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Response to Reviewer #1

R1.1 General comments: “Model-driven optimization of coastal sea observatories through data
assimilation in a finite element hydrodynamic model (SHYFEM v.7 5 65)” is a well writ-
ten manuscript concerned with using data assimilation to improve coastal modelling
capabilities and optimise monitoring networks. The article contains a fair comparison
of data interpolation (DI) and data assimilation (DA) methods, along with a further
comparison of two different DA approaches. The Lagoon of Venice application involves a
complex spatial domain with sensitive coastal dynamics. The objective of the numerical
experimentation is clearly stated. Results are clearly presented in a number of attractive
figures. In the conclusion, the objective is fulfilled and recommendations are made for
modifying the monitoring network.

Response: We appreciate the comments and we improved the manuscript following all
reviewer’s suggestions.

R1.2 I particularly liked the introduction to DI and DA philosophy given in the paragraph
starting on line 37.

Response: We thank the reviewer for this positive comment.

R1.3 Equations (6)-(7) could perhaps be introduced in a better way. There is a lot of notation
all at once, some of which is not referred to in the text. For example, it would be good
to elaborate on what is meant by the superscript “a” for “analysis” (although this does
become clear at the end of Section 2).

Response: We concur with the reviewer that some of the mathematical passages were
poorly explained. In the revised manuscript, we improved the explanation of the mentioned
equations by adding more details on the different terms (lines 110-132).

R1.4 In the paragraph beginning on line 201, it would be beneficial to clarify how unforced
boundary conditions are represented within the shallow water model. Forced boundaries



are mentioned, but the implementation of unforced boundary conditions (for example in
urban areas) is unclear. Are free-slip conditions used?

Response: Unforced boundaries are solid boundaries that are implemented in the model
with a free slip condition. The only condition that is enforced on these boundaries are the
no-flux condition through these boundaries. No-slip conditions can also be implemented
by the model, however, the resolution of the numerical grid is much too coarse for these
kind of condition.

We have inserted the following sentence at lines 84-85: “At the boundaries, either water
levels are prescribed at the open boundaries or the free-slip condition is implemented at
solid (closed) boundaries”.

R1.5 The statement on lines 274-275 claims that “results improved at all stations”. However,
there appears to be one exception at station 12, where the control simulation RMSE is
4.5 but the DA-EnSRF RMSE is 4.7. This should at least be mentioned and a sentence
suggesting a reason for the anomaly would be beneficial.

Response: We thank the reviewer for highlighting this anomaly which was due to a type-
setting error in the LATEX file. The correct value of 3.7 is now reported in Table 1.

R1.6 There are a small number of typos and grammatical errors in the current manuscript.

Response: We corrected all reported typos and grammatical errors.

Response to Reviewer#2

R2.1 General comments: The paper analyzes optimization of observational grid via analyzing
the impact that assimilation of station data has on the high resolution numerical model
of the Venice lagoon. Several modes of assimilation are employed to introduce data into
the model. I must say I really like the idea of how DA was used in the paper. The
paper is interesting, contains new insight and is well written. The figures are clear. The
abstract reflects the contents well.

I recommend publication after minor revision.

Response: We thank the reviewer for the positive comment and we improved the manuscript
following all reviewer’s suggestions.

R2.2 p3, L76: pa should be pa (a denoting subscript)

Response: Corrected.

R2.3 p3, L77: ρq should be ρw

Response: Corrected.

R2.4 p4, L107: “the mean is:” should probably be “the ensemble mean is:”

Response: Corrected.

R2.5 p7 L185: I am not sure I understand this phrase “... at which degree the observations
represent the state variable over the whole system.” Can the authors please include a
specific description and/or metrics by which this degree was measured?



Response: As explained in section 3.1, for both Data Interpolation and Data Assimilation
experiments, the metric used to evaluate the representativeness of the method in describing
the state variable over the system is the root mean square error. RMSE is evaluated in
the station not considered in the DI or DA computations. The evaluation procedure was
repeated for each monitoring station and the results are reported in Table 1.

R2.6 P8 L207: should sigma be a greek letter? Why did you set it to 2 km rather than
something else?

Response: We corrected the sigma Greek letter. As specified at the beginning of the Results
section (lines 247-249), all parameters (σ, τ , cut-off distance for the local analysis) were
manually defined through trial and error calibration process and evaluating the goodness-
of-fit of the water level RMSE in the DA-Nudging and DA-EnSRF base simulations.

R2.7 Perhaps I missed something but I still do not clearly understand how the boundary con-
dition perturbations were generated. The paper states that 60 perturbations (gaussian,
it seems?) were used as OBCs. Do I understand correctly that you used mean(A) as
the open boundary conditions and then further added a constant (in space and time)
perturbation to each ensemble member, where the amount of each member sea level
perturbation was sampled from a gaussian N(mu, sigma)?

Response: We concur with the reviewer that the perturbation terms were not properly
described. At each timestep (t), a random vector (r) of N perturbations is computed from
a Gaussian distribution (with mean 0 and standard deviation of 30 cm) as:

r(t, n) = cos(2πr2(t, n))
√
−2log(r1(t, n) + ε) (1)

with n the number of the ensemble member (1, N), r1 and r2 random vectors and ε a very
small number.

The perturbation vector p at time t is computed using the random vector and the pertur-
bation vector at the previous time (t−1):

p(t, n) = αp(t−1, n) +
√

1− α2r(t, n) (2)

with α = 1 − (t − t−1)/τ and τ the decay time (2 days in our case). Then the new
perturbation is stored for the next time step. This type of perturbations are classified as
red noise.

We modified the manuscript to clarify the methodology adopted in this study. The text
now reads (lines 220-225): “We used 60 perturbations for the sea-level boundary condition
(member 0 is unperturbed) taken from a Gaussian distribution with a zero mean and a
standard deviation set to 30 cm. This value was found empirically, in order to have a
good spread at the boundary, which is then propagated to the variables computed by the
model. As asserted, the perturbations are centred, having a null mean, and correlated in
time. To do this, each perturbation at time t is obtained from a weighted average of a
new perturbation and of the one at time t− 1. This type of perturbations are classified as
red noise and in the present case we used a decay time of two days.”

R2.8 P9, L255: perhaps: “...towards the observations WHILE keeping the physical dynam-
ics...”

Response: Corrected.

R2.9 p10, L298: I don’t entirely see what is meant by “scalability”. Can you please rephrase
or clarify?



Response: We are referring to the computing scalability of the DA-EnSRF procedure on
multiprocessor computers. The sentence has been rephrased as follow (lines 308-309):
“So in this case the simulations are 26,535, but the computing scalability is high since the
61 simulations of the ensemble are independent and can be parallelized on multiple CPUs
computers.

R2.10 P12, L351: These correlationS...

Response: Corrected.
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Abstract. Monitoring networks aims at capturing the spatial and temporal variability of one or several environmental variables

in a specific environment. The optimal placement of sensors in an ocean or coastal observatory should maximize the amount

of collected information and minimize the development and operational costs for the whole monitoring network. In this study,

the problem of the design and optimization of ocean monitoring networks is tackled throughout the implementation of data

assimilation techniques in the Shallow water HYdrodynamic Finite Element Model (SHYFEM). Two data assimilation methods5

- Nudging and Ensemble Square Root Filter - have been applied and tested in the Lagoon of Venice (Italy), where an extensive

water level monitoring network exists. A total of 29 tide gauge stations were available and the assimilation of the observations

result in an improvement of the performance of the SHYFEM model that went from an initial root mean square error (RMSE)

on the water level of 5.8 cm to a final value of about 2.1 and 3.2 cm for the two data assimilation methods, respectively.

In the monitoring network optimization procedure, by excluding just one tide gauge at a time, and always the station that10

contributes less to the improvement of the RMSE, a minimum number of tide gauges can be found that still allow for a

successful description of the water level variability. Both data assimilation methods allow identifying the number of stations and

their distribution that correctly represent the state variable in the investigated system. However, the more advanced Ensemble

Square Root Filter has the benefit of keeping a physically and mass conservative solution of the governing equations, which

results in a better reproduction of the hydrodynamics over the whole system. In the case of the Lagoon of Venice, we found15

that, with the help of a process-based and observation-driven numerical model, two-thirds of the monitoring network can be

dismissed. In this way, if some of the stations must be decommissioned due to a lack of funding, an a-priori choice can be

made, and the importance of the single monitoring site can be evaluated. The developed procedure may also be applied to the

continuous monitoring of other ocean variables, like sea temperature and salinity.

1 Introduction20

Ocean and coastal monitoring networks are fundamental for tracking contaminants in the water, assessing environmental

change and water quality, observing sea level rise and developing strategies for managing resources in a changing climate

(Stammer et al., 2019; Trowbridge et al., 2019). Coastal zones are dynamic and subject to changing environmental conditions
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caused by natural and anthropogenic variations in climatic and oceanographic processes. The monitoring of the spatial and

temporal complexity of the coastal ocean is challenging and a large number of observational sites are required to correctly25

describe the interactions at the land-sea transition, and coupled physical, chemical, and biological processes. However, the im-

plementation and maintenance of such large monitoring networks are expensive and therefore their optimization is of crucial

importance. In the last decades, satellite earth observation technologies have been widely used to integrate in-situ observatories

for better understanding the current state of oceans and coastal seas (Levy et al., 2018).

Oceanographic models are increasingly used in coastal systems to describe sea dynamics induced by tide, atmospheric and30

terrestrial forcing, complementing thus the collected information retrieved by direct observations (Mey-Frémaux et al., 2019).

Numerical models are also often used for predicting the ocean conditions, especially during storm events for endangered areas

(Chaumillon et al., 2017). All models, however, need observations of the sea state to be calibrated and validated. Once the

model is calibrated, new measurements can be used in a continuous validation of the model results. Observations can also be

assimilated into the model, increasing its capacity to represent the dynamics of the investigated system (Edwards et al., 2015;35

Carrassi et al., 2018). In this case, we can speak of observations that improve the numerical model.

There is however another point of view. If only observations would be available, the best distribution of the monitored

variable over the system could be given only by data interpolation (DI) of the observation points to the other areas. The direct

observations of the sea conditions are considered to represent the true state at the monitoring point. However, the spatio-

temporal interpolation of such true values is not meant to correctly describe the variability of the investigated state variable40

over the whole system. This is especially true in the coastal systems that are characterized by complex small scale and high-

frequency dynamics. In this case the resulting picture of interpolated values may show non coherent features and inconsistency

between data points. When an oceanographic model is available, the interpolation of these observations can be carried out

by the model and much better representation of the environment can be achieved. In this contest, models are used to connect

sparsely (in space and time) observations or synthesizing them through data assimilation (DA) techniques (Mey-Frémaux et al.,45

2019).

Validated ocean circulation model and DA can also assist the network design of a new observing system or optimizing

existing observatory (Fujii et al., 2019). In the case of new monitoring networks, Observing System Simulation Experiments

(OSSEs) are performed assimilating synthetic observation data (generated from a free-running model simulation that is in-

tended to represent a virtual “true”
::::
“true”

:
ocean) into other data-assimilative simulation runs in which different initial/forcing50

conditions are used (Raicich, 2006; Xue et al., 2011). The evaluation of the impact of the assimilated data in the OSSE sim-

ulations allows designing an optimal observing system. In order to evaluate existing monitoring networks, Observing System

Experiments (OSEs) are performed by assimilating in several simulations a certain amount or type of observations and evalu-

ating their impacts on the model against a reference dataset. Such an approach can be adopted in coastal regions to optimize

existing observational arrays, with implications on sampling technology and networks (Frolov et al., 2008; Schulz-Stellenfleth55

and Stanev, 2010).

In this study, we show how data assimilation techniques are implemented in the Shallow water HYdrodynamic Finite El-

ement Model (SHYFEM) for optimizing the tide gauge network of the Lagoon of Venice (Italy). Since one limitation of the
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observing system evaluation procedure is that it depends on the properties of the DA employed for the evaluation (Fujii et al.,

2019), here we adopted a multiple systems approach implementing the Nudging and the Ensemble Square Root Filter data60

assimilation methods.

2 Methods

2.1 SHYFEM model description

The numerical experiments consisted of simulating the circulation in the Lagoon of Venice using the open-source SHYFEM

hydrodynamic model (Umgiesser et al., 2014). The model has been already
::::::
already

::::
been

:
applied to simulate hydrodynamics in65

the Mediterranean Sea (Ferrarin et al., 2018), in the Adriatic Sea (Bellafiore et al., 2018; Bajo et al., 2019) and in several coastal

systems (Umgiesser et al., 2014, and references therein). The model solves the shallow-water equations in their formulations

with levels and transports using a finite-element numerical method and semi-implicit time stepping. In the present work, a

relatively simple two-dimensional configuration of the model has been used, solving the following equations:

dU

dt
− fV =−H

(
g
∂ζ

∂x
+

1

ρw

∂pa
∂x

)
+AH∇2U +

1

ρw
(τwx− τbx) (1a)70

dV

dt
+ fU =−H

(
g
∂ζ

∂y
+

1

ρw

∂pa
∂y

)
+AH∇2V +

1

ρw
(τwy − τby) (1b)

∂ζ

∂t
+
∂U

∂x
+
∂V

∂y
= 0 (1c)

where t is the time, x and y are the spatial Cartesian coordinates and η = η(x,y, t) is the water level. U = U(x,y, t) and75

V = V (x,y, t) are the zonal and meridional water transport components, g is the acceleration due to gravity, pa= pa(x,y, t)

::::::::::::
pa = pa(x,y, t): is the atmospheric pressure at mean sea level, ρq ::

ρw:
the average density of sea water, h= h(x,y) is the

water depth at rest, while H = h+ η is the total water depth and f = f(y) is the Coriolis parameter, varying with latitude.

Smagorinsky’s formulation (Smagorinsky, 1963; Blumberg and Mellor, 1987) is used to parameterize the horizontal eddy

viscosity (Ah). τwx and τwy are the two components of the wind stress in the x and y directions and τbx and τby are the two80

components of the bottom stress.

The Coriolis term and pressure gradient in the momentum equation, and the divergence terms in the continuity equation are

treated semi-implicitly. Bottom friction and vertical eddy viscosity are treated fully implicitly for stability reasons due to the

shallow nature of the lagoon, while the remaining terms (advective and horizontal diffusion terms in the momentum equation)

are treated explicitly.
::
At

:::
the

::::::::::
boundaries,

:::::
either

:::::
water

::::::
levels

:::
are

::::::::
prescribed

::
at
:::

the
:::::

open
:::::::::
boundaries

::
or
:::

the
::::::::

free-slip
::::::::
condition

::
is85

::::::::::
implemented

:::
at

::::
solid

:::::::
(closed)

::::::::::
boundaries.

:
A detailed description of the model equations is given in Umgiesser et al. (2014)

and Bellafiore et al. (2018).
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2.2 Data assimilation methods

2.2.1 Nudging

The nudging method is a flexible assimilation technique that is computationally more economical than other assimilation90

methods like variational data assimilation. First used in meteorology (Hoke and Anthes, 1976), the nudging method has been

used with success in modelling the atmosphere (Stauffer and Seaman, 1990) and in oceanography (Verron, 1990; Blayo et al.,

1994). Nudging is a simple assimilation technique where a new source term is added to the prognostic equations that drag the

results versus the observed values. Therefore, it uses dynamical relaxation of the equations to tend to the observational points.

The extra term to be introduced in the prognostic equation can be formulated as:95

∂S/∂t= ...+(Sobs−S)/τ (2)

where S is the variable where nudging has to be applied, Sobs the observation value, and τ is the relaxation time scale.

Depending on the value of τ , the relaxation is very strong (small τ ) or weak (large τ ). The value of τ can be different from

point to point. It is worth mentioning that, by adding this extra term in the governing equations (e.g. the continuity Eq.1c for

the water level), the numerical solution is no more mass conservative.100

2.2.2 Ensemble Square Root Filter

The ensemble square root filter (hereinafter referred to as EnSRF) is a more complex assimilation method, widely used in

environmental sciences (Evensen, 2004), and can be considered as an evolution of the Ensemble Kalman Filter (EnKF, Evensen,

2003). The assimilation code that allows one to use both these methods, has been recently implemented in SHYFEM () and the

code was
::::::::::
(Bajo, 2020)

:::
and

:
used for the first time in a study on seiches and storm surges in the Adriatic Sea (Bajo et al., 2019).105

The formulation of the EnSRF is slightly different from the EnKF and avoids the perturbation of the observations. Using the

notation of Evensen (2004), if we define the model states as ψi ∈ IRn and the matrix holding them as:

A = (ψ1,ψ2, ...,ψN ) ∈ IRn×N , (3)

with N the number of ensemble members and n the dimension of the states, the
::::::::
ensemble mean is:

A = A1N , (4)110

where 1N ∈ IRN×N is a
:::::
square

:
matrix with each element equal to 1/N . The ensemble approximation of

:
If
:::
we

::::::
define

::
P

::
as the

background error covariance , P, is:
::::::
matrix,

:::::
which

::::::::
contains

:::
the

:::::::::
covariance

::
of

:::
the

:::::
errors

:::::::
between

:::
all

:::
the

:::::
model

::::::::
variables

::
in

:::
the
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:::::
whole

::::::::::::
computational

:::::::
domain,

::::
then

::
its

::::::::
ensemble

::::::::::::
approximation

:::
is:

Pe =
A′(A′)T

N − 1
, (5)

where A′ = A−A, is the matrix containing the ensemble perturbations. The covariance update in the Kalman filter is :115

Pa = Pf −PfHT (HPfHT +R)−1HPf ,

with the index a as analysis

::
In

:::
the

::::::::
traditional

:::::::
Kalman

:::::
Filter

:::::::::::
formulation,

:::
the

:::::::::
covariance

:::::
matrix

:::
P

:
is
:::::::
updated

:::::
every

::::
time

::::
new

:::::::::::
observations

:::
are

::::::::
available.

:::
The

::::::
matrix

::::::
before

:::
the

::::::
update

::
is

::::::
referred

:::
as

:::::::
forecast, fas first guess, ,

:::::
while

::::
after

:::
the

::::::
update

::
it
::
is

:::::::
referred

::
as

:::::::
analysis

:
,
::
a.

::::
The

:::::::
updating

:::::::
process

::
is
:::::::::
expressed

:::
by:120

Pa = Pf −PfHT (HPfHT +R)−1HPf

:::::::::::::::::::::::::::::::::::
(6)

:::::
where

:
H ∈ IRm×n

:
is
:
the observation operator, with m the number of observations, and R the observation error covariance

matrix.

In the ensemble methods, this equation is written as:
:::::
using

::::
Eq.5

:::
and

:::
the

::::::::::::
approximation

:::::::
P≈Pe::

in
:::
the

:::::
Eq.6,

:::
we

::::::
obtain:

:

Aa′Aa′T = A′(I−STC−1S)A′T
:::::::::::::::::::::::::::

(7)125

:::::
where

::
S

:::
and

::
C

:::
are

:::::::
defined

::
as:

:

S = HA′

C = SST +(N − 1)R
(8)

After some eigenvalue and singular value decompositions (see the paper Evensen, 2004), the equation splits into two sym-

metrical parts:

Aa′Aa′T =
(
A′V2

√
I−ΣT

2 Σ2

)(
A′V2

√
I−ΣT

2 Σ2

)T
, (9)130

where V2 ∈ IRN×N ,
:::
and

:
Σ2 ∈ IRm×N are two matrices coming from the decomposition of STC−1S and I is the identity

matrix. The solutions are:

Aa′ = A′V2

√
I−ΣT

2 Σ2Θ
T , (10)

5



for any random orthogonal matrix ΘT . This ,
::::::
which

:
allows a random redistribution of the variance reduction among the

ensemble members.135

The approximation of the covariance matrix with the ensemble members
::::::::::
perturbations

:
(eq. 5) becomes perfect when N

goes to infinity. However, with a finite number of ensemble members, model variables that are far
::::
from

::::
each

:::::
other

:
and not

really correlated, can have have a variance different from zero. To avoid this issue, keeping a reasonable number of ensemble

members, we apply a localisation scheme. Localisation is often used in ensemble data assimilation and can be done following

different methods (Houtekamer and Mitchell, 2001; Hamill et al., 2001; Anderson, 2003). In the present case we used a local140

analysis method, which performs in a similar way of the covariance localisation method (Sakov and Bertino, 2011).

This method reduces the influence of the observations too far from the location of a model variable
::
the

::::::
model

::::::
variable

::::::
which

:
is
:::::
going

:::
to

::
be

::::::::
modified. If the model has N variables, the distance of each of them from each observation is computed and a

weighting factor, depending on such distance, is computed. We used a Gaspari-Cohn function (Gaspari and Cohn, 1999), with

which the weight decreases in a way similar to a Gaussian, but vanishes for distances r > 2d, where d is a cut-off distance.145

Instead of making a global analysis, the analysis is made for each node of the grid
:::
near

:::::::
enough

::
to

:::::
some

::::::::::
observations

:
and the

matrices are reduced to a local dimension. Then, the total analysis is the sum of all the local contributions (Carrassi et al.,

2018).

2.3 The optimization procedure

Starting from the DA run with the assimilation of all stations (N ), the monitoring network evaluation procedure was designed150

as an iterative process in which several numerical simulations are carried out excluding one tide gauge from the assimilation at

a time. In this study, we consider the root mean square error (RMSE) of the simulated values respect to the observations as the

cost function to be minimized in the optimization process. Similar to the approach described in the previous section, for each

run the RMSE is evaluated for all data points. After doing this for all remaining stations, the observation site that contributes

less to the improvement of the RMSE (the one having the lowest RMSE value) is excluded in the next optimization step155

(assimilation of N −1 stations). The iterative process continues (N −2,N −3,N −4, ...) until only one station is assimilated.

At each optimization step, the mean RMSE over the whole monitoring network is evaluated. The whole optimization procedure

requires N × (N +1)/2 numerical simulations. In the case of the DA-EnSRF, the computational effort is much higher and

depends on the number of members of the ensemble.

The optimization procedure is easily and efficiently parallelized since all simulations within each iteration step are indepen-160

dent of each other. Similarly, all members of each DA-EnSRF process are independent and can be carried out simultaneously

on different processors.

2.4 Application to the Lagoon of Venice

The Lagoon of Venice (Fig. 1) is situated in the Northern Adriatic Sea and is the largest Mediterranean lagoon (area of 550

km2). The principal hydraulic forcings of the Lagoon of Venice are the tide and the wind Umgiesser et al. (2004b). Even if165

the lagoon is a micro-tidal system (tidal range of about 80 cm), tides are a major factor in shaping landforms and driving
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ecological gradients and biological communities. The lagoon is separated from the open sea by barrier islands, and three

inlets (Lido, Malamocco, and Chioggia) ensure an active renewal of the lagoon waters (Ferrarin et al., 2017). The lagoon is

characterized by a complex system of tidal channels. The density of the drainage network increases landward as main tidal

collectors departing from the inlets branch in progressively smaller-size channels, ranging in depth from a more than 15 m of170

main reaches to few decimetres of salt marsh creeks (Madricardo et al., 2017). Such a drainage network cuts across a large

extent of shallow water areas, which have an average depth of 1 m and include mudflats and salt marshes.

The city of Venice is located in the centre of the lagoon and is composed of more than a hundred islands linked by bridges.

The elevation of these islands is extremely low, subjecting them to flooding during storms, which in turn threatens the unique

cultural heritage of this city and affects its everyday life. The northern Adriatic Sea is frequently affected by storm surge events,175

mainly triggered by strong south-easterly wind (Orlić et al., 1994). It is therefore of crucial importance for the management of

this environment to monitor water level variations outside and inside the lagoon.

2.4.1 The tide gauge network

The Lagoon of Venice has two tide gauge networks for supporting the local real-time storm surge prediction and warn-

ing system. They are managed by the Institute for Environmental Protection and Research - National Centre for Coastal180

Zone and Characterization Marine Climatology and for Operational Oceanography (ISPRA, Unit for Tides and Lagoons,

http://www.venezia.isprambiente.it/, last access 10 January 2020) and the Tide Forecast and Early Warning Center of the City

of Venice (CPSM, https://www.comune.venezia.it/it/content/centro-previsioni-e-segnalazioni-maree, last access 10 January

2020). ISPRA manages a network of 45 tide gauge stations equipped for the systematic measurement of water level and other

related parameters, such as wind direction, wind speed, atmospheric pressure, precipitation, and wave-height inside the Lagoon185

of Venice and in the north-western Adriatic coastline. The monitoring network of CPSM consists of 17 hydro-meteorological

stations distributed within the lagoon and along the Venetian littoral for the real-time monitoring of the water levels, waves and

meteorological parameters. Some locations with high valuable relevance are monitored by both institutions.

In this study, we collected all the available data from both the ISPRA and CPSM monitoring networks over a one-month

period (November 2013) with the highest number of stations without missing data. The selected dataset consists of quality-190

controlled 10-minute values of sea level measured at the 29 tide gauge stations marked with red dots in Fig. 1. As shown

in the figure, all tide gauges are installed within navigational channels in order to allow their installation and maintenance.

Most of the tide gauges are located in the central and northern parts of the lagoons, where most of the urban settlements are

placed (Venice, Murano and Burano), at the inlets and in the southern end of the lagoon near Chioggia. The selected period of

investigation comprises both calm weather conditions as well as significant wind events.195

In order to investigate at which degree the observations represent the state variable over the whole system, a field approxi-

mation through optimal interpolation (OI) of the data have been performed. OI is a commonly used and fairly simple method to

perform interpolation of sparse data and also in data assimilation. OI was first described in Gandin (1965) and other references

and implementations can be found also in Daley (1991). It is also often referred to as statistical interpolation. In OI, starting
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from a background grid, observation points are used to correct the background grid. Points that lie close to each other are given200

less weight. The interpolation of the water levels was carried out on a 0.5×0.5 km regular grid.

2.4.2 Simulation set-up

The water circulation in the Lagoon of Venice, induced by tide and wind was simulated by the unstructured model SHYFEM

applied over a spatial domain that represents the entire Lagoon and its adjacent shore. The model adequately reproduces the

complex geometry and bathymetry of the Lagoon of Venice using unstructured numerical meshes composed of triangular205

elements of variable form and size, going down to a few meters in the channels (Fig. 1). The model bathymetry was obtained

from the data collected in 2002 by Magistrato alle Acque di Venezia - merged with later surveys - and the 2014 MBES

bathymetry acquired by CNR-ISMAR in the main channels of the lagoon (Madricardo et al., 2017).

The application of the SHYFEM model to the Lagoon of Venice has been validated in previous works reproducing correctly

tidal propagation, storm surge, water flows at the lagoons’ inlets and water temperature and salinity variability (Umgiesser210

et al., 2004a; Ferrarin et al., 2008, 2010; Ghezzo et al., 2011).

In this study, hydrodynamics in the lagoon was simulated using 10-minute observed forcing and boundary conditions (i.e.,

wind stress and open sea level). The initial condition is always a calm state. This is certainly no problem for the current velocity

and the water level since these quantities approach a dynamic state very fast (less than a day). The numerical simulations were

performed over the period covered by the selected dataset (November 2013).215

In order to apply the Nudging DA method, a value for the relaxation parameter τ has to be determined. In our case, it was

supposed that every observation point would only influence the grid points up to a certain distance. For every observation, a

Gaussian bell curve was constructed. The standard deviation of the curve (sigma
:
σ) was set to 2 km, and all points further than

3 standard deviations are excluded from the computations (Fig. 2a). Overlapping areas of influence are considered by summing

the value of the Gaussian curve in these points. The τ value at the peak point of the Gaussian curve was set to 100 seconds,220

and this value then increases smoothly to infinity in order to simulate an influence which becomes lower when moving away

from the observation point.

The EnSRF needs an ensemble of model states that should ideally represent the error of the simulation. In the present

case the ensemble of the model states is created varying the boundary condition. We used 60 perturbations for the sea-level

boundary condition ,
:::::::
(member

::
0
::
is

::::::::::
unperturbed)

:::::
taken

:::::
from

:
a
::::::::
Gaussian

::::::::::
distribution with a zero mean and a standard deviation225

set to 30 cm. This value was found empirically, in order to have a good spread at the boundary, which is then propagated to the

variables computed by the model. As asserted, the perturbations are centred,
::::::

having
::
a
::::
null

:::::
mean, and correlated in timewith

:
.

::
To

:::
do

::::
this,

::::
each

::::::::::
perturbation

::
at

::::
time

:
t
::
is
::::::::
obtained

::::
from

:
a
::::::::
weighted

:::::::
average

::
of

::
a

:::
new

:::::::::::
perturbation

:::
and

::
of

:::
the

::::
one

::
at

::::
time

:::::
t− 1.

::::
This

::::
type

::
of

:::::::::::
perturbations

:::
are

::::::::
classified

::
as

:::
red

:::::
noise

:::
and

::
in
:::
the

:::::::
present

::::
case

:::
we

::::
used a decay time of two days(red noise). We

made also perturbations for the wind, with the same method, but using a standard deviation proportional to 40% of the wind230

speed. Due to the small study area, we considered the wind constant in space so that the perturbations can vary only in time, as

the boundary conditions. However, because of the smallness of our system, the perturbations on the wind are not very effective,
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as well as perturbations on the initial state. Therefore, the perturbations at the boundary condition are necessary both to create

the initial ensemble of states and to keep the spread of the ensemble during the whole time of the simulation.

We run also several preliminary tests to empirically found
:::::
After

::::::
several

:::::::::
preliminary

:::::::::
numerical

::::
tests,

:
the best cut-off distance235

for the local analysis , which was fixed
:::
was

:::
set to 0.1 geographical degrees (about 10 km). In order to illustrate the important

effect of the localisation, in Fig. 2b we show the correlation values between each observation station and each model level

in each node of the model grid, at a specific time-step. The correlation is weighted with the Gaspari-Cohn function, which

vanishes the values too far from the station. This quantity is not used directly by the local analysis routine, but it is useful

to understand its effect. Note also that this is the correlation with the water levels, but the EnSRF considers also the cross-240

correlations with the water velocities and corrects them as well. The strong difference with the relaxation time used by the

nudging to weight the observations (Fig. 2a), is that the use of the real correlations between the model variables produces an

anisotropic distribution of the observation correction, which respects the water dynamics forced by the channels, by the tidal

flats and by the basin morphology. Moreover, as the dynamics varies at each time-step, so does the correlation between model

variables and the weight of the assimilation increments.245

The EnSRF assimilates water level from the selected stations considering them independent (the R error covariance matrix

is diagonal) and the error of each station is set to 1 cm. The model evolves forward in time the ensemble members, each one

with different boundary condition and wind forcing, and an analysis step is done every hour. The results considered in this

work are extracted by the analysis states, which are saved every hour.

3 Results250

In the exposition of the results, we defined the model run without data assimilation as the control simulation, while, for both

the DA schemes, the base run accounts for the assimilation of all the 29 monitoring stations. All mentioned parameters (tau,

sigma
::
τ ,

::
σ, cut-off distance for the local analysis) were manually defined through trial and error calibration process and

evaluating the goodness-of-fit of the water level RMSE in the DA-Nudging and DA-EnSRF base simulations.

3.1 Data interpolation vs. data assimilation255

When entering a shallow basin, as the Venice lagoon, the tidal wave is deformed, either damped or amplified, according to a

relationship between local flow resistance and inertia, and the characteristics of the incoming tidal wave (Ferrarin et al., 2010).

In the data interpolation method, the distribution of the water levels is given by a spatial interpolation of the observations. Fig. 3a

reports a snapshot of the interpolated water levels over the lagoon during a flood tide. The map shows, for this particular time

frame, a patchy non coherent distribution with the lowest values in the nearshore area close to the inlets, while the highest are260

in proximity of the central and northern lagoon’s margins.

Does the interpolation of the observations provide a realistic spatial representation of the water level variability over the

lagoon domain? To answer to this question, we show in Fig. 3b the water level computed by the model, without any data

assimilation (Control sim.). The nudging run (DA-Nudging) is shown in Fig. 3c and the EnSRF run (DA-EnSRF) in Fig. 3d.
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The control simulation has a completely different distribution of the water levels with respect to the data interpolation. The265

mode simulation shows the lowest water level in the open sea, which gradually increases going from the inlets to the inner

lagoon, describing the propagation of the tidal wave. The three inlets lead the water circulation in three sub-basins, divided

by narrow areas with little water exchange (these zones are identified as dynamical watersheds). The modelled maps (control,

DA-Nudging and DA-EnSRF) clearly account for islands and marsh boundaries. DA-Nudging shows a similar representation

of the control simulation, but with slightly higher values of the water levels on the central and southern tidal flats (Fig. 3c).270

Similarly, the DA-EnSRF adjusts the water levels towards the observations
:::::
while keeping the physical dynamics of the flow

(Fig. 3d). It is worth mentioning that the water level distributions at different tidal phases would lead to similar DI and DA

considerations.

In order to establish which method better represents the water level variability over the lagoon, we need to evaluate the

capacity of each approach to describe the parameter at locations not included in the computation. Thanks to a large number275

of available tide gauges in the Lagoon of Venice, the model skill assessment (in terms of the root mean square error, RMSE)

is determined by re-running DI and DA experiments removing one station from the assimilation and comparing the water

level in this station with the modelled one. The evaluation procedure was repeated for each monitoring station and the results

are reported in Table 1. When using the optimal interpolation approach, the average RMSE is 3.9 cm, with values ranging

from 0.8 to 8.5 cm. The highest RMSE is found at stations located at the lagoon margins (9, 14, 25 and 27) and the Chioggia280

and Malamocco inlets (4 and 12). The control SHYFEM simulation, the one without data assimilation, has a mean RMSE of

5.8 cm, with the highest errors found at the stations located near the lagoon margins (1, 9, 14, 24 and 29). The correlation

coefficient (not reported in the table) is everywhere higher than 0.97, except for station 24 where it is 0.47. Therefore, from the

statistics we deduce that the control simulation has a worse performance with respect to the direct interpolation of the data and

that it slightly fails in reproducing correctly the water dynamics in border areas, especially in the small creeks surrounded by285

mashes (e.g. station 24). However, even if data interpolation is statistically better, looking at Fig. 3a the spatial distribution of

the water level is clearly unphysical.

Differently, both DA methods strongly improved the model skills in all parts of the lagoon. The average RMSE resulted in

2.1 cm and 3.2 cm for DA-Nudging and DA-EnSRF, respectively. The results reported in Table 1 show that results improved

at all stations, even those affected by the highest errors in the control simulation. The capacity of the different methods in290

reproducing the temporal evolution of the water level is shown in Fig. 4 for the station n. 12 (in this case removed from the

assimilation/interpolation). It is evident that in this case, the interpolation does not represent correctly the water level variability,

being influenced by values recorded outside the lagoon domain, which do not take into account the correct tidal propagation

dynamics. On the other hand, the data assimilation results adjust the water levels towards the observations keeping the physical

dynamics of the flow. Therefore, the model simulation with a DA scheme is the approach that better represents the variability295

of the water levels in the lagoon.

Additionally, in a multivariate analysis approach we tested the capability of the applied DA-driven simulations in reproducing

the current velocities recorded by an acoustic Doppler current profiler (ADCP) mounted on the bottom of the Lido inlet, close

to the station n. 15 shown in Fig. 1. Time series of observed and simulated vertically integrated velocities are illustrated in
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Fig. 5, while the statistical results are summarized in Table 2. Since the DA-Nudging does not adjust the velocities according300

to the correction of the water level, the model computes spurious velocities according to the pressure gradients generated by

the water level increments. The simulated
::::::::::
DA-Nudging

:
current velocities - and therefore the water exchange through the inlets

- using DA-Nudging resulted to be higher
:::::::::::
overestimated and slightly out of phase than the observations. Interesting

:::
tidal

::::::
phase.

::::::::::
Interestingly, the DA-Nudging performances on the current velocity are even worse than those of the control simulation. On

the other hand, since DA-EnSRF uses cross-correlation to propagate the observation correction to the other model variables,305

the velocities are corrected according to the modification of the levels, towards a better agreement with the ADCP currents.

This is a demonstration of the potentiality of a complex DA method, where a correct specification of the cross-correlations

in the background covariance matrix allows a correction of model variables even if they are not directly correlated with the

assimilated quantities.

3.2 Monitoring network optimization310

The next step is to use DA methods to find the minimum number of stations - and their distribution - that correctly represent

the state variable in the investigated system. The optimization procedure of this tide gauge network, composed by
::
of N = 29

stations, requires 435 (N × (N +1)/2) numerical simulations. However, the computational cost of the DA-EnSRF is much

higher, since the ensemble is composed by 61 members. So in this case the simulations are 26,535, but the
::::::::
computing

:
scalability

is high since the 61 simulations are independent
::
of

:::
the

::::::::
ensemble

::::
are

::::::::::
independent

:::
and

::::
can

::
be

::::::::::
parallelized

:::
on

:::::::
multiple

::::::
CPUs315

::::::::
computers. The results of the water level observatory evaluation are reported in Fig. 6 in terms of the model RMSE as a

function of the number of stations considered in the assimilation. For comparison, the same procedure was applied to the data

interpolation.

The evaluation procedure allows finding the minimum number of tide gauges for a successful description of the water level

in the lagoon. However, the optimization criterion (the RMSE threshold) is arbitrary and may differ for different environments,320

state variables and monitoring networks. In the present case, we can see that using both DA-Nudging and DA-EnSRF, the

RMSE does not change too much passing from 29 to 10-12 assimilated stations. Even if the EnSRF has an average RMSE

higher than the DA-Nudging, the RMSE of the EnSRF has a slower increase with the reduction of the stations. The initial

decrease of the RMSE is probably due to the fact that observations have errors, and tide gauges close to each other can provide

slightly different data. The EnSRF considers the observation error in the observation covariance matrix, but it is difficult to find325

the right value and normally the nominal instrument error is used.

Considering the spatial interpolation method, the use of 10 stations has a RMSE comparable to the error of the control

simulation. But we have to stress that in this case the spatial representation of the water level is clearly wrong. We should also

mention that the model with the assimilation of only three stations give
::::
gives

:
a lower RMSE than DI with all 29 stations, apart

from the fact that results are physically more coherent and consistent.330

The resulting optimal distributions of the 10 tide gauge stations determined by DA-Nudging and DA-EnSRF are shown in

Fig. 7. In both cases, the optimization procedure selected tide gauges located near the inlets (one each, avoiding redundancy of

nearby stations), in some of the islands in the northern part of the lagoon, and stations along the lagoon margins. We therefore
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can consider that, with the help of DA methods, only 10 of the considered 29 tide gauges are necessary for properly describing

the spatial and temporal variability of the water level in the Lagoon of Venice. Considering that the average annual maintenance335

cost of a tide gauge in the Lagoon of Venice is approximately 3,500 AC (Alvise Papa, CPSM, personal communication), the

optimization of the monitoring network could allow saving about 66,000 AC per year.

However, the choice of which stations to keep in the monitoring network depends also on many practical factors. As an

example, the monitoring authority would decide to keep some stations because of their strategic relevance, maintenance costs,

distance from the laboratory or for continuing long-term time series. The optimization method can be easily customized based340

on predetermined specific constraints. As a realistic exercise, we fixed the stations at the inlets (4, 12, 11) and in the main urban

settlements (2, 6, 17, 19) in the monitoring network. The evaluation procedure is then repeated using the DA-Nudging method,

keeping these 7 stations and the results are presented in Fig. 8. In this customized optimization exercise, the results show that

15 stations are necessary to guarantee a proper description of the water level variability in the lagoon.

4 Discussion and Conclusions345

The methodology presented in this study allows for the evaluation of existing coastal observatories. Using a DA system, which

is an observation-driven and process-based method, the iterative optimization procedure establishes the relevance of each

single monitoring station on the description of the considered environment. The example reported in this study describes the

optimization of an existing observatory with defined monitoring points. However, the methodology could be applied also to

design new monitoring networks. As described by Raicich (2006) and Xue et al. (2011), in an observing system simulation350

experiment, synthetic observations are generated by a model run in some locations and then they are assimilated as real

observations. The procedure is similar to a twin experiment, a method used to assess the quality of a data assimilation system.

As indicated by Fujii et al. (2019), the goodness of the results of such methods strongly depends on the numerical model

applied, on the DA scheme implemented and on the optimization procedure. This effect is evident in the results presented

above, where the numerical model performances differ when using a different methodology for assimilating the observations.355

Moreover, the optimization procedure selected some stations at the lagoon edges, where the RMSE of the control simulation

was the highest. The DA scheme should be selected not only considering the computational cost, but also considering the

capacity in reproducing a correct multivariate dynamics of the system. This can be done using observations not assimilated of

the same type of the assimilated ones and also observations of other variables of the model (as the ADCP data in our case).

In semi-enclosed basins such as lagoon environments, the fluxes through the inlets control the water and the sediment and the360

nutrient exchanges between the sea and the lagoon, influencing the whole dynamic of the system (Ferrarin et al., 2010). Indeed,

the more advanced EnSRF method improved not only the assimilated water level but also the current velocity, and therefore

the fluxes, at the inlet. Therefore, as also outlined by many authors (e.g. Jones et al., 2012; Edwards et al., 2015; Bajo et al.,

2019), the description of the coastal sea environment can be improved with the use of a modelling, process-based approach

and the use of observations in a complex data assimilation system.365
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Additionally, as specified at section 2.4.2, the perturbation method implemented in the ensemble data assimilation system

allows the creation of ensemble members that are dynamically consistent and generates realistic correlations in the background-

error covariance matrix. These correlation
:::::::::
correlations, as well as the covariance matrix, are not constant in time, but vary ac-

cordingly with the dynamics induced by the periodic tide and by the non-periodic stress of the wind. In designing or optimizing

a monitoring network, such correlation matrix represents a precious source of information which can be used to investigate370

the area of representativeness of each selected station. To better understand the potentiality of the ensemble data assimilation

methods, we show in Fig. 9 the correlation between the sea level at each station locations with the other nodes of the grid,

weighted by the Gaspari-Cohn function. The figure is similar to Fig. 2b but in this case the correlations are averaged over the

duration of the whole simulation and considers only the stations selected by the optimization procedure. Even at a first glance,

this maps give information about the influence area of each station. These areas do not spread isotropically from the station375

locations, but they are constrained by the morphology and by the water dynamics, which is considered in the model. This is

true not only for the water level but, as asserted before, also the other variables should benefit by the assimilation of water level

observations. Maps similar to that in Fig. 9 can be obtained considering the cross-correlation of the sea level with the water

current or with other variables like temperature or salinity, in case of a baroclinic model.

The combination of observations and numerical models is particularly important in coastal regions with scarce monitoring380

resources. However, to reduce the model error, the applied numerical models must correctly reproduce the complex morphology

of the coastline and the exchange processes between the shelf and the open seas. The processes in such complex systems at the

land-sea transition are extremely dynamic and require a holistic approach in which all the hydrological entities (river mouth, salt

marshes, lagoons, swamps, coastal sea) should be considered as integral parts of the entire domain of computation. Moreover,

due to the complex geometry and morphology of the coastal regions, the numerical models need to be able to represent385

hydrodynamic conditions with very high resolution, on the horizontal, vertical and temporal dimensions. With respect to the

above-cited requirement, unstructured models - as the one applied in this study - realise a seamless transition between different

spatial scales for reproducing the coastal-sea interactions, adopting a variable resolution of the mesh elements (Ferrarin et al.,

2018; Kärnä et al., 2018; Maicu et al., 2018; Stanev et al., 2018; Androsov et al., 2019). The applied numerical models need to

be continuously evaluated and upgraded to maintain the highest accuracy.390

The model-driven optimization procedure was here applied using hindcast simulations, but it can be also used in an fore-

casting modelling for evaluating the effect of the assimilated data on the predictions (Cummings and Smedstad, 2014; Bajo

et al., 2017). An observation assessment is particularly important when the assimilated data come from different data sources

(e.g., fixed monitoring stations, satellite, radar, gliders), or for a priori estimation of new data sources in an already existing DA

system (Bonaduce et al., 2018). It is crucial in operational oceanography to have a DA scheme keeping the correct physical395

description of the dynamics in the investigated environment, without introducing errors that can propagate in time. As indicated

by Fujii et al. (2019), in an operational framework a DA system can also be used as an automatic control system for the quality

of observations.

In the case of the Lagoon of Venice tide gauge network, we demonstrated how numerical models with data assimilation can

play a valuable role in optimizing and designing coastal observatories. The iterative optimization process was based on the400
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evaluation of the RMSE at the stations not assimilated. It is worth noting that the existing monitoring network can be reduced

by a factor of 2/3 using the tide gauge system in conjunction with a high-resolution numerical model, by means of DA. The

applied methodology is easily exportable to other coastal environments and can be extended to other physical variables.

Code and data availability. The SHYFEM hydrodynamic model is open source (GNU General Public License as published by the Free Soft-

ware Foundation) and freely available through GitHub at https://github.com/SHYFEM-model (last access: 10 January 2020). The SHYFEM405

code version v. 7_5_65 can be accessed from Zenodo (Umgiesser, 2019). The SHYFEM model v. 7_5_65 with with the data assimilation

code (version ens2.1) is available on Zenodo (Bajo, 2020). The data assimilation code is based on the Geir Evensen’s routines, available at

the web-page https://github.com/geirev/EnKF_analysis (last access: 20 January 2020). Configuration files, data and scripts used to run the
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Figure 1. Bathymetry and unstructured mesh of the Lagoon of Venice. The red dots mark the tide gauge monitoring station.
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Figure 2. Spatial distribution of (a) the relaxation time adopted in the Nudging and (b) the weighted correlation of the ensemble considered
in the EnSRF method.
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Figure 3. A snapshot on 2013-11-04 at 14:00 UTC of the water level distribution in the Lagoon of Venice as obtained by the optimal
interpolation (a), the control simulation without assimilation (b), the DA-Nudging base run (c) and the DA-EnSRF base run (d). The gray
colour indicates dry salt marshes.
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Figure 4. Observed, interpolated and simulated water levels at station 12. In this computation, station 12 was not included in the Di and DA
algorithms.
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Figure 5. Observed and simulated vertically integrated current velocity at the Lido inlet. The ADCP was located close to tide gauge number
15.
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Figure 6. Root mean square error of the water levels as a function of the number of tide gauge stations interpolated or assimilated. The
RMSE value with zero considered stations for DA is also indicating the error of the base simulation when no DA methods are applied.
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Figure 7. The optimal distribution of 10 tide gauge stations (marked with green dots) according to DA-Nudging (a) and DA-EnSRF (b).
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Figure 8. Same as Fig. 6, but for the optimal and the custom network experiment using Nudging data assimilation.
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Figure 9. Ensemble weighted correlation (averaged over the simulation period) of the 10 monitoring stations selected using the EnSRF
method.
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Table 1. Root mean square errors (in cm) of DI and DA considering all other stations except the one for which the index is computed. The
RMSEs of the control simulation are also reported.

Station ID Data interp. Control sim. DA-Nudging DA-EnSRF

1 4.5 8.3 5.8 7.5
2 0.8 4.1 0.9 2.4
3 3.0 5.2 2.8 3.4
4 6.5 4.1 2.5 3.5
5 1.4 4.1 1.8 2.1
6 1.5 4.2 1.4 2.3
7 3.1 5.2 1.9 3.1
8 2.4 5.3 1.4 2.3
9 7.3 9.5 3.3 9.4
10 2.5 4.0 0.9 2.4
11 3.8 4.3 2.2 3.0
12 8.5 4.5 2.5 4.7

::
3.7

:

13 3.6 4.6 0.9 2.3
14 6.0 6.6 3.9 2.5
15 2.8 3.7 2.7 2.6
16 1.9 4.1 1.0 1.8
17 2.6 4.5 1.4 2.1
18 7.3 4.3 1.1 2.3
19 2.6 3.6 0.9 1.5
20 4.2 3.8 0.7 1.6
21 2.5 4.1 0.8 1.4
22 4.3 3.7 0.9 2.0
23 2.3 3.4 2.5 1.9
24 5.2 28.3 4.4 7.0
25 8.2 4.9 2.1 2.8
26 1.1 4.2 1.3 2.5
27 6.4 6.6 1.9 4.0
28 2.8 5.2 1.7 3.6
29 3.5 8.5 5.4 6.2

MEAN 3.9 5.8 2.1 3.2
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Table 2. Statistical analysis of simulated current velocity at the Lido inlet. Results are given as RMSE (root mean square error, cm s−1
::

−1),
BIAS (difference between the mean of simulation results and observations, cm s−1

::

−1) and R (correlation coefficient between model results
and observations).

Simulation RMSE BIAS R

Control 14.1 0.6 0.84
DA-Nudging 15.7 5.3 0.83
DA-EnSRF 13.6 0.4 0.85
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