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Responses to Reviewer #1 
We appreciate the reviewer’s encouragement and valuable comments for our 
manuscript. Our point-to-point responses are given below. 

 
General Summary and Comments 

With a set of comprehensive experimental design, this work studied the effects of air-
sea coupling and ocean mean state in the boreal summer intraseasonal oscillation 
simulation. An interesting finding is that a cold ocean mean-state bias improved the 
simulated BSISO amplitude and spatial distribution by reducing overestimated 
subtropical summer mean rainfall, which results from the model systematic error. 
Although air-sea coupling captured correct SST-rainfall phase relationship, the current 
work shows that it has little effect in the BSISO northward propagating. This also 
makes incremental progress towards understanding such a debatable topic. The 
manuscript is well organized and the results are robust and clearly presented. I 
recommend the publication of this paper after my minor concerns below are addressed. 

1. It is recommended to draw the grids of the axes in figures 4 and 5, so that the latitudes 
of the maximum centers can be easily recognized. 

Response:  

Good suggestion. The grids of both axes in Figures 4 and 5 have been added 
accordingly. 

 

2. L207. I do not agree that rainfall and SST anomalies are out-of-phase over off-
equatorial regions. since the zero contour lines of SST still locate near the maximum 
centers of rainfall (Figure 7f, g, h, k, l, m). Please consider adding the SST contours to 
figures 4 and 5, so that the associated propagations of SST and its phase relationship 
with rainfall can be clearly revealed. 

Responses: 

Yes, we agree with the reviewer that the intraseasonal rainfall and SST anomalies do 
not show a completely out-of-phase relationship over the off-equatorial western Pacific. 
However, the coupled models do capture the shift of the warm SST anomaly toward 
the suppressed convective region over the off-equatorial western Pacific (Figs. A1b and 
d), similar to the observations (Fig. A1a).  

We have modified this sentence as follows: “Over the western Pacific, SPK reproduces 
the observed phase relationship between the convection and SST anomalies: a near-
quadrature relationship over the equatorial regions (Figs. 7a–c), but a shift of warm 
SST anomalies toward the suppressed convective regions in the off-equatorial regions 
(Figs. 7f–h and k–m).” (Lines 220–222) 

Following your suggestion, the SST anomalies were added to Figures 4 and 5 (as shown 
in Figs. A1 and A2 below) in the revised manuscript.   
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Figure A1. Lagged regression coefficients of 130°–140°E averaged intraseasonal 
precipitation (shading; [mm day-1]/[mm day-1]) and SST (contour; [ºC]/[mm day-1]) 
onto (130 °–140 °E, 0 °–10 °N) averaged intraseasonal precipitation for (a) GPCP 
precipitation and ERAI SST, (b) SPK-OBS, (c) SPA-KOBS, (d) SPK-SPC, and (e) 
SPA-KSPC. The contour interval is 0.001 [ºC]/[mm day-1]; the zero contour is omitted. 
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Figure A2. Same as Fig. A1, except for 80°–90°E averaged intraseasonal precipitation 
and SST regressed onto (80°–90°E, 0°–10°N) averaged intraseasonal precipitation. 
 

3. L285. I don’t think “large” is a nice adjective for “relationship”. 

Response: 
Done. 
 
4. L287-288. Please explain why “it is easy to surmise the effect of air-sea coupling on 
the amplitude of convection, while its effect on the propagation is not obvious”. Is it 
because of the correct phase relationship, or is it from the shorter delay? 

Response: 
Thank you for pointing out this unclear description. To clarify it, we revised the 
sentences as follows: “As a consequence of the shorter delay, it is easy to surmise the 
negative effect of air-sea coupling on the amplitude of convection, while its effect on 
the propagation is not obvious.” (Lines 300–301) 
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Responses to Reviewer #2 

We appreciate the valuable and insightful comments provided by the reviewer. We have 
revised the manuscript carefully according to these comments and suggestions. Our 
point-to-point responses are given below. 

 

General Summary and Comments 

This study explores the role of mean SST biases in simulating the observed 
characteristics of BSISO. The study is carried out using a suite of numerical 
experiments in which an atmospheric model (SPCAM3) is configured with observed 
boundary forcing (uncoupled) and coupled to a mixed-layer ocean model (coupled). 
Each of these configurations is branched out into further configurations. The mixed-
layer ocean model (MC-KPP) is first constrained to an observed climatology and then 
to the climatology of a coupled GCM (SPCCSM3). The boundary forcing is constructed 
from the SST of the two coupled simulations. Based on these experiments, the authors 
suggest that ocean mean state determines the skill of BSISO simulation in a coupled 
model. The manuscript is well written, and it is worthy of publications subject to 
addressing the specific comments below. 

1. One objective of the study is to “examine the role of […] and mean state bias in the 
simulated BSISO using a configuration of SPCAM3 coupled to a mixed-layer ocean 
model”. To overcome the limitations of the 1D model, MC–KPP is constrained to an 
ocean mean state. Please explain what the advantage is of running the new simulations 
and not just analyze SPCAM3 and SPCCSM3. SST biases in SPCCSM3 and SPK-SPC 
are very similar. 

Responses:  

There are two differences between the atmosphere-only SPCAM3 and atmosphere-
ocean coupled SPCCSM3 models: air-sea coupling and ocean mean-state bias. Thus, it 
is hard to tell which factor (air-sea coupling or ocean mean-state bias) mainly causes 
the differences in the simulated BSISO between SPCAM3 and SPCCSM3. To isolate 
the air-sea coupling effect and the ocean mean-state effect, we carried out four 
experiments by using SPCAM3 coupled to the MC-KPP ocean model (SPCAM-KPP; 
see Table 1 in the manuscript or see Table B1 below). For example, to study the effect 
of the ocean mean-state bias on the simulated BSISO, SPCAM3-KPP is constrained to 
either observed ocean state (“SPK-OBS”) or by the cold climatological SPCCSM3 
ocean state (“SPK-SPC”). Both experiments have air-sea coupling, but the ocean mean 
state differs. To isolate the effect of air-sea interaction on the simulated BSISO under 
the observed (SPCCSM3) ocean mean state, SPCAM3 is forced by the 31-day 
smoothed SST from SPK-OBS (SPK-SPC) in experiment “SPA-KOBS” (“SPA-
KSPC”). We compare SPA-KOBS to SPK-OBS; we compare SPA-KSPC to SPK-SPC.  
In both comparisons, the two experiments have the same ocean mean state, but one has 
air-sea coupling while the other does not. 
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Table B1: List of simulations analysed, including the experiment name, model, ocean 
climatology condition used by the model to constrain (coupled model) or as forcing 
(atmospheric-only model), and design purpose. 

Exp Model Ocean surface Purpose 

SPK-OBS SPCAM3-KPP 
SST climatology from 

observation Understanding ocean mean-state 
effect (SPK-OBS vs. SPK-SPC) 

SPK-SPC SPCAM3-KPP 
SST climatology from 

SPCCSM3 

SPA-KOBS SPCAM3 
31-day smoothed SST 

from SPK-OBS 

Understanding air-sea coupling 
effect under observed mean state 

(vs. SPK-OBS) 

SPA-KSPC SPCAM3 
31-day smoothed SST 

from SPK-SPC 

Understanding air-sea coupling 
effect under SPCCSM3 mean 

state (vs. SPK-SPC) 

 

2. L65-66: There are other studies (e.g., Waliser et al. 1999; Bernie et al. 2005, 2007; 
Danabasoglu et al. 2006; Misra et al. 2008; Stan 2018) showing that air-sea coupling 
improves the representation of diurnal cycle, which is relevant for intraseasonal 
variability. This other side of the argument should also be mentioned here. 

Responses: 

Thank you for pointing out these interesting studies. We have modified the related 
sentence as follows: “By comparing the results of coupled GCMs (CGCMs) with the 
results of the AGCMs prescribed with observed SSTs, many studies found that the 
inclusion of air-sea coupling could produce a more realistic intraseasonal variability via 
improving the representation of the diurnal cycle at the air-sea interface (Waliser et al., 
1999; Bernie et al., 2005; Danabasoglu et al., 2006; Misra et al., 2008; Stan, 2018). 
Besides the air-sea coupling process, the differences between simulated results may 
also come from ocean mean-state differences between AGCM and CGCM, as 
incorporating air-sea interaction in CGCMs inevitably introduces atmospheric and 
ocean mean-state biases.” (Lines 55–60). 

 

References: 

Bernie, D. J., S. J. Woolnough, J. M. Slingo, and E. Guilyardi, 2005: Modeling diurnal 
and intraseasonal variability of the ocean mixed layer. J. Climate, 18, 1190–1202. 

Danabasoglu, G., W. G. Large, J. J. Tribbia, P. R. Gent, B. P. Briegleb, and J. C. 
McWilliams, 2006: Diurnal coupling in the tropical oceans of CCSM3. J. Climate, 19, 
2347–2365. 

Misra, V., L. Marx, M. Brunke, and X. Zeng, 2008: The equatorial Pacific cold tongue 
bias in a coupled climate model. J. Climate, 21, 5852–5869. 
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Stan, C., 2018: The role of SST variability in the simulation of the MJO. Clim. Dyn., 
51, 2943–2964. 

Waliser, D. E., K. M. Lau, and J.-H. Kim, 1999: The influence of coupled sea surface 
temperatures on the Madden–Julian Oscillation: A model perturbation experiment. J. 
Atmos. Sci., 56, 333–358. 

 

3. L97: Since MC-KPP must be constrained to a reference ocean climatology, some 
tuning is involved in this process to ensure a realistic behavior in the ocean currents. 
Please clarify if MC-KPP is retuned when is constrained to SPC. 

Responses: 

Yes, we retune the ocean temperature and salinity corrections when MC-KPP is 
constrained to SPC, i.e., the reference ocean climatology. For both the SPK-OBS and 
SPK-SPC simulations, we first perform a 10-year simulation with relaxation, to 
compute the required climatological temperature and salinity corrections. In these 10-
year simulations, the MC-KPP ocean is relaxed toward the ocean climatology (either 
from observations or from SPC) with a timescale of 15 days. The temperature and 
salinity relaxation tendencies from this simulation are stored, and then a daily 
climatology of corrections is calculated. This daily climatology is then smoothed with 
a 31-day running mean, to remove the high-frequency variability. Physically, this mean 
the seasonal cycles of the temperature and salinity relaxation corrections account for 
the effects of ocean advection and of bias in the surface fluxes. These mean seasonal 
cycles of the corrections are then imposed on the SPK-OBS or SPK-SPC simulation 
with no relaxation, which displays only small SST biases against the SPC ocean 
climatology (Fig. 1 in the manuscript). 

We have clarified that: “For each SPCAM3-KPP simulation analysed here, a 10-year 
“relaxation” simulation is first performed, with a 15-day relaxation timescale toward 
the reference seasonal cycles of ocean temperature and salinity.” (Lines 100–101). We 
explain detailed tuning processes in Lines 98–104. 

 

4. L98-99: MC-KPP has some limitations for the study of air-sea coupling because 
atmospheric variables can be modified by horizontal advection whereas ocean surface 
variables cannot. Physical mechanisms involved may not be representative of what 
happens in observations. Please discuss this limitation. 

Responses: 

We agree with the reviewer that MC-KPP, which is a simple one-dimensional ocean 
model, only has vertical mixing but lacks ocean dynamics, such as horizontal or vertical 
advection or wind-driven upwelling. Besides, the air-sea coupled modes of variability 
(such as the ENSO) and potential feedbacks from these modes to intraseasonal 
variability are also absent. These limitations of MC-KPP are emphasized in Lines 90–
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92 in the revised manuscript. 

 

5. Section 2.2 Please explain what the expected outcome for each experiment is. It’s a 
lot of mix and match without a clear path why they are conducted. 

Responses: 

Sorry for the confusion. We have clarified the designs and purposes of these 
experiments in the revised Section 2.2 (Lines 110–121, Table 1). For convenience, see 
the text below and Table B1 (in our response to the first comment).  

“To study the effect of mean-state biases on simulated BSISO, SPK is constrained to 
two ocean mean states: 1) the 1980–2009 climatology from the Met Office ocean 
analysis (Smith and Murphy, 2007); and 2) the climatology from the 20-year 
SPCCSM3 (“SPC” for short) simulation, which was analysed in Stan et al. (2010) and 
DeMott et al. (2014). The former is considered as the observed ocean state (Fig. 1c), 
against which SPC shows large cold SST biases throughout the Indo-Pacific in the 
boreal summer (Fig. 1f). These two coupled simulations are referred to as “SPK-OBS” 
and “SPK-SPC”, respectively. Differences between the results of SPK-OBS and those 
of SPK-SPC can reveal the effect of SPC mean-state SST biases on the simulated 
BSISO. To investigate the effect of air-sea interaction on simulated BSISO under the 
observed ocean mean state, the time-varying SSTs from SPK-OBS are prescribed in an 
SPA simulation (“SPA-KOBS”). The 31-day smoothed SST is used to remove the high-
frequency variability of SST and avoid erroneous positive feedbacks between SSTs, 
surface fluxes and precipitation (see DeMott et al., 2015 and references therein). 
Similarly, we prescribe the 31-day smoothed SST from SPK-SPC to SPA to understand 
the air-sea coupling effect under the SPC mean state (“SPA-KSPC”) through the 
comparison with SPK-SPC.” 

Reference: 

DeMott, C. A., N. P. Klingaman, and S. J. Woolnough, 2015: Atmosphere-ocean 
coupled processes in the Madden-Julian oscillation. Rev. Geophys., 53(4), 1099–1154. 

 

6. L113: What is the resolution of the ocean model in SPCCSM3? Please add some 
details about the ocean model in SPCCSM3. 

Responses: 

The Parallel Ocean Program (POP; Danabasoglu et al. 2006), the ocean component of 
SPCCSM3, is a three-dimensional ocean model, which includes ocean dynamics. 
SPCCSM3 utilizes the low horizontal resolution version (~3º) of POP. POP has 40 
vertical layers with the thickness of the top layers being 10 m, and exchanges SST and 
surface fluxes with SPCAM3 at 1-day coupling frequency.  

Detailed description about POP was added in the revised manuscript (Lines 84–88).  
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Reference: 

Danabasoglu, G., W. G. Large, J. J. Tribbia, P. R. Gent, B. P. Briegleb, and J. C. 
McWilliams, 2006: Diurnal coupling in the tropical oceans of CCSM3. J. Climate, 19, 
2347–2365. 

 

7. L117: Please explain the reasoning behind the 31-day smoothing. Why not using 
monthly data? 

Responses: 

Actually, prescribing either monthly or 31-day smoothed SST to the AGCM is efficient 
for removing the high-frequency variability in the boundary conditions. Considering 
the temporal resolution of the boundary forcing used in SPCAM3 is daily, we simply 
used 31-day smoothed data. This explanation about data resolution was added in Lines 
117–119 of the revised manuscript. For further details about the need for using 
temporally smoothed SSTs in AGCM simulations to study tropical intraseasonal 
variability, please see Section 6 of DeMott et al. (2015). 

Reference: 

DeMott, C. A., N. P. Klingaman, and S. J. Woolnough, 2015: Atmosphere-ocean 
coupled processes in the Madden-Julian oscillation. Rev. Geophys., 53(4), 1099–1154. 

 

8. L120-121: ERAI is not the common data set used for validation of precipitation and 
OLR. Why this choice? Fig. 2a shows a double ITCZ feature, which is not seen in other 
datasets used for validation of precipitation (CMAP, GPCP). 

Responses: 

Thanks for this useful comment. We have replaced the precipitation and OLR from the 
ERAI reanalysis dataset by the GPCP precipitation (Huffman et al. 2001) and NOAA 
OLR (Liebmann and Smith 1996) in the revised manuscript. 

The summer (May–October) mean precipitation patterns from ERAI, GPCP and CMAP 
are shown in Fig. B1. Overall, the precipitation pattern from ERAI (Fig. B1a) resembles 
those from GPCP (Fig. B1b) and CMAP (Fig. B1c). With a focus on the tropical Pacific, 
the precipitation associated with the ITCZ and SPCZ in ERAI is indeed larger than 
GPCP and CMAP observations, as noted by the reviewer. Thus, we used the 
precipitation from GPCP 1DD instead of ERAI in the revised manuscript (and we 
revised Figs. 2–7). 

We also compared the dominant modes of BSISO represented by convection from 
different datasets (ERAI vs. NOAA) and circulations (Fig. B2). The spatial 
distributions of the first four EOF patterns seem to be highly consistent, although the 
amplitude is slightly different. To enhance the reliability of the data analyzed, we used 
NOAA OLR rather than the OLR from the reanalysis in the revised manuscript (and 
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we revised Figs. 9–12). 

 

Figure B1. Summer (May–October) mean precipitation from (a) ERAI, (b) GPCP and 
(c) CMAP. The ERAI and CMAP data cover the period of 1986–2016 while the GPCP 
data is from 1997 to 2016. 

 

ERAI OLR + ERAI u850NOAA OLR + ERAI u850
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Figure B2. The first four leading MV-EOF modes of OLR (shading) and 850-hPa zonal 
wind (U850), derived from (a–d) NOAA OLR and ERAI U850, and from (e–h) ERAI 
OLR and ERAI U850. The meridional wind at 850 hPa was computed by regression 
onto the respective principal components. Numbers in parentheses indicate the 
percentage of variance explained. The pattern correlation of anomalous OLR in each 
MV-EOF mode derived from the two datasets is shown in the titles of (e–h). 

References: 

Huffman, G. J., Adler, R. F., Morrissey, M. M., Bolvin, D. T., Curtis, S., Joyce, R., 
McGavock, B., and Susskind, J., 2001: Global Precipitation at One-Degree Daily 
Resolution from Multisatellite Observations. J. Hydrometeorol., 2, 36–50. 

Liebmann, B., Smith, C. A., 1996: Description of a complete (interpolated) outgoing 
long wave radiation dataset. Bull Am. Meteorol. Soc., 77, 1275–1277. 

 

9. L127: OLR is generally viewed as a proxy of convective precipitation. This should 
be precipitation or OLR. 

Response: 

Revised accordingly.  

 

10. L153-154: SPK-OBS displays the “bull’s eye” feature specific to most SPCAM 
simulations. This feature disappeared in the SPCCSM simulations and hence was 
explained by the lack of coupling which would compensate for some unrealistic 
features caused by the periodic domain of CRM. Can the authors comment on the nature 
of these features in SPK-OBS, which is used as a coupled model? 

Responses: 

Besides air-sea coupling, SST mean states between SPCAM3 and SPCCSM3 are also 
different, as a large cold SST bias can be identified over the Indo-Pacific regions in 
SPCCSM3. Consistent with the SPCAM3 simulation (DeMott et al. 2011; as shown in 
Figure B3), SPK-OBS simulates a zonally oriented band of excessively intense 
precipitation extending from 65ºE to 150ºE. In contrast, this enhanced precipitation 
band is largely suppressed in SPK-SPC. This suggests that the mean-state SST bias 
(rather than the air-sea coupling process) in SPCCSM3 may be the primary factor that 
causes the precipitation bias. Related discussion has been added in the revised 
manuscript (Lines 167–170). 
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Figure B3. June–September mean precipitation and 850-hPa winds for SPCAM3. 
Precipitation contour interval is 2 mm day-1 starting at 2. (After Fig. 2c of DeMott et al. 
2011) 

Reference: 

DeMott, C. A., Stan, C., Randall, D. A., Kinter, J. L. and Khairoutdinov, M., 2011: The 
Asian monsoon in the superparameterized CCSM and its relationship to tropical wave 
activity. J. Climate, 24(19), 5134–5156. 

 

11. L162: The SST variability in SPC is lower than in OBS because the horizontal 
resolution of SPC is probably much coarser than in OBS. 

Responses: 

Thanks for this useful comment. As shown in Fig. B4, the deficient SST variability in 
SPK-SPC is largely associated with the deficient SST variability in SPCCSM3. POP in 
SPCCSM3 has a coarse horizontal resolution (~3º), which likely degrade the SST 
variability. We have added this in the revised manuscript (Lines 173–175). 

 

Figure B4. Standard deviations of 20–100-day-filtered SST during May–October 
derived from (a) ERAI, (b) SPCCSM3, (c) SPK-OBS, (d) SPK-SPC, (e) SPA-KOBS, 
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and (f) SPA-KSPC. 

 

12. L169-171: Without comparing the mean state of SPK-OBS (SPK-SPC) and SPA-
KOBS (SPA-KSPC) we cannot say that coupling and mean biases have a negative 
feedback of BSISO. This would be true only if the mean precipitation remains the same. 

Responses: 

Excellent suggestion. The atmospheric mean state is often similar in atmosphere-only 
and atmosphere-ocean coupled models with the same oceanic mean state. As shown in 
Fig. B5, mean SST and precipitation in SPA-KOBS (SPA-KSPC) are almost the same 
as those in SPK-OBS (SPK-SPC). We added in the revised manuscript: “Mean 
precipitation fields in SPA-KOBS and SPK-OBS (SPA-KSPC and SPK-SPC) are 
nearly the same.” Thank you. 

 

Figure B5. Summer (May–October) mean SST (left column) and precipitation (right 
column) from (a, e) SPK-OBS, (b, f) SPA-KOBS, (c, g) SPK-SPC, and (d, h) SPA-
KSPC. 

 

13. L175-181: Except for the southward propagation there is arguable any difference 
between observations and all simulations. Please revise these statements. 

Responses: 

Yes, all model simulations fail to capture the southward propagation of the BSISO. 
Other significant biases can be seen in the location of maximum BSISO convection. 
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The simulated convection center shifts northward (10ºN) relative to the observation 
(5ºN). We have modified these sentences. Please see Lines 191–193 in the revised 
manuscript. 

 

14. L198-200: Please explain what features show the delay between the suppressed 
convection and warm SST. 

Responses: 

To reveal clearly the phase relationship between the convection and SST anomalies, we 
added the SST contours in Figures 4 and 5 in the revised manuscript. In the Indian 
Ocean (Fig. B6), SPK simulates well the observed near-quadrature phase relationship 
between the equatorial convection and SST anomalies. However, in the off-equatorial 
regions, the warm SST in the coupled models tends to shift toward the suppressed 
convective region. Over the western Pacific, the phase relationship between 
precipitation and SST seems to be properly represented in SPK simulations (Fig. B7). 

We have carefully checked and modified the related sentences in the revised manuscript 
after the precipitation data were changed from ERAI to GPCP. 

 

Figure B6. Lagged regression coefficients of 80º–90ºE averaged intraseasonal 
precipitation (shading; [mm day-1]/[mm day-1]) and SST (contour; [ºC]/[mm day-1]) 
onto (80º–90ºE, 0º–10ºN) averaged intraseasonal precipitation for (a) GPCP 
precipitation and ERAI SST, (b) SPK-OBS, (c) SPA-KOBS, (d) SPK-SPC, and (e) 
SPA-KSPC. The contour interval is 0.001 [ºC]/[mm day-1], and zero contour is omitted. 
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Figure B7. Same as Fig. B6, except for 130º–140ºE averaged intraseasonal precipitation 
and SST regressed onto (130º–140ºE, 0º–10ºN) averaged intraseasonal precipitation. 

 

15. L202-204: The size of convective region is arguably different between observations 
and all model simulations. Please revise or show difference plots in support of a large 
difference. 

Responses: 

Yes, compared to GPCP precipitation, the size of the simulated convective region in all 
model simulations is smaller. We have revised the related sentences as follows: “The 
size of the convective regions in all model simulations is smaller than that in 
observations, which may imply a deficient BSISO propagation. Compared to SPK-OBS, 
the convective region reduces when either the SPC mean state is used (SPK-SPC) or 
air-sea coupling is removed (SPA-KOBS and SPA-KSPC).” (Lines 217–219) 

 

16. L224: Please explain how one can use Fig. 8 (right column) to determine 
propagation of convection. 

Responses: 

As shown in Fig. B8, the temporal and spatial evolution of column-integrated moist 
static energy (MSE; 〈𝑚〉) is highly consistent with that of anomalous precipitation 
(Figs. B8a and c). Positive values of the time change of 〈𝑚〉 (i.e., 𝜕〈𝑚〉/𝜕𝑡) leads 90º 
ahead of the convection over both the Indian Ocean and western Pacific (Figs. B8b and 
d). Thus, the physical processes that modulate 〈𝑚〉  (left column of Fig. B8) and 
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𝜕〈𝑚〉/𝜕𝑡 (right column of Fig. B8) can be considered as the mechanisms responsible 
for the maintenance and propagation of convection, respectively. We have clarified the 
meaning of MSE diagnosis in the revised manuscript. Please see the text in Lines 138–
142. 

 

Figure B8. Lagged regression coefficients between longitudinal (75º–85ºE) averaged 
20–100-day-filtered (a) 〈𝑚〉  and (b) ( 𝜕〈𝑚〉/𝜕𝑡 ) and area (75º–85ºE, 0º–10ºN) 
averaged 20–100-day-filtered precipitation over the Indian Ocean as a function of 
latitude. (c–d) Same as (a)–(b), except for the longitudinal (140º–150ºE) averaged 
variables regressed onto area (140º–150ºE, 0º–10ºN) averaged precipitation over the 
western Pacific (WP). Regression coefficients of precipitation are overlaid with an 
interval of 0.3 [mm day-1]/[mm day-1]; positive (negative) values are represented by 
solid (dashed) contours. 

 

17. Section 3.4: The comparison between models and observations based on the BSISO 
indices can be very misleading because models can have their own BSISO with a 
different lifecycle than observations and this type of analysis will still consider 8 phases. 
A fair comparison can be done only if the phase compositing is constructed using PC1 
and PC2 of observations for models as well. Here this is not possible because SST of 
the coupled model does not match an observed forcing. The only relevant analysis is to 
compare the lag-correlation of PC1 and PC2 for MISO 1 (with the 30-60 day period) 
and PC3 and PC4 for the MISO 2 (14-day period). 

Responses: 

It is true that models have their own BSISOs with different periods and evolutions, 
which lead to difficulties in comparing the features of simulated BSISO based on the 
same reference states. To ensure consistent analysis across all experiments, the 
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anomalous OLR and 850-hPa zonal wind produced by each model experiment are 
projected, respectively, onto the observed EOF modes to obtain their respective PC 
time series. This approach helps assess fairly how well the model experiments simulate 
the observed BSISO because the projected results (modelled PCs) can be directly 
compared with the observations. If we used the EOF modes derived from the outputs 
of individual experiments, differences in the spatial patterns and periods would 
compromise direct comparison of PC time series. In fact, the approach of projecting 
anomalous fields onto observed modes has been widely used for model assessment of 
MJO and BSISO simulations (Sperber et al. 2008, 2013; DeMott et al. 2019). 

The advantage of this approach has been added in section 2.3 (Lines 155–157). 

References: 

DeMott, C. A., Klingaman, N. P., Tseng, W.-L., Burt, M. A., Gao, Y., and Randall, D. 
A., 2019: The convection connection: How ocean feedbacks affect tropical mean 
moisture and MJO propagation. J. Geophys. Res. Atmos., 124(22), 11910–11931. 

Sperber, K. R. and Annamalai, H., 2008: Coupled model simulations of boreal summer 
intraseasonal (30–50 day) variability, Part 1: Systematic errors and caution on use of 
metrics. Clim. Dyn., 31(2–3), 345–372. 

Sperber, K. R., Annamalai, H., Kang, I.-S., Kitoh, A., Moise, A., Turner, A., Wang, B. 
and Zhou, T., 2013: The Asian summer monsoon: an intercomparison of CMIP5 vs. 
CMIP3 simulations of the late 20th century. Clim. Dyn., 41(9–10), 2711–2744. 

 

18. L300-310: The SST gradients in MC-KPP have very little physical meaning (1D 
ocean model) and no analysis related to SST gradients is shown in the results. How 
realistic it is to base the interpretation of results on the SST gradients “simulated” by 
MC-KPP? 

Responses: 

Excellent question. It is true that the SST gradients in MC-KPP do not arise from 
oceanic processes (e.g., currents).  However, substantial SST gradients can be forced 
by gradients in atmospheric surface fluxes, to which MC-KPP responds. Thus, we 
would argue that the SST gradients have physical meaning, though they may not be as 
intense or frequent as those in observations or in coupled models with a dynamical 
ocean. 

To address this issue, we compare the differences in summer-mean SST and 〈𝑚〉 
between SPK-OBS and SPK-SPC (Fig. B9). The spatial pattern of 〈𝑚〉 closely follows 
that of SST. Thus, we argue that the stronger BSISO variability in SPK-OBS than that 
in SPK-SPC may be related to the enhanced meridional gradients of SST and moisture 
(Fig. B9). Although the gradient of SST is underestimated in SPK-SPC, we still discuss 
the roles of horizontal moisture (or 〈𝑚〉) advection induced by anomalous flows in ISO 
propagation because this physical process has been highlighted in several recent studies 
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(Jiang 2017; Jiang et al. 2018; Gao et al. 2019). Our results here also support the 
findings about the contribution of horizontal moisture advection to BSISO propagation. 

Related sentences have been modified in the revised manscript (Lines 317–323). 

 

Figure B9. Differences in summer (May–October) mean (a) SST and (b) 〈𝑚〉 between 
SPK-OBS and SKP-SPC (SPK-OBS minus SPK-SPC). 

References: 
DeMott, C. A., Klingaman, N. P., Tseng, W.-L., Burt, M. A., Gao, Y., and Randall, D. 
A., 2019: The convection connection: How ocean feedbacks affect tropical mean 
moisture and MJO propagation. J. Geophys. Res. Atmos., 124(22), 11910–11931. 

Gao, Y., Klingaman, N. P., DeMott, C. A. and Hsu, P.: Diagnosing ocean feedbacks to 
the BSISO, 2019: SST-modulated surface fluxes and the moist static energy budget. J. 
Geophys. Res. Atmos., 124, 146–170. 

Jiang, X., 2017: Key processes for the eastward propagation of the Madden-Julian 
Oscillation based on multimodel simulations. J. Geophys. Res. Atmos., 122, 755–770. 

Jiang, X., Adames, A. F., Zhao, M., Waliser, D., and Maloney, E., 2018: A unified 
moisture moist framework for seasonality of MJO propagation. J. Climate, 31, 4215–
4224. 

 

19. Figure 1: The SST field is not an ERAI product. 

Responses: 

Yes, the ERAI is an atmospheric reanalysis dataset in which SST and sea ice 
concentration (SIC) were prescribed as boundary conditions for the atmospheric model. 
The SST and SIC used in the ERAI varied over different periods, which can be found 
in Table 1 of Dee et al. (2011).  

We added: “Note that ERAI SST was the boundary condition prescribed for the ERAI.” 
(Line 128). 

Reference: 

Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and 
performance of the data assimilation system. Q. J. Roy. Meteorol. Soc. 137(656), 553–
597, 2011. 

SPK-OBS - SPK-SPC
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20. Figure 8: Please add the statistical significance of regression coefficients. 

Response: 

The statistical significance of regression coefficients has been added in the revised Fig. 
8 (or see Fig. B10 below). 

 

Figure B10. SST effect on (left column) 〈𝒎〉 and (right column) 𝝏〈𝒎〉𝝏𝒕 through the 
modification of surface turbulent fluxes for (a, f) ERAI, (b, g) SPK-OBS, (c, h) SPK-
SPC, (d, i) SPA-KOBS, and (e, j) SPA-KSPC. Stippling marks regression coefficient 
being significant at the 95% confidence level. 
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GCM: effects of air-sea coupling and ocean mean state 
Yingxia Gao1,2, Nicholas P. Klingaman2, Charlotte A. DeMott3, Pang-Chi Hsu1 
1Key Laboratory of Meteorological Disaster of Ministry of Education/Collaborative Innovation Center on Forecast and 
Evaluation of Meteorological Disasters/NUIST-UoR International Research Institute, Nanjing University of Information 5 
Science & Technology, Nanjing, China 
2National Centre for Atmospheric Science-Climate and Department of Meteorology, University of Reading, Reading, United 
Kingdom 
3Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado, USA 

Correspondence to: Pang-Chi Hsu (pangchi@nuist.edu.cn) 10 

Abstract. The effect of air-sea coupling on simulated boreal summer intraseasonal oscillation (BSISO) is examined using 

atmosphere–ocean-mixed-layer coupled (SPCAM3-KPP) and uncoupled configurations of the superparameterized (SP) 

Community Atmospheric Model, version 3 (SPCAM3). The coupled configuration is constrained to either observed ocean 

mean state or the mean state from the SP coupled configuration with a dynamic ocean (SPCCSM3), to understand the effect 

of mean-state biases on the BSISO. All configurations overestimate summer mean subtropical rainfall and its intraseasonal 15 

variance. All configurations simulate realistic BSISO northward propagation over the Indian Ocean and western Pacific, in 

common with other SP configurations. 

    Prescribing the 31-day smoothed sea surface temperature (SST) from the SPCAM3-KPP simulation in SPCAM3 worsens 

the overestimated BSISO variance. In both coupled models, the phase relationship between intraseasonal rainfall and SST is 

well captured. This suggests that air-sea coupling improves the amplitude of simulated BSISO and contributes to the 20 

propagation of convection. Constraining SPCAM3-KPP to the SPCCSM3 mean state also reduces the overestimated BSISO 

variability, but weakens BSISO propagation. Using the SPCCSM3 mean state also introduces a one-month delay to the BSISO 

seasonal cycle compared to SPCAM3-KPP with the observed ocean mean state, which matches well with observation. Based 

on a Taylor diagram, both air-sea coupling and SPCCSM3 mean-state SST biases generally lead to higher simulated BSISO 

fidelity, largely due to their abilities to suppress the overestimated subtropical BSISO variance. 25 

1 Introduction 

The intraseasonal oscillation (ISO) is the most vigorous sub-seasonal signal in the tropics (Zhang, 2005). It interacts with other 

tropical climate and weather systems, such as the El Niño–Southern Oscillation (ENSO) and tropical cyclones (Kessler et al., 

1995; Zhang and Gottschalck, 2002; McPhaden, 2004; Wu et al., 2007), and even the mid-latitude systems (Ding and Wang, 

2007; Moon et al., 2013). Compared to the boreal winter ISO (i.e., the Madden and Julian Oscillation, or MJO; Madden and 30 

Julian, 1971, 1972), the boreal summer ISO (BSISO) shifts away from the equator to the Asian summer monsoon (ASM) 
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region (Wang et al., 2006; Lau and Waliser, 2012). Thus, the BSISO is connected strongly to the onset, active and break phases 

of the ASM (Yasunari, 1979; Annamalai and Slingo, 2001; Lau and Waliser, 2012). The frequency of extreme events over the 

ASM region is also highly related to BSISO activity (Ren et al., 2013; Li et al., 2015; Hsu et al., 2016, 2017, 2020; Liu and 

Hsu, 2019). 35 

    Realistic representation of the BSISO in climate models remains a challenge, although some improvements have been 

achieved in recent decades. The state-of-the-art general circulation models (GCMs) still have difficulty in simulating properly 

the BSISO spatial pattern (Sperber and Annamalai, 2008; Sperber et al., 2013; Hu et al., 2017) and its northwest-southeast 

tilted rain band structure (Lin et al., 2006; Sabeerali et al., 2013). In contrast, its northward propagation, which is the most 

significant feature of the BSISO, is captured by most models. Fidelity for northward propagation improved in the models that 40 

contributed to the Coupled Model Intercomparison Project (CMIP) phase 5, relative to the CMIP phase 3 (Sabeerali et al., 

2013; Sperber et al., 2013). Most models with reasonable northward propagation of the BSISO also simulate a good eastward 

propagation along the equatorial Indian Ocean. 

    The representation of convection is largely responsible for the ability of GCMs to simulate BSISO characteristics (Maloney 

and Hartmann, 2001; Randall et al., 2007; Jiang et al., 2016). Using the Hadley Centre atmospheric GCM (AGCM), Klingaman 45 

and Woolnough (2014) found that increasing the convective entrainment and detrainment rates considerably improved 

deficient MJO-like variability in the Indian and Pacific oceans. In recent years, studies have shown that “superparameterized” 

(SP) GCMs have high fidelity in simulating ISO variability (Benedict and Randall, 2009; Jiang et al., 2015; Neena et al., 2017). 

In SP GCMs, the traditional cumulus parameterization is replaced by a two-dimensional (2-D) cloud-resolving model in each 

grid column to calculate the cloud and radiation physics tendencies (Khairoutdinov and Randall, 2003; Khairoutdinov et al., 50 

2005). By comparing different versions of the National Center for Atmospheric Research (NCAR) Community Atmospheric 

Model (CAM), DeMott et al. (2014) showed that the SP CAM (SPCAM3) gave better BSISO characteristics than the CAM 

with the standard convective parameterization. 

    Besides the convective parameterization scheme, the effect of air-sea interaction on simulated ISO variability has also 

received growing attention. By comparing the results of coupled GCMs (CGCMs) with the results of the AGCMs prescribed 55 

with observed SSTs, many studies found that the inclusion of air-sea coupling could produce a more realistic intraseasonal 

variability via improving the representation of the diurnal cycle at the air-sea interface (Waliser et al., 1999; Bernie et al., 2005; 

Danabasoglu et al., 2006; Misra et al., 2008; Stan, 2018). Besides the air-sea coupling process, the differences between 

simulated results may also come from ocean mean-state differences between AGCM and CGCM, as incorporating air-sea 

interaction in CGCMs inevitably introduces atmospheric and ocean mean-state biases. Due to the strong control on low-level 60 

moisture and convergence anomalies, such ocean mean-state biases may degrade simulated intraseasonal variability (Hendon, 

2000; Inness et al., 2003; Sperber et al., 2005; Bollasina and Ming, 2013). Using the National Centers for Environmental 

Prediction (NCEP) coupled Climate Forecast System (CFS) model, Seo et al. (2007) showed that BSISO development and 

propagation were largely improved when the CGCM cold SST bias was removed via flux correction. They suggested that the 

role of air-sea interaction would be more accurate under an ocean mean state with smaller SST biases. To reduce the mean-65 
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state differences between CGCMs and AGCMs, time-varying SSTs from CGCMs should be used to drive AGCMs (Fu and 

Wang, 2004; Seo et al., 2007; Levine and Turner, 2012; DeMott et al., 2015). However, this quantifies the role of air-sea 

coupling only under the biased CGCM mean state. 

    Through flux correction, CGCMs can be constrained to a given climatological ocean state. Such constraint is more effective 

in CGCMs with simple ocean models, which lack ocean dynamics, as ocean dynamics may interfere with the prescribed flux 70 

correction. Simple ocean models also lack coupled modes of variability, such as the ENSO, feedbacks from which can 

influence the perceived effect of coupling on sub-seasonal variability (Klingaman and DeMott, 2020). The CGCMs with 

simplified model oceans are a useful tool to investigate the roles of air-sea coupling and mean-state biases in the simulation of 

BSISO. In this study, we examine the roles of air-sea interaction and mean-state biases in simulated BSISO using a 

configuration of SPCAM3 coupled to a mixed-layer ocean model, constrained to observed ocean mean state and simulated 75 

mean ocean state from the SP Community Climate System Model (CCSM), version 3 (SPCCSM3; Stan et al., 2010). The 

model experiments, validation data, and analysis methods are described in section 2. In section 3, we analyse the influence of 

air-sea coupling and mean-state biases on the spatial pattern and propagation of simulated BSISO. Results are discussed and 

summarized in sections 4 and 5, respectively. 

2 Model, experiments and methods 80 

2.1 Models 

SPCAM3 (Khairoutdinov et al., 2005) is employed in this study, due to its high fidelity for simulated ISO (Jiang et al., 2015; 

Neena et al., 2017). It has a horizontal resolution of T42 and a vertical resolution of 30 levels. The embedded 2-D cloud- 

resolving model has 32 columns with a fine resolution (4 km; Khairoutdinov and Randall, 2003). SPCCSM3 is the coupled 

configuration, in which SPCAM3 is coupled to the 3-D ocean model of Parallel Ocean Program (POP; Danabasoglu et al., 85 

2006), with active ocean dynamics. SPCCSM3 utilizes the low-resolution version (~3º) of the POP, which has 40 vertical 

layers with the thickness of top layers being 10 m and exchanges SST and surface fluxes with SPCAM3 at 1-day coupling 

frequency. To understand the roles of air-sea interaction and SST mean-state biases in BSISO simulation, we couple SPCAM3 

with the Multi-Column K Profile Parameterization (MC-KPP) mixed-layer ocean model, referred to as “SPCAM3-KPP” from 

now. In the MC-KPP, there is only vertical mixing (Large et al., 1994), while ocean dynamics, such as horizonal or vertical 90 

advection or wind-driven upwelling, are absent. Besides, the air-sea coupled modes of variability (such as the ENSO) and 

potential feedbacks from these modes to intraseasonal variability are also absent. The MC-KPP consists of many independent 

1-D columns, with one column under each AGCM grid for coupling. Therefore, the horizontal resolution of MC-KPP is the 

same as that of SPCAM3. The MC-KPP has a fine vertical resolution, with 100 points in a 1000 m water column, 70 of which 

are in the top 300 m, and ~1-m resolution in the top 20 m. More details on SPCAM3-KPP can be found in Klingaman and 95 

DeMott (2020). 
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    Since MC-KPP lacks ocean dynamics, SPCAM3-KPP must be constrained to a reference ocean climatology, which can be 

taken from an observation-based dataset, an ocean model simulation, or a CGCM simulation. To represent mean-ocean 

dynamics and correct for biases in surface fluxes, prescribed vertical profiles of heat and salt corrections are applied at each 

gridpoint at each timestep. For each SPCAM3-KPP simulation analysed here, a 10-year “relaxation” simulation is first 100 

performed, with a 15-day relaxation timescale toward the reference seasonal cycles of ocean temperature and salinity. The 

mean seasonal cycles of the temperature and salinity relaxation tendencies are then computed, smoothed with a 31-day running 

mean, and imposed as corrections in a “free-running” coupled integration with no relaxation, which displays only small SST 

biases against the reference climatology (Fig. 1). These free-running simulations are analysed here. More details on the 

correction method can be found in Hirons et al. (2015) and Klingaman and DeMott (2020). 105 

2.2 Experiments and validation data 

Two pairs of 50-year-long atmosphere-only (SPCAM3) and coupled (SPCAM3-KPP) models are analysed (Table 1). These 

simulations were also analysed for studying the MJO in Klingaman and DeMott (2020). For brevity, we write SPCAM3 and 

SPCAM3-KPP as “SPA” and “SPK”, respectively. Next, we explain the setup of each experiment in detail. 

    To study the effect of mean-state biases on simulated BSISO, SPK is constrained to two ocean mean states: 1) the 1980–110 

2009 climatology from the Met Office ocean analysis (Smith and Murphy, 2007); and 2) the climatology from the 20-year 

SPCCSM3 (“SPC” for short) simulation, which was analysed in Stan et al. (2010) and DeMott et al. (2014). The former is 

considered as the observed ocean state (Fig. 1c), against which SPC shows large cold SST biases throughout the Indo-Pacific 

in the boreal summer (Fig. 1f). These two coupled simulations are referred to as “SPK-OBS” and “SPK-SPC”, respectively. 

Differences between the results of SPK-OBS and those of SPK-SPC can reveal the effect of SPC mean-state SST biases on 115 

the simulated BSISO. To investigate the effect of air-sea interaction on simulated BSISO under the observed ocean mean state, 

the time-varying SSTs from SPK-OBS are prescribed in an SPA simulation (“SPA-KOBS”). The 31-day smoothed SST is 

used to remove the high-frequency variability of SST and avoid erroneous positive feedbacks between SSTs, surface fluxes 

and precipitation (see DeMott et al., 2015 and references therein). Similarly, we prescribe the 31-day smoothed SST from 

SPK-SPC to SPA to understand the air-sea coupling effect under the SPC mean state (“SPA-KSPC”) through the comparison 120 

with SPK-SPC. Table 1 summarises all four experiments. 

    The validation data used in this study include: 1) daily outgoing longwave radiation (OLR) from the National Oceanic and 

Atmospheric Administration (NOAA) at a resolution of 2.5º×2.5º for 1986–2016 (Liebmann and Smith, 1996); 2) daily 

precipitation from the Global Precipitation Climatology Project (GPCP; Huffman et al., 2001) at a resolution of 1º×1º for 

1997–2016; and 3) daily variables from the European Centre for Medium-range Weather Forecasts (ECMWF) Interim (ERAI) 125 

reanalysis dataset at a resolution of 1.5º×1.5º (Dee et al., 2011). The variables from the ERAI include: 850-hPa wind, SST, 

surface variables related to latent heat and sensible heat (LH and SH) fluxes, and 3-D variables associated with moist static 

energy (MSE; Maloney, 2009). Note that ERAI SST was the boundary condition prescribed for the ERAI. We analyse the 

period of 1986–2016 of ERAI data for compatibility with Gao et al. (2019).  



5 
 

2.3 Methods 130 

The BSISO convective intensity is represented by 20–100-day-filtered variability of boreal summer (May–October) 

precipitation, OLR or MSE, depending on the process-oriented diagnostic applied. To reveal the overall propagation features 

of BSISO convection, lead-lag regression analysis is performed on area-averaged, filtered precipitation or OLR. Here, we use 

precipitation. Since the Indian and Pacific basins exhibit different basic states (Lau and Waliser, 2012), we compute 

propagation over one region in each basin: the eastern Indian Ocean (80°–90°E, 0°–10°N) and western Pacific (130°–140°E, 135 

0°–10°N). 

    DeMott et al. (2016) and Gao et al. (2019) provided a useful diagnostic method to quantitatively assess the contribution of 

intraseasonal SST variability to the MSE budget of ISO in the boreal winter and boreal summer, respectively. The temporal 

and spatial evolution of column-integrated MSE (〈𝑚𝑚〉) is highly consistent with that of anomalous precipitation; and positive 

values of the time change of  〈𝑚𝑚〉 (𝜕𝜕〈𝑚𝑚〉/𝜕𝜕𝜕𝜕) leads 90º ahead of the convection. Thus, the physical processes that modulate 140 

〈𝑚𝑚〉 and 𝜕𝜕〈𝑚𝑚〉/𝜕𝜕𝜕𝜕 can be considered as the mechanisms responsible for the maintenance and propagation of convections, 

respectively. We employ the same approach to understand oceanic feedbacks to the simulated BSISO, and compare these 

feedbacks to those in reanalysis data. Intraseasonal SST can affect atmospheric convection through modifying LH and SH 

fluxes and hence MSE, via the near-surface gradients in specific humidity and temperature. Based on decomposition of surface 

bulk formulae (Weare et al., 1981), SST modulation of surface fluxes is represented as the difference between fluxes calculated 145 

using the full and 61-day smoothed SST. These SST-modulated fluxes are then projected onto 〈m〉 and ∂〈m〉/ ∂t to reveal the 

oceanic feedbacks to the maintenance and propagation of BSISO convection, respectively. More details can be found in 

DeMott et al. (2016) and Gao et al. (2019). 

    We employ the BSISO indices of Lee et al. (2013) to investigate the simulated convective features in each BSISO phase. 

First, daily anomalies are computed as the departure from the climatological annual cycle and a 120-day running mean. Multi-150 

variate Empirical Orthogonal Function (MV-EOF) is then performed on the combination of OLR and 850-hPa zonal wind 

(u850) anomalies, each normalized by their respective area-mean standard deviation over the ASM region (40°–160°E, 10°S–

40°N) during the boreal summer. The first two leading principal components (PC1 and PC2) define the BSISO indices, which 

separate the BSISO life cycle into eight phases. For model results, normalized OLR and u850 anomalies are projected onto the 

observed EOF modes to obtain the model PCs. This approach helps assess fairly how well the model experiments simulate the 155 

observed BSISO because the projected results (model PCs) can be directly compared to observations (Sperber et al., 2008, 

2013; DeMott et al., 2019). Model simulated BSISO phase composites are constructed based on these PCs. Consistent with 

Lee et al. (2013), only strong BSISO events (√PC12 + PC22 > 1.5) are selected for phase composites. 
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3 Results 

3.1 Mean state and intraseasonal variability 160 

Previous studies indicated that ISO variability is closely related to the climatological state of convection (Wheeler and Kiladis, 

1999; Sperber et al., 2000; Waliser et al., 2003). Thus, we first examine the summer mean precipitation and 850-hPa wind 

(Fig. 2). In GPCP, substantial rainfall appears over the ASM region (Fig. 2a). In common with SPCAM3 simulation (DeMott 

et al., 2011), SPK-OBS overestimates subtropical rainfall (10°–20°N), particularly in the western North Pacific (Figs. 2b and 

e), but underestimates rainfall over the southern Indian Ocean, Maritime Continent and India north to 20°N. These precipitation 165 

biases are associated with low-level wind biases. Simulated mean westerlies extend into the western North Pacific, increasing 

convergence across the band of subtropical enhanced precipitation. In SPK-SPC (Fig. 2c), which is constrained to the cold 

climatological SPC SST (Fig. 1d), rainfall is reduced compared to that in SPK-OBS: wet biases are reduced while dry biases 

become more severe over the Indian Ocean and western North Pacific (Figs. 2e and f). The SPC mean-state SST bias tends to 

suppress the mean precipitation. Mean precipitation fields in SPA-KOBS and that in SPK-OBS (SPA-KSPC and SPK-SPC) 170 

are nearly the same (not shown). 

    Figure 3 illustrates the standard deviations of intraseasonal SST and precipitation variability. SST variability is 

underestimated over the Indian Ocean and equatorial Pacific in all simulations. In the off-equatorial Pacific, we see more 

intraseasonal SST variability in SPK-OBS but less SST variability in SPK-SPC (Figs. 3b and c), which may be related to the 

less SST variability in SPC as a consequence of coarse horizontal resolution of POP. Prescribing the 31-day smoothed SST 175 

from SPK-OBS (SPK-SPC) to SPA-KOBS (SPA-KSPC) strongly reduces intraseasonal SST, as expected (Figs. 3d and e). 

The right-column panels in Fig. 3 show the intraseasonal rainfall from each dataset (Figs. 3f–j). Compared to GPCP (Fig. 3f), 

all simulations significantly overestimate subtropical intraseasonal precipitation variability (10°–20°N), where mean rainfall 

is also overestimated (Fig. 2). This reinforces that model BSISO biases are largely associated with incorrect representation of 

mean rainfall (Sperber and Annamalai, 2008; Sabeerali et al., 2013; Hu et al., 2017). The overestimate of intraseasonal rainfall 180 

in SPK-SPC (Fig. 3h) is smaller than that in SPK-OBS (Fig. 3g), consistent with the lower mean rainfall in SPK-SPC. SPA-

KOBS (Fig. 3i) and SPA-KSPC (Fig. 3j) show increases in intraseasonal rainfall relative to SPK-OBS and SPK-SPC, 

respectively. This indicates that both cold SST biases and air-sea coupling exert negative feedbacks on BSISO convection, and 

improve the simulated BSISO amplitude. 

3.2 Northward propagation of BSISO 185 

Lag regression analysis is employed to understand the simulated BSISO propagation in each experiment. Over the Indian 

Ocean, area (80°–90°E) averaged intraseasonal precipitation and SST are regressed onto area (80°–90°E, 0°–10°N) averaged 

intraseasonal precipitation time series (Fig. 4). In observation, the convective anomaly originates south of the equator and 

propagates southward to 10º–15ºS and northward into the Bay of Bengal (Fig. 4a). All simulations capture the northward 

propagation, confirming the high fidelity of SPCAM3 in simulating BSISO northward propagation (DeMott et al., 2014; Neena 190 
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et al., 2017). However, the simulations fail to capture the southward propagation branch. Other significant biases can be seen 

in the locations of maximum convections of BSISO. The simulated convective center shifts northward (10°N) relative to 

observation (5°N). A weaker propagating signal is observed under the SPC mean state than under the observed mean state for 

both SPK and SPA, especially over the subtropical regions from Lag 0 to Lag 20 (Figs. 4b and d; Figs. 4c and e). This is 

consistent with weaker BSISO variability under the SPC mean state (Figs. 3g–j), suggesting that cold tropical mean SST biases 195 

are unfavourable for BSISO variability and northward propagation. In SPA, the amplitude of convective maxima increases 

relative to that in SPK, but with weaker propagation (Figs. 4b–e). Air-sea coupling plays a similar role in BSISO convection 

under both observed and cold mean states: it damps BSISO amplitude but supports northward propagation over the eastern 

Indian Ocean. 

    The BSISO northward propagation over the western Pacific is shown in Fig. 5. The observed convection also originates 200 

south of the equator, but propagates only north, into the western North Pacific (Fig. 5a). These characteristics are properly 

simulated by all experiments (Figs. 5b–e). As in the Indian Ocean, due to the large overestimate of subtropical BSISO 

variability, the strongest simulated convection moves north compared to observation. It is notable that considerable suppressed 

off-equatorial convection leads the strongest convection by ~1 week, which degrades model performance. Over the western 

Pacific, mean-state biases also reduce the northward propagating signal in SPK-SPC (SPA-KSPC) relative to that in SPK-OBS 205 

(SPA-KOBS). Air-sea interaction seems to play little role in the BSISO northward propagation over the western Pacific, as 

there is no substantial difference between SPK and SPA under either ocean mean state (Figs. 5b–c; Figs. 5d–e). 

3.3 Quantitative contribution of SST fluctuation to BSISO 

The temporal and spatial evolutions of BSISO and SST variability over the Indian Ocean and western Pacific are shown in 

Figs. 6 and 7, respectively. Over the Indian Ocean, the warm SSTs in observation always lead enhanced convection, with 210 

maxima north/northeast of the convective center (Figs. 6a, f and k). The SST-rainfall phase relationship is properly represented 

in SPK but misrepresented in SPA. However, SPK shows a shorter delay between off-equatorial suppressed convection and 

warm SST relative to observation, which can be more clearly revealed in Fig. 4. This suggests the ocean responds more quickly 

to BSISO convection in SPK than in observation, which might be caused by the lack of ocean dynamics in MC-KPP. 

Alternatively, the high coupling frequency (15 minutes) and fine ocean vertical resolution (~1 m) in SPK may make the mixed-215 

layer depth too sensitive to atmospheric convection. The SST anomalies in SPA are small due to the 31-day smoothing applied 

(Figs. 6d, e, i, j, n, and o). The size of the convective regions in all model simulations is smaller than that in observations, 

which may imply a deficient BSISO propagation. Compared to SPK-OBS, the convective region reduces when either the SPC 

mean state is used (SPK-SPC) or air-sea coupling is removed (SPA-KOBS and SPA-KSPC). To some degree, it reflects the 

negative (positive) role of mean-state biases (air-sea interaction) in supporting the propagating BSISO signal, in agreement 220 

with Fig. 4. 

    Over the western Pacific, SPK reproduces the observed phase relationship between the convection and SST anomalies: a 

near-quadrature relationship over the equatorial regions (Figs. 7a–c), but a shift of warm SST anomalies toward the suppressed 
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convective regions in the off-equatorial regions (Figs. 7f–h and k–m). This phase relationship can also be clearly revealed in 

the Hovmöller diagram (Fig. 5). However, SPK produces substantial suppressed convection north of the active convection 225 

over the western North Pacific, consistent with Fig. 5. Besides, simulated warm SST appears north of the convective center, 

while the ERAI SST maximum is always located northwest of the convective center. This implies that the simulated SST may 

be favourable for the northward but unfavourable for the westward propagation of the simulated BSISO convection over the 

western Pacific. Imposing the SPC mean state weakens the simulated convection. In SPA, the intraseasonal SST is very small 

by design. 230 

    As revealed by Gao et al. (2019), intraseasonal SST can affect the BSISO by modulating surface LH and SH fluxes. The 

temporal and spatial distributions of SST-modulated fluxes are highly coherent with those of SST anomalies themselves. 

Therefore, the evolutions of SST anomalies shown in Figs. 6 and 7 can also roughly reveal the evolutions of SST-modulated 

surface fluxes. By regressing the SST-modulated flux anomalies onto the BSISO 〈m〉 and ∂〈m〉/ ∂t, Fig. 8 illustrates the “SST 

effect” on the maintenance and propagation of convection. In the ERAI, intraseasonal SST supports 〈𝑚𝑚〉 in the central Indian 235 

Ocean and Bay of Bengal but destroys 〈𝑚𝑚〉 in the western North Pacific (Fig. 8a). The inter-basin differences are linked to the 

differences in SST-convection phase relationship (Gao et al., 2019). However, simulated SST anomalies in SPK largely damp 

the convection over the Bay of Bengal and western North Pacific (Figs. 8b and c), because of the quicker response of the SPK 

ocean to BSISO convection, combined with the erroneously strong suppressed convection just before the active phase. The 

negative SST effect on 〈𝑚𝑚〉 agrees with the stronger subtropical BSISO variability in SPA than in SPK. For the BSISO 240 

propagation, the simulated SST anomalies play positive roles in ∂〈m〉/ ∂t under both ocean mean states (Figs. 8g and h), but 

with a smaller contribution (8–12%) than that in the ERAI (12–20%). A weak SST effect on the BSISO can still be found in 

SPA (Figs. 8d, e, i, and j), as these simulations retain some intraseasonal SST variability (Fig. 3). In summary, SST variability 

enhances the simulated amplitude of BSISO variability by suppressing the excessive subtropical convection and contributes 

to the propagation of convection over the entire BSISO region. 245 

3.4 BSISO indices 

Propagating BSISO characteristics can also be examined using the BSISO indices. Figure 9 shows the annual cycle of variance 

of each of the first four PCs from observation and model simulations. Since EOF analysis is only applied to May–October data, 

the PC time series for November–April are obtained by projecting OLR and u850 anomalies onto the same EOF patterns.  

    In observation, PC1 has the largest variance throughout the boreal summer (Fig. 9a). It increases sharply from late April, 250 

maximises in August, and is followed by PC2 with about half a month delay. In contrast to PC1 and PC2, PC3 exhibits most 

of its variance in early summer (May–June). PC4 also has a broad peak, but its amplitude is much smaller than those of the 

other PCs. SPK-OBS produces a similar seasonal cycle of PC1 as observation, except for deficient variance in August–

September, which largely reduces the amplitude difference between the first two PCs (Fig. 9b). Simulated PC1 in SPK-OBS 

also increases abruptly from late April, with a half-month delay between PC1 and PC2, which matches observation well. 255 

However, PC1 in SPK-SPC begins to increase in late May (Fig. 9c), about one month later than observation and SPK-OBS. 
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The variance of the first two PCs in SPK-SPC has a much narrower peak and tails off from early July, without a second peak 

in October. This suggests that cold SST bias leads to a late onset of BSISO activity, and also strongly degrades the annual 

cycle of BSISO activity. In both SPK simulations, the amplitude of PC3 is smaller than that of PC4, indicating that the order 

of those simulated PCs is reversed. All model simulations show a similarly poor ability to simulate PC3 and PC4. Therefore, 260 

hereafter we only focus on PC1 and PC2. Removing air-sea coupling in SPA increases significantly the strength of PC1 relative 

to that in SPK (Figs. 9b and d; Figs. 9c and e). This suggests that the role of air-sea coupling in suppressing BSISO variability 

is mainly expressed through damping variability in PC1.  

    Based on the PC1 and PC2 time series, the BSISO life cycle is separated into eight phases, which represents the canonical 

northward propagating BSISO (Annamalai and Sperber, 2005; Wang et al., 2005). Figure 10 shows the phase composites of 265 

anomalous precipitation and 850-hPa wind from observation and SPK-OBS. SPK-OBS displays a similar evolution of the 

structure of convection and circulation as the observation, but they have significant amplitude differences. The simulated 

precipitation variability is underestimated over the equatorial Indian Ocean, while substantial overestimate appears over the 

off-equatorial regions. The simulated circulation matches well with the simulated convection: easterlies (westerlies) occur to 

the north (south) of the ascent; cyclonic (anticyclonic) circulations coincide with the active (suppressed) off-equatorial 270 

convection. However, the northwest-southeast titled rainfall band in SPK-OBS is more zonal than that in GPCP (Figs. 10e and 

m), largely due to the poor representation of BSISO variability over the western Pacific. In observation, most strong BSISO 

events occur in phases 2, 5, 7, and 8. In contrast, in SPK-OBS, a stronger preference for simulated strong BSISO events appear 

in off-equatorial regions (phases 3, 4, 7, and 8) rather than in near-equatorial regions (phases 1, 2, 5, and 6). It implies that the 

BSISO variability is largely determined by the propagating BSISO signal (Sperber et al., 2013; Neena et al., 2017). 275 

    We further compute the frequency of strong BSISO events in each phase from each dataset (Fig. 11). Overall, there are 

fewer strong BSISO events in the simulations (22.5–27.5%) than in observation (~33%), although the amplitude of simulated 

precipitation associated with these events is much larger. The frequency of stronger BSISO events becomes further fewer 

under the SPC ocean mean state than that under the observed ocean mean state. Consistent with Fig. 10, phases 2, 5, 7, and 8 

show the highest frequencies in observation, while in SPK-OBS and SPK-SPC, most strong simulated BSISO events occur in 280 

phases 3, 4, 7, and 8. Removing air-sea coupling in SPA further increases the frequency of strong BSISO events in the off-

equatorial regions, associated with the greater intraseasonal convective variability in SPA relative to that in SPK. 

To quantitatively evaluate the performance of each simulation, we construct Taylor diagrams over the Indian Ocean (50°–

100°E, 10°S–20°N) and western Pacific (110°–160°E, 0°–30°N), respectively (Fig. 12). These diagrams provide pattern 

correlation coefficients and root-mean-square-errors of simulated intraseasonal precipitation against GPCP intraseasonal 285 

precipitation in each BSISO phase. Over the Indian Ocean, the fidelity of each simulation varies from phase to phase (Fig. 

12a). Generally, higher pattern correlations appear in equatorial phases (phases 1, 2, 5 and 6) than in off-equatorial phases 

(phases 3, 4, 7 and 8). Under the observed ocean mean state, air-sea coupling improves the simulation fidelity in most phases, 

while the SPC ocean mean state and coupling under the SPC ocean mean state have little consistent effect on the simulated 

BSISO fidelity.  290 
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In almost all simulations, higher pattern correlations are found over the western Pacific (0.6–0.9) than over the Indian Ocean 

(0.5–0.8), but with much larger overestimates of amplitude (Fig. 12b). The overall simulation performance over the western 

Pacific is ranked as follows: SPK-SPC, SPA-KSPC, SPK-OBS, and SPA-KOBS. Simulations with the SPC ocean mean state 

perform better than those with the observed ocean mean state, in terms of both amplitude and distribution. Since the excessive 

subtropical rainfall variability is the biggest error in SPCAM3, the underlying cold SSTs largely weaken the convection, which 295 

helps reduce the amplitude biases and improve the pattern correlation with observation. Air-sea coupling improves model 

performance under both ocean mean states, particularly in terms of suppressing the overestimated BSISO variability over the 

western North Pacific. 

4 Discussion 

Despite the correct SST-rainfall phase relationship in SPK simulations, a shorter delay between suppressed convection and 300 

warm SST occurs compared to the reanalysis. This may be associated with the configuration of the MC-KPP ocean (lack of 

full ocean dynamics, high coupling frequency and fine vertical resolution). As a consequence of the shorter delay, it is easy to 

surmise the negative effect of air-sea coupling on the amplitude of convection, while its effect on the propagation is not obvious. 

Overall, intraseasonal SST anomalies in SPK largely damp intraseasonal subtropical convection variability and make a smaller 

contribution (8–12%) to ∂〈m〉/ ∂t than those in the ERAI (12–20%). Comparing Figs. 4 and 5, we can see propagation is 305 

slightly enhanced in SPK relative to SPA over the Indian Ocean; however, coupling makes nearly no difference to the 

propagating signal over the western Pacific. This may be related to the larger underestimate of the contribution of intraseasonal 

SST to ∂〈m〉/ ∂t over the western Pacific than over the Bay of Bengal (Fig. 8). More importantly, it implies that atmospheric 

internal processes are essential to the propagation of convection, since SPCAM3 simulates BSISO propagation well even 

without coupling or sub-seasonal SST variability. 310 

    Stan et al. (2010) and Neena et al. (2017) reported that SPC showed better ISO simulation skill than SPA with prescribed 

observed SST. In our experiments, the BSISO variability is similar in SPK-OBS and SPA-KOBS and in SPK-SPC and SPA-

KSPC, which suggests a limited role for air-sea coupling in the simulated BSISO. Comparing SPK-OBS and SPK-SPC 

strongly suggests that the ocean mean-state biases in SPC improve BSISO amplitude and spatial distribution. This implies that 

mean-state biases in SPC, not sub-seasonal air-sea coupled feedbacks, be the primary reason for the improved BSISO in SPC 315 

relative to SPA. While the SPC mean state improves the amplitude and spatial pattern of simulated BSISO convection, it also 

weakens northward propagation. Besides the SST mean-state biases, it is also important to control the SST gradient bias. 

Several studies highlighted the importance of horizonal advection of mean moisture (or 〈𝑚𝑚〉) by anomalous wind in the 

propagation of the ISO (Hsu and Li, 2012; Jiang, 2017; Jiang et al., 2018; DeMott et al., 2019; Gao et al., 2019). Our additional 

diagnosis revealed that the pattern of 〈𝑚𝑚〉 biases closely follows that of SST biases (not shown). By examining Figs. 1g–h, we 320 

would argue that the stronger BSISO variability in SPK-OBS than in SPK-SPC may be related to the enhanced meridional 
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gradients of SST and moisture. Weaker propagating BSISO signal in SPC seems to be associated with the reduced horizontal 

〈𝑚𝑚〉 advection of mean 〈𝑚𝑚〉 induced by anomalous wind. 

    In CGCMs with dynamic oceans, it is also important to consider the effect of interannual SST variability (such as the ENSO), 

due to its strong control on sub-seasonal variability, particularly on the boreal winter MJO (Weaver et al., 2011; Kapur and 325 

Zhang, 2012; Klingaman and DeMott, 2020). We note that none of the simulations considered here represent the ENSO or 

other coupled modes of interannual variability, as the MC-KPP ocean model lacks the requisite ocean dynamics. Using the 

same simulations, Klingaman and DeMott (2020) found that the intensity and propagation of the boreal winter MJO was 

strongly suppressed in SPCAM3-KPP under the SPC ocean mean state, while here the SPC ocean mean state enhances BSISO 

amplitude and only slightly weakens its propagation. Klingaman and DeMott (2020) found that the inclusion of the SPC ENSO 330 

variability on top of the SPC mean state substantially strengthened the MJO, suggesting that the strong MJO in SPC arose 

from an excessively intense response to the ENSO. The effect of ENSO is not considered here, which could be a subject for 

further study. 

5 Summary 

We investigate the roles of ocean mean-state biases and air-sea coupling in simulating the BSISO by coupling the SPCAM3 335 

to the MC-KPP mixed-layer ocean. To diagnose the sensitivity to the ocean mean state, SPCAM3-KPP is constrained to either 

observed ocean mean state or the ocean mean state from the coupled configuration of SPCAM3 with a dynamic ocean (SPC). 

The SPC mean state introduces substantial cold SST biases across the Indo-Pacific. To diagnose the sensitivity to air-sea 

coupling under different mean states, SPCAM3 is driven by the 31-day running mean SST from each SPCAM3-KPP 

simulation. 340 

    Systematic errors in SPCAM3 result in overestimated subtropical summer mean rainfall and intraseasonal variability. These 

overestimated variables are greatly improved with coupling, or with the SPC ocean mean state. Lag regression composites 

show that the simulated convection exhibits realistic northward propagation over both the Indian Ocean and western Pacific. 

However, the strongest convective center shifts north relative to the observation. Using the SPC ocean mean state degrades 

the propagating BSISO signal in both coupled and uncoupled simulations, relative to the simulations that use the observed 345 

ocean mean state. Air-sea coupling slightly enhances the strength of the propagating signal under both ocean mean states. The 

coupled simulations capture the SST-rainfall phase relationship reasonably well, but with warm SSTs shifting toward the 

suppressed convection over the Bay of Bengal relative to the observation. Intraseasonal SST variability plays a similar role in 

the BSISO MSE budget in the coupled simulations, regardless of the ocean mean state: it damps subtropical convection and 

favours BSISO northward propagation, but with a smaller contribution (8–12%) than the reanalysis (12–20%). 350 

    We also examine the simulation skill of propagating BSISO characteristics by using BSISO indices. Experiments with the 

observed ocean mean state produce a realistic annual cycle of BSISO variance, while the simulations with the SPC mean state 

result in a one-month delay of the onset of BSISO activity. Air-sea coupling weakens convective variability mainly through 
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suppressing the first EOF mode. Different from the observation, all model simulations favour strong BSISO activity in off-

equatorial regions, which is associated with intense subtropical variability. Overall, the simulations using the SPC ocean mean 355 

state produce an improved BSISO than those using the observed ocean mean state, in terms of both amplitude and pattern 

correlation of anomalous precipitation. Air-sea coupling improves the BSISO fidelity in most phases. The enhancement of 

simulated BSISO by the ocean mean state and air-sea coupling largely arises from suppressing erroneously strong subtropical 

convection. 

In our study, air-sea coupling has a similar effect on the simulated BSISO under different ocean background states, 360 

suggesting that the role of coupling may largely depend on the phase relationship between the convection and SST anomalies. 

Compared to daily coupling frequency between the atmosphere and ocean components of CGCMs, improved fidelity for the 

BSISO simulation is shown in CGCMs with sub-daily coupling frequency (Woolnough et al., 2007; Klingaman et al., 2011; 

Hu et al., 2015). In our study, the model ocean tends to respond quickly to the atmospheric convection, which may be associated 

with the sensitive mixed layer depth due to the absent ocean dynamics in KPP. Therefore, to better understand the role of 365 

coupling in the simulated ISO, efforts should be aimed at simulating a realistic phase relationship between the ISO convection 

and SST anomalies. 
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Table 1: List of simulations analysed in this study, including the experiment name, model, ocean climatology condition used by the model 
to constrain (coupled model) or as forcing (atmospheric-only model), and design purpose. 

Exp Model Ocean surface Purpose 

SPK-OBS SPCAM3-KPP SST climatology from observation Understanding ocean mean-state bias effect  
(SPK-OBS vs. SPK-SPC) SPK-SPC SPCAM3-KPP SST climatology from SPC 

SPA-KOBS SPCAM3 31-day smoothed SST from SPK-OBS Understanding air-sea coupling effect under 
observed mean state (vs. SPK-OBS) 

SPA-KSPC SPCAM3 31-day smoothed SST from SPK-SPC Understanding air-sea coupling effect under 
SPC mean state (vs. SPK-SPC) 
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 580 
Figure 1: May–October mean SST for (a) ERAI, (b) SPCCSM3, (c) SPK-OBS, and (d) SPK-SPC. (f)–(h) are calculated differences between 
(b)–(d) and (a). 
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Figure 2: May–October mean precipitation (shading) and 850-hPa wind (vector; with amplitude > 3.5 m s-1) for (a) GPCP precipitation and 585 
ERAI 850-hPa wind, (b) SPK-OBS and (c) SPK-SPC. (e)–(f) are calculated differences between (b)–(c) and (a). 

 

  



22 
 

 
Figure 3: May–October standard deviations of 20–100-day-filtered (left column) SST and (right column) precipitation for (a, f) ERAI SST 590 
and GPCP precipitation, (b, g) SPK-OBS, (c, h) SPK-SPC, (d, i) SPA-KOBS, and (e, j) SPA-KSPC. 
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Figure 4: Lagged regression coefficients of 80°–90°E averaged intraseasonal precipitation (shading; [mm day-1]/[mm day-1]) and SST 
(contour; [ºC]/[mm day-1]) onto (80°–90°E, 0°–10°N) averaged intraseasonal precipitation for (a) GPCP precipitation and ERAI SST, (b) 595 
SPK-OBS, (c) SPA-KOBS, (d) SPK-SPC, and (e) SPA-KSPC. Contour interval is 0.001 [ºC]/[mm day-1], and zero contour is omitted. 

  



24 
 

 
Figure 5: Same as Fig. 4, except for 130°–140°E averaged intraseasonal precipitation and SST regressed onto (130°–140°E, 0°–10°N) 
averaged intraseasonal precipitation. 600 
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Figure 6: Regression coefficients of intraseasonal precipitation (shading; [mm day-1]/[mm day-1]) and SST (contour; [℃]/[mm day-1]) onto 
(80°–90°E, 0°–10°N) averaged intraseasonal precipitation over the Indian Ocean at lags of (left column) -7, (middle column) 0 and (right 
column) +7 days, for (a, f, k) GPCP precipitation and ERAI SST, (b, g, l) SPK-OBS, (c, h, m) SPK-SPC, (d, i, n) SPA-KOBS, and (e, j, o) 605 
SPA-KSPC. The contour interval is 0.01 [℃]/[mm day-1]; positive (negative) values are represented by red (blue) lines. 
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Figure 7: Same as Fig. 6, except for variables regressed onto (130°–140°E, 0°–10°N) averaged intraseasonal precipitation over the western 
Pacific. 610 
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Figure 8: SST effect on (left column) 〈𝒎𝒎〉 and (right column) 𝝏𝝏〈𝒎𝒎〉/𝝏𝝏𝝏𝝏 through the modification of surface turbulent fluxes for (a, f) ERAI, 
(b, g) SPK-OBS, (c, h) SPK-SPC, (d, i) SPA-KOBS, and (e, j) SPA-KSPC. Stippling indicates regression coefficient is significant at the 95% 
confidence level. 615 
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Figure 9: Seasonal cycle of variance of the four leading PCs for (a) NOAA OLR and ERAI u850, (b) SPK-OBS, (c) SPK-SPC, (d) SPA-
KOBS, and (e) SPA-KSPC. A 30-day running mean is applied to the seasonal cycle of each variable. 

  620 
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Figure 10: Composites of anomalous precipitation (shading; mm day-1) and 850-hPa wind (vector; with amplitude > 1 m s-1) in the BSISO 
life cycle from phase 1 to phase 8 for (a–h) GPCP precipitation and ERAI 850-hPa wind and (i–p) SPK-OBS. The number of days for phase 
composite is shown at the right corner above each panel. Only strong BSISO events (amplitude ≥ 1.5) are selected. 
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 625 
Figure 11: The frequency of strong BSISO activity (amplitude ≥ 1.5) in each phase (P1–P8; the left y-axis) and their sum (the right y-axis) 
for NOAA OLR and ERAI u850 (black), SPK-OBS (light blue), SPK-SPC (red), SPA-KOBS (dark blue), and SPA-KSPC (green). 
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Figure 12: Taylor diagrams for anomalous precipitation in each BSISO phase averaged over (a) the Indian Ocean (IO; 50°–100°E, 10°S–630 
20°N) and (b) western Pacific (WP; 110°–160°E, 0°–30°N). The number above each symbol refers to the BSISO phase. 
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Abstract. The effect of air-sea coupling on simulated boreal summer intraseasonal oscillation (BSISO) is examined using 

atmosphere–ocean-mixed-layer coupled (SPCAM3-KPP) and uncoupled configurations of the superparameterized (SP) 

Community Atmospheric Model, version 3 (SPCAM3). The coupled configuration is constrained to either observed ocean 

mean state or the mean state from the SP coupled configuration with a dynamic ocean (SPCCSM3), to understand the effect 

of mean-state biases on the BSISO. All configurations overestimate summer mean subtropical rainfall and its intraseasonal 15 

variance. All configurations simulate realistic BSISO northward propagation over the Indian Ocean and western Pacific, in 

common with other SP configurations. 

    Prescribing the 31-day smoothed sea surface temperature (SST) from the SPCAM3-KPP simulation in SPCAM3 worsens 

the overestimated BSISO variance. In both coupled models, the phase relationship between intraseasonal rainfall and SST is 

well captured. This suggests that air-sea coupling improves the amplitude of simulated BSISO and contributes to the 20 

propagation of convection. Constraining SPCAM3-KPP to the SPCCSM3 mean state also reduces the overestimated BSISO 

variability, but weakens BSISO propagation. Using the SPCCSM3 mean state also introduces a one-month delay to the BSISO 

seasonal cycle compared to SPCAM3-KPP with the observed ocean mean state, which matches well with observation. Based 

on a Taylor diagram, both air-sea coupling and SPCCSM3 mean-state SST biases generally lead to higher simulated BSISO 

fidelity, largely due to their abilities to suppress the overestimated subtropical BSISO variance. 25 

1 Introduction 

The intraseasonal oscillation (ISO) is the most vigorous sub-seasonal signal in the tropics (Zhang, 2005). It interacts with other 

tropical climate and weather systems, such as the El Niño–Southern Oscillation (ENSO) and tropical cyclones (Kessler et al., 

1995; Zhang and Gottschalck, 2002; McPhaden, 2004; Wu et al., 2007), and even the mid-latitude systems (Ding and Wang, 

2007; Moon et al., 2013). Compared to the boreal winter ISO (i.e., the Madden and Julian Oscillation, or MJO; Madden and 30 

Julian, 1971, 1972), the boreal summer ISO (BSISO) shifts away from the equator to the Asian summer monsoon (ASM) 
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region (Wang et al., 2006; Lau and Waliser, 2012). Thus, the BSISO is connected strongly to the onset, active and break phases 

of the ASM (Yasunari, 1979; Annamalai and Slingo, 2001; Lau and Waliser, 2012). The frequency of extreme events over the 

ASM region is also highly related to BSISO activity (Ren et al., 2013; Li et al., 2015; Hsu et al., 2016, 2017, 2020; Liu and 

Hsu, 2019). 35 

    Realistic representation of the BSISO in climate models remains a challenge, although some improvements have been 

achieved in recent decades. The state-of-the-art general circulation models (GCMs) still have difficulty in simulating properly 

the BSISO spatial pattern (Sperber and Annamalai, 2008; Sperber et al., 2013; Hu et al., 2017) and its northwest-southeast 

tilted rain band structure (Lin et al., 2006; Sabeerali et al., 2013). In contrast, its northward propagation, which is the most 

significant feature of the BSISO, is captured by most models. Fidelity for northward propagation improved in the models that 40 

contributed to the Coupled Model Intercomparison Project (CMIP) phase 5, relative to the CMIP phase 3 (Sabeerali et al., 

2013; Sperber et al., 2013). Most models with reasonable northward propagation of the BSISO also simulate a good eastward 

propagation along the equatorial Indian Ocean. 

    The representation of convection is largely responsible for the ability of GCMs to simulate BSISO characteristics (Maloney 

and Hartmann, 2001; Randall et al., 2007; Jiang et al., 2016). Using the Hadley Centre atmospheric GCM (AGCM), Klingaman 45 

and Woolnough (2014) found that increasing the convective entrainment and detrainment rates considerably improved 

deficient MJO-like variability in the Indian and Pacific oceans. In recent years, studies have shown that “superparameterized” 

(SP) GCMs have high fidelity in simulating ISO variability (Benedict and Randall, 2009; Jiang et al., 2015; Neena et al., 2017). 

In SP GCMs, the traditional cumulus parameterization is replaced by a two-dimensional (2-D) cloud-resolving model in each 

grid column to calculate the cloud and radiation physics tendencies (Khairoutdinov and Randall, 2003; Khairoutdinov et al., 50 

2005). By comparing different versions of the National Center for Atmospheric Research (NCAR) Community Atmospheric 

Model (CAM), DeMott et al. (2014) showed that the SP CAM (SPCAM3) gave better BSISO characteristics than the CAM 

with the standard convective parameterization. 

    Besides the convective parameterization scheme, the effect of airIncorporating air-sea interaction in CGCMs inevitably 

introduces atmospheric and oceanic mean state biases. When studies compare CGCMs to AGCMs prescribed with observed 55 

SSTs (Kemball-Cook et al., 2002; Zhang et al., 2006; DeMott et al., 2011; Roxy et al., 2013), the differences between 

simulations may largely come from mean-state differences, rather than air-sea coupling. Due to the strong control on low-level 

moisture and convergence anomalies, mean -sea interaction on simulated ISO variability has also received growing attention. 

By comparing the results of coupled GCMs (CGCMs) with the results of the AGCMs prescribed with observed SSTs, many 

studies found that the inclusion of air-sea coupling could produce a more realistic intraseasonal variability via improving the 60 

representation of the diurnal cycle at the air-sea interface (Waliser et al., 1999; Bernie et al., 2005; Danabasoglu et al., 2006; 

Misra et al., 2008; Stan, 2018). Besides the air-sea coupling process, the differences between simulated results may also come 

from ocean mean-state differences between AGCM and CGCM, as incorporating air-sea interaction in CGCMs inevitably 

introduces atmospheric and ocean mean-state biases. Due to the strong control on low-level moisture and convergence 

anomalies, such ocean mean-state biases may degrade simulated intraseasonal variability (Hendon, 2000; Inness et al., 2003; 65 
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Sperber et al., 2005; Bollasina and Ming, 2013). Using the National Centers for Environmental Prediction (NCEP) coupled 

Climate Forecast System (CFS) model, Seo et al. (2007) showed that BSISO development and propagation were largely 

improved when the CGCM cold SST bias was removed via flux correction. They suggested that the role of air-sea interaction 

would be more accurate under an ocean mean state with smaller SST biases. To reduce the mean-state differences between 

CGCMs and AGCMs, time-varying SSTs from CGCMs should be used to drive AGCMs (Fu and Wang, 2004; Seo et al., 2007; 70 

Levine and Turner, 2012; DeMott et al., 2015). However, this quantifies the role of air-sea coupling only under the biased 

CGCM mean state. 

    Through flux correction, CGCMs can be constrained to a given climatological ocean state. Such constraint is more effective 

in CGCMs with simple ocean models, which lack ocean dynamics, as ocean dynamics may interfere with the prescribed flux 

correction. Simple ocean models also lack coupled modes of variability, such as the ENSO, feedbacks from which can 75 

influence the perceived effect of coupling on sub-seasonal variability (Klingaman and DeMott, 2020). The CGCMs with 

simplified model oceans are a useful tool to investigate the roles of air-sea coupling and mean-state biases in the simulation of 

BSISO. In this study, we examine the roles of air-sea interaction and mean-state biases in simulated BSISO using a 

configuration of SPCAM3 coupled to a mixed-layer ocean model, constrained to observed ocean mean state and simulated 

mean ocean state from the SP Community Climate System Model (CCSM), version 3 (SPCCSM3; Stan et al., 2010). The 80 

model experiments, validation data, and analysis methods are described in section 2. In section 3, we analyse the influence of 

air-sea coupling and mean-state biases on the spatial pattern and propagation of simulated BSISO. Results are discussed and 

summarized in sections 4 and 5, respectively. 

2 Model, experiments and methods 

2.1 Models 85 

SPCAM3 (Khairoutdinov et al., 2005) is employed in this study, due to its high fidelity for simulated ISO (Jiang et al., 2015; 

Neena et al., 2017). It has a horizontal resolution of T42 and a vertical resolution of 30 levels. The embedded 2-D cloud- 

resolving model has 32 columns with a fine resolution (4 km; Khairoutdinov and Randall, 2003). SPCCSM3 is the coupled 

configuration, in which SPCAM3 is coupled to the 3-D ocean model of Parallel Ocean Program (POP; Danabasoglu et al., 

2006), with active ocean dynamics. SPCCSM3 utilizes the low-resolution version (~3º) of the POP, which has 40 vertical 90 

layers with the thickness of top layers being 10 m and exchanges SST and surface fluxes with SPCAM3 at 1-day coupling 

frequency. To understand the roles of air-sea interaction and SST mean-state biases in BSISO simulation, we couple SPCAM3 

with the Multi-Column K Profile Parameterization (MC-KPP) mixed-layer ocean model, referred to as “SPCAM3-KPP” from 

now. MC-KPP uses the KPP vertical mixing scheme of Large et al. (1994). In the MC-KPP, there is only vertical mixing  

(Large et al., 1994), while ocean dynamics, such as horizonal or vertical advection or wind-driven upwelling, are absent. 95 

Besides, the air-sea coupled modes of variability (such as the ENSO) and potential feedbacks from these modes to intraseasonal 

variability are also absent. It The MC-KPP consists of many independent 1-D columns, with one column under each AGCM 
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grid for coupling. Therefore, the horizontal resolution of MC-KPP is the same as that of SPCAM3. The MC-KPP has a fine 

vertical resolution, with 100 points in a 1000 m water column, 70 of which are in the top 300 m, and ~1-m resolution in the 

top 20 m. More details on SPCAM3-KPP can be found in Klingaman and DeMott (2020). 100 

    Since MC-KPP lacks ocean dynamics, SPCAM3-KPP must be constrained to a reference ocean climatology, which can be 

taken from an observation-based dataset, an ocean model simulation, or a CGCM simulation. This makes MC-KPP an 

attractive option for investigating the role of air-sea coupling under different ocean mean states. To represent mean-ocean 

dynamics and correct for biases in atmospheric surface fluxes, prescribed vertical profiles of heat and salt corrections are 

applied at each grid point andgridpoint at each timestep. These are computed fromFor each SPCAM3-KPP simulation analysed 105 

here, a 10-year SPCAM3-KPP “relaxation” simulation is first performed, with a 15-day relaxation timescale toward the 

reference seasonal cycles of ocean temperature and salinity. The daily climatology of corrections is mean seasonal cycles of 

the temperature and salinity relaxation tendencies are then computed, smoothed with a 31-day running mean, and imposed 

onas corrections in a “free-running” coupled integration with no relaxation, which displays only small SST biases against the 

reference climatology (Fig. 1). Further1). These free-running simulations are analysed here. More details on the correction 110 

method can be found in Hirons et al. (2015) and Klingaman and DeMott (2020). 

2.2 Experiments and validation data 

Two pairs of 50-year-long atmosphere-only (SPCAM3) and coupled (SPCAM3-KPP) models are analysed (Table 1). These 

simulations were also analysed for studying the MJO in Klingaman and DeMott (2020). For brevity, we write SPCAM3 and 

SPCAM3-KPP as “SPA” and “SPK”, respectively. Next, we explain the setup of each experiment in detail. 115 

    To study the effect of mean -state biases on the simulated BSISO, SPK is constrained to two ocean mean states: 1) the 1980–

2009 climatology from the Met Office ocean analysis (Smith and Murphy (, 2007) 3D ocean analysis; and 2) the climatology 

from a 20-year simulation of SPCCSM3 ( “SPC” for short; Stan et al., 2010; DeMott et al., 2011, 2014). The former is 

considered as the observed ocean state (Fig. 1c), against which SPC shows large cold SST biases throughout the Indo-Pacific 

in boreal summer (Fig. 1f). These two coupled simulations are referred to as “SPK-OBS” and “SPK-SPC”, respectively. To 120 

investigate the effect of air-sea interaction on the simulated BSISO under the observed ocean mean state, SPCAM3 is forced 

by the 31-day smoothed SST from SPK-OBS (hereafter “SPA-KOBS”). Similarly, we prescribe the 31-day smoothed SST 

from SPK-SPC to SPCAM3 to understand the air-sea coupling effect under the SPC mean state (“SPA-KSPC”). Table 1 

summarises all four experiments. 

    All validation data in this study are from the European Centre for Medium-range Weather Forecasts (ECMWF) Interim 125 

(ERAI) reanalysis dataset (Dee et al., 2011). The daily variables used include: precipitation, outgoing longwave radiation 

(OLR), 850-hPa wind, surface variables related to latent heat and sensible heat (LH and SH) fluxes, and 3-D variables 

associated with moist static energy (MSE; Maloney, 2009). All the variables have the horizontal resolution of 1.5° ×1.5°; we 

analyse the period of 1986–2016 for compatibility with Gao et al. (2019). 
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; and 2) the climatology from the 20-year SPCCSM3 (“SPC” for short) simulation, which was analysed in Stan et al. (2010) 130 

and DeMott et al. (2014). The former is considered as the observed ocean state (Fig. 1c), against which SPC shows large cold 

SST biases throughout the Indo-Pacific in the boreal summer (Fig. 1f). These two coupled simulations are referred to as “SPK-

OBS” and “SPK-SPC”, respectively. Differences between the results of SPK-OBS and those of SPK-SPC can reveal the effect 

of SPC mean-state SST biases on the simulated BSISO. To investigate the effect of air-sea interaction on simulated BSISO 

under the observed ocean mean state, the time-varying SSTs from SPK-OBS are prescribed in an SPA simulation (“SPA-135 

KOBS”). The 31-day smoothed SST is used to remove the high-frequency variability of SST and avoid erroneous positive 

feedbacks between SSTs, surface fluxes and precipitation (see DeMott et al., 2015 and references therein). Similarly, we 

prescribe the 31-day smoothed SST from SPK-SPC to SPA to understand the air-sea coupling effect under the SPC mean state 

(“SPA-KSPC”) through the comparison with SPK-SPC. Table 1 summarises all four experiments. 

    The validation data used in this study include: 1) daily outgoing longwave radiation (OLR) from the National Oceanic and 140 

Atmospheric Administration (NOAA) at a resolution of 2.5º×2.5º for 1986–2016 (Liebmann and Smith, 1996); 2) daily 

precipitation from the Global Precipitation Climatology Project (GPCP; Huffman et al., 2001) at a resolution of 1º×1º for 

1997–2016; and 3) daily variables from the European Centre for Medium-range Weather Forecasts (ECMWF) Interim (ERAI) 

reanalysis dataset at a resolution of 1.5º×1.5º (Dee et al., 2011). The variables from the ERAI include: 850-hPa wind, SST, 

surface variables related to latent heat and sensible heat (LH and SH) fluxes, and 3-D variables associated with moist static 145 

energy (MSE; Maloney, 2009). Note that ERAI SST was the boundary condition prescribed for the ERAI. We analyse the 

period of 1986–2016 of ERAI data for compatibility with Gao et al. (2019).  

2.3 Methods 

The BSISO convective intensity is represented by 20–100-day-filtered variability of boreal summer (May–October) 

precipitation, OLR or MSE, depending on the process-oriented diagnostic applied. To reveal the overall propagation features 150 

of BSISO convection, lead-lag regression analysis is performed on area-averaged, filtered precipitation or OLR. Here, we use 

precipitation. Since the Indian and Pacific basins exhibit different basic states (Lau and Waliser, 2012), we compute 

propagation over one region in each basin: the eastern Indian Ocean (80°–90°E, 0°–10°N) and western Pacific (130°–140°E, 

0°–10°N). 

    DeMott et al. (2016) and Gao et al. (2019) provided a useful diagnostic method to quantitatively assess the contribution of 155 

intraseasonal SST variability to the MSE budget of ISO in the boreal winter and boreal summer, respectively. The temporal 

and spatial evolution of column-integrated MSE (〈𝑚𝑚〉) is highly consistent with that of anomalous precipitation; and positive 

values of the time change of  〈𝑚𝑚〉 (𝜕𝜕〈𝑚𝑚〉/𝜕𝜕𝜕𝜕) leads 90º ahead of the convection. Thus, the physical processes that modulate 

〈𝑚𝑚〉 and 𝜕𝜕〈𝑚𝑚〉/𝜕𝜕𝜕𝜕 can be considered as the mechanisms responsible for the maintenance and propagation of convections, 

respectively. We employ the same approach to understand oceanic feedbacks to the simulated BSISO, and compare these 160 

feedbacks to those in reanalysis data. Intraseasonal SST can affect atmospheric convection through modifying LH and SH 

fluxes and hence MSE, via the near-surface gradients in specific humidity and temperature. Based on decomposition of surface 
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bulk formulae (Weare et al., 1981), SST modulation of surface fluxes is represented as the difference between fluxes calculated 

using the full and 61-day smoothed SST. These SST-modulated fluxes are then projected onto 〈m〉 and ∂〈m〉/ ∂t to reveal the 

oceanic feedbacks to the maintenance and propagation of BSISO convection, respectively. More details can be found in 165 

DeMott et al. (2016) and Gao et al. (2019). 

    We employ the BSISO indices of Lee et al. (2013) to investigate the simulated convective features in each BSISO phase. 

First, daily anomalies are computed as the departure from the climatological annual cycle and a 120-day running mean. Multi-

variate Empirical Orthogonal Function (MV-EOF) is then performed on the combination of OLR and 850-hPa zonal wind 

(u850) anomalies, each normalized by their respective area-mean standard deviation over the ASM region (40°–160°E, 10°S–170 

40°N) during the boreal summer. The first two leading principal components (PC1 and PC2) define the BSISO indices, which 

separate the BSISO life cycle into eight phases. For model results, normalized OLR and u850 anomalies are projected onto the 

observed EOF modes to obtain the model PCs. This approach helps assess fairly how well the model experiments simulate the 

observed BSISO because the projected results (model PCs) can be directly compared to observations (Sperber et al., 2008, 

2013; DeMott et al., 2019). Model simulated BSISO phase composites are constructed based on these PCs (Sperber et al. 175 

2013).. Consistent with Lee et al. (2013), only strong BSISO events (√PC12 + PC22 > 1.5) are selected for phase composites. 

3 Results 

3.1 Mean state and intraseasonal variability 

Previous studies indicated that ISO variability is closely related to the climatological state of convection (Wheeler and Kiladis, 

1999; Sperber et al., 2000; Waliser et al., 2003). Thus, we first examine the summer mean precipitation and 850-hPa wind 180 

(Fig. 2). In ERAIGPCP, substantial rainfall appears over the ASM region (Fig. 2a). In common with SPCAM3 simulation 

(DeMott et al., 2011), SPK-OBS overestimates subtropical rainfall (10°–20°N), particularly in the western North Pacific (Figs. 

2b and e), but underestimates rainfall over the southern Indian Ocean, Maritime Continent and India north to 20°N. These 

precipitation biases are associated with low-level wind biases. Simulated mean westerlies extend into the western North Pacific, 

increasing convergence across the band of subtropical enhanced precipitation. In SPK-SPC (Fig. 2c), which is constrained to 185 

the cold climatological SPC SST (Fig. 1d), rainfall is reduced compared to that in SPK-OBS: wet biases are reduced while dry 

biases become more severe (Figs. over the Indian Ocean and western North Pacific (Figs. 2e and f). The SPC mean-state SST 

bias tends to suppress the mean precipitation. Mean precipitation fields in SPA-KOBS and that in SPK-OBS (SPA-KSPC and 

SPK-SPC) are nearly the same (not shown). 

    Figure 3 illustrates the standard deviations of intraseasonal SST and precipitation variability. SST variability is 190 

underestimated over the Indian Ocean and equatorial Pacific in all simulations. In the off-equatorial Pacific, we see more 

intraseasonal SST variability in SPK-OBS but less SST variability in SPK-SPC (Figs. 3b and c).), which may be related to the 

less SST variability in SPC as a consequence of coarse horizontal resolution of POP. Prescribing the 31-day smoothed SST 
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from SPK-OBS (SPK-SPC) to SPA-KOBS (SPA-KSPC),) strongly reduces intraseasonal SST, as expected (Figs. 3d and e). 

The right-column panels in Fig. 3 show the intraseasonal rainfall from each dataset (Figs. 3f–j). Compared to ERAIGPCP (Fig. 195 

3f), all simulations significantly overestimate subtropical intraseasonal precipitation variability (10°–20°N), where mean 

rainfall is also overestimated (Fig. 2). This reinforces that model BSISO biases are largely associated with incorrect 

representation of mean rainfall (Sperber and Annamalai, 2008; Sabeerali et al., 2013; Hu et al., 2017). The overestimate of 

intraseasonal rainfall in SPK-SPC (Fig. 3h) is smaller than that in SPK-OBS (Fig. 3g), consistent with the lower mean rainfall 

in SPK-SPC. SPA-KOBS (Fig. 3i) and SPA-KSPC (Fig. 3j) show increases in intraseasonal rainfall relative to SPK-OBS and 200 

SPK-SPC, respectively. This indicates that both cold SST biases and air-sea coupling exert negative feedbacks on BSISO 

convection, and improve the simulated BSISO amplitude. 

3.2 Northward propagation of BSISO 

Lag regression analysis is employed to understand the simulated BSISO propagation in each experiment. Over the Indian 

Ocean, area (80°–90°E) averaged intraseasonal precipitation isand SST are regressed onto area (80°–90°E, 0°–10°N) averaged 205 

intraseasonal precipitation time series (Fig. 4). In ERAIobservation, the convective anomaly originates south of the equator 

and propagates southward to 10º–15ºS and northward into the Bay of Bengal (Fig. 4a). All simulations capture the northward 

propagation, confirming the high fidelity of SPCAM3 in simulating BSISO northward propagation (DeMott et al., 2014; Neena 

et al., 2017). However, the simulations fail to capture the southward propagation branch. AndOther significant biases can be 

seen in the locations of maximum convections of BSISO. The simulated strongest convectionconvective center shifts 210 

northward (10°N) relative to ERAIobservation (5°N). A weaker propagating signal is observed under the SPC mean state than 

under the observed mean state for both SPK and SPA, especially over the subtropical regions from Lag 0 to Lag 20 (marked 

with black box; Figs. 4b and d; Figs. 4c and e). This is consistent with weaker BSISO variability under the SPC mean state 

(Figs. 3g–j), suggesting that cold tropical mean SST biases are unfavourable for BSISO variability and northward propagation. 

In SPA, the amplitude of convective maxima increases relative to that in SPK, but with weaker propagation (Figs. 4b–e). Air-215 

sea coupling plays a similar role in BSISO convection under both observed and cold mean states: it damps BSISO amplitude 

but supports northward propagation over the eastern Indian Ocean. 

    The BSISO northward propagation over the western Pacific is shown in Fig. 5. In ERAI, theThe observed convection also 

originates south of the equator, but propagates only north, into the western North Pacific (Fig. 5a). These characteristics are 

properly simulated by all experiments (Figs. 5b–e). As in the Indian Ocean, due to the large overestimate of subtropical BSISO 220 

variability, the strongest simulated convection moves north compared to ERAIobservation. It is notable that considerable 

suppressed off-equatorial convection leads the strongest convection by ~1 week, which degrades model performance. Over 

the western Pacific, mean-state biases also reduce the northward propagating signal in SPK-SPC (SPA-KSPC) relative to that 

in SPK-OBS (SPA-KOBS). Air-sea interaction seems to play little role in the BSISO northward propagation over the western 

Pacific, as there is no substantial difference between SPK and SPA under either ocean mean state (Figs. 5b–c; Figs. 5d–e). 225 
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3.3 Quantitative contribution of SST fluctuation to BSISO 

The temporal and spatial evolutions of BSISO and SST variability over the Indian Ocean and western Pacific are shown in 

Figs. 6 and 7, respectively. Over the Indian Ocean, in ERAI,the warm SSTs in observation always lead enhanced convection, 

with maxima north/northeast of the convective center (Figs. 6a, f and k). The SST-rainfall phase relationship is properly 

represented in SPK andbut misrepresented in SPA. However, in more detail, SPK shows a shorter delay between off-equatorial 230 

suppressed convection and warm SST relative to ERAI.observation, which can be more clearly revealed in Fig. 4. This suggests 

the ocean responds more quickly to BSISO convection in SPK than in ERAIobservation, which might be caused by the lack 

of ocean dynamics in MC-KPP. Alternatively, the high coupling frequency (15 minutes) and fine ocean vertical resolution (~1 

m) in SPK may make the mixed-layer depth too sensitive to atmospheric convection. The SST anomalies in SPA are small due 

to the 31-day smoothing applied (Figs. 6d, e, i, j, n, and o). The size of the convective regions in all model simulations is 235 

smaller than that in observations, which may imply a deficient BSISO propagation. Compared to SPK-OBS, the convective 

region becomes smaller underreduces when either the SPC mean state is used (SPK-SPC) or without air-sea coupling (SPK-

SPC, is removed (SPA-KOBS and SPA-KSPC). To some degree, it reflects the negative (positive) role of mean -state biases 

(air-sea interaction) in supporting the propagating BSISO signal, in agreement with Fig. 4. 

    Over the western Pacific, SPK simulates wellreproduces the ERAIobserved phase relationship between the convection and 240 

SST anomalies: a near-quadrature relationship over the equatorial regions (Figs. 7a–c), but nearly out-a shift of-phase over 

warm SST anomalies toward the suppressed convective regions in the off-equatorial regions (Figs. 7f–h and k–m). This phase 

relationship can also be clearly revealed in the Hovmöller diagram (Fig. 5). However, SPK produces substantial suppressed 

convection north of the active convection over the western North Pacific, consistent with Fig. 5. Besides, simulated warm SST 

appears north of the convective center, while the ERAI SST maximum is always located northwest of the convective center. 245 

This implies that the simulated SST may be favourable for the northward but unfavourable for the westward propagation of 

the simulated BSISO convection over the western Pacific. Imposing the SPC mean state weakens the simulated convection. In 

SPA, the intraseasonal SST is very small by design. 

    As revealed by Gao et al. (2019), intraseasonal SST can affect the BSISO by modulating surface LH and SH fluxes. The 

temporal and spatial distributions of SST-modulated fluxes are highly coherent with those of SST anomalies themselves. 250 

Therefore, the evolutions of SST anomalies shown in Figs. 6 and 7 can also roughly reveal the evolutions of SST-modulated 

surface fluxes. By regressing the SST-modulated flux anomalies onto the BSISO 〈m〉 and ∂〈m〉/ ∂t, Fig. 8 illustrates the “SST 

effect” on the maintenance and propagation of convection. In the ERAI, intraseasonal SST supports 〈𝑚𝑚〉 in the central Indian 

Ocean and Bay of Bengal but destroys 〈𝑚𝑚〉 in the western North Pacific (Fig. 8a). The inter-basin differences are linked to the 

differences in SST-convection phase relationship (Gao et al., 2019). However, simulated SST anomalies in SPK largely damp 255 

the convection over the Bay of Bengal and western North Pacific (Figs. 8b and c), because of the quicker response of the SPK 

ocean to BSISO convection, combined with the erroneously strong suppressed convection just before the active phase. The 

negative SST effect on 〈𝑚𝑚〉 agrees with the stronger subtropical BSISO variability in SPA than in SPK. For the BSISO 
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propagation, the simulated SST anomalies play positive roles in ∂〈m〉/ ∂t under both ocean mean states (Figs. 8g and h), but 

with a smaller contribution (8–12%) than that in the ERAI (12–20%). A weak SST effect on the BSISO can still be found in 260 

SPA (Figs. 8d, e, i, and j), as these simulations retain some intraseasonal SST variability (Fig. 3). In summary, SST variability 

enhances the simulated amplitude of BSISO variability by suppressing the excessive subtropical convection and contributes 

to the propagation of convection over the entire BSISO region. 

3.4 BSISO indices 

Propagating BSISO characteristics can also be examined using the BSISO indices. Figure 9 shows the annual cycle of variance 265 

of each of the first four PCs from ERAIobservation and model simulations. Since EOF analysis is only applied to May–October 

data, the PC time series for November–April are obtained by projecting OLR and u850 anomalies onto the same EOF patterns.  

    In ERAI, PCs have a similar seasonal cycle as those from Lee et al. (2013).observation, PC1 has the largest variance 

throughout the boreal summer (Fig. 9a). It increases sharply from late April, maximises in August, and is followed by PC2 

with about half a month delay. In contrast to PC1 and PC2, PC3 exhibits most of its variance in early summer (May–June). 270 

PC4 also has a broad peak, but its amplitude is much smaller than those of the other PCs. SPK-OBS produces a similar seasonal 

cycle of PC1 as ERAIobservation, except for deficient variance in August–September, which largely reduces the amplitude 

difference between the first two PCs (Fig. 9b). Simulated PC1 in SPK-OBS also increases abruptly from late April, with a 

half-month delay between PC1 and PC2, which matches ERAIobservation well. However, PC1 in SPK-SPC begins to increase 

in late May (Fig. 9c), about one month later than ERAIobservation and SPK-OBS. The variance of the first two PCs in SPK-275 

SPC has a much narrower peak and tails off from early July, without a second peak in October. This suggests that cold SST 

bias leads to a late onset of BSISO activity, and also strongly degrades the annual cycle of BSISO activity. In both SPK 

simulations, the amplitude of PC3 is smaller than that of PC4, indicating that the order of those simulated PCs is reversed. All 

model simulations show a similarly poor ability to simulate PC3 and PC4. Therefore, hereafter we only focus on PC1 and PC2. 

Removing air-sea coupling in SPA increases significantly the strength of PC1 relative to that in SPK (Figs. 9b and d; Figs. 9c 280 

and e). This suggests that the role of air-sea coupling in suppressing BSISO variability is mainly expressed through damping 

variability in PC1.  

    Based on the PC1 and PC2 time series, the BSISO life cycle is separated into eight phases, which represents the canonical 

northward propagating BSISO (Annamalai and Sperber, 2005; Wang et al., 2005). Figure 10 shows the phase composites of 

anomalous precipitation and 850-hPa wind from ERAIobservation and SPK-OBS. SPK-OBS displays a similar evolution of 285 

the structure of convection and circulation as in ERAIthe observation, but they have significant amplitude differences. The 

simulated precipitation variability is underestimated over the equatorial Indian Ocean, while substantial overestimate appears 

over the off-equatorial regions. The simulated circulation also matches well with the simulated convection: easterlies 

(westerlies) occur to the north (south) of the ascent; cyclonic (anticyclonic) circulations coincide with the active (suppressed) 

off-equatorial convection. However, the northwest-southeast titled rainfall band in SPK-OBS is more zonal than that in ERAI 290 

(FigGPCP (Figs. 10e and m), largely due to the poor representation of BSISO variability over the western Pacific. In 
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ERAIobservation, most strong BSISO events occur in phases 2, 5, 7, and 78. In contrast, in SPK-OBS, a stronger preference 

for simulated strong BSISO events appear in off-equatorial regions (phases 3, 4, 7, and 8) rather than in near-equatorial regions 

(phases 1, 2, 5, and 6). It implies that the BSISO variability is largely determined by the propagating BSISO signal (Sperber 

et al., 2013; Neena et al., 2017). 295 

    We further compute the frequency of strong BSISO events in each phase from each dataset (Fig. 11). Overall, there are 

fewer strong BSISO events in the simulations (25–3022.5–27.5%) than in ERAIobservation (~33%), although the amplitude 

of simulated precipitation associated with these events is much larger. The frequency of stronger BSISO events becomes 

further fewer under the SPC ocean mean state than that under the observed ocean mean state. Consistent with Fig. 10, in ERAI, 

phases 2, 5, 7, and 78 show the highest frequencies in observation, while in SPK-OBS and SPK-SPC, most strong simulated 300 

BSISO events occur in phases 3, 4, 7, and 8. Comparing SPK-SPC and SPK-OBS shows that the SPC ocean mean state has 

little consistent effect on the frequency of BSISO events. Removing air-sea coupling in SPA further increases the frequency 

of strong BSISO events in the off-equatorial regions (phases 3, 4, 7, and 8),, associated with the greater intraseasonal 

convective variability in SPA relative to that in SPK. 

To quantitatively evaluate the performance of each simulation, we construct Taylor diagrams over the Indian Ocean (50°–305 

100°E, 10°S–20°N) and western Pacific (110°–160°E, 0°–30°N), respectively (Fig. 12). These diagrams provide pattern 

correlation coefficients and root-mean-square-errors of simulated intraseasonal precipitation against ERAIGPCP intraseasonal 

precipitation in each BSISO phase. Over the Indian Ocean, the fidelity of each simulation varies from phase to phase (Fig. 

12a). Generally, higher pattern correlations appear in equatorial phases (phases 1, 2, 5 and 6) than in off-equatorial phases 

(phases 3, 4, 7 and 8). The area-averaged rainfall variability is overestimated in almost all phases, with largest amplitude biases 310 

in phases 3 and 6 (1.5–2.25 of the standard deviation of ERAI). Overall, SPK-SPC outperforms SPK-OBS, largely due to its 

smaller amplitude biases compared to ERAI. Under the observed ocean mean state, air-sea coupling improves the simulation 

fidelity in most phases 1, 3, 7,, while the SPC ocean mean state and 8. Undercoupling under the SPC ocean mean state, coupling 

greatly improves have little consistent effect on the simulated BSISO life cycle over the Indian Ocean, except for phase 

2fidelity.  315 

In almost all simulations, higher pattern correlations are found over the western Pacific (0.76–0.9) than over the Indian 

Ocean (0.5–0.98), but with much larger overestimates of amplitude (Fig. 12b). The overall simulation performance over the 

western Pacific is ranked as follows: SPK-SPC, SPA-KSPC, SPK-OBS, and SPA-KOBS. Simulations with the SPC ocean 

mean state perform better than those with the observed ocean mean state, in terms of both amplitude and distribution. Since 

the excessive subtropical rainfall variability is the biggest error in SPCAM3, the underlying cold SSTs largely weaken the 320 

convection, which helps reduce the amplitude biases and improve the pattern correlation with ERAIobservation. Air-sea 

coupling improves model performance under both ocean mean states, particularly in terms of suppressing the overestimated 

BSISO variability over the western North Pacific. 
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4 Discussion 

Despite the large correct SST-rainfall phase relationship in SPK simulations, a shorter delay between suppressed convection 325 

and warm SST occurs compared to the reanalysis. This may be associated with the configuration of the MC-KPP ocean (lack 

of full ocean dynamics, high coupling frequency and fine vertical resolution). As a consequence of the shorter delay, it is easy 

to surmise the negative effect of air-sea coupling on the amplitude of convection, while its effect on the propagation is not 

obvious. Overall, intraseasonal SST anomalies in SPK largely damp intraseasonal subtropical convection variability and make 

a smaller contribution (8–12%) to ∂〈m〉/ ∂t  than those in the ERAI (12–20%). Comparing Figs. 4 and 5, we can see 330 

propagation is slightly enhanced in SPK relative to SPA over the Indian Ocean; however, coupling makes nearly no difference 

to the propagating signal over the western Pacific. This may be related to the larger underestimate of the contribution of 

intraseasonal SST to ∂〈m〉/ ∂t over the western Pacific than over the Bay of Bengal (Fig. 8). More importantly, it implies that 

atmospheric internal processes are essential to the propagation of convection, since SPCAM3 simulates BSISO propagation 

well even without coupling or sub-seasonal SST variability. 335 

    Stan et al. (2010) and Neena et al. (2017) reported that SPC showed better ISO simulation skill than SPA with prescribed 

observed SST. In our experiments, the BSISO variability is similar in SPK-OBS and SPA-KOBS and in SPK-SPC and SPA-

KSPC, which suggests a limited role for air-sea coupling in the simulated BSISO. Comparing SPK-OBS and SPK-SPC 

strongly suggests that the ocean mean-state biases in SPC improve BSISO amplitude and spatial distribution. This implies that 

mean-state biases in SPC, not sub-seasonal air-sea coupled feedbacks, be the primary reason for the improved BSISO in SPC 340 

relative to SPA. While the SPC mean state improves the amplitude and spatial pattern of simulated BSISO convection, it also 

weakens northward propagation. By examining Figs. 1g–h, these amplitude/spatial pattern and propagating differences 

between SPK-SPC and SPK-OBS may be related to the stronger horizontal SST gradients in SPK-SPC, since the pattern of 

mean state column water vapor biases closely follows that of mean SST biases (DeMott et al., 2019). Stronger meridional SST 

gradients in SPC may largely suppress the overestimated subtropical rainfall than in SPK-OBS. SPC also seems to reduce the 345 

zonal SST (moisture) gradient that plays an essential role in ∂〈m〉/ ∂t for both the boreal winter and boreal summer ISO, 

leading to less propagating BSISO signal (Jiang, 2017; Jiang et al., 2018; Gao et al., 2019). Thus, as suggested by Seo et al. 

(2007) and Klingaman and Woolnough (2014), it is important to control for the effect of mean-state biases as well as its 

gradients when evaluating the influence of air-sea coupling on the simulated ISO (DeMott et al., 2019).Besides the SST mean-

state biases, it is also important to control the SST gradient bias. Several studies highlighted the importance of horizonal 350 

advection of mean moisture (or 〈𝑚𝑚〉) by anomalous wind in the propagation of the ISO (Hsu and Li, 2012; Jiang, 2017; Jiang 

et al., 2018; DeMott et al., 2019; Gao et al., 2019). Our additional diagnosis revealed that the pattern of 〈𝑚𝑚〉 biases closely 

follows that of SST biases (not shown). By examining Figs. 1g–h, we would argue that the stronger BSISO variability in SPK-

OBS than in SPK-SPC may be related to the enhanced meridional gradients of SST and moisture. Weaker propagating BSISO 

signal in SPC seems to be associated with the reduced horizontal 〈𝑚𝑚〉 advection of mean 〈𝑚𝑚〉 induced by anomalous wind. 355 



12 
 

    In CGCMs with dynamic oceans, it is also important to consider the effect of interannual SST variability (such as the ENSO), 

due to its strong control on sub-seasonal variability, particularly on the boreal winter MJO (Weaver et al., 2011; Kapur and 

Zhang, 2012; Klingaman and DeMott, 2020). We note that none of the simulations considered here represent the ENSO or 

other coupled modes of interannual variability, as the MC-KPP ocean model lacks the requisite ocean dynamics. Using the 

same simulations, Klingaman and DeMott (2020) found that the intensity and propagation of the boreal winter MJO was 360 

strongly suppressed in SPCAM3-KPP under the SPC ocean mean state, while here the SPC ocean mean state enhances BSISO 

amplitude and only slightly weakens its propagation. Klingaman and DeMott (2020) found that the inclusion of the SPC ENSO 

variability on top of the SPC mean state substantially strengthened the MJO, suggesting that the strong MJO in SPC arose 

from an excessively intense response to the ENSO. The effect of ENSO is not considered here, which could be a subject for 

further study. 365 

5 Summary 

We investigate the roles of ocean mean-state biases and air-sea coupling in simulating the BSISO by coupling the SPCAM3 

to the MC-KPP mixed-layer ocean. To diagnose the sensitivity to the ocean mean state, SPCAM3-KPP is constrained to either 

observed ocean mean state or the ocean mean state from the coupled configuration of SPCAM3 with a dynamic ocean (SPC). 

The SPC mean state introduces substantial cold SST biases across the Indo-Pacific. To diagnose the sensitivity to air-sea 370 

coupling under different mean states, SPCAM3 is driven by the 31-day running mean SST from each SPCAM3-KPP 

simulation. 

    Systematic errors in SPCAM3 result in overestimated subtropical summer mean rainfall and intraseasonal variability. These 

overestimated variables are greatly improved with coupling, or with the SPC ocean mean state. Lag regression composites 

show that the simulated convection exhibits realistic northward propagation over both the Indian Ocean and western Pacific. 375 

However, the strongest convective center shifts north relative to the observation. Using the SPC ocean mean state degrades 

the propagating BSISO signal in both coupled and uncoupled simulations, relative to the simulations that use the observed 

ocean mean state. Air-sea coupling slightly enhances the strength of the propagating signal under both ocean mean states. The 

coupled simulations capture the SST-rainfall phase relationship reasonably well, but with warm SSTs shifting toward the 

suppressed convection over the Bay of Bengal relative to the observation. Intraseasonal SST variability plays a similar role in 380 

the BSISO MSE budget in the coupled simulations, regardless of the ocean mean state: it damps subtropical convection and 

favours BSISO northward propagation, but with a smaller contribution (8–12%) than the reanalysis (12–20%). 

    We also examine the simulation skill of propagating BSISO characteristics by using BSISO indices. Experiments with the 

observed ocean mean state produce a realistic annual cycle of BSISO variance, while the simulations with the SPC mean state 

result in a one-month delay of the onset of BSISO activity. Air-sea coupling weakens convective variability mainly through 385 

suppressing the first EOF mode. Different from the reanalysisobservation, all model simulations favour strong BSISO activity 

in off-equatorial regions, which is associated with intense subtropical variability. Overall, the simulations using the SPC ocean 
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mean state produce an improved BSISO than those using the observed ocean mean state, in terms of both amplitude and pattern 

correlation of anomalous precipitation. Air-sea coupling improves the BSISO fidelity in most phases. The enhancement of 

simulated BSISO by the ocean mean state and air-sea coupling largely arises from suppressing erroneously strong subtropical 390 

convection. 

In our study, air-sea coupling has a similar effect on the simulated BSISO under different ocean background states, 

suggesting that the role of coupling may largely depend on the phase relationship between the convection and SST anomalies. 

Compared to daily coupling frequency between the atmosphere and ocean components of CGCMs, improved fidelity for the 

BSISO simulation is shown in CGCMs with sub-daily coupling frequency (Woolnough et al., 2007; Klingaman et al., 2011; 395 

Hu et al., 2015). In our study, the model ocean tends to respond quickly to the atmospheric convection, which may be associated 

with the sensitive mixed layer depth due to the absent ocean dynamics in KPP. Therefore, to better understand the role of 

coupling in the simulated ISO, efforts should be aimed at simulating a realistic phase relationship between the ISO convection 

and SST anomalies. 

 400 
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Table 1: List of simulations analysed in this study, including the experiment name, model, type, and ocean climatology condition to 
whichused by the model is constrainedto constrain (coupled model) or prescribedas forcing (atmospheric-only model).), and design purpose. 

NameExp Model TypeOcean surface Ocean surfacePurpose 

SPK-OBS SPCAM3-KPP 
CGCMSST climatology from 

observation 

Climatology from 
observationUnderstanding ocean mean-state 

bias effect  
(SPK-OBS vs. SPK-SPC) 

Climatology from SPCCSM3 
SPK-SPC SPCAM3-KPP CGCMSST climatology from SPC 

SPA-KOBS SPCAM3 
AGCM31-day smoothed SST from 

SPK-OBS 

31-day smoothed SST from SPK-
OBSUnderstanding air-sea coupling effect under 

observed mean state (vs. SPK-OBS) 

SPA-KSPC SPCAM3 
AGCM31-day smoothed SST from 

SPK-SPC 

31-day smoothed SST from SPK-
SPCUnderstanding air-sea coupling effect 

under SPC mean state (vs. SPK-SPC) 
 610 
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Figure 1: May–October mean SST for (a) ERAI, (b) SPCCSM3, (c) SPK-OBS, and (d) SPK-SPC. (f)–(h) are calculated differences between 
(b)–(d) and (a). 

  615 
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Figure 2: May–October mean precipitation (shading) and 850-hPa wind (vector; with amplitude > 13.5 m s-1) for (a) GPCP precipitation 
and ERAI 850-hPa wind, (b) SPK-OBS and (c) SPK-SPC. (e)–(f) are calculated differences between (b)–(c) and (a). 

 620 
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Figure 3: May–October standard deviations of 20–100-day-filtered (left column) SST and (right column) precipitation for (a, f) ERAI SST 
and GPCP precipitation, (b, g) SPK-OBS, (c, h) SPK-SPC, (d, i) SPA-KOBS, and (e, j) SPA-KSPC. 625 
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Figure 4: Lagged regression coefficients of 80°–90°E averaged intraseasonal precipitation (shading; [mm day-1]/[mm day-1]) and SST 
(contour; [ºC]/[mm day-1]) onto (80°–90°E, 0°–10°N) averaged intraseasonal precipitation for (a) GPCP precipitation and ERAI SST, (b) 630 
SPK-OBS, (c) SPA-KOBS, (d) SPK-SPC, and (e) SPA-KSPC. Black box in each panel denotes (10ºN–22ºN, LagsContour interval is 0–
20)..001 [ºC]/[mm day-1]; the zero contour is omitted. 
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 635 
Figure 5: Same as Fig. 4, except for 130°–140°E averaged intraseasonal precipitation and SST regressed onto (130°–140°E, 0°–10°N) 
averaged intraseasonal precipitation. 
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Figure 6: Regression coefficients of intraseasonal precipitation (shading; [mm day-1]/[mm day-1]) and SST (contour; [℃]/[mm day-1]) onto 
(80°–90°E, 0°–10°N) averaged intraseasonal precipitation over the Indian Ocean at lags of (left column) -7, (middle column) 0 and (right 
column) +7 days, for (a, f, k) GPCP precipitation and ERAI SST, (b, g, l) SPK-OBS, (c, h, m) SPK-SPC, (d, i, n) SPA-KOBS, and (e, j, o) 
SPA-KSPC. The contour interval is 0.01 [℃]/[mm day-1]; positive (negative) values are represented by red (blue) lines. 
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Figure 7: Same as Fig. 6, except for variables regressed onto (130°E–°–140°E, 0°–10°N) averaged intraseasonal precipitation over the 
western Pacific. 
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Figure 8: SST effect on (left column) 〈𝒎𝒎〉 and (right column) 𝝏𝝏〈𝒎𝒎〉/𝝏𝝏𝝏𝝏 through the modification of surface turbulent fluxes for (a, f) ERAI, 
(b, g) SPK-OBS, (c, h) SPK-SPC, (d, i) SPA-KOBS, and (e, j) SPA-KSPC. Stippling indicates regression coefficient is significant at the 95% 
confidence level. 655 
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Figure 9: Seasonal cycle of variance of the four leading PCs for (a) NOAA OLR and ERAI u850, (b) SPK-OBS, (c) SPK-SPC, (d) SPA-
KOBS, and (e) SPA-KSPC. A 30-day running mean is applied to the seasonal cycle of each datasetvariable. 660 
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Figure 10: Composites of anomalous precipitation (shading; mm day-1) and 850-hPa wind (vector; with amplitude > 1 m s-1) in the BSISO 
life cycle from phase 1 to phase 8 for (a–h) GPCP precipitation and ERAI 850-hPa wind and (i–p) SPK-OBS. The number of days for phase 665 
composite is shown at the right corner above each panel. Only strong BSISO events (amplitude ≥ 1.5) are selected. 
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Figure 11: The frequency of strong BSISO activity (amplitude ≥ 1.5) in each phase (P1–P8; the left y-axis) and their sum (the right y-axis) 
for NOAA OLR and ERAI u850 (black), SPK-OBS (light blue), SPK-SPC (red), SPA-KOBS (dark blue), and SPA-KSPC (green). 670 
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Figure 12: Taylor diagrams for anomalous precipitation in each BSISO phase averaged over (a) the Indian Ocean (IO; 50°–100°E, 10°S–
20°N) and (b) western Pacific (WP; 110°–160°E, 0°–30°N). The number above each symbol refers to the BSISO phase. 675 
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