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Response to gmd-2020-59-RC2 

This manuscript tests whether XGBoost can provide alternative insights that 

conventional land-use models are unable to generate. The overall methodology is 

interesting. I have a number of major comments before I can suggest the paper for 

publication. 

We appreciate the thoroughness with which you went through our manuscript. We 

consider all your comments as very useful, even though we may have disagreed here 

and there. We believe that with the help of your work, this manuscript has further 

improved. Thank you! 

 

1, Line 54: “Some such models are spatial (e.g. CLUE-S, GeoSOS-FLUS, LTM, Fu et 

al., 2018; Liang et 55 al., 2018; Pijanowski et al., 2002, 2005; Verburg & Veldkamp, 

2004; Zhang et al., 2013); others are not (e.g. Markov models; Iacono et al., 2015; Yuan 

et al., 2015).” Authors should be aware that all land use change models are spatial 

models. Markov models are used to estimate the quantity of change from one land use 

state to another but are not land use change simulators.  

Response: Thank you for your interesting discussion. In fact, we were to say that some 

models are spatially explicit, and some are not. We have corrected this in line 55-56. 

Markov models are not spatially explicit and can deal with numbers without any spatial 

relation. However, we agree with you that of course all land-use models refer to a spatial 

concept. 

 

2, Line 57: “Hybrid models, which combine different approaches to make the best use 

of the advantages of each model, are another important variety. This type of model is 

used to characterize the multiple aspects of LUCC patterns and processes (Li and Yeh, 

2002; Sun and Müller, 2013).” Authors did not discuss important other land use 

modeling approaches such as Cellular Automata (CA), Agent-Based (AB) and a hybrid 

CA-AB (e.g., Mustafa et al., 2018, 2017; Vermeiren et al., 2016).  

Response: We have added a discussion about these models as you suggested in line 56-

66. 

 



3, Line 143: “The DEM data were extracted from the SRTM 90m resolution and, after 

resampling, all data were processed into 1×1 km2 raster files.” Why do you resample 

the data to such low resolution? and what is the resample method do you employ?  

Response: A total of twenty drivers was used in this paper. Two of them, population 

density and GDP density, were at 1×1 km2, two other, temperature and precipitation, 

were at even coarser resolution (station-based). 1×1 km2 seemed a good compromise 

between the finest and the coarsest resolution. In addition, the area of study region is 

20.4×104 km2, for which a finer resolution would not have seemed appropriate. We 

resampled by using the NEAREST method in ArcGIS. We have added this in the 

manuscript at line 150. 

 

4, Line 146: “All distance measures were extracted from LUCC datasets from the years 

2000 and 2015 using ArcGIS Euclidean distance”. Euclidean distance is a basic GIS 

process that can be performed by many tools. No need to mention specific software for 

such a basic GIS analysis. -Table 1 presents data with inconsistent dates (2000, 2015, 

or 2000, 2010). Please justify as this will bias the results.  

Response: With respect to reproducibility, we remain with giving the tool for computing 

the Euclidian distance. High-resolution population and GDP density were only 

available for 2000 and 2010. We have added a discussion on the bias that could be 

caused by this data. Please check line 160-164.  

 

5, Line 207: “In our case study, 18,190 pixels (about 10% of the total) were selected by 

different sampling methods (Fig. S 3) to train (66% of the sample size) and test (34% 

of the sample size) the model.” Please provide more details about your sample. Is it a 

binary (0 no changes, 1 changes) excluding grassland with no change between 1975 

and 2015?  

Response: As you suggested, we have added a more detailed description of the sample 

in line 216-221. 

 

6, Figures 3 and 4: this evaluation of model performance was done for which period 

1975-2000 or 2000-2015? AND do you consider all cells in the study are or the 

observed changes between two dates? Also, there is a sharp difference in performance 

between the Logit model and XGB, why? According to many studies that compared 

Logit with machine learning (ML) methods, ML outperformed logit but not such huge 

differences as presented in this study.  



Response: Thank you for your detailed question.  

1) The model performance was done for the newly added grassland in both periods 

2) We are not surprised by this large difference. The tree-based models are always 

expected to outperform linear models. We have used 33% of the data for validation, 

which were not included in the training. So, over-training should not be an issue, so we 

have to assume that the difference between the linear and non-linear approach is 

responsible for this difference in performance. 

 

7, Figure 6: can you present the variables’ importance (Odds ratio) of the logit model 

as well? This will help readers to understand the differences between the two methods.  

Response: As you mentioned, SHAP values as a statistical method could be combined 

with many other ML models to present the variables’ importance. However, the Logistic 

regression model is not a robust model in simulating grassland degradation in this study. 

The kappa index is 0.72. To present variables’ importance using such a weak model 

does not make any sense to us. The Logistic regression was used as benchmark in this 

study and has proven that a non-linear machine learning model could achieve a better 

predictive quality than linear methods. This is the aim of this study. We have put it down 

here for you, but we think that it is not providing any additional information for the 

reader. For this reason, we refrain from adding it to the manuscript. 

 

Figure 1: Decomposed SHAP values for the individual prediction of an example pixel 

(Logistic regression model). 



 

Figure 2: Driver ranking by SHAP values based on the training dataset (66% of sample 

size) using the over-sampling method (Logistic regression model).  

 

     



 

Figure 3: The SHAP dependence plot for each driver (Logistic regression model). 

8, Figure 9: I am confused about this probability map. I see that almost all pixels have 

a probability of either 100% (1) or 0% (0). So, is it really a gradient probability map?  

 

It is, but in fact, the number of pixels that have values between 0 and 100 is small. On 

top, we have 86% of the pixels defined as grassland, which is why the map looks almost 

complete, but it is not. We have adjusted the map and included a zoom in to one region 

where more gradient values are located, please check in line 428-430 

 

Another fundamental question, if we need to simulate future scenarios that assume a 

change of 100 pixels out of 1000 pixels (as an example) then this map is not useful as 

many pixels have a probability value of 100%. Should the model make a random 

selection from pixels with a 100% probability?? 



 

You are right, for prediction purposes this map is not useful. We have already discussed 

the difficulties that occur if you used such approach to simulate future or other 

hypothetical scenarios and concluded that the ML approach must be combined with 

other modelling approaches in order to be able to produce scenarios. In this case, we 

just demonstrate with this map the vulnerability of the region to further grassland 

degradation. The probability for grassland degradation is the closest we can get to a 

spatial explicit prediction using XGBoost and SHAP. 

 

9, English needs improvements. 

This manuscript has been reviewed by a professional British language editor for 

scientific publications.  
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Response to gmd-2020-59-RC3 1 

1, Thank you for your interesting submission. This paper presents an interesting suite 2 

of tools for investigating an important topic of research. I have only some minor 3 

comments to make before publication: 4 

Response: We appreciate your suggestions for our manuscript and we consider all your 5 

comments as very useful. We have addressed each of your comments below.  6 

 7 

2, As with any ML interpretation, one wonders how more generally useful this is to 8 

other regions. Have you considered whether testing against historical datasets is 9 

worthwhile?  10 

In other words, have you tried to apply this method to re-analyses previously studied 11 

grassland degradation? If not, are there similar areas of focus this might work on? 12 

Response: Thank you for your useful question.  13 

We have not yet been able to test this method in another region or to historical datasets.  14 

But the method in this study has certainly the potential for transferability for two 15 

reasons: 16 

First of all, we have used this method on another topic and dataset in the same region, 17 

namely for studying land degradation. Please see Land-use change and land degradation 18 

on the Mongolian Plateau from 1975 to 2015 — a case study from Xilingol, China. 19 

Land Degradation & Development 29: 1595–1606. DOI: 10.1002/ldr.2948. XGBoost 20 

and SHAP presented an excellent performance as well.  21 

Secondly, the datasets in this study (land use and driver data) are public and available 22 

and could be replaced by other datasets. For more information please see the data 23 

description in the manuscript, line 171-173.  24 

Based on this, we believe XGBoost and SHAP provide large potential to be applied to 25 

other datasets, regions and topics as well. 26 

Actually, the datasets in this manuscript are historical data and we predict the dynamic 27 

grassland degradation (newly added grassland degradation, NGD) between 2000-2015 28 

in Xilingol based on historical data from 1975 to 2015. Then we use the historical data 29 

from 2000-2015 to test the predicted NGD between 2000-2015. The results indicated 30 

that it is worthwhile testing against the historical data.  31 

More detailed information about the data in this manuscript please check line 143-170. 32 

In addition, for a ML model,  33 

 34 
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3, Please can you comment on the computer hardware required for training? 35 

Response: Done.  36 

I comment the computer hardware in “Code and data availability” section, please check 37 

line 582-594.  38 

The used XGBoost algorithm including the SHAP library runs well on a modern (Intel 39 

or AMD) PC (4 cores or more, 16 GB RAM). The training and the simulation were 40 

made on Linux as operating system but should work also under Windows. 41 

 42 

4, Please include a Zenodo, or other archive, snapshot of the data used in this study. 43 

Thanks! 44 

Response: Thank you for your careful comments, I have published the python code at 45 

GitHub and Zenodo. The data also has been described clearly in GitHub README.md. 46 

The results in this paper could be reproduced by using data in GitHub. 47 

Please check the following link of the python script: 48 

Link: https://zenodo.org/record/3937226#.Xw2M6egzZPY 49 

DOI:  10.5281/zenodo.3937226 50 

I have given the specification in the manuscript, please check the attached file. 51 

Please check line 284-285, 560-563 52 

 53 

 54 
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Abstract 62 

Machine learning (ML) and data-driven approaches are increasingly used in many research areas. 63 

XGBoost is a tree boosting method that has evolved into a state-of-the-art approach for many ML 64 

challenges. However, it has rarely been used in simulations of land use change so far. Xilingol, a 65 

typical region for research on serious grassland degradation and its drivers, was selected as a case 66 

study to test whether XGBoost can provide alternative insights that conventional land-use models 67 

are unable to generate. A set of twenty drivers was analysed using XGBoost, involving four 68 

alternative sampling strategies, and SHAP to interpret the results of the purely data-driven approach. 69 

The results indicated that, with three of the sampling strategies (over-balanced, balanced and 70 

imbalanced), XGBoost achieved similar and robust simulation results. SHAP values were useful for 71 

analysing the complex relationship between the different drivers of grassland degradation. Four 72 

drivers accounted for 99% of the grassland degradation dynamics in Xilingol. These four drivers 73 

were spatially allocated, and a risk map of further degradation was produced. The limitations of 74 

using XGBoost to predict future land-use change are discussed. 75 

Key words: grassland degradation, machine learning, driver-driven method, XGBoost, SHAP 76 

values 77 

1. Introduction 78 

Land-use and land-cover change (LUCC) has received increasing attention in recent years (Aburas 79 

et al., 2019; Diouf & Lambin, 2001; Lambin et al., 2003; Verburg et al., 2002). Land-use change 80 

includes various land-use processes, such as urbanisation, land degradation, water body shrinkage, 81 

and surface mining, and has significant effects on ecosystem services and functions (Sohl & 82 

Benjamin, 2012). Grassland is the major land-use type on the Mongolian Plateau; its degradation 83 

was first witnessed in the 1960s. About 15% of the total grassland area was characterised as being 84 

degraded in the 1970s, which rose to 50% in the mid-1980s (Kwon et al., 2016). In general, 85 

grassland degradation (GD) refers to any biotic disturbance in which grass struggles to grow or can 86 

no longer exist due to physical stress (e.g. overgrazing, trampling) or changes in growing conditions 87 

(e.g. climate; Akiyama & Kawamura, 2007). In this study, grassland degradation is defined as 88 

grassland that has been destroyed and subsequently classified as some other land use, or that has 89 

significantly decreased in coverage.  90 

Grassland is a land use that provides extensive ecosystem services (Bengtsson et al., 2019). When 91 

degraded, the consequences are seen in an immediate decline in these services, such as a decrease 92 

in carbon storage due to a reduction in vegetation productivity (Li et al., 2017). About 90% of carbon 93 

in grassland ecosystems is stored in the soil (Nkonya et al., 2016). Furthermore, GD results in a 94 

reduction in plant diversity and above-ground biomass available for grazing (Wang et al., 2014). 95 

Likewise, GD leads to soil erosion and frequent dusts storms in Inner Mongolia (Hoffmann et al., 96 

2008; Reiche, 2014). Drivers of GD are manifold, and have been analysed in a range of studies (Li 97 

et al., 2012; Liu et al., 2019; Sun et al., 2017; Xie and Sha, 2012)(Li et al., 2012; Liu et al., 2019; 98 

Sun et al., 2017; Xie and Sha, 2012). However, few studies use sophisticated driver analysis to 99 

predict spatial patterns of GD (Jacquin et al., 2016; Wang et al., 2018). A number of studies have 100 

addressed the complex relationship between GD and its drivers (Cao et al., 2013a; Feng et al., 2011; 101 

Fu et al., 2018; Tiscornia et al., 2019a)(Cao et al., 2013a; Feng et al., 2011; Fu et al., 2018; Tiscornia 102 

et al., 2019a). However, these studies focus mainly on visualising or describing non-linear 103 

relationships between GD and its drivers.   104 

The aim of developing various land-use models was to explore the causes and outcomes of land-use 105 

dynamics; these models were implemented in combination with scenario analysis to support land 106 

https://en.wikipedia.org/wiki/Grass
https://en.wikipedia.org/wiki/Overgrazing
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management and decision-making (National Research Council, 2014; Ren et al., 2019). Most such 107 

models are statistical models, such as logistic regression models or models based on principle 108 

component analysis (Li et al., 2013; Lin et al., 2014) or Bayesian belief networks (Krüger and Lakes, 109 

2015). Some such models are spatialspatially explicit (e.g. CLUE-S, GeoSOS-FLUS, LTM, Fu et 110 

al., 2018; Liang et al., 2018; Pijanowski et al., 2002, 2005; Verburg & Veldkamp, 2004; Zhang et 111 

al., 2013); others are not (e.g. Markov models; Iacono et al., 2015; Yuan et al., 2015). Hybrid models, 112 

which combine different approaches to make the best use of the advantages of each model, are 113 

another important variety. This type of model is used to characterise the multiple aspects of LUCC 114 

patterns and processes (Li and Yeh, 2002; Sun and Müller, 2013). Agent-based models (ABM) 115 

simulate  land use change decisions based on the behaviour of individual decision-makers. They 116 

often consider economic and political information to calculate land-use change. Cellular Automata 117 

(CA) models are gridded models in which time, space, and state are all discrete. CA models are 118 

spatially explicit and land use change decisions are made based on the state of the neighbouring 119 

cells (Yang et al., 2014). CA models are often used for the spatial allocation of land use and land 120 

cover at a high spatial resolution (Cao et al., 2019) and may be used in combination with other 121 

models, such as ABM (e.g.,Charif et al., 2017; Mustafa et al., 2017; Troost et al., 2015; Vermeiren 122 

et al., 2016).  123 

In most cases of land-use change, it was either assumed that the relationship between the drivers 124 

and the resulting land-use change is constant over time (Fu et al., 2018; Samie et al., 2017; Zhan J 125 

Y et al., 2007), or the relationships were identified as being linear or non-linear, but were not 126 

interpreted (Tayyebi and Pijanowski, 2014a). We hypothesise that the relationships between GD and 127 

its drivers are mainly non-linear. We therefore see a need for methods that are capable of analysing 128 

and interpreting non-linear relationships between GD and dynamic drivers.  129 

With the development of computer science, machine learning (ML) models have been increasingly 130 

used in land-use change modelling (Islam et al., 2018; Krüger and Lakes, 2015; Lakes et al., 2009; 131 

Tayyebi and Pijanowski, 2014a). ML is superior to the human brain when it comes to pattern 132 

recognition in large datasets, e.g. images and sensor fields. Once the task is defined and the data for 133 

training is provided, ML operates without any further human assistance. Various ML approaches 134 

have been used in the analysis of land-use change processes, the most prominent of which being 135 

Support Vector Machines (SVM, Huang et al., 2009, 2010), Artificial Neural Networks (ANN, 136 

Ahmadlou et al., 2016; Yang et al., 2016), Classification And Regression Trees (Tayyebi and 137 

Pijanowski, 2014b) and Random Forest (RF, Freeman et al., 2016). While the different ML 138 

approaches generally perform well in identifying patterns, they remain a black box and make no 139 

contribution to our understanding of how the underlying drivers act on the LUCC process. 140 

Compared to linear methods such as logistic regression, ML models often achieve higher accuracy 141 

and capture non-linear land-use change processes. Likewise, ML models relax some of the rigorous 142 

assumptions inherent in conventional models, but at the expense of an unknown contribution of 143 

parameters to the outcomes (Lakes et al., 2009). However, the key challenge is to crack the black 144 

box and reveal how each driver affects the land-use change pattern or processes in the ML models. 145 

The eXtreme Gradient Boosting (XGBoost) method has recently been developed as a supervised 146 

machine learning approach (Chen and Guestrin, 2016). XGBoost algorithms have achieved superior 147 

results in many ML challenges; they are characterised by being ten times faster than popular existing 148 

solutions, and the ability to handle sparse datasets and to process hundreds of millions of examples. 149 

XGBoost has already been used in land-use change detection, combined with remote sensing data 150 

(Georganos et al., 2018), but has not yet been used in the simulation and prediction of land-use 151 

change. SHapley Additive exPlanations (SHAP; Lundberg & Lee, 2016) is a unified approach to 152 

explain the output of any ML model and to visualise and describe the complex causal relationship 153 

between driving forces and the prediction target. We propose using SHAP to analyse the driver 154 

relationships hidden in the black box model of XGBoost when employed for land-use change 155 

modelling.  156 
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Having earlier used a clustering approach to identify drivers of GD in a case study in Inner Mongolia 157 

(Xilingol League; Batunacun et al., 2019), we now use XGBoost and SHAP to simulate GD 158 

dynamics across the same area. We are primarily interested in learning whether ML models can 159 

achieve a better predictive quality than linear methods, in addition to improving our understanding 160 

of how grassland degrades in Xilingol. In the intention to identify areas with a high risk of further 161 

degradation and to determine the drivers responsible for progressive degradation, we used XGBoost 162 

to generate a data-driven model to explore the GD patterns. We then used SHAP to open the non-163 

linear relationships of the black box model stepwise, and transformed these relationships into 164 

interpretable rules. The resulting model enabled us to map the primary GD drivers and GD hot spots 165 

in Xilingol. 166 

2. Materials and Methods 167 

2.1 Study area 168 

The Xilingol League is located about 600 km north of Beijing (He et al., 2004), in the centre of 169 

Inner Mongolia. This administrative unit, covering an area of 206,000 km2, spans from 41.4°N to 170 

46.6°N and from 111.1°E to 119.7°E (Figure 1). The area is dominated by the continental temperate 171 

semiarid climate. The frequent droughts (in summer) and “dzud” (an extremely harsh and snow-172 

rich winter) are the major natural disasters that occasionally lead to catastrophic livestock losses in 173 

this region (Allington et al., 2018; Tong et al., 2017; Xu GC et al., 2014). Xilingol possessed about 174 

18,104 km2 available pasture resources and 1240.4∙104 sheep units at the end of 2015 (Xie and Sha, 175 

2012). Around 1.044 million people lived in Xilingol in 2015, with ethnic Mongolian minorities 176 

accounting for around 31% and the rural population for 37% (Batunacun et al., 2019; Shao et al., 177 

2017)(Batunacun et al., 2019; Shao et al., 2017). Xilingol is a vast grassland, known for its high-178 

quality meat products, nomadic culture, rich mineral resources and ethnic minorities. The ongoing 179 

degradation of grassland is receiving increasing attention. A set of economic stimuli and ecological 180 

protection policies launched in Xilingol were viewed as the root cause of GD over the past four 181 

decades. Although large-scale ecological restoration policies were implemented after 2000 in a bid 182 

to reduce GD, the problem still persists. 183 
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 184 

Figure 1: The location of the Xilingol League in Inner Mongolia and its land uses. 185 

2.2 Grassland degradation  186 

This study defines grassland degradation (GD) based on land-use conversion, involving two kinds 187 

of land-use change processes: (i) the complete destruction of grassland by transformation to another 188 

type of land use (built-up land, cropland, woodland, water bodies and unused land), and (ii) a decline 189 

in grassland coverage, which includes dense grass deteriorating into moderately dense grass and 190 

sparse grass, and moderately dense grass deteriorating into sparse grass (see Fig. S 1a). Given that 191 

GD is a dynamic process, we intended in this study to find the major drivers of newly added 192 

grassland degradation (NGD). NGD refers to the difference in spatial GD extent between two 193 

periods. About 13.0% of the total grassland area (176,410 km2 in 2015) was degraded between 1975 194 

and 2000 (Fig. S 1b); a further 10.6% was degraded in 2000-2015 (Fig. S 1c). Comparing the two 195 

periods, approximately 10.2% of the grassland corresponded to the NGD area across the whole 196 

region (Fig. S 1d). 18,093 pixels were extracted from the total NGD area, while the pixel number 197 

of conversion for other land uses is 178,990 in this study (hereafter: non-NGD).  198 

2.3 Data collection 199 

In line with previous studies, a checklist of possible drivers (D) of GD was developed from the literature 200 
(Cao et al., 2013b; Sun et al., 2017). A total of 19 drivers were grouped into four categories (see Table 201 
1). All categories were described as follows: (1) Climate factors, including the annual mean temperature 202 
(T) and annual sum of precipitation (P) in the growing season (April to Sep), were extracted from the 203 
longest available weather dataset (from 1958-2015), in combination with evaluation data and the kriging 204 
algorithm, to produce 1×1 km2 raster files. (2) Geographic factors include elevation (DEM), and slope 205 
and aspect (extracted from DEM data), which can be treated as the characteristic of each grid cell. The 206 
DEM data were extracted from the SRTM 90m resolution and, after resampling using the NEAREST 207 
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method in ArcGIS, all data were processed into 1×1 km2 raster files. (3) Distance measures (the distance 208 
of each pixel centre to urban, rural, road and mining, forest, cropland, dense grass, moderately dense 209 
grass, sparse grass and unused land pixels) are widely used factors for different land-use models (Khoury, 210 
2012; Samardžić-Petrović et al., 2016, 2017; Zhang et al., 2013). All distance measures were extracted 211 
from LUCC datasets from the years 2000 and 2015 using ArcGIS Euclidean distance, and processed into 212 
1×1 km2 grids. (4) Socio-economic factors include the gross domestic product (GDP), sheep density ) 213 
and population density from 2000 and 2010, and sheep density from 2000 and 2015. GDP and population 214 
density were obtained from a resources and environment data cloud platform, CAS 215 
(http://www.resdc.cn/); sheep density data were accessed from statistical data; and we converted all 216 
livestock data into grassland pixels. Unfortunately, high-resolution GDP and population density data was 217 
not available for 2015 to match the other data that was recorded for that year, so we may assume that 218 
GDP and population density introduce a bias to the result. While population density did not change much 219 
between 2010 and 2015, GDP changed from 61.4 billion Yuan in 2010 to 100.2 billion Yuanin 2015 in 220 
total over the Xilingol region (GDP data source: http://tjj.xlgl.gov.cn/ywlm/tjsj/jdsj/). (5) Finally, we 221 
identified an area in which we assumed a strong policy impact in the past, and developed a proxy for the 222 
policy effect on grassland degradation. Here, a range of ecological protection measures were 223 
implemented inside and outside the Hunshandake and Wuzhumuqin sand lands (see Fig. S 2), e.g. a 224 
livestock ban and the promotion of chicken farming (Su et al., 2015). In a bid to explore policy effects, 225 
we assumed that GD is effectively slowed down by various policies inside the sandy area (proxy set as 226 
0), while outside the sandy area, land degradation is more likely to happen in the absence of any policy 227 
effect (proxy set as 1, see Fig. S 2). 228 

http://tjj.xlgl.gov.cn/ywlm/tjsj/jdsj/
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Table 1: Definition and derivation of drivers 229 

Co

de 

Name of 

driver 

Definition of 

driver  Unit Measures 
Time 

series 

Original 

format 

Process 

approac

h 

Data 

sources 

Climate factors 

F1 temperature 

Difference 

between average 

temperature / 

total 

precipitation in 

growth season 

(April-

September)in 

Phase 1* and 

Phase 2*  

°C 
Mean 

temperature 

2000, 

2015-

2030 

Grid 
Kriging 

via 

ArcGIS 

and 

Python 

languag

e 

National 

Meteorol

ogical 

Informati

on Center 

(https://d

ata.cma.c

n/) 

F2 precipitation mm 
cumulative  

rainfall  

2000, 

2015-

2030 

 

Geographic factors 

F3 DEM DEM m --  Grid -- STRM 

F4 slope slope degree --  Grid 
Reclassi

fication 

http://srt

m.csi.cgi

ar.org/SE

LECTIO

N/inputC

oord.asp 

F5 aspect aspect degree --  Grid 
Reclassi

fication 
 

Distance measures 

F6 discrop 

Change of 

distance to 

cropland in 2000 

and 2015 

m Distance 
2000, 

2015 

SHP  
Euclidea

n  

Extractio

n from 

land-use 

data  

F7 disforest 

Change of 

distance to 

forest in 2000 

and 2015 

m Distance 
2000, 

2015 

F8 disunused 

Change of 

distance to 

unused land 

2000 and 2015 

m Distance 
2000, 

2015 

F9 disdense 

Change of 

distance to 

dense grass 

2000 and 2015 

m Distance 
2000, 

2015 

F1

0 
dismode  

Change of 

distance to 

moderate grass 

in 2000 and 

2015 

m Distance 
2000, 

2015 

F1

1 
dissparse 

Change of 

distance to 

sparse grass 

2000 and 2015 

m Distance  

F1

2 
disurban 

Change of 

distance to 

urban in 2000 

and 2015 

m Distance 
2000, 

2015 

F1

3 
disrural 

Change of 

distance to rural 

in 2000 and 

2015 

m Distance 
2000, 

2015 

https://data.cma.cn/
https://data.cma.cn/
https://data.cma.cn/
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F1

4 
disroad 

Change of 

distance to road 

in 2000 and 

2015 

m Distance 
2000, 

2015 

F1

5 
dismine 

Change of 

distance to 

mining in 2000 

and 2015 

m Distance 
2000, 

2015 

F1

6 
diswater 

Change of 

distance to water 

in 2000 and 

2015 

m Distance 
2000, 

2015 

Social-economic factors 

F1

7 

population 

density 

Change of 

population 

density in 2000 

and 2010 

Person  Person/ km2 
2000, 

2010 
Grid Density 

Resource 

and 

Environm

ent data 

cloud 

platform, 

CAS. 

(http://w

ww.resdc.

cn/) 

F1

8 
GDP* 

Change of GDP 

in 2000 and 

2010 
Yuan Yuan/km2 

2000, 

2010 
Grid Density 

F1

9 

sheep 

density 

Change of sheep 

density in 2000 

and 2015 

Sheep 

Unit 

Sheep 

unit/km2 

2000, 

2015 
Grid Density 

Statistical 

data from 

Xilingol 

governme

nt 

website 

(http://tjj.

xlgl.gov.c

n/) 

Scenario setting 

F2

0 
policy 

-- 
-- (0,1) -- Grid -- 

Assumpti

on 

*Note: Phase 1 refers to 1975-2000; Phase 2 refers to 2000-2015. GDP: gross 230 

domestic product. 231 
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2.3.1 XGBoost and logistic regression 232 

Two algorithms were selected in this study: logistic regression (LR) and XGBoost. LR is a linear 233 

method involving two parts: the statistic LR and the classification LR. Both methods have already 234 

been used to simulate land use (Lin et al., 2011; Mustafa et al., 2018) and to define the relationship 235 

between land-use change and its drivers (Gollnow and Lakes, 2014; Mondal et al., 2014; Verburg et 236 

al., 2002; Verburg and Chen, 2000)(Gollnow and Lakes, 2014; Mondal et al., 2014; Verburg et al., 237 

2002; Verburg and Chen, 2000). Here, we use LR as a benchmark model to compare linear and non-238 

linear methods in the simulation of land-use change. The optimised parameters of LG are C = 0.1, 239 

penalty = l2, solver = 'lbfgs', multi_class = 'multinomial'.   240 

Boosting algorithms have been implemented in many past studies, where they often outperformed 241 

other ML algorithms (Ahmadlou et al., 2016; Filippi et al., 2014; Freeman et al., 2016; Keshtkar et 242 

al., 2017; Tayyebi and Pijanowski, 2014a). However, traditional boosting algorithms are often 243 

subject to overfitting (Georganos et al., 2018). To overcome this problem, Chen and Guestrin (2016) 244 

presented a new, regularised implementation of gradient boosting algorithms, which they called 245 

XGBoost (eXtreme Gradient Boosting). XGBoost was built as an enhanced version of the gradient 246 

boosting decision tree algorithm (GBDT), a regression and classification technique developed to 247 

predict results based on many weak prediction models – the decision tree (DT) (Abdullah et al., 248 

2019; Freeman et al., 2016). XGBoost provides strong regularisation by adopting a stepwise 249 

shrinkage process instead of the traditional weighting process provided by GBDT. This process 250 

limits overfitting, minimises training losses and reduces classification errors while developing the 251 

final model (Abdullah et al., 2019; Hao Dong et al., 2018).  252 

The XGBClassifier uses the following parameters: learning_rate (controls learning itself); 253 

max_depth (control depth of the RF); the n_estimators (controls the number of estimators used for 254 

the model); the min_child_weight (controls the complexity of a model, defines the minimum sum 255 

of weights of all observations required in a child); and lambda (L2 regularisation term on weights). 256 

The parameters were optimised using a simple grid search algorithm provided by scikit (Pedregosa 257 

et al., 2011) to estimate the optimal parameters (learning_rate = 0.1, max_depth = 9, n_estimater = 258 

500, min_child_weight = 3, lambda = 10).  259 

2.3.2 Sampling methods 260 

Data are often distributed unevenly among different classes (Vluymans, 2019). Such imbalanced 261 

class distribution generally induces a bias. Canonical ML algorithms assume that data is roughly 262 

balanced in different classes. In real situations, however, the data is usually skewed, and smaller 263 

classes often carry more important information and knowledge than larger ones (Krawczyk, 2016). 264 

It is therefore important to develop learning from imbalanced data to build real-world models 265 

(Krawczyk, 2016; Vluymans, 2019). To ensure a highly accurate GD model, we introduced four 266 

different sampling methods in this study (Fig. S 3). 267 

Balanced sampling: Random data sampling, resulting in equal sized samples. 268 

Imbalanced sampling: Random data sampling, but with the same share of the sampled class, 269 

resulting in unequal sized samples. 270 

Over-sampling: Artificial points are added to the minority class of an imbalanced sampling set, 271 

making it equal to the majority class and resulting in equal sized samples. 272 

Under-sampling: Points are removed from a majority class of an imbalanced sampling set, 273 

making it equal to the minority class and resulting in equal sized samples (He and Garcia, 2009). 274 
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In the present study, we used these four sampling methods to evaluate the model in the context of 275 

the sampling method and its performance in the training process and the simulation process (see Fig. 276 

S 3). In our case study, 18,19020,000 pixels (about 10% of the total; including 18,190 pixels with 277 

value 0 indicating no-change areas and restored grassland and 1,810 pixels with value 1 indicating 278 

newly added grassland degradation) were selected by different sampling methods (Fig. S 3) to train 279 

(66% of the sample size) and test (34% of the sample size) the model.  280 

2.3.3 SHAP values 281 

SHAP (SHapley Additive exPlanations) is a novel approach to improve our understanding of the 282 

complexity of predictive model results and to explore relationships between individual variables for 283 

the predicted case (Lundberg and Lee, 2017). SHAP is a useful method to sort the driver’s effects, 284 

and break down the prediction into individual feature impacts. Feature selection is of primary 285 

concern when using ML methods to process land-use change (Samardžić-Petrović et al., 2015, 2016, 286 

2017). SHAP values show the extent to which a given feature has changed the prediction, and allows 287 

the model builder to decompose any prediction into the sum of the effects of each feature value and 288 

explain – in our case – the predicted NGD probability for each pixel (see Figure 3). In this study, 289 

we used SHAP values to sort the driver’s attributions; capture the relationship between drivers and 290 

NGD; and map the primary driver for NGD at the pixel level.  291 

 292 

 293 

Figure 2: Decomposed SHAP values for the individual prediction of an example pixel. 294 

In our study, we define the base value as the value that would be predicted by the model if no feature 295 

knowledge were provided for the current output (mean prediction); we define the output value as 296 

the prediction for this particular observation. SHAP values are calculated in log odds. Features that 297 

increase the value of the prediction (to the left in Fig. 2) are always shown in red; those that lower 298 

the prediction value are shown in blue (to the right in Fig. 2, Dataman, 2019). In this instance (Figure 299 

2), disdense (change of distance to dense grass) is the primary driver of NGD at this pixel level 300 

(largest value). The fact that the value is positive means that the risk of NDG increases in line with 301 

an increase in distance to dense grass areas. 302 

2.3.4 Validation of the model 303 

Two validation steps are required for ML models: validation of the training process, and validation 304 

of the simulation process. For the training process, a robust model was selected using overall 305 

classification accuracy, precision, recall and the kappa index. Accuracy, precision and recall were 306 
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calculated based on a confusion matrix (CM) (He and Garcia, 2009). For the simulation process, the 307 

final model was validated using the kappa index, the area under the precision-recall curve, and recall. 308 

The validation indicators are defined as follows.  309 

Overall classification accuracy (ACC) is the correct prediction of NGD and other pixels in the whole 310 

region. This indicator was used to evaluate the accuracy of the model. Precision is the proportion of 311 

correctly predicted positive examples (refers to NGD in this study) in all predicted positive examples. 312 

Recall is the proportion of correctly predicted positive examples in all observed positive examples 313 

(the observed NGD) (Sokolova and Lapalme, 2009). In general, high precision predictions have a 314 

low recall, and vice versa, depending on the predicted goals. Here, since we focus on NGD and 315 

other land-use changes, we use both indicators to evaluate our models.  316 

Table 2: Confusion matrix for binary classification of newly added grassland degradation (NGD) and 317 
other changes, including four indicators: false positives (FP), cells that were predicted as non-change but 318 
changed in the observed map; false negatives (FN), cells that were predicted as change, but did not 319 
change in the observed map for disagreement; true positives (TP), cells that were predicted as change 320 
and changed in the observed map; and true negatives (TN), cells that were predicted as non-change and 321 
did not change in the observed map for agreement. 322 

Simulated 

values 

Observed values 
 Others NGD  

Others 

NGD 

True negatives (TN) False positives (FP) Recall=TP/ 

(TP+FN) False negatives (FN) True positives (TP) 
 Precision =TP/(TP+FP)  

 ACC=(TP+TN)/(TP+FN+FP+TN)  

The precision-recall curve (PR curve) provides more information about the model’s performance 323 

than, for instance, the Receiver Operator Characteristic curve (ROC curve), when applied to skewed 324 

data (Davis and Goadrich, 2006). The PR curve shows the trade-off of precision and recall, and 325 

provides a model-wide evaluation. The area under the PR curve (AUC-PR) is likewise effective in 326 

the classification of model comparisons. The baseline for the PR curve (y) is determined by positives 327 

(P) and negatives (N). In our study, y = 0.09 (y = 18374/200652), which means when AUC-PR = 328 

0.09, the model is a random model (Brownlee, 2018; Davis and Goadrich, 2006).                   329 

The kappa index (κ) is a popular indicator used to measure the proportion of agreement between 330 

observed and simulated data, especially to measure the degree of spatial matching. When κ > 0.8, 331 

strong agreement is yielded between the simulation and the observed map; 0.6 < κ < 0.8 describes 332 

high agreement; 0.4 < κ < 0.6 describes moderate agreement; and κ < 0.4 represents poor agreement 333 

(Landis and Koch, 1977).  334 

In this study, κ was used to evaluate the agreement and disagreement between observed NGD and 335 

simulated NGD. Kappa should be the primary validation measure, followed by AUC-PR (used to 336 

evaluate model performance) and recall (used to evaluate model sensitivity). Features and 337 

definitions of these indicators are given below.  338 

2.3.5 The structure of the ML model  339 

The ML methodology of simulating GD involves six steps (Fig. S 4): (1) Target definition and data 340 

collection and processing; the targets of this study are to build a robust ML model for simulating 341 

NGD, as well as visualising these complex relationships between various variables and the dynamics 342 

of GD. A total of 20 drivers (D) of GD were collected. All dynamic drivers were processed by GIS 343 

into raster files and exported into ASCII files as final inputs for the ML model. (2) Data organisation: 344 

the ML model simulates land-use change as a classification task (Samardžić-Petrović et al., 2015, 345 
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2017). In the present study, we organise this task as a binary classification Y ( value 1 and 0, stand 346 

for NGD and Non-NGD); related drivers are x (x1,x2,x3……xn), n is the driver identifier, and x 347 

denotes the change in value of each driver. The process of data standardisation is usually necessary 348 

for most ML models, but since XGBoost is a tree-based method, it does not require standardisation 349 

or normalisation. In this case, we performed standardisation only for the logistic regression model. 350 

(3) Data sampling: this is a necessary step to avoid overfitting or the loss of important information. 351 

The sampling method generally includes balanced and imbalanced sample strategies. In this study, 352 

we tested various balanced sampling strategies to identify the most suitable one. (4) Model building 353 

and selection: a ranking was used to find the best model in each specific case. In our study, we 354 

defined a model with κ > 0.8 and AUC-PR>0.09 as robust, while 0.6<κ<0.8 and AUC-PR>0.09 355 

represents an acceptable model. (5) Model validation and feature ranking: after tuning the model, 356 

the most robust model and the driver with most useful information are selected. (6). The last step is 357 

explaining the model and the simulation. The model used in training process was published in 358 

ZENODO (Batunacun and Ralf Wieland, 2020) 359 

3. Results 360 

3.1 Model validation 361 

The XGBoost model outperformed the LG model in both training and simulation (Figure 3 and 4). 362 

The LG model seems to be an inappropriate model for understanding NGD in this case. XGBoost 363 

yielded robust results in both training and simulation, with indicator values almost entirely above 364 

90%. 365 

Figure 3 indicates that XGBoost performed very well across all balanced sampling methods (over-366 

sampling, under-sampling and balanced sampling, red rectangle in Figure 3) in the training process. 367 

Only the imbalanced sampling exhibited a slightly weaker performance in the training process. This 368 

is mainly due to the balanced sampling datasets, which provided more information for the model. 369 

In addition, the model was affected less than the imbalanced sampling method by the majority class 370 

or unchanged cells (Mileva Samardzic-Petrovic et al., 2018). 371 
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 372 

Figure 3: Evaluation of model performance during the training process for newly added grassland 373 
between 1975–2015. 374 

Figure 4 and Figure 5 show the model evaluation results in the simulation process and the spatial 375 

prediction maps. XGBoost with under-sampling (green rectangle in Figure 4) yielded the weakest 376 

performance compared to the other three sampling methods. This is mainly due to the smaller 377 

sample size, which prevents the model from extracting sufficient experience. As can be seen in 378 

Figure 5b, XGBoost used with the under-sampling method produced the error map with the highest 379 

FP values, where the model predicted non-change points as change points. The under-sampling 380 

method is unable to identify NGD points sufficiently well. XGBoost used with the over-sampling 381 

method caused balanced and imbalanced sampling to have similar and strong prediction abilities 382 

(see Figure 4), differing only slightly in their CM indicators (see Figure 5). We finally selected 383 

XGBoost combined with the over-sampling strategy for our study, mainly because of its relatively 384 

higher values in κ, AUC-PR and recall (see Figure 4). 385 

          386 
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 387 

Figure 4: Evaluation of model performance during the prediction process for newly added grassland 388 
between 1975–2015. 389 

 390 

              (a) Over-sampling                       (b) Under-sampling 391 
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 392 

      (c) Balanced sampling                     (d) Imbalanced sampling 393 

Figure 5: Error map of different sampling methods using the XGBoost model. 394 

3.2 Driver selection 395 

Figure 6 is a summary plot produced from the training dataset; it includes approximately 13,200 396 

points (66% of the sample size). This plot combines feature importance (drivers are ordered along 397 

the y-axis) and driver effects (SHAP values on the x-axis), which describe the probability of NGD 398 

having occurred. Positive SHAP values refer to a higher probability of NGD. The gradient colour 399 

represents the feature value from high (red) to low (blue), as previously introduced in Figure 2. As 400 

Figure 6 shows, disdense was the primary driver for NGD in the study region. The relationship 401 

between disdense and NGD is non-linear, which can be seen from the SHAP values being both 402 

positive and negative (black rectangle in Figure 6). The interpretation of the effects of disdense can 403 

be summarised as a higher probability of NGD with increasing distance from dense grassland (see 404 

black rectangle in Figure 6 with pink colour on the right).  405 

Figure 6 shows that driver effects include both linear-dominated relationships, such as sheep, GDP 406 

and others, and non-linear-dominated relations, such as disdense, dismode and others. In addition, 407 

the figure shows that the most important drivers for NGD are the changes of distance to dense, 408 

moderately dense and sparse grassland, then followed by sheep density and the distance to unused 409 

land. The effect of policies comes almost at the bottom, indicating that policies implemented outside 410 

sandy areas seem to have little effect on GD. The geographical factors DEM and slope are also 411 

positioned mid-field. The effect of geographical drivers does not appear to be as strong as the effect 412 

of other drivers. The change of distance to mining, located at the bottom for all drivers, does not 413 

have a strong effect on NGD compared to other drivers. 414 
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 415 

Figure 6: Driver ranking by SHAP values based on the training dataset (66% of sample size) using the 416 
over-sampling method.  417 

Note: The top rank indicates the most significant effects across all predictions. Each point in the cloud to 418 
the left represents a row from the original dataset. The colour code denotes high (red) to low (blue) feature 419 
values. Positive SHAP values represent a higher likelihood of NGD, while negative values indicate lower 420 
likelihoods. The range across the SHAP value space indicates the degradation probability, expressed as 421 
the logarithm of the odds. 422 

A recursive attribute elimination method was performed to determine how attribute reduction affects 423 

modelling performance using XGBoost with the oversampling method (see Fig. S 5; for more details, 424 

refer to Samardžić et al., 2015). The results indicate that the first three drivers may already produce 425 

a satisfactory model (κ = 0.74, AUC-PR = 0.85, recall = 0.92), while adding the fourth driver can 426 

produce a robust model (κ = 0.94, AUC-PR = 0.98, recall = 0.98). This means that XGBoost used 427 

with the oversampling strategy can predict NGD with very high accuracy using a relatively small 428 

amount of data. Fig. S 6 shows the simulation result using the first four drivers, and compares the 429 

results with the observed map.  430 

3.3 Relationship between NGD and drivers in the XGBoost model  431 

SHAP values and spread (Figure 7) indicate that no linear relationship between driver and prediction 432 
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could be found for any of the individual features. Change of distance to dense, moderately dense 433 

and sparse grass pixels, and change of sheep density were the dominant drivers for NGD. Figure 7a 434 

indicates that when disdense < 0, the SHAP value is negative, and when the distance to dense grass 435 

areas is small, the likelihood of degradation is also small. The relationship seems to be more 436 

complex for distance to moderately dense grass (dismode, Figure 7b); here, no simple linear 437 

interpretation is obvious. For distance to sparse grass (dissparse, Figure 7c), the pattern again 438 

suggests a rather linear interpretation, which is that the likelihood of degradation increases with 439 

decreasing distance. For sheep density, Figure 7d indicates that when sheep density decreased, the 440 

probability of GD obviously increased. Policy was not identified as a major driver of GD (Figure 441 

6). However, policy effects obviously have a different impact inside and outside sandy zones. Figure 442 

7e shows that our initial assumption is invalid: the probability of GD increased inside the sandy 443 

areas where we assumed effective policy measures to be in place (value 0). This result is also in line 444 

with Figure 7g, which shows that the closer to unused land, the more likely degradation will occur. 445 

We can identify three groups for the remaining 14 drivers. For GDP and population density (Figure 446 

7g and Figure 7h), the likelihood of NGD increases with increasing values. Figure 7i-j indicate that 447 

warmer and drier climate conditions increase the probability of GD. Figure 7k, l, m and n indicate 448 

that the probability of GD rises with closer distances to forest, urban, rural and water areas. Figure 449 

7o shows a slight SHAP value pattern, in which the closer to cropland, the more unlikely degradation 450 

will occur. This is mainly due to transformation from cropland to grassland. Figure 7p-t do not show 451 

any interpretable spatial pattern. 452 

 453 

           (a)                           (b)                          (c) 454 

 455 

          (d)                           (e)                          (f) 456 

 457 

             (g)                           (h)                          (i) 458 
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 459 

(j)                           (k)                          (l) 460 

    461 

(m)                           (n)                          (o)      462 

 463 

(p)                           (q)                          (r)    464 

 465 

           (s)                           (t)          466 

Figure 7: The SHAP dependence plot for each driver. 467 

3.4 Mapping the primary drivers of NGD 468 

All drivers’ contributions to NGD were ranked according to their SHAP values for each pixel in this 469 

study. Figure 8 shows the primary driver for each NGD pixel. Distance to grassland pixels (dense, 470 

moderately dense and sparse grass) were the major drivers of NGD, responsible for 9,478, 3,892 471 

and 1,629 NGD pixels, respectively. Sheep density was responsible for 3,042 NGD pixels, ranking 472 

third among all drivers. This order differs to that in Figure 6 and Figure 8 because in those cases, 473 

ranking is based on the total contribution of all drivers. Fig. S 7 shows the number of NGD pixels 474 

in which a driver was dominant or primary. The change of distance to any type of grassland was the 475 

primary driver for about 82.8% of the total NGD pixels; sheep density accounted for 16.8%. The 476 
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remaining seven drivers caused less than 1% of the total NGD. We can see from the spatial pattern 477 

that the change of distance to grassland was the major driver for GD in the dense grassland region 478 

(counties of DW, XL and AB), while in the counties of SZ, SY, ZXB, ZL and TP, sheep density was 479 

often identified as the major driver.  480 

 481 
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 482 

Figure 8: Spatial patterns of primary drivers for each pixel for NGD. 483 

3.5 Regions of high risk for grassland degradation 484 

A probability map of NGD was produced (Figure 9). Low probabilities of NGD were found in the 485 

central and northern counties (DW, XL, AB, SZ, ZL ZXB and XH), while high probability regions 486 

were EL, SY and XW. TP and DL in the south were categorised as low probability regions, due to 487 

their lower share of grassland area.  488 
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 490 

Figure 9: Degradation probability map for grassland in Xilingol, including a zoom into Xilinhot (XL) 491 
for more details. The probability is based on the four most important drivers. 492 

4. Discussion  493 

4.1 ML model building and evaluation 494 

In this study, we defined a general framework for creating an ML model using the XGBoost 495 

algorithm for the purpose of analysing and predicting land-use change. XGBoost obtained a κ of 496 

93% and a recall value of > 99% when used to simulate and predict GD in this study. Compared to 497 

other popular ML learning algorithms, XGBoost exhibited a strong prediction ability. In studies 498 

where ANN, SVM, RF, CART, Multivariate Adaptive Regression Spline (MARS) or LR were used 499 

in combination with Cellular Automata (CA), the recall value is usually 54%-60% (Shafizadeh-500 

Moghadam et al., 2017). Ahmadlou et al. (2019) stated that MARS and RF only yield high accuracy 501 

in training runs, but do not prove very accurate in the validating process when simulating land-use 502 

change. 503 

Concerning the four sampling strategies we used to test the imbalance issue, we found that all 504 

strategies performed satisfactorily in the training runs. In the simulation, the under-sampling 505 

strategy yielded a relatively low accuracy (κ = 0.46) model. We assume that removal of data from 506 
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the majority class causes the model to lose the important concepts pertaining to the majority class 507 

(He and Garcia, 2009). XGBoost used with the under-sampling method always produced similar 508 

results, irrespective of the size of the dataset (see Fig. S 8). We conclude from this pattern that 509 

XGBoost is also able to use sparse data to reflect real-world problems (Chen and Guestrin, 2016).  510 

4.2 SHAP values and drivers of grassland degradation  511 

The general idea of introducing SHAP values as a further tool to analyse XGBoost ranking is to 512 

provide a method to evaluate the ranking with respect to causal relationships. The original XGBoost 513 

ranking is based on the in-built feature selection functions Gain (refers to the improvement in 514 

accuracy provided by a feature), Weight (or frequency, refers to the relative number of a feature 515 

occurrence in the trees of a model) and Coverage (refers to the relative numbers of observations 516 

related to this feature). However, these functions always produce different rankings of drivers (Abu-517 

Rmileh, 2019) due to random components in the algorithms. SHAP values introduce two further 518 

properties of feature importance measures: consistency (whenever we change a model such that it 519 

relies more on a feature, the attributed importance for that feature should not decrease) and accuracy 520 

(the sum of all feature importance values should equate to the total importance of the model; 521 

Lundberg, 2018; Lundberg & Lee, 2017). Consistency is required to stabilise the ranking throughout 522 

the analysis, reducing the change of order in the ranking to a minimum when the number of 523 

identified drivers changes. The accuracy property of SHAP makes sure that each driver’s 524 

contribution to overall accuracy remains the same, even when drivers are excluded from analysis. 525 

Other methods usually compensate for the withdrawal of a driver from the analysis, which makes 526 

the determination of a single driver’s contribution difficult. 527 

The feature ranking based on SHAP values indicated that the change of distance to any type of 528 

grassland (dense, moderately dense and sparse grass) is the most important driver for any newly 529 

added grassland degradation. In this context, dense and moderately dense grassland areas are more 530 

easily degraded than other land-use types, followed by sparse grass. These results are in line with 531 

previous studies (Li et al., 2012; Xie and Sha, 2012)(Li et al., 2012; Xie and Sha, 2012). Good-532 

quality grassland is more likely to be degraded through increasing human disturbance. An 533 

explanation for this can be derived from local people’s living strategies. People who live in good-534 

quality grassland areas are more likely to use grassland for livestock production with higher animal 535 

densities, risking overgrazing. Furthermore, Li et al. (2012)(2012) indicated that good-quality 536 

grassland is more likely to be converted to other land-use types, such as cropland. In contrast, people 537 

who have lived in sparse grassland regions for centuries have long adapted to low productivity, 538 

reducing their livestock numbers accordingly. They have also developed strategies to cope with 539 

variability in weather conditions, e.g. by preparing and storing more fodder and forage.  540 

Sheep density was identified as the fourth major driver. However, the SHAP values indicate that 541 

when sheep density decreases, the probability of grassland degradation increases. Overgrazing has 542 

been the dominant driver for grassland degradation on the Mongolian plateau before, which has 543 

changed the grassland ecosystem significantly towards lower grass coverage (Nkonya et al., 2016; 544 

Wang et al., 2017). However, there is recent evidence that this causal relationship has changed. It 545 

now appears that farmers increasingly select their livestock numbers according to the carrying 546 

capacity of the grazing land (Cao et al., 2013b; Tiscornia et al., 2019b)(Cao et al., 2013b; Tiscornia 547 

et al., 2019b). By passing the “Fencing Grassland and Moving Users” policy (FGMU), the Chinese 548 

government issued a law that regulates livestock numbers based on a previously calculated carrying 549 

capacity. This development has upturned the causal relationship between livestock numbers and 550 

NGD, reflected by the SHAP value pattern in Figure 6. 551 

Besides the four main drivers, seven other drivers also occasionally appear as the main driver for 552 

some pixels (Figure 8). This highlights the fact that, at the local level, other drivers apart from the 553 

four drivers identified as being major can also play a significant role. For example, in the county of 554 
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EL, the remaining seven drivers were mainly responsible for NGD. EL has less NGD after 2000 555 

compared with other counties in Xilingol (Fig. S 1), and most of the EL area is covered by sparse 556 

grass. EL is the most frequented border control point to Mongolia, and is subject to intensive tourism. 557 

In the sparse grassland and agro-pastoral regions (SZ, SY, ZXB, ZL and TP), sheep density was 558 

identified as the important driver. This indicates that, even though livestock numbers have decreased, 559 

grassland is still experiencing serious degradation in this region. Here we see additional potential 560 

for installing further grassland conservation measures, such as adjusting the livestock number to the 561 

grassland carrying capacity.  562 

4.3 The current risk of grassland degradation in Xilingol 563 

Three regions of different risk classes were identified in the probability map of NGD (Fig. 9). The 564 

low-risk region (DW, XL, AB, SZ, ZL ZXB and XH) is dominated by good-quality grassland (dense 565 

and moderately dense grass). In recent decades, this region has suffered from increasing human 566 

disturbance, e.g. overgrazing and mining development. However, after 2000, grassland in this region 567 

has recovered, mainly as the result of ecological protection projects (Sun et al., 2017). Even though 568 

this region is predicted as being less exposed to the risk of land degradation in the future, attention 569 

is still required for the restoration process. The high-risk region includes the counties of EL, SY and 570 

XW. EL and SY are covered by a large share of low-quality grassland, which – due to its own 571 

fragility – is likely to be affected by extreme climate and human disturbance, more than, e.g. higher-572 

quality grasslands. The recent change in grassland property rights and the establishment of 573 

ecological protection projects have also limited the mobility of nomadic herders throughout Xilingol. 574 

As a consequence, herders cannot easily change grazing spots if extreme weather occurs; they are 575 

then bound to have their cattle graze at the same spots, increasing the pressure on low-quality 576 

grasslands in particular (Qian, 2011). For a long time, fragile grassland remained in an equilibrium 577 

state with the extreme weather (frequent droughts, “dudz”) to which it was exposed, and with the 578 

nomadic livestock husbandry that the region’s inhabitants practised. However, when the property 579 

rights of grassland and livestock were changed from collective to private, the nomadic lifestyle was 580 

largely abandoned.  581 

4.4 The limitations of XGBoost for scenario exploration 582 

XGBoost has already scored top in a range of algorithm competitions in the data scientists 583 

community (Kaggle, 2019) due to its high accuracy and speed (Chen and Guestrin, 2016). ML 584 

models extract patterns from data, without considering any existing expert knowledge, which is why 585 

they are increasingly used to identify non-linear relationships (Ahmadlou et al., 2016; Samardžić-586 

Petrović et al., 2015; Tayyebi and Pijanowski, 2014b). However, ML models require specific data 587 

structures for each problem to which they are applied. In this study, we simulated grassland 588 

degradation in two different phases (1975-2000 and 2000-2015). All time series of driver data were 589 

organised as model inputs, while grassland degradation dynamics were organised as prediction 590 

targets. Although the model achieved high accuracy in predicting NGD in Phase 2, it was not 591 

possible to achieve acceptable results in simulating both Phase 1 and Phase 2 separately. Second, 592 

compared with conventional models, the XGBoost model cannot be easily transferred to other 593 

regions for the same research question. Models like CLUE-S and GeoSOS-FLUS have been widely 594 

used in different regions across the world (Fuchs et al., 2017; Liang et al., 2018a; Liu et al., 2017; 595 

Verburg et al., 2002).(Fuchs et al., 2017; Liang et al., 2018a; Liu et al., 2017; Verburg et al., 2002). 596 

When ML models are used in other regions, driver data must be collected and structures adapted. 597 

Thirdly, ML models always need to learn sufficiently before they are able to make predictions. This 598 

requires a sufficient amount of data covering historical periods or different land-use change patterns. 599 

XGBoost alone is unable to project any scenarios of land-use change based on historical data. 600 

However, the methodology presented here can be applied to quantify alternative scenarios produced 601 
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using other approaches, such as conventional, rule-based models (Verburg et al., 2002) or cellular 602 

automata (Islam et al., 2018; Shafizadeh-Moghadam et al., 2017).  603 

 604 

5 Conclusion 605 

Machine learning and data-driven approaches are becoming more and more important in many 606 

research areas. The design and development of a practical land-use model requires both accuracy 607 

and predictability to predict future land-use change, a well-fitted model that reflects and monitors 608 

the real world (Ahmadlou et al., 2019). The method framework presented here for building an ML 609 

model and explaining the relationship between drivers and grassland degradation identified 610 

XGBoost as a robust data-driven model for this purpose. XGBoost showed higher accuracy in 611 

training and simulation compared to existing ML models. Combined with over-sampling, it slightly 612 

outperformed in the simulation process. The simulated map has a high agreement with the observed 613 

values (kappa=93%).  614 

We identified six basic steps that should be included in ML model building, and they are also similar 615 

for other research applications (Kiyohara et al., 2018, 2018; Kontokosta and Tull, 2017; 616 

Subramaniyan et al., 2018). However, different validation measures can be introduced in both the 617 

training process and the simulation process. In this study, we tested different evaluation measures 618 

to evaluate the ML model, e.g. a typical confusion matrix to evaluate the training process, AUC-PR 619 

to evaluate the goodness of the ML model, and the kappa index to measure the degree of matching 620 

between observed and simulated values. These validation indicators consider both the research 621 

object and data characteristics. For example, when the data size is unbalanced, AUC-PR is a better 622 

choice than AUC-ROC (Brownlee, 2018; Davis and Goadrich, 2006; Saito and Rehmsmeier, 2015).  623 

SHAP was introduced in this context to provide a causal explanation of the patterns identified by 624 

the ML model. In our case, SHAP was used to explain how drivers contribute to grassland 625 

degradation processes at the pixel and regional level, despite their non-linear relationship. 626 

According to the analysis, the distance to dense, moderately dense, and sparse grass, and sheep 627 

density, were the most important drivers that caused new grassland degradation in this region. In 628 

addition, individual SHAP values of sheep density indicated that the causal relationship between 629 

grassland degradation and livestock pressure has changed over time: the increase in sheep density 630 

was not the major driver for NGD in Phase 2 of the land degradation trajectory. Instead, the decrease 631 

in the grazing capacity of grassland caused a decrease in livestock numbers. The primary driver map 632 

of NGD provided a more detailed picture of NGD drivers for each pixel, as an important support 633 

for grassland management in the Xilingol region. The individual SHAP values of each driver may 634 

be an important prerequisite for rule-based scenario-building in the future.  635 
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