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Abstract 8 

Machine learning (ML) and data-driven approaches are increasingly used in many research areas. 9 

XGBoost is a tree boosting method that has evolved into a state-of-the-art approach for many ML 10 

challenges. However, it has rarely been used in simulations of land use change so far. Xilingol, a 11 

typical region for research on serious grassland degradation and its drivers, was selected as a case 12 

study to test whether XGBoost can provide alternative insights that conventional land-use models 13 

are unable to generate. A set of twenty drivers was analysed using XGBoost, involving four 14 

alternative sampling strategies, and SHAP (SHapley Additive exPlanations) to interpret the results 15 

of the purely data-driven approach. The results indicated that, with three of the sampling strategies 16 

(over-balanced, balanced and imbalanced), XGBoost achieved similar and robust simulation results. 17 

SHAP values were useful for analysing the complex relationship between the different drivers of 18 

grassland degradation. Four drivers accounted for 99% of the grassland degradation dynamics in 19 

Xilingol. These four drivers were spatially allocated, and a risk map of further degradation was 20 

produced. The limitations of using XGBoost to predict future land-use change are discussed. 21 

Key words: grassland degradation, machine learning, driver-driven method, XGBoost, SHAP 22 

values 23 

1. Introduction 24 

Land-use and land-cover change (LUCC) has received increasing attention in recent years (Aburas 25 

et al., 2019; Diouf & Lambin, 2001; Lambin et al., 2003; Verburg et al., 2002). Land-use change 26 

includes various land-use processes, such as urbanisation, land degradation, water body shrinkage, 27 

and surface mining, and has significant effects on ecosystem services and functions (Sohl & 28 

Benjamin, 2012). Grassland is the major land-use type on the Mongolian Plateau; its degradation 29 

was first witnessed in the 1960s. About 15% of the total grassland area was characterised as being 30 

degraded in the 1970s, which rose to 50% in the mid-1980s (Kwon et al., 2016). In general, 31 

grassland degradation (GD) refers to any biotic disturbance in which grass struggles to grow or can 32 

no longer exist due to physical stress (e.g. overgrazing, trampling) or changes in growing conditions 33 

(e.g. climate; Akiyama & Kawamura, 2007). In this study, grassland degradation is defined as 34 

grassland that has been destroyed and subsequently classified as some other land use, or that has 35 

significantly decreased in coverage.  36 

Grassland is a land use that provides extensive ecosystem services (Bengtsson et al., 2019). When 37 

degraded, the consequences are seen in an immediate decline in these services, such as a decrease 38 

in carbon storage due to a reduction in vegetation productivity (Li et al., 2017). About 90% of carbon 39 

in grassland ecosystems is stored in the soil (Nkonya et al., 2016). Furthermore, GD results in a 40 

reduction in plant diversity and above-ground biomass available for grazing (Wang et al., 2014). 41 

Likewise, GD leads to soil erosion and frequent dusts storms in Inner Mongolia (Hoffmann et al., 42 

2008; Reiche, 2014). Drivers of GD are manifold, and have been analysed in a range of studies (Li 43 

et al., 2012; Liu et al., 2019; Sun et al., 2017; Xie and Sha, 2012). However, few studies use 44 

sophisticated driver analysis to predict spatial patterns of GD (Jacquin et al., 2016; Wang et al., 45 

2018). A number of studies have addressed the complex relationship between GD and its drivers 46 

(Cao et al., 2013a; Feng et al., 2011; Fu et al., 2018; Tiscornia et al., 2019a). However, these studies 47 

focus mainly on visualising or describing non-linear relationships between GD and its drivers.   48 

The aim of developing various land-use models was to explore the causes and outcomes of land-use 49 

dynamics; these models were implemented in combination with scenario analysis to support land 50 

management and decision-making (National Research Council, 2014; Ren et al., 2019). Most such 51 

models are statistical models, such as logistic regression models or models based on principle 52 

https://en.wikipedia.org/wiki/Grass
https://en.wikipedia.org/wiki/Overgrazing
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component analysis (Li et al., 2013; Lin et al., 2014) or Bayesian belief networks (Krüger and Lakes, 53 

2015). Some such models are spatially explicit (e.g. CLUE-S, GeoSOS-FLUS, LTM, Fu et al., 2018; 54 

Liang et al., 2018; Pijanowski et al., 2002, 2005; Verburg & Veldkamp, 2004; Zhang et al., 2013); 55 

others are not (e.g. Markov models; Iacono et al., 2015; Yuan et al., 2015). Hybrid models, which 56 

combine different approaches to make the best use of the advantages of each model, are another 57 

important variety. This type of model is used to characterise the multiple aspects of LUCC patterns 58 

and processes (Li and Yeh, 2002; Sun and Müller, 2013). Agent-based models (ABM) simulate  59 

land use change decisions based on the behaviour of individual decision-makers. They often 60 

consider economic and political information to calculate land-use change. Cellular Automata (CA) 61 

models are gridded models in which time, space, and state are all discrete. CA models are spatially 62 

explicit and land use change decisions are made based on the state of the neighbouring cells (Yang 63 

et al., 2014). CA models are often used for the spatial allocation of land use and land cover at a high 64 

spatial resolution (Cao et al., 2019) and may be used in combination with other models, such as 65 

ABM (e.g.,Charif et al., 2017; Mustafa et al., 2017; Troost et al., 2015; Vermeiren et al., 2016).  66 

In most cases of land-use change, it was either assumed that the relationship between the drivers 67 

and the resulting land-use change is constant over time (Fu et al., 2018; Samie et al., 2017; Zhan J 68 

Y et al., 2007), or the relationships were identified as being linear or non-linear, but were not 69 

interpreted (Tayyebi and Pijanowski, 2014a). We hypothesise that the relationships between GD and 70 

its drivers are mainly non-linear. We therefore see a need for methods that are capable of analysing 71 

and interpreting non-linear relationships between GD and dynamic drivers.  72 

With the development of computer science, machine learning (ML) models have been increasingly 73 

used in land-use change modelling (Islam et al., 2018; Krüger and Lakes, 2015; Lakes et al., 2009; 74 

Tayyebi and Pijanowski, 2014a). ML is superior to the human brain when it comes to pattern 75 

recognition in large datasets, e.g. images and sensor fields. Once the task is defined and the data for 76 

training is provided, ML operates without any further human assistance. Various ML approaches 77 

have been used in the analysis of land-use change processes, the most prominent of which being 78 

Support Vector Machines (SVM, Huang et al., 2009, 2010), Artificial Neural Networks (ANN, 79 

Ahmadlou et al., 2016; Yang et al., 2016), Classification And Regression Trees (Tayyebi and 80 

Pijanowski, 2014b) and Random Forest (RF, Freeman et al., 2016). While the different ML 81 

approaches generally perform well in identifying patterns, they remain a black box and make no 82 

contribution to our understanding of how the underlying drivers act on the LUCC process. 83 

Compared to linear methods such as logistic regression, ML models often achieve higher accuracy 84 

and capture non-linear land-use change processes. Likewise, ML models relax some of the rigorous 85 

assumptions inherent in conventional models, but at the expense of an unknown contribution of 86 

parameters to the outcomes (Lakes et al., 2009). However, the key challenge is to crack the black 87 

box and reveal how each driver affects the land-use change pattern or processes in the ML models. 88 

The eXtreme Gradient Boosting (XGBoost) method has recently been developed as a supervised 89 

machine learning approach (Chen and Guestrin, 2016). XGBoost algorithms have achieved superior 90 

results in many ML challenges; they are characterised by being ten times faster than popular existing 91 

solutions, and the ability to handle sparse datasets and to process hundreds of millions of examples. 92 

XGBoost has already been used in land-use change detection, combined with remote sensing data 93 

(Georganos et al., 2018), but has not yet been used in the simulation and prediction of land-use 94 

change. SHapley Additive exPlanations (SHAP; Lundberg & Lee, 2016) is a unified approach to 95 

explain the output of any ML model and to visualise and describe the complex causal relationship 96 

between driving forces and the prediction target. We propose using SHAP to analyse the driver 97 

relationships hidden in the black box model of XGBoost when employed for land-use change 98 

modelling.  99 

Having earlier used a clustering approach to identify drivers of GD in a case study in Inner Mongolia 100 

(Xilingol League; Batunacun et al., 2019), we now use XGBoost and SHAP to simulate GD 101 

dynamics across the same area. We are primarily interested in learning whether ML models can 102 
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achieve a better predictive quality than linear methods, in addition to improving our understanding 103 

of how grassland degrades in Xilingol. In the intention to identify areas with a high risk of further 104 

degradation and to determine the drivers responsible for progressive degradation, we used XGBoost 105 

to generate a data-driven model to explore the GD patterns. We then used SHAP to open the non-106 

linear relationships of the black box model stepwise, and transformed these relationships into 107 

interpretable rules. The resulting model enabled us to map the primary GD drivers and GD hot spots 108 

in Xilingol. 109 

2. Materials and Methods 110 

2.1 Study area 111 

The Xilingol League is located about 600 km north of Beijing (He et al., 2004), in the centre of 112 

Inner Mongolia. This administrative unit, covering an area of 206,000 km2, spans from 41.4°N to 113 

46.6°N and from 111.1°E to 119.7°E (Figure 1). The area is dominated by the continental temperate 114 

semiarid climate. The frequent droughts (in summer) and “dzud” (an extremely harsh and snow-115 

rich winter) are the major natural disasters that occasionally lead to catastrophic livestock losses in 116 

this region (Allington et al., 2018; Tong et al., 2017; Xu GC et al., 2014). Xilingol possessed about 117 

18,104 km2 available pasture resources and 1240.4∙104 sheep units at the end of 2015 (Xie and Sha, 118 

2012). Around 1.044 million people lived in Xilingol in 2015, with ethnic Mongolian minorities 119 

accounting for around 31% and the rural population for 37% (Batunacun et al., 2019; Shao et al., 120 

2017). Xilingol is a vast grassland, known for its high-quality meat products, nomadic culture, rich 121 

mineral resources and ethnic minorities. The ongoing degradation of grassland is receiving 122 

increasing attention. A set of economic stimuli and ecological protection policies launched in 123 

Xilingol were viewed as the root cause of GD over the past four decades. Although large-scale 124 

ecological restoration policies were implemented after 2000 in a bid to reduce GD, the problem still 125 

persists. 126 
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 127 

Figure 1: The location of the Xilingol League in Inner Mongolia and its land uses. 128 

2.2 Grassland degradation  129 

This study defines grassland degradation (GD) based on land-use conversion, involving two kinds 130 

of land-use change processes: (i) the complete destruction of grassland by transformation to another 131 

type of land use (built-up land, cropland, woodland, water bodies and unused land), and (ii) a decline 132 

in grassland coverage, which includes dense grass deteriorating into moderately dense grass and 133 

sparse grass, and moderately dense grass deteriorating into sparse grass (see Fig. S 1a). Given that 134 

GD is a dynamic process, we intended in this study to find the major drivers of newly added 135 

grassland degradation (NGD). NGD refers to the difference in spatial GD extent between two 136 

periods. About 13.0% of the total grassland area (176,410 km2 in 2015) was degraded between 1975 137 

and 2000 (Fig. S 1b); a further 10.6% was degraded in 2000-2015 (Fig. S 1c). Comparing the two 138 

periods, approximately 10.2% of the grassland corresponded to the NGD area across the whole 139 

region (Fig. S 1d). 18,093 pixels were extracted from the total NGD area, while the pixel number 140 

of conversion for other land uses is 178,990 in this study (hereafter: non-NGD).  141 

2.3 Data collection 142 

In line with previous studies, a checklist of possible drivers (D) of GD was developed from the literature 143 
(Cao et al., 2013b; Sun et al., 2017). A total of 19 drivers were grouped into four categories (see Table 144 
1). All categories were described as follows: (1) Climate factors, including the annual mean temperature 145 
(T) and annual sum of precipitation (P) in the growing season (April to Sep), were extracted from the 146 
longest available weather dataset (from 1958-2015), in combination with evaluation data and the kriging 147 
algorithm, to produce 1×1 km2 raster files. (2) Geographic factors include elevation (DEM), and slope 148 
and aspect (extracted from DEM data), which can be treated as the characteristic of each grid cell. The 149 
DEM data were extracted from the SRTM 90m resolution and, after resampling using the NEAREST 150 
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method in ArcGIS, all data were processed into 1×1 km2 raster files. (3) Distance measures (the distance 151 
of each pixel centre to urban, rural, road and mining, forest, cropland, dense grass, moderately dense 152 
grass, sparse grass and unused land pixels) are widely used factors for different land-use models (Khoury, 153 
2012; Samardžić-Petrović et al., 2016, 2017; Zhang et al., 2013). All distance measures were extracted 154 
from LUCC datasets from the years 2000 and 2015 using ArcGIS Euclidean distance, and processed into 155 
1×1 km2 grids. (4) Socio-economic factors include the gross domestic product (GDP) and population 156 
density from 2000 and 2010, and sheep density from 2000 and 2015. GDP and population density were 157 
obtained from a resources and environment data cloud platform, CAS (http://www.resdc.cn/); sheep 158 
density data were accessed from statistical data; and we converted all livestock data into grassland pixels. 159 
Unfortunately, high-resolution GDP and population density data was not available for 2015 to match the 160 
other data that was recorded for that year, so we may assume that GDP and population density introduce 161 
a bias to the result. While population density did not change much between 2010 and 2015, GDP changed 162 
from 61.4 billion Yuan in 2010 to 100.2 billion Yuanin 2015 in total over the Xilingol region (GDP data 163 
source: http://tjj.xlgl.gov.cn/ywlm/tjsj/jdsj/). (5) Finally, we identified an area in which we assumed 164 
a strong policy impact in the past, and developed a proxy for the policy effect on grassland degradation. 165 
Here, a range of ecological protection measures were implemented inside and outside the Hunshandake 166 
and Wuzhumuqin sand lands (see Fig. S 2), e.g. a livestock ban and the promotion of chicken farming 167 
(Su et al., 2015). In a bid to explore policy effects, we assumed that GD is effectively slowed down by 168 
various policies inside the sandy area (proxy set as 0), while outside the sandy area, land degradation is 169 
more likely to happen in the absence of any policy effect (proxy set as 1, see Fig. S 2). 170 

http://tjj.xlgl.gov.cn/ywlm/tjsj/jdsj/
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Table 1: Definition and derivation of drivers 171 

Co

de 

Name of 

driver 

Definition of 

driver  Unit Measures 
Time 

series 

Original 

format 

Process 

approac

h 

Data 

sources 

Climate factors 

F1 temperature 
Difference 

between average 

temperature / 

total 

precipitation in 

growth season 

(April-

September)in 

Phase 1* and 

Phase 2*  

°C 
Mean 

temperature 

2000, 

2015 
Grid 

Kriging 

via 

ArcGIS 

and 

Python 

languag

e 

National 

Meteorol

ogical 

Informati

on Center 

(https://d

ata.cma.c

n/) 

F2 precipitation mm 
cumulative 

rainfall  

2000, 

2015 
 

Geographic factors 

F3 DEM DEM m --  Grid -- STRM 

F4 slope slope degree --  Grid 
Reclassi

fication 

http://srt

m.csi.cgi

ar.org/SE

LECTIO

N/inputC

oord.asp 

F5 aspect aspect degree --  Grid 
Reclassi

fication 
 

Distance measures 

F6 discrop 

Change of 

distance to 

cropland in 2000 

and 2015 

m Distance 
2000, 

2015 

SHP  
Euclidea

n  

Extractio

n from 

land-use 

data  

F7 disforest 

Change of 

distance to 

forest in 2000 

and 2015 

m Distance 
2000, 

2015 

F8 disunused 

Change of 

distance to 

unused land 

2000 and 2015 

m Distance 
2000, 

2015 

F9 disdense 

Change of 

distance to 

dense grass 

2000 and 2015 

m Distance 
2000, 

2015 

F1

0 
dismode  

Change of 

distance to 

moderate grass 

in 2000 and 

2015 

m Distance 
2000, 

2015 

F1

1 
dissparse 

Change of 

distance to 

sparse grass 

2000 and 2015 

m Distance  

F1

2 
disurban 

Change of 

distance to 

urban in 2000 

and 2015 

m Distance 
2000, 

2015 

F1

3 
disrural 

Change of 

distance to rural 

in 2000 and 

2015 

m Distance 
2000, 

2015 

https://data.cma.cn/
https://data.cma.cn/
https://data.cma.cn/
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F1

4 
disroad 

Change of 

distance to road 

in 2000 and 

2015 

m Distance 
2000, 

2015 

F1

5 
dismine 

Change of 

distance to 

mining in 2000 

and 2015 

m Distance 
2000, 

2015 

F1

6 
diswater 

Change of 

distance to water 

in 2000 and 

2015 

m Distance 
2000, 

2015 

Social-economic factors 

F1

7 

population 

density 

Change of 

population 

density in 2000 

and 2010 

Person  Person/ km2 
2000, 

2010 
Grid Density 

Resource 

and 

Environm

ent data 

cloud 

platform, 

CAS. 

(http://w

ww.resdc.

cn/) 

F1

8 
GDP* 

Change of GDP 

in 2000 and 

2010 
Yuan Yuan/km2 

2000, 

2010 
Grid Density 

F1

9 

sheep 

density 

Change of sheep 

density in 2000 

and 2015 

Sheep 

Unit 

Sheep 

unit/km2 

2000, 

2015 
Grid Density 

Statistical 

data from 

Xilingol 

governme

nt 

website 

(http://tjj.

xlgl.gov.c

n/) 

Scenario setting 

F2

0 
policy 

-- 
-- (0,1) -- Grid -- 

Assumpti

on 

*Note: Phase 1 refers to 1975-2000; Phase 2 refers to 2000-2015. GDP: gross 172 

domestic product. 173 
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2.3.1 XGBoost and logistic regression 174 

Two algorithms were selected in this study: logistic regression (LR) and XGBoost. LR is a linear 175 

method involving two parts: the statistic LR and the classification LR. Both methods have already 176 

been used to simulate land use (Lin et al., 2011; Mustafa et al., 2018) and to define the relationship 177 

between land-use change and its drivers (Gollnow and Lakes, 2014; Mondal et al., 2014; Verburg et 178 

al., 2002; Verburg and Chen, 2000). Here, we use LR as a benchmark model to compare linear and 179 

non-linear methods in the simulation of land-use change. The optimised parameters of LG are C = 180 

0.1, penalty = l2, solver = 'lbfgs', multi_class = 'multinomial'.   181 

Boosting algorithms have been implemented in many past studies, where they often outperformed 182 

other ML algorithms (Ahmadlou et al., 2016; Filippi et al., 2014; Freeman et al., 2016; Keshtkar et 183 

al., 2017; Tayyebi and Pijanowski, 2014a). However, traditional boosting algorithms are often 184 

subject to overfitting (Georganos et al., 2018). To overcome this problem, Chen and Guestrin (2016) 185 

presented a new, regularised implementation of gradient boosting algorithms, which they called 186 

XGBoost (eXtreme Gradient Boosting). XGBoost was built as an enhanced version of the gradient 187 

boosting decision tree algorithm (GBDT), a regression and classification technique developed to 188 

predict results based on many weak prediction models – the decision tree (DT) (Abdullah et al., 189 

2019; Freeman et al., 2016). XGBoost provides strong regularisation by adopting a stepwise 190 

shrinkage process instead of the traditional weighting process provided by GBDT. This process 191 

limits overfitting, minimises training losses and reduces classification errors while developing the 192 

final model (Abdullah et al., 2019; Hao Dong et al., 2018).  193 

The XGBClassifier uses the following parameters: learning_rate (controls learning itself); 194 

max_depth (control depth of the RF); the n_estimators (controls the number of estimators used for 195 

the model); the min_child_weight (controls the complexity of a model, defines the minimum sum 196 

of weights of all observations required in a child); and lambda (L2 regularisation term on weights). 197 

The parameters were optimised using a simple grid search algorithm provided by scikit (Pedregosa 198 

et al., 2011) to estimate the optimal parameters (learning_rate = 0.1, max_depth = 9, n_estimater = 199 

500, min_child_weight = 3, lambda = 10).  200 

2.3.2 Sampling methods 201 

Data are often distributed unevenly among different classes (Vluymans, 2019). Such imbalanced 202 

class distribution generally induces a bias. Canonical ML algorithms assume that data is roughly 203 

balanced in different classes. In real situations, however, the data is usually skewed, and smaller 204 

classes often carry more important information and knowledge than larger ones (Krawczyk, 2016). 205 

It is therefore important to develop learning from imbalanced data to build real-world models 206 

(Krawczyk, 2016; Vluymans, 2019). To ensure a highly accurate GD model, we introduced four 207 

different sampling methods in this study (Fig. S 3). 208 

Balanced sampling: Random data sampling, resulting in equal sized samples. 209 

Imbalanced sampling: Random data sampling, but with the same share of the sampled class, 210 

resulting in unequal sized samples. 211 

Over-sampling: Artificial points are added to the minority class of an imbalanced sampling set, 212 

making it equal to the majority class and resulting in equal sized samples. 213 

Under-sampling: Points are removed from a majority class of an imbalanced sampling set, 214 

making it equal to the minority class and resulting in equal sized samples (He and Garcia, 2009). 215 
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In the present study, we used these four sampling methods to evaluate the model in the context of 216 

the sampling method and its performance in the training process and the simulation process (see Fig. 217 

S 3). In our case study, 20,000 pixels (about 10% of the total; including 18,190 pixels with value 0 218 

indicating no-change areas and restored grassland and 1,810 pixels with value 1 indicating newly 219 

added grassland degradation) were selected by different sampling methods (Fig. S 3) to train (66% 220 

of the sample size) and test (34% of the sample size) the model.  221 

2.3.3 SHAP values 222 

SHAP (SHapley Additive exPlanations) is a novel approach to improve our understanding of the 223 

complexity of predictive model results and to explore relationships between individual variables for 224 

the predicted case (Lundberg and Lee, 2017). SHAP is a useful method to sort the driver’s effects, 225 

and break down the prediction into individual feature impacts. Feature selection is of primary 226 

concern when using ML methods to process land-use change (Samardžić-Petrović et al., 2015, 2016, 227 

2017). SHAP values show the extent to which a given feature has changed the prediction, and allows 228 

the model builder to decompose any prediction into the sum of the effects of each feature value and 229 

explain – in our case – the predicted NGD probability for each pixel (see Figure 3). In this study, 230 

we used SHAP values to sort the driver’s attributions; capture the relationship between drivers and 231 

NGD; and map the primary driver for NGD at the pixel level.  232 

 233 

Figure 2: Decomposed SHAP values for the individual prediction of an example pixel. 234 

In our study, we define the base value as the value that would be predicted by the model if no feature 235 

knowledge were provided for the current output (mean prediction); we define the output value as 236 

the prediction for this particular observation. SHAP values are calculated in log odds. Features that 237 

increase the value of the prediction (to the left in Fig. 2) are always shown in red; those that lower 238 

the prediction value are shown in blue (to the right in Fig. 2, Dataman, 2019). In this instance (Figure 239 

2), disdense (change of distance to dense grass) is the primary driver of NGD at this pixel level 240 

(largest value). The fact that the value is positive means that the risk of NDG increases in line with 241 

an increase in distance to dense grass areas. 242 

2.3.4 Validation of the model 243 

Two validation steps are required for ML models: validation of the training process, and validation 244 

of the simulation process. For the training process, a robust model was selected using overall 245 

classification accuracy, precision, recall and the kappa index. Accuracy, precision and recall were 246 

calculated based on a confusion matrix (CM) (He and Garcia, 2009). For the simulation process, the 247 

final model was validated using the kappa index, the area under the precision-recall curve, and recall. 248 

The validation indicators are defined as follows.  249 

Overall classification accuracy (ACC) is the correct prediction of NGD and other pixels in the whole 250 

region. This indicator was used to evaluate the accuracy of the model. Precision is the proportion of 251 

correctly predicted positive examples (refers to NGD in this study) in all predicted positive examples. 252 

Recall is the proportion of correctly predicted positive examples in all observed positive examples 253 

(the observed NGD) (Sokolova and Lapalme, 2009). In general, high precision predictions have a 254 
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low recall, and vice versa, depending on the predicted goals. Here, since we focus on NGD and 255 

other land-use changes, we use both indicators to evaluate our models.  256 

Table 2: Confusion matrix for binary classification of newly added grassland degradation (NGD) and 257 
other changes, including four indicators: false positives (FP), cells that were predicted as non-change but 258 
changed in the observed map; false negatives (FN), cells that were predicted as change, but did not 259 
change in the observed map for disagreement; true positives (TP), cells that were predicted as change 260 
and changed in the observed map; and true negatives (TN), cells that were predicted as non-change and 261 
did not change in the observed map for agreement. 262 

Simulated 

values 

Observed values 
 Others NGD  

Others 

NGD 

True negatives (TN) False positives (FP) Recall=TP/ 

(TP+FN) False negatives (FN) True positives (TP) 
 Precision =TP/(TP+FP)  

 ACC=(TP+TN)/(TP+FN+FP+TN)  

The precision-recall curve (PR curve) provides more information about the model’s performance 263 

than, for instance, the Receiver Operator Characteristic curve (ROC curve), when applied to skewed 264 

data (Davis and Goadrich, 2006). The PR curve shows the trade-off of precision and recall, and 265 

provides a model-wide evaluation. The area under the PR curve (AUC-PR) is likewise effective in 266 

the classification of model comparisons. The baseline for the PR curve (y) is determined by positives 267 

(P) and negatives (N). In our study, y = 0.09 (y = 18374/200652), which means when AUC-PR = 268 

0.09, the model is a random model (Brownlee, 2018; Davis and Goadrich, 2006).                   269 

The kappa index (κ) is a popular indicator used to measure the proportion of agreement between 270 

observed and simulated data, especially to measure the degree of spatial matching. When κ > 0.8, 271 

strong agreement is yielded between the simulation and the observed map; 0.6 < κ < 0.8 describes 272 

high agreement; 0.4 < κ < 0.6 describes moderate agreement; and κ < 0.4 represents poor agreement 273 

(Landis and Koch, 1977).  274 

In this study, κ was used to evaluate the agreement and disagreement between observed NGD and 275 

simulated NGD. Kappa should be the primary validation measure, followed by AUC-PR (used to 276 

evaluate model performance) and recall (used to evaluate model sensitivity). Features and 277 

definitions of these indicators are given below.  278 

2.3.5 The structure of the ML model  279 

The ML methodology of simulating GD involves six steps (Fig. S 4): (1) Target definition and data 280 

collection and processing; the targets of this study are to build a robust ML model for simulating 281 

NGD, as well as visualising these complex relationships between various variables and the dynamics 282 

of GD. A total of 20 drivers (D) of GD were collected. All dynamic drivers were processed by GIS 283 

into raster files and exported into ASCII files as final inputs for the ML model. (2) Data organisation: 284 

the ML model simulates land-use change as a classification task (Samardžić-Petrović et al., 2015, 285 

2017). In the present study, we organise this task as a binary classification Y (value 1 and 0, stand 286 

for NGD and Non-NGD); related drivers are x (x1,x2,x3……xn), n is the driver identifier, and x 287 

denotes the change in value of each driver. The process of data standardisation is usually necessary 288 

for most ML models, but since XGBoost is a tree-based method, it does not require standardisation 289 

or normalisation. In this case, we performed standardisation only for the logistic regression model. 290 

(3) Data sampling: this is a necessary step to avoid overfitting or the loss of important information. 291 

The sampling method generally includes balanced and imbalanced sample strategies. In this study, 292 

we tested various balanced sampling strategies to identify the most suitable one. (4) Model building 293 

and selection: a ranking was used to find the best model in each specific case. In our study, we 294 
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defined a model with κ > 0.8 and AUC-PR>0.09 as robust, while 0.6<κ<0.8 and AUC-PR>0.09 295 

represents an acceptable model. (5) Model validation and feature ranking: after tuning the model, 296 

the most robust model and the driver with most useful information are selected. (6). The last step is 297 

explaining the model and the simulation. The model used in training process was published in 298 

Zenodo (Batunacun and Ralf Wieland, 2020) 299 

3. Results 300 

3.1 Model validation 301 

The XGBoost model outperformed the LG model in both training and simulation (Figure 3 and 4). 302 

The LG model seems to be an inappropriate model for understanding NGD in this case. XGBoost 303 

yielded robust results in both training and simulation, with indicator values almost entirely above 304 

90%. 305 

Figure 3 indicates that XGBoost performed very well across all balanced sampling methods (over-306 

sampling, under-sampling and balanced sampling, red rectangle in Figure 3) in the training process. 307 

Only the imbalanced sampling exhibited a slightly weaker performance in the training process. This 308 

is mainly due to the balanced sampling datasets, which provided more information for the model. 309 

In addition, the model was affected less than the imbalanced sampling method by the majority class 310 

or unchanged cells (Mileva Samardzic-Petrovic et al., 2018). 311 

 312 

Figure 3: Evaluation of model performance during the training process for newly added grassland 313 
between 1975–2015. 314 
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Figure 4 and Figure 5 show the model evaluation results in the simulation process and the spatial 315 

prediction maps. XGBoost with under-sampling (green rectangle in Figure 4) yielded the weakest 316 

performance compared to the other three sampling methods. This is mainly due to the smaller 317 

sample size, which prevents the model from extracting sufficient experience. As can be seen in 318 

Figure 5b, XGBoost used with the under-sampling method produced the error map with the highest 319 

FP values, where the model predicted non-change points as change points. The under-sampling 320 

method is unable to identify NGD points sufficiently well. XGBoost used with the over-sampling 321 

method caused balanced and imbalanced sampling to have similar and strong prediction abilities 322 

(see Figure 4), differing only slightly in their CM indicators (see Figure 5). We finally selected 323 

XGBoost combined with the over-sampling strategy for our study, mainly because of its relatively 324 

higher values in κ, AUC-PR and recall (see Figure 4). 325 

          326 

 327 

Figure 4: Evaluation of model performance during the prediction process for newly added grassland 328 
between 1975–2015. 329 
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 330 

              (a) Over-sampling                       (b) Under-sampling 331 

 332 

      (c) Balanced sampling                     (d) Imbalanced sampling 333 

Figure 5: Error map of different sampling methods using the XGBoost model. 334 

3.2 Driver selection 335 

Figure 6 is a summary plot produced from the training dataset; it includes approximately 13,200 336 

points (66% of the sample size). This plot combines feature importance (drivers are ordered along 337 

the y-axis) and driver effects (SHAP values on the x-axis), which describe the probability of NGD 338 

having occurred. Positive SHAP values refer to a higher probability of NGD. The gradient colour 339 

represents the feature value from high (red) to low (blue), as previously introduced in Figure 2. As 340 

Figure 6 shows, disdense was the primary driver for NGD in the study region. The relationship 341 

between disdense and NGD is non-linear, which can be seen from the SHAP values being both 342 

positive and negative (black rectangle in Figure 6). The interpretation of the effects of disdense can 343 

be summarised as a higher probability of NGD with increasing distance from dense grassland (see 344 

black rectangle in Figure 6 with pink colour on the right).  345 

Figure 6 shows that driver effects include both linear-dominated relationships, such as sheep, GDP 346 

and others, and non-linear-dominated relations, such as disdense, dismode and others. In addition, 347 

the figure shows that the most important drivers for NGD are the changes of distance to dense, 348 

moderately dense and sparse grassland, then followed by sheep density and the distance to unused 349 

land. The effect of policies comes almost at the bottom, indicating that policies implemented outside 350 

sandy areas seem to have little effect on GD. The geographical factors DEM and slope are also 351 

positioned mid-field. The effect of geographical drivers does not appear to be as strong as the effect 352 
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of other drivers. The change of distance to mining, located at the bottom for all drivers, does not 353 

have a strong effect on NGD compared to other drivers. 354 

 355 

Figure 6: Driver ranking by SHAP values based on the training dataset (66% of sample size) using the 356 
over-sampling method.  357 

Note: The top rank indicates the most significant effects across all predictions. Each point in the cloud to 358 
the left represents a row from the original dataset. The colour code denotes high (red) to low (blue) feature 359 
values. Positive SHAP values represent a higher likelihood of NGD, while negative values indicate lower 360 
likelihoods. The range across the SHAP value space indicates the degradation probability, expressed as 361 
the logarithm of the odds. 362 

A recursive attribute elimination method was performed to determine how attribute reduction affects 363 

modelling performance using XGBoost with the oversampling method (see Fig. S 5; for more details, 364 

refer to Samardžić et al., 2015). The results indicate that the first three drivers may already produce 365 

a satisfactory model (κ = 0.74, AUC-PR = 0.85, recall = 0.92), while adding the fourth driver can 366 

produce a robust model (κ = 0.94, AUC-PR = 0.98, recall = 0.98). This means that XGBoost used 367 

with the oversampling strategy can predict NGD with very high accuracy using a relatively small 368 

amount of data. Fig. S 6 shows the simulation result using the first four drivers, and compares the 369 

results with the observed map.  370 
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3.3 Relationship between NGD and drivers in the XGBoost model  371 

SHAP values and spread (Figure 7) indicate that no linear relationship between driver and prediction 372 

could be found for any of the individual features. Change of distance to dense, moderately dense 373 

and sparse grass pixels, and change of sheep density were the dominant drivers for NGD. Figure 7a 374 

indicates that when disdense < 0, the SHAP value is negative, and when the distance to dense grass 375 

areas is small, the likelihood of degradation is also small. The relationship seems to be more 376 

complex for distance to moderately dense grass (dismode, Figure 7b); here, no simple linear 377 

interpretation is obvious. For distance to sparse grass (dissparse, Figure 7c), the pattern again 378 

suggests a rather linear interpretation, which is that the likelihood of degradation increases with 379 

decreasing distance. For sheep density, Figure 7d indicates that when sheep density decreased, the 380 

probability of GD obviously increased. Policy was not identified as a major driver of GD (Figure 381 

6). However, policy effects obviously have a different impact inside and outside sandy zones. Figure 382 

7e shows that our initial assumption is invalid: the probability of GD increased inside the sandy 383 

areas where we assumed effective policy measures to be in place (value 0). This result is also in line 384 

with Figure 7g, which shows that the closer to unused land, the more likely degradation will occur. 385 

We can identify three groups for the remaining 14 drivers. For GDP and population density (Figure 386 

7g and Figure 7h), the likelihood of NGD increases with increasing values. Figure 7i-j indicate that 387 

warmer and drier climate conditions increase the probability of GD. Figure 7k, l, m and n indicate 388 

that the probability of GD rises with closer distances to forest, urban, rural and water areas. Figure 389 

7o shows a slight SHAP value pattern, in which the closer to cropland, the more unlikely degradation 390 

will occur. This is mainly due to transformation from cropland to grassland. Figure 7p-t do not show 391 

any interpretable spatial pattern. 392 

 393 

           (a)                           (b)                          (c) 394 

 395 

          (d)                           (e)                          (f) 396 

 397 
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             (g)                           (h)                          (i) 398 

 399 

(j)                           (k)                          (l) 400 

    401 

(m)                           (n)                          (o)      402 

 403 

(p)                           (q)                          (r)    404 

 405 

           (s)                           (t)          406 

Figure 7: The SHAP dependence plot for each driver. 407 

3.4 Mapping the primary drivers of NGD 408 

All drivers’ contributions to NGD were ranked according to their SHAP values for each pixel in this 409 

study. Figure 8 shows the primary driver for each NGD pixel. Distance to grassland pixels (dense, 410 

moderately dense and sparse grass) were the major drivers of NGD, responsible for 9,478, 3,892 411 

and 1,629 NGD pixels, respectively. Sheep density was responsible for 3,042 NGD pixels, ranking 412 

third among all drivers. This order differs to that in Figure 6 and Figure 8 because in those cases, 413 

ranking is based on the total contribution of all drivers. Fig. S 7 shows the number of NGD pixels 414 
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in which a driver was dominant or primary. The change of distance to any type of grassland was the 415 

primary driver for about 82.8% of the total NGD pixels; sheep density accounted for 16.8%. The 416 

remaining seven drivers caused less than 1% of the total NGD. We can see from the spatial pattern 417 

that the change of distance to grassland was the major driver for GD in the dense grassland region 418 

(counties of DW, XL and AB), while in the counties of SZ, SY, ZXB, ZL and TP, sheep density was 419 

often identified as the major driver.  420 

 421 

Figure 8: Spatial patterns of primary drivers for each pixel for NGD. 422 

3.5 Regions of high risk for grassland degradation 423 

A probability map of NGD was produced (Figure 9). Low probabilities of NGD were found in the 424 

central and northern counties (DW, XL, AB, SZ, ZL ZXB and XH), while high probability regions 425 

were EL, SY and XW. TP and DL in the south were categorised as low probability regions, due to 426 

their lower share of grassland area.  427 
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 428 

Figure 9: Degradation probability map for grassland in Xilingol, including a zoom into Xilinhot (XL) 429 
for more details. The probability is based on the four most important drivers. 430 

4. Discussion  431 

4.1 ML model building and evaluation 432 

In this study, we defined a general framework for creating an ML model using the XGBoost 433 

algorithm for the purpose of analysing and predicting land-use change. XGBoost obtained a κ of 434 

93% and a recall value of > 99% when used to simulate and predict GD in this study. Compared to 435 

other popular ML learning algorithms, XGBoost exhibited a strong prediction ability. In studies 436 

where ANN, SVM, RF, CART, Multivariate Adaptive Regression Spline (MARS) or LR were used 437 

in combination with Cellular Automata (CA), the recall value is usually 54%-60% (Shafizadeh-438 

Moghadam et al., 2017). Ahmadlou et al. (2019) stated that MARS and RF only yield high accuracy 439 

in training runs, but do not prove very accurate in the validating process when simulating land-use 440 

change. 441 

Concerning the four sampling strategies we used to test the imbalance issue, we found that all 442 

strategies performed satisfactorily in the training runs. In the simulation, the under-sampling 443 

strategy yielded a relatively low accuracy (κ = 0.46) model. We assume that removal of data from 444 
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the majority class causes the model to lose the important concepts pertaining to the majority class 445 

(He and Garcia, 2009). XGBoost used with the under-sampling method always produced similar 446 

results, irrespective of the size of the dataset (see Fig. S 8). We conclude from this pattern that 447 

XGBoost is also able to use sparse data to reflect real-world problems (Chen and Guestrin, 2016).  448 

4.2 SHAP values and drivers of grassland degradation  449 

The general idea of introducing SHAP values as a further tool to analyse XGBoost ranking is to 450 

provide a method to evaluate the ranking with respect to causal relationships. The original XGBoost 451 

ranking is based on the in-built feature selection functions Gain (refers to the improvement in 452 

accuracy provided by a feature), Weight (or frequency, refers to the relative number of a feature 453 

occurrence in the trees of a model) and Coverage (refers to the relative numbers of observations 454 

related to this feature). However, these functions always produce different rankings of drivers (Abu-455 

Rmileh, 2019) due to random components in the algorithms. SHAP values introduce two further 456 

properties of feature importance measures: consistency (whenever we change a model such that it 457 

relies more on a feature, the attributed importance for that feature should not decrease) and accuracy 458 

(the sum of all feature importance values should equate to the total importance of the model; 459 

Lundberg, 2018; Lundberg & Lee, 2017). Consistency is required to stabilise the ranking throughout 460 

the analysis, reducing the change of order in the ranking to a minimum when the number of 461 

identified drivers changes. The accuracy property of SHAP makes sure that each driver’s 462 

contribution to overall accuracy remains the same, even when drivers are excluded from analysis. 463 

Other methods usually compensate for the withdrawal of a driver from the analysis, which makes 464 

the determination of a single driver’s contribution difficult. 465 

The feature ranking based on SHAP values indicated that the change of distance to any type of 466 

grassland (dense, moderately dense and sparse grass) is the most important driver for any newly 467 

added grassland degradation. In this context, dense and moderately dense grassland areas are more 468 

easily degraded than other land-use types, followed by sparse grass. These results are in line with 469 

previous studies (Li et al., 2012; Xie and Sha, 2012). Good-quality grassland is more likely to be 470 

degraded through increasing human disturbance. An explanation for this can be derived from local 471 

people’s living strategies. People who live in good-quality grassland areas are more likely to use 472 

grassland for livestock production with higher animal densities, risking overgrazing. Furthermore, 473 

Li et al. (2012) indicated that good-quality grassland is more likely to be converted to other land-474 

use types, such as cropland. In contrast, people who have lived in sparse grassland regions for 475 

centuries have long adapted to low productivity, reducing their livestock numbers accordingly. They 476 

have also developed strategies to cope with variability in weather conditions, e.g. by preparing and 477 

storing more fodder and forage.  478 

Sheep density was identified as the fourth major driver. However, the SHAP values indicate that 479 

when sheep density decreases, the probability of grassland degradation increases. Overgrazing has 480 

been the dominant driver for grassland degradation on the Mongolian plateau before, which has 481 

changed the grassland ecosystem significantly towards lower grass coverage (Nkonya et al., 2016; 482 

Wang et al., 2017). However, there is recent evidence that this causal relationship has changed. It 483 

now appears that farmers increasingly select their livestock numbers according to the carrying 484 

capacity of the grazing land (Cao et al., 2013b; Tiscornia et al., 2019b). By passing the “Fencing 485 

Grassland and Moving Users” policy (FGMU), the Chinese government issued a law that regulates 486 

livestock numbers based on a previously calculated carrying capacity. This development has 487 

upturned the causal relationship between livestock numbers and NGD, reflected by the SHAP value 488 

pattern in Figure 6. 489 

Besides the four main drivers, seven other drivers also occasionally appear as the main driver for 490 

some pixels (Figure 8). This highlights the fact that, at the local level, other drivers apart from the 491 

four drivers identified as being major can also play a significant role. For example, in the county of 492 
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EL, the remaining seven drivers were mainly responsible for NGD. EL has less NGD after 2000 493 

compared with other counties in Xilingol (Fig. S 1), and most of the EL area is covered by sparse 494 

grass. EL is the most frequented border control point to Mongolia, and is subject to intensive tourism. 495 

In the sparse grassland and agro-pastoral regions (SZ, SY, ZXB, ZL and TP), sheep density was 496 

identified as the important driver. This indicates that, even though livestock numbers have decreased, 497 

grassland is still experiencing serious degradation in this region. Here we see additional potential 498 

for installing further grassland conservation measures, such as adjusting the livestock number to the 499 

grassland carrying capacity.  500 

4.3 The current risk of grassland degradation in Xilingol 501 

Three regions of different risk classes were identified in the probability map of NGD (Fig. 9). The 502 

low-risk region (DW, XL, AB, SZ, ZL ZXB and XH) is dominated by good-quality grassland (dense 503 

and moderately dense grass). In recent decades, this region has suffered from increasing human 504 

disturbance, e.g. overgrazing and mining development. However, after 2000, grassland in this region 505 

has recovered, mainly as the result of ecological protection projects (Sun et al., 2017). Even though 506 

this region is predicted as being less exposed to the risk of land degradation in the future, attention 507 

is still required for the restoration process. The high-risk region includes the counties of EL, SY and 508 

XW. EL and SY are covered by a large share of low-quality grassland, which – due to its own 509 

fragility – is likely to be affected by extreme climate and human disturbance, more than, e.g. higher-510 

quality grasslands. The recent change in grassland property rights and the establishment of 511 

ecological protection projects have also limited the mobility of nomadic herders throughout Xilingol. 512 

As a consequence, herders cannot easily change grazing spots if extreme weather occurs; they are 513 

then bound to have their cattle graze at the same spots, increasing the pressure on low-quality 514 

grasslands in particular (Qian, 2011). For a long time, fragile grassland remained in an equilibrium 515 

state with the extreme weather (frequent droughts, “dudz”) to which it was exposed, and with the 516 

nomadic livestock husbandry that the region’s inhabitants practised. However, when the property 517 

rights of grassland and livestock were changed from collective to private, the nomadic lifestyle was 518 

largely abandoned.  519 

4.4 The limitations of XGBoost for scenario exploration 520 

XGBoost has already scored top in a range of algorithm competitions in the data scientists 521 

community (Kaggle, 2019) due to its high accuracy and speed (Chen and Guestrin, 2016). ML 522 

models extract patterns from data, without considering any existing expert knowledge, which is why 523 

they are increasingly used to identify non-linear relationships (Ahmadlou et al., 2016; Samardžić-524 

Petrović et al., 2015; Tayyebi and Pijanowski, 2014b). However, ML models require specific data 525 

structures for each problem to which they are applied. In this study, we simulated grassland 526 

degradation in two different phases (1975-2000 and 2000-2015). All time series of driver data were 527 

organised as model inputs, while grassland degradation dynamics were organised as prediction 528 

targets. Although the model achieved high accuracy in predicting NGD in Phase 2, it was not 529 

possible to achieve acceptable results in simulating both Phase 1 and Phase 2 separately. Second, 530 

compared with conventional models, the XGBoost model cannot be easily transferred to other 531 

regions for the same research question. Models like CLUE-S and GeoSOS-FLUS have been widely 532 

used in different regions across the world (Fuchs et al., 2017; Liang et al., 2018a; Liu et al., 2017; 533 

Verburg et al., 2002). When ML models are used in other regions, driver data must be collected and 534 

structures adapted. Thirdly, ML models always need to learn sufficiently before they are able to 535 

make predictions. This requires a sufficient amount of data covering historical periods or different 536 

land-use change patterns. 537 

XGBoost alone is unable to project any scenarios of land-use change based on historical data. 538 

However, the methodology presented here can be applied to quantify alternative scenarios produced 539 
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using other approaches, such as conventional, rule-based models (Verburg et al., 2002) or cellular 540 

automata (Islam et al., 2018; Shafizadeh-Moghadam et al., 2017).  541 

 542 

5 Conclusion 543 

Machine learning and data-driven approaches are becoming more and more important in many 544 

research areas. The design and development of a practical land-use model requires both accuracy 545 

and predictability to predict future land-use change, a well-fitted model that reflects and monitors 546 

the real world (Ahmadlou et al., 2019). The method framework presented here for building an ML 547 

model and explaining the relationship between drivers and grassland degradation identified 548 

XGBoost as a robust data-driven model for this purpose. XGBoost showed higher accuracy in 549 

training and simulation compared to existing ML models. Combined with over-sampling, it slightly 550 

outperformed in the simulation process. The simulated map has a high agreement with the observed 551 

values (kappa=93%).  552 

We identified six basic steps that should be included in ML model building, and they are also similar 553 

for other research applications (Kiyohara et al., 2018, 2018; Kontokosta and Tull, 2017; 554 

Subramaniyan et al., 2018). However, different validation measures can be introduced in both the 555 

training process and the simulation process. In this study, we tested different evaluation measures 556 

to evaluate the ML model, e.g. a typical confusion matrix to evaluate the training process, AUC-PR 557 

to evaluate the goodness of the ML model, and the kappa index to measure the degree of matching 558 

between observed and simulated values. These validation indicators consider both the research 559 

object and data characteristics. For example, when the data size is unbalanced, AUC-PR is a better 560 

choice than AUC-ROC (Brownlee, 2018; Davis and Goadrich, 2006; Saito and Rehmsmeier, 2015).  561 

SHAP was introduced in this context to provide a causal explanation of the patterns identified by 562 

the ML model. In our case, SHAP was used to explain how drivers contribute to grassland 563 

degradation processes at the pixel and regional level, despite their non-linear relationship. 564 

According to the analysis, the distance to dense, moderately dense, and sparse grass, and sheep 565 

density, were the most important drivers that caused new grassland degradation in this region. In 566 

addition, individual SHAP values of sheep density indicated that the causal relationship between 567 

grassland degradation and livestock pressure has changed over time: the increase in sheep density 568 

was not the major driver for NGD in Phase 2 of the land degradation trajectory. Instead, the decrease 569 

in the grazing capacity of grassland caused a decrease in livestock numbers. The primary driver map 570 

of NGD provided a more detailed picture of NGD drivers for each pixel, as an important support 571 

for grassland management in the Xilingol region. The individual SHAP values of each driver may 572 

be an important prerequisite for rule-based scenario-building in the future.  573 
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The used XGBoost algorithm including the SHAP library runs well on a modern (Intel or AMD) PC 582 

(4 cores or more, 16 GB RAM). The training and the simulation were made on Linux as operating 583 

system but should work also under Windows. 584 
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