to the case where there are two possible values50

for each variable, denoted ‘0’ and ‘1’; having more than two values increases the computational cost of a factorisation, and

can reduce the number of factors that can be assessed in a fixed computing budget. We name the fundamental property of the
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Figure 1. 3
:::::

Three different factorisation methods
::

of
:::::::::

temperature,
::

T ,
:

for 2
:::

two variables (CO2 and ice sheets). (a) Linear factorisation,

(b) Stein and Alpert (1993) factorisation, (c) Lunt et al. (2012) factorisation.
:::

The
::::::::::

temperature,
::

T
:::

can
::

be
::::::::

considered
::

as
::

a
:::::

surface
::

in
::

a
::::

third

::::::::

dimension
::::

sitting
:::::

above
:::

the
:::::::::::

2-dimensional
::::

plane
::

of
::::

CO2
:::

and
::

ice
::::::

sheets.
:

In
::::::::

Equations
:::

1,3,
:::

and
::

4,
::::::::::::

∆T1 =∆TCO2
:::

and
:::::::::::

∆T2 =∆Tice.

climate system that we are factorising as T . If there are N variables, then the results of all possible simulations can be uniquely

identified by T followed by N subscripts of either 0 or 1, with each subscript representing the value of a variable, with the

variables in some predefined order. For our LGM
:::::::

Pliocene example with two variables (N = 2), we have CO2 (variable 1) and55

ice (variable 2) contributing to a global mean temperature (T ); in this case there are 4 possible model simulations: a control

::::::::::::

(pre-industrial)
:

simulation with pre-industrial CO2 and pre-industrial ice (T00), a second simulation with LGM
:::::::

Pliocene CO2

and pre-industrial ice (T10), a third simulation with pre-industrial CO2 and LGM
:::::::

Pliocene ice (T01), and an LGM simulation

with LGM
:

a
:::::::

Pliocene
:::::::::

simulation
::::

with
::::::::

Pliocene CO2 and LGM
:::::::

Pliocene ice (T11) (see Figure 1a).

2.1 The linear factorisation60

The simplest factorisation that can be carried out is a linear one. For the LGM
:::::::

Pliocene
:

example with 2 factors, 3 simulations

are carried out in which variables are changed consecutively; for example, T00, T10, and T11. The factorisation of the total

change, ∆T , between contributions due to CO2 (∆T1) and ice (∆T2) would then be:

∆T1 = T10 −T00

∆T2 = T11 −T10. (1)65

This factorisation is illustrated graphically in Figure 1(a). However, an equally valid linear factorisation would be

∆T1 = T11 −T01

∆T2 = T01 −T00, (2)

and in a non-linear system this would in general give a different answer to Equation 1. In this sense, the linear factorisation

method is not ‘unique’. However, it is ‘complete’ in the sense that the individual factors sum to the total change, ∆T exactly, i.e.70

∆T1+∆T2 = T11−T00. Considering the linear factorisation as a ‘path’ starting at T00 and ending at T11, it is also ‘symmetric’,

in that if we instead started from T11 we would retrieve the same numerical values for the two linear factorisations (differing

just by a minus sign for the numerical value of each factor).
:

It
::

is
::::

also
:::::

‘pure’
::

in
:::

that
::

it
::::

does
:::

not
::::

need
:::::::::

additional
:::::::::

interaction
:::::

terms

:::

(see
:::::::

Section
:::

2.2
:::

and
:::::::

Section
:::

2.3)
::

in
:::::

order
::

to
:::::

make
::

it
::::::::

complete.

2.2 The Stein and Alpert (1993) factorisation75

Stein and Alpert (1993) proposed an alternative factorisation method, illustrated in Figure 1(b). In this, for the LGM
:::::::

Pliocene

case, all four possible simulations are carried out, and the factorisation performed relative to the preindustrial
:::::::::::

pre-industrial

case (T00) for all variables. The non-linear terms are then all grouped together in a term which is named
::

an
:::::::::

interaction
:::::

term

3



Figure 2. Simulations and linear factorisations in an N = 3 factorisation. Edges that represent changes in CO2 are in red, changes in ice are

in blue, and edges in vegetation are in green. The paths associated with all three possible linear factorisations are shown with dotted lines.

:::::::::

(sometimes
:::::

called
:::

the
:

‘synergy’), S:

∆T1 = T10 −T0080

∆T2 = T01 −T00

S = T11 −T10 −T01 +T00. (3)

In contrast to the linear factorisation, the Stein and Alpert (1993) factorisation is unique. It is also complete because ∆T1 +

∆T2+S = T11−T00 (in fact, S is defined such that the factoristion is complete). However,
:::

As
:

a
:::::

result
::

of
:::

the
:::::::::

interaction
:::::

term,

::

S, it is not
:::::

‘pure’.
::

In
::::::::

addition,
:

it
::

is
:::

not symmetric; if we instead performed the factorisation relative to T11, we would in general85

obtain a different numerical value of the factorisation (i.e. ∆T1 = T01 −T11).

2.3 The Lunt et al (2012) factorisation

Lunt et al. (2012) proposed another factorisation, in which the factorisation for a particular variable is defined as the mean of the

difference between each pair of simulations that differ by just that variable. This is illustrated in Figure 1(c); the factorisation

of ice is represented by the mean of the two blue lines and the factorisation of CO2 is represented by the mean of the two red90

lines:

∆T1 =
1

2
{(T10 −T00)+ (T11 −T01)}

∆T2 =
1

2
{(T01 −T00)+ (T11 −T10)} . (4)

The N = 2 factorisation in Equation 4 is unique, complete, and symmetric
:::::::::

symmetric,
::::

and
::::

pure. It is worth noting that Equa-

tion 4 can be interpreted in multiple ways – either (i) as described above, the factorisation averages all the possible pairs of95

simulations that differ solely by a change in that variable, i.e. for a particular variable it is the mean of either the horizontal or

vertical edges of the square in Figure 1(c); or (ii) it is the average of the two possible linear factorisations in Equations 1 and

2; or (iii) it is the average of the two possible Stein and Alpert (1993) factorisations obtained by swapping the LGM
:::::::

Pliocene

and pre-industrial (in which case the synergy
:::::::::

interaction terms cancel); or (iv) it is the Stein and Alpert (1993) factorisation but

with the synergy
::::::::

interaction
:

term, S, shared equally between the two factors.100

In extending to N = 4 variables, Lunt et al. (2012) assumed that the first of these interpretations would still hold for any

number of variables. However, consider the N = 3 case illustrated in Figure 2, in which we have added vegetation as a third

variable to contribute to LGM cooling
:::::::

Pliocene
::::::::

warming. Averaging the edges (interpretation (i) above) would result in a

4



factorisation:

∆T ′

1
=

1

4
{(T100 −T000)+ (T110 −T010)+ (T101 −T001)+ (T111 −T011)}105

∆T ′

2
=

1

4
{(T010 −T000)+ (T110 −T100)+ (T011 −T001)+ (T111 −T101)}

∆T ′

3
=

1

4
{(T001 −T000)+ (T101 −T100)+ (T011 −T010)+ (T111 −T110)} (5)

Although this is uniqueand symmetric,
:

,
:::::::::

symmetric,
:::

and
:::::

pure, it is not complete, because ∆T ′

1
+∆T ′

2
+∆T ′

3
6= T111−T000(this

is immediately .
::::

This
::

is
:

apparent by considering the T111 term, for which
:::::

terms;
:

the three lines in Equation 5
::::

each
::::::

include
::

a

::::

term
:::::

equal
::

to
::::::

1

4
T111,

:::::

which
:

sum to 3

4
T111, whereas they are required to sum to T111 for a complete factorisation). As such,110

an additional synergy term, S,
:::::::::

interaction
::::

term,
:

in the sense of
:

S
:::

in Equation 3, would be required for the factorisation to be

complete in N = 3 dimensions .
::

(in
::::::

which
::::

case
::

it
:::::

would
:::

no
::::::

longer
::

be
:::::

pure).
:::::

Note
::::

that
:::

the
:::::::::::::::

Lunt et al. (2012)
::::::::::

factorisation
::

is

:::::::

complete
:::

for
::::::

N = 2
:::::::

without
::::

such
::

an
:::::::::

interaction
:::::

term,
:::

but
:::

this
::

is
:

a
::::

case
:::::::

specific
::

to
::::::

N = 2
::

as
:

a
:::::

result
::

of
:::::::::::

cancellation
::

of
:::::

terms
::

in

:::::::

Equation
::

4.
:

2.4 Summary of previous factorisations115

As shown above, neither the linear, or the Stein and Alpert (1993), or the Lunt et al. (2012) factorisation methods possess

all three
::::

four properties of uniqueness, symmetry,
:::::

purity,
:

and completeness in N > 2 dimensions. These properties are often

desirable in a factorisation, because any factorisation that lacks one of these properties is less easy to interpret. For example,

for the LGM
:::::::

Pliocene example above, uniqueness means that we can have a single answer to the question “why is the LGM

colder than the preindustrial
::::::

Pliocene
:::::::

warmer
::::

than
:::

the
:::::::::::

pre-industrial”. Symmetry means that we obtain the same answer to the120

question “why is the LGM colder than the preindustrial
::::::

Pliocene
:::::::

warmer
::::

than
:::

the
::::::::::::

pre-industrial” as to the question “why is

the pre-industrial warmer than the LGM
:::::

colder
::::

than
:::

the
::::::::

Pliocene”. Completeness means that
::

the
::::::

answer
:::

to
:::

the
:::::::

question
:::::

“how

::::

much
:::::::

warmer
::

is
:::

the
:::::::

Pliocene
:::::

than
:::

the
::::::::::::

pre-industrial”
::

is
:::::

equal
::

to
:::

the
::::

sum
::

of
:::

the
:::::::::

individual
::::::

factors
::::

(plus
:::

an
:::::::::

interaction
::::

term
::

if

:::

one
::::::

exists).
:::::::

“Purity”
::::::

means
:::

that
:

we can answer the question “
:

“why is the LGM colder
:::::::

Pliocene
:::::::

warmer than the pre-industrial”

:

” by referring solely to contributions from our fundamental factors CO2, ice, and vegetation, i.e. without including additional125

synergistic
:::::::::

interaction
:

terms that are not attributed to a single factor. These synergistic
::::::::

interaction
:

terms are important and

interesting, but there are cases where it can be useful or essential to only include attributable terms in the factorisation.

3 Extensions to the previous factorisations

Here we discuss possible extensions to the three previous factorisations discussed above, that are unique, symmetric,
::::

pure,
:

and

complete in N dimensions.130

3.1 Extension to the linear factorisation: The linear-sum factorisation

The linear-sum factorisation arises from a generalisation to N > 2 dimensions of the second interpretation of Equation 4; i.e.

it arises from averaging all the possible linear factorisations. This will result in a complete
:::

and
::::

pure
:

factorisation because each

5



individual linear factorisation is itself complete
:::

and
::::

pure. For three dimensions, this is illustrated by the dotted lines in Figure

2.135

Each possible linear factorisation can be represented as a non-returning ‘path’ from the vertex T000 to the opposite vertex

T111, traversing edges along the way (dotted lines in Figure 2). When considering the sum of all possible paths, some edges are

traversed more than others. In general, those edges near the initial or final vertices are traversed more times than edges that are

further away from these vertices. As such, when we average the possible linear factorisations, different edges (corresponding

to different terms in the factorisation) will have different weightings. This is in contrast to Equation 5 where each term (i.e.140

edge of the cube) has the same weighting. For three dimensions, Figure 2 shows that the 6 edges adjacent to the initial and final

vertex are traversed twice, whereas the 6 other edges are traversed only once. Therefore, the factorisation is :

∆T1 =
1

6
{2(T100 −T000)+ (T110 −T010)+ (T101 −T001)+ 2(T111 −T011)}

∆T2 =
1

6
{2(T010 −T000)+ (T110 −T100)+ (T011 −T001)+ 2(T111 −T101)}

∆T3 =
1

6
{2(T001 −T000)+ (T101 −T100)+ (T011 −T010)+ 2(T111 −T110)} . (6)145

This factorisation is complete (∆T1 +∆T2 +∆T3 = T111 −T000), unique, and symmetric
:::::::::

symmetric,
::::

and
::::

pure.

To generalise to N dimensions, consider an N -dimensional cube, which has a total of 2N vertices and N × 2N−1 edges.

There are 2N−1 edges in each dimension. There are N ! paths from the initial vertex of the cube to the final opposite vertex,

each of which consists of a traverse along N edges. Therefore, in each dimension there are a total of N ! edges traversed for all

paths combined.150

As for the 3-dimensional case above, let us label each vertex, V , of this N -dimensional cube as Va1···aN
, where each ai is

either 0 or 1. A value ai = 0 represents the first value for variable i, and ai = 1 represents the second value for variable i. Each

vertex is also associated with a system value, denoted Ta1···aN
(see Figure 2 for the case N = 3).

All factorisations consist of partitioning the total change, ∆T = T1···1 −T0···0 between N factors. Each factor is associated

with a dimension, i, in the N -dimensional cube. The factorisation for dimension i is ∆Ti.155

For the linear-sum factorisation, all paths that we consider start at the origin vertex, 0 · · ·0, and end at the opposite vertex

1 · · ·1, and are made up of a series of edges. For all edges on the N -dimensional cube, let us define X as the set of all possible

starting vertices, for a given N . For example, for N = 3, X = {000,001,010,011,100,101,110}. Let us define Xi as the set

of all possible starting vertices for an edge that is oriented in the ith dimension, i.e. all those vertices that have a 0 in the

ith subscript. For example, for N = 3 and i= 2, X2 = {000,001,100,101}. Let us define Yi as the set of all possible ending160

vertices for an edge that is oriented in the ith dimension, so that Yi is related to Xi by changing the ith subscript of each

element from 0 to 1. For example, for N = 3 and i= 2, Y2 = {010,011,110,111}. Order Xi and Yi so that their elements

correspond. Then we write X
j
i to indicate the jth element of Xi, and Y

j
i as indicating the jth element of Yi. For example, for

the X2 defined above, X3

2
= 100.

6



The Lunt et al. (2012) factorisation averages along each edge oriented in dimension i:165

∆T ′

i =
1

2N−1

2
N−1

∑

j=1

(

T
Y

j

i

−T
X

j

i

)

(7)

For the linear-sum factorisation, we instead carry out a weighted average, with the weight for each edge in dimension i given

by how many times it is traversed in all N ! paths. Consider all the paths that traverse an edge which starts at a vertex defined

by k subscripts of ‘1’ and N − k subscripts of ‘0’. There are k! possible paths to the start of this edge, and (N − k− 1)! paths

from the end of this edge to the final corner (defined by N subscripts of ‘1’). Therefore, there are k!×(N − k− 1)! paths that170

use this edge. As such, we can write the linear-sum factorisation as:

∆Ti =
1

N !

2
N−1

∑

j=1

{

k
j
i ! (N − 1− k

j
i )! (TY

j

i
−T

X
j

i
)
}

, (8)

where k
j
i is the number of subscripts of ‘1’ in X

j
i .

For example, for N = 4 and i= 1, we have N != 24 edges traversed in this dimension, and 2N−1 = 8 edges.

X1 = {0000,0001,0010,0100,0011,0101,0110,0111}, and Y1 = {1000,1001,1010,1100,1011,1101,1110,1111}. For those175

edges with a starting subscript with k = 0 subscripts of ‘1’ (i.e. 0000), the weighting k! (N −1−k)!= 0! (4−1−0)!= 6. For

those edges with a starting subscript with k = 1 subscripts of ‘1’ (i.e. 0001,0010,0100), the weighting k! (N − 1− k)!=

1! (4− 1− 1)!= 2. For those edges with a starting subscript with k = 2 subscripts of ‘1’ (i.e. 0011,0101,0110), the weighting

k! (N − 1− k)!= 2! (4− 1− 2)!= 2. For those edges with a starting subscript with k = 3 subscripts of ‘1’ (i.e. 0111), the

weighting k! (N − 1− k)!= 3! (4− 1− 3)!= 6. Therefore, for N = 4 and i= 1, we have:180

∆T1 =
1

24
{6(T1000 −T0000)+ 2(T1001 −T0001)+ 2(T1010 −T0010)+ 2(T1100 −T0100)+

2(T1011 −T0011)+ 2(T1101 −T0101)+ 2(T1110 −T0110)+ 6(T1111 −T0111)} . (9)

3.2 Extension to the Stein and Alpert (1993) factorisation: the shared-interactions factorisation

As stated in Section 2.3, the Lunt et al. (2012) factorisation for N = 2 can be interpreted as being identical to the Stein and Alpert

(1993) factorisation but with the synergy
:::::::::

interaction term shared between the two factors
:::::::

(thereby
::::::::

removing
::::

the
:::::::::

interaction185

::::

term,
::::::::

resulting
::

in
::

a
::::

pure
:::::::::::

factorisation). Here we explore what happens when this interpretation is generalised to N > 2 di-

mensions. For consistency, we use the same notation as (Stein and Alpert, 1993)
:::::::::::::::::::

Stein and Alpert (1993). In their notation, f̂1

represents the difference between a simulation in which only factor i is modified with a simulation in which no factors are

modified, and f̂ijk··· represents interaction terms between the different factors. For example, for our original N = 2 example

illustrated in Figure 1 and given in Equation 3, ∆T1 ≡ f̂1, ∆T2 ≡ f̂3
::::::::

∆T2 ≡ f̂2, and S ≡ f̂12.190

For our LGM
::::::

Pliocene
:

example for N = 3, f̂12 is the interaction term (i.e. the synergy) between factors 1 and 2 (CO2 and

ice), f̂13 is the interaction term between factors 1 and 3 (CO2 and vegetation), f̂23 is the interaction term between factors 2 and

7



Figure 3. (a) Visual representation of the shared-interaction factorisation for N = 3, as given by Equation 10. The straight dotted lines

represent the sharing of the interactions according to Equation 11. (b) Visual representation of the shared-interaction factorisation for N = 4.

The straight dotted lines represent the sharing of the interactions according to Equation 13.

3 (ice and vegetation), and f̂123 is the interaction term between all three factors. In this case, Stein and Alpert (1993) give that

∆T = f̂1 + f̂2 + f̂3 + f̂12 + f̂13 + f̂23 + f̂123

f̂1 = T100 −T000195

f̂2 = T010 −T000

f̂3 = T001 −T000

f̂12 = T110 − (T100 +T010)+T000

f̂13 = T101 − (T100 +T001)+T000

f̂23 = T011 − (T010 +T001)+T000200

f̂123 = T111 − (T110 +T101 +T011)+ (T100 +T010 +T001)−T000. (10)

As discussed in Section 2.2, this factorisation is not symmetric or unique (e.g. we could define f̂1 = T011 −T111) , and it is

only
::

or
:::::

pure,
:::

but
::

it
::

is complete if we include all the interaction terms, which are not attributed to any particular factor. By

extending the interpretation of shared synergy
:::

the
:::::

shared
::::::::::

interaction
::::

term
:

in 2 dimensions discussed in Section 2.3, we can

choose to share the interaction terms equally between their contributing factors, an approach applied by Schmidt et al. (2010)205

(although they carried out a partial
::::::::

fractional
:

factorisation in which not all combinations of all variables were included). This

results in a factorisation that is complete
:::

and
::::

pure (because we are just re-partitioning the interaction terms). It turns out that it

is also symmetric. For example for CO2,

∆T1 = f̂1 +
1

2
f̂12 +

1

2
f̂13 +

1

3
f̂123. (11)

This factorisation for N = 3 is represented visually in Figure 3(a). Equations 10 and 11 give that, for CO2,210

∆T1 =
1

6
{2(T100 −T000)+ (T110 −T010)+ (T101 −T001)+ 2(T111 −T011)} . (12)

This is identical to the equivalent term in Equation 6, indicating that the shared-interaction and linear-sum interpretations are

identical for N = 3, and that therefore for N = 3 the shared-interaction factorisation is unique, symmetric,
::::

pure,
:

and complete.

Stein and Alpert (1993) give the generalisation of their factorisation to N factors (their Equations 11-16). For N = 4, the

interaction terms are shared so that, for example for CO2,215

∆T1 = f̂1 +
1

2
(f̂12 + f̂13 + f̂14)+

1

3
(f̂123 + f̂124 + f̂134)+

1

4
f̂1234.

(13)

This factorisation for N = 4 is represented visually in Figure 3(b). Again, for N = 4 this is the same as the
::::::

identical
:::

to
:::

the

linear-sum interpretation (Equation 9). We conjecture that for any N these two interpretations will give identical results.

8



3.3 Extension to the Lunt et al (2012) factorisation: The scaled-total
:::::::::::::

scaled-residual
:

factorisation220

In the scaled-total
::::::::::::

scaled-residual factorisation, the Lunt et al. (2012) factorisation is modified so that it is complete
::::

(and

::::::

remains
:::::

pure). This is achieved by taking the total residual term required for completeness(the ‘synergy’, S in the sense of

(Stein and Alpert, 1993)),
:

, and sharing this between the factors in proportion to the sign and magnitude of their Lunt et al.

(2012) factorisation. For the N = 3 example of the LGM
:::::::

Pliocene, we have that the synergy, S
::::::

residual
:::::

term,
::

R, is defined such

that225

∆T ′

1
+∆T ′

2
+∆T ′

3
+SR

:

= T111 −T000, (14)

where the ∆T ′

i are defined in Equation 5. We then share the synergy
:::

this
:::::::

residual
:

proportionally across the three factors, such

that

∆T1 = ∆T ′

1
+

S∆T ′

1

∆T ′

1
+∆T ′

2
+∆T ′

3

R|∆T ′

1
|

|∆T ′

1
|+|∆T ′

2
|+|∆T ′

3
|

::::::::::::::::::

∆T2 = ∆T ′

2
+

S∆T ′

2

∆T ′

1
+∆T ′

2
+∆T ′

3

R|∆T ′

2
|

|∆T ′

1
|+|∆T ′

2
|+|∆T ′

3
|

::::::::::::::::::

230

∆T3 = ∆T ′

3
+

S∆T ′

3

∆T ′

1
+∆T ′

2
+∆T ′

3

R|∆T ′

3
|

|∆T ′

1
|+|∆T ′

2
|+|∆T ′

3
|

::::::::::::::::::

(15)

Equations 14 and ?? reduce to:

∆T1 = ∆T ′

1

T111 −T000

∆T ′

1
+∆T ′

2
+∆T ′

3

∆T2 = ∆T ′

2

T111 −T000

∆T ′

1
+∆T ′

2
+∆T ′

3

∆T3 = ∆T ′

3

T111 −T000

∆T ′

1
+∆T ′

2
+∆T ′

3

.235

This shows that this factorisation can also be interpreted as simply scaling the Lunt et al. (2012) factorisation so that the sum

of the factors equals T111 −T000. In N dimensions, this generalises to
:

is:

∆Ti =∆T ′

i

T1···1 −T0···0

∑N

j=1
∆T ′

i

+
R|∆T ′

i |
∑N

j=1
|∆T ′

i |
:::::::::::

(16)

where ∆T ′

i is defined in Equation 7. ,
:::

and
:

R= T1···1 −T0···0 −
N
∑

j=1

∆T ′

i .

::::::::::::::::::::::::

(17)240
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For example, for N = 4 and i= 1 we have:

∆T ′

1
=

1

8
{(T1000 −T0000)+ (T1001 −T0001)+ (T1010 −T0010)+ (T1100 −T0100)+

(T1011 −T0011)+ (T1101 −T0101)+ (T1110 −T0110)+ (T1111 −T0111)}

R
:

=
:

T1111 −T0000 − (
::::::::::::::

∆T ′

1+∆T ′

2
+∆T ′

3
+∆T ′

4
)

:::::::::::::::::

∆T1
:::

= ∆T ′

1

T1111 −T0000

∆T ′

1
+∆T ′

2
+∆T ′

3
+∆T ′

4

+
R|∆T ′

1
|

|∆T ′

1
|+|∆T ′

2
|+|∆T ′

3
|+|∆T ′

4
|

::::::::::::::::::::::::::

; (18)245

and similarly for ∆T ′

2
, ∆T ′

3
, and ∆T ′

4
.

4 Implications for previous published work

Here we discuss three examples of papers in which the Lunt et al. (2012) factorisation has been used. For each, we show how

using our factorisations would affect the results in that paper.

4.1 Implications for Lunt et al (2012)250

Lunt et al. (2012) presented a factorisation of global mean temperature change in the Pliocene (3 million years ago, the most

recent time of prolonged natural global warmth relative to pre-industrial) into four variables: CO2, orography, ice, and vegeta-

tion. As described in Section 2.3, in extending to N = 4 variables, the Lunt et al. (2012) factorisation is uniqueand symmetric,

:

,
:::::::::

symmetric,
:::

and
:::::

pure, but not complete. Using their notation, their factorisation for the CO2 variable is (equivalent to Equation

9 in their paper):255

dT ′

CO2
=

1

8

{

(Tc −T )+ (Toc −To)+ (Tic −Ti)+ (Tvc −Tv)+

(Tocv −Tov)+ (Toci −Toi)+ (Tciv −Tiv)+ (Tociv −Toiv)
}

. (19)

The equivalent linear-sum/shared-interaction factorisation is given by Equation 9, which in the notation of Lunt et al. (2012)

is:

dTCO2
=

1

24

{

6(Tc −T )+ 2(Toc −To)+ 2(Tic −Ti)+ 2(Tvc −Tv)+260

2(Tocv −Tov)+ 2(Toci −Toi)+ 2(Tciv −Tiv)+ 6(Tociv −Toiv)
}

, (20)

and similarly for the other three variables.

The equivalent scaled-total
::::::::::::

scaled-residual
:

factorisation is given by Equation 18, which in the notation of Lunt et al. (2012)

is:

R
:

=
:

Tociv −T − (
::::::::::

dT ′

CO2
+dT ′

orog + dT ′

ice + dT ′

veg)
:::::::::::::::::::::

265

dTCO2
:::::

= dT ′

CO2

Tociv −T

dT ′

CO2
+ dT ′

orog + dT ′

ice + dT ′

veg

+
R|dT ′

CO2
|

|dT ′

CO2
|+|dT ′

orog|+|dT ′

ice|+|dT ′

veg
::::::::::::::::::::::::::::::

(21)
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where dT ′

CO2
is given in Equation 19; and similarly for the other three variables.

In Lunt et al. (2012), although Equation 19 (Equation 9 in their paper) was presented, the four variables were actually

factorised by two N = 2 factorisations for all the analysis in that paper (Equation 13 in their paper). Because for N = 2

dimensions the Lunt et al. (2012), linear-sum/shared-interaction, and scaled-total
::::::::::::

scaled-residual
:

factorisations are identical,270

the actual results related to Pliocene temperature change presented in Lunt et al. (2012) would not be affected by using our

proposed
:::

new
:

factorisations.

4.2 Implications for Haywood et al (2016)

Haywood et al. (2016), in the context of the experimental design for model simulations of the Pliocene in the PlioMIP project,

presented a 3-variable factorisation of Pliocene warming into components due to CO2, topography, and ice, based on the275

Lunt et al. (2012) factorisation (presented in their Section 3.2).

An alternative, using the linear-sum/shared-interaction factorisation that is complete, is obtained from Equation 6, which in

their notation is, for CO2 (and analogously for the other two components):

dTCO2
=

1

6

{

2(E400 −E280)+ (Eo400 −Eo280)+ (Ei400 −Ei280)+ 2(Eoi400 −Eoi280)
}

(22)280

Another alternative, using the scaled-total
::::::::::::

scaled-residual
:

factorisation that is complete, is obtained from Equation 24
::::::::

Equations

::

14
:::

and
:::

15, which in their notation is, for CO2 (and analogously for the other two components):

dT ′

CO2
=

1

4

{

(E400 −E280)+ (Eo400 −Eo280)+ (Ei400 −Ei280)+ (Eoi400 −Eoi280)
}

R
:

=
:

Eoi400 −E280 − (
:::::::::::::::

dT ′

CO2
+dT ′

orog + dT ′

ice)
::::::::::::::

dTCO2
:::::

= dT ′

CO2

Eoi400 −E280

dT ′

CO2
+ dT ′

orog + dT ′

ice

+
R|dT ′

CO2
|

|dT ′

CO2
|+|dT ′

orog|+|dT ′

ice|
:::::::::::::::::::::::

. (23)285

4.3 Implications for Chandan and Peltier (2018)

Chandan and Peltier (2018) applied the N = 3 factorisation of Lunt et al. (2012) (Equation 5), as also given by Haywood et al.

(2016) (first line of Equation 23), to their suite of Pliocene simulations. The factorisation was applied to each gridcell in the

model, resulting in 192× 288 = 55,296 factorisations over the globe. The two-dimensional mid-Pliocene minus preindustrial

temperature anomaly
:::::::::::

pre-industrial
::::::::::

temperature
::::::::

anomaly,
::::::::::

reproduced
::::

here
:::

in
::::::

Figure
::::

4(a),
:

was factorised into contributions290

originating from a change in CO2, orography and ice sheets, and is reproduced here in Figure 4(a). Figure 4(b–d) shows the

results of the original factorisation and is identical to those presented in Figure 7 of Chandan and Peltier (2018). Figure 4(f–

h) shows the factorisation of the same anomaly using the linear-sum/shared-interaction method (Equations 22) while Figure

4(j–m) shows the results of employing the scaled-total
::::::::::::

scaled-residual
:

method (Equations 23).
:::

The
::::

first
:::::

thing
::

to
::::

note
::

is
::::

that

::

the
:::::

three
:::::::::::

factorisations
:::

all
::::

have
::::

very
::::::

similar
::::::

results;
:::::::

visually
::

it
::

is
::::::

difficult
::

to
::::

tell
::::

them
:::::

apart
::

on
:

a
:::::::

regional
:::::

scale,
::::

and
::::

they
:::::

result295

::

in
:::::

global
::::::

means
:::

for
:::::

each
:::::

factor
::::

that
:::::

differ
:::

by
:::

less
::::

than
:::::

10%.
:::::

This
::

is
:::::::

because,
:::

in
:::

this
::::::::

example,
:::

the
:::::::::::::

non-linearities
::::

(i.e.
:::

the

11



Figure 4. Comparison of various factorisation methods. (a) The mid-Pliocene minus preindustrial
:::::::::

pre-industrial
:

anomaly modeled

::::::::::

(T111 −T000)
:::::::

modelled
:

by Chandan and Peltier (2017). (b–m) The top three rows present factorisations of the total anomaly into contri-

butions arising from changes to CO2 (upper, (b,f,j)), orography (middle, (c,g,k)) and ice sheets (lower, (d,h,l)), while the bottom row shows

the residual
::::::

required
::

for
:::::::::::

completeness (‘synergy’), T111 −T000 − (∆TCO2
+∆Torog +∆Tice), (e,i,m)

:

.
::::

Note
:::

that
::

the
:::::::

residual
::::

term,
::

R,
:::

for

::::

panel
::

(e)
:

is
::::

given
:::

by
:::::::

Equation
:::

14,
:::

and
:

is
:::::

equal
::

to
:::::::::::::::::::::::::::::::::

T111 −T000 − (∆T
′

CO2
+∆T

′

orog +∆T
′

ice). The first column (b,c,d,e) shows results us-

ing the methodology of Lunt et al. (2012) and is identical to results reported in Figure 7 of Chandan and Peltier (2018). The second column

(f,g,h,i) shows results from the linear-sum/shared-interaction factorisation (Eq.
::::::

Equation
:

6) and the third column (j,k,l,m) shows results of

the scaled-total
::::::::::

scaled-residual
:

factorisation (Eq. 24
::::::

Equation
:::

15). The pink circles in the factorized results shown in the rightmost column

highlight regions where the scaled-total factorisation has very large negative or positive compensating values for
:

at
:

the three factors, due to

the very small values
::::::

top-right of denominator term appearing
:::

each
:::::

panel
:::

give
:::

the
:::::

global
:::::

mean, in Eq
:::

units
::

of
:::

◦C.24 at those locations.

:::::::::

interaction
:::::

terms)
:::

are
::::::::

relatively
::::::

small.
:::

As
::::

such,
:::

the
:::::

main
::::::::::

conclusions
::

of
:::

the
:::::::::::::::::::::::

Chandan and Peltier (2018)
:::::

study
:::

are
:::::

robust
::

to
::

a

::::::

change
::

in
::::::::::

factorisation
::::::::::::

methodology.

The bottom row in Figure 4 shows, for the case of each method, the residual difference between the sum of all the factors

and the total change (i.e. the synergy
:::::::::::::::

interaction/synergy
:::::

terms
:

in the sense of Stein and Alpert (1993)). The Lunt et al. (2012)300

method yields spatially coherent structures in the residual whose magnitude can be comparable to those of the factorized

components, whereas the residuals for the other two methods are zero by definition, because they are complete
::::

pure (in the

Figures they are very close to zero – essentially numerical noise due to round-off error). The non-linearity (indicated by the

magnitude of the synergy
:::::::

residual
::::

term
:

associated with the Lunt et al. (2012) factorisation) is greatest in the North Atlantic

(Figure 4d), and is likely associated with changes in the sea-ice margin that are non-linearly influenced by all three boundary305

conditions (CO2, orography, and ice sheets).

Figure 4(j–l) reveals a problem with the scaled-total method. In these panels, the pink circles show regions where the

scaled-total factorisation has very large negative or positive values for the three factors. At these locations the denominator

in Eq. 24 is very small, resulting in very large magnitude positive or negative results for each factorised components, which

sum to a much smaller number. This is clearly not a meaningful result (because the values in the same region in Figure 4(a)310

are not unusual), and although in this analysis these issues are found to occur only at isolated locations, in other cases there

is potential for the problem to be more widespread. In response to this, we introduce an a fourth property of factorisations –

‘boundedness’. A factorisation is bounded if the factorisation for a particular variable (e.g. ∆T1) is bounded by the minimum

and maximum of all the possible single-factor factorisations for that variable. For example, for four dimensions, a factorisation

is bounded if ∆T1 has a value that is not greater than the largest, or smaller than the smallest, term in Equation 18. The315

linear-sum/shared-interaction factorisation is by definition bounded, because it consists of a weighted average of those very

terms. In contrast, the scaled-total factorisation is not bounded, and as such it should only be used with caution. It is worth

noting that if absolute weightings were used in Equation ??, such that the scaled-total factorisation became(e.g. for CO2)
:::

We

:::

also
::::::::

explored
:::::

using
:

a
:::::::

version
::

of
:::

the
:::::::::::::

scaled-residual
::::::::::

factorisation
::

in
::::::

which
:::

the
:::::::

residual
:::::

terms
:::

was
:::::::

shared,
:::

not
::

by
:::

the
::::::::

absolute

12



::::::::

magnitude
:::

of
:::

the
::::::::

individual
:::::::

factors,
:::

but
::

by
::::

their
:::::::

relative
::::::

values,
::

so
:::

that
::::::::

Equation
:::

15
::::::

became:320

∆T1 = ∆T ′

1
+

S|∆T ′

1
|

|∆T ′

1
|+|∆T ′

2
|+|∆T ′

3
|

R∆T ′

1

∆T ′

1
+∆T ′

2
+∆T ′

3
::::::::::::::::

, (24)

then the factorisation would not result in spuriously large values (because the denominator could never approach zero)
:::

and

:::::::

similarly
:::

for
:::

the
:::::

other
:::::::

variables. However, the factorisation would still not be bounded in our definition. For example, if ∆T ′

1

were negative and consisted of all negative terms in the first line of Equation 5, ∆T1 could still be positive if S were sufficiently

large
:

at
::

a
:::::

small
::::::

number
:::

of
:::::::

gridcells
:::

this
::::::::

produced
::::::

highly
::::::::

divergent
::::::

results,
:::::

when
:::

the
:::::::::::

denominator
::

in
::::::::

Equation
::

24
:::::::

became
::::

very325

::::

close
::

to
::::

zero
::::

(see
::::

Supp
:::::

Info,
:::::

Figure
:::

1).

5 Conclusions

In this paper, we have reviewed three previously-proposed factorisations, and extended them to produce factorisations that are

unique, symmetric,
::::

pure, and complete. We have presented them for 3 dimensions (i.e. 3 factors), and generalised to N dimen-

sions. The first factorisation, ‘linear-sum’ (Equation 8), averages all the possible linear factorisations on the N -dimensional330

cube. The second factorisation, ‘shared-interaction’, shares the interaction terms between each corresponding factor equally.

The linear-sum and shared-interaction factorisations are shown to reduce to be identical
:::

for
::::::

N ≤ 4,
:::

and
:::

we
:::::::::

conjecture
:::

that
::::

this

::::

holds
:::

for
::::

any
::

N . The third factorisation, ‘scaled-total
::::::::::::

scaled-residual’ (Equation 16), averages all the contributions associated

with the edges of the N -dimensional cube, and scales them by the total change in the property being factorised
::::

takes
:::

the
:::::::

residual

::::

term
:::::::

required
:::

for
:::::::::::

completeness
::

in
:::

the
:::::::::::::::

Lunt et al. (2012)
:::::::::::

factorisation,
:::

and
::::::

shares
::

it
:::::::

between
:::

the
::::::

factors,
::

in
:::::::::

proportion
::

to
:::::

their335

::::::::

magnitude. We have presented results of these extended factorisations in the context of previous work carried out by Lunt et al.

(2012), Haywood et al. (2016), and Chandan and Peltier (2018) in the context of Pliocene climate change. This reveals that the

scaled-total factorisation is not bounded, and therefore can lead to anomalous results that are hard to interpret. Therefore we
:::

We

recommend the use of the linear-sum/shared-interaction factorisation
::

or
:::

the
:::::::::::::

scaled-residual
::::::::::

factorisation
:

for cases where the

properties of uniqueness, symmetry,
:::::

purity,
:

and completeness, and boundedness are desirable.
:

In
:::::

some
::::::

cases,
:::

the
:::::::::

interaction340

::::

terms
:::::

may,
::

of
::::::

course,
:::

be
::

of
::::

great
:::::::

interest,
::::

and
::

in
::::

such
:::::

cases
:

a
::::::::

non-pure
::::::::::

factorisation
:::::::::::::::::::::::::

(e.g. Stein and Alpert, 1993)
::

can
:::

be
::::

very

::::::::::

informative.
:::::

Also,
:

it
::

is
:::::

worth
::::::

noting
:::

that
::

if
:::

the
:::::::::

interaction
:::::

terms
:::

are
:::::

zero,
:::

i.e.
::

we
:::::

have
:

a
::::::::::

completely
:::::

linear
::::::

system,
::::

then
:::

all
:::

the

::::::::::

factorisation
:::::::

methods
::::::

reduce
::

to
:::

be
:::::::

identical.
:

The properties of all the factorisations discussed in this paper are shown in Table

?? for 2,3,
::

4, and N dimensions.

The methods that we present here will be of particular use in the analysis of systems with multiple variables, and have345

application beyond solely climate science.

Code and data availability. The model fields underlying Figure 4 are available from the University of Toronto Dataverse in netcdf format:

https://doi.org/10.5683/SP2/QGK5B0 . The code used to calculate the factorisations illustrated in Figure 4 is available in the Supplement, in

both python and ncl. The ncl version is also available on github, here: https://github.com/danlunt1976/factor_separation/blob/master/factor_separation.ncl
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