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Abstract. Algorithmic model tuning is a promising approach to yield the best possible forecast performance of multi-scale
multi-phase atmospheric models once the model structure is fixed. The problem is to what degree we can trust algorithmic
model tuning. We approach the problem by studying the convergence of this process in a semi-realistic case. Let M (x,0)
denote the time evolution model, where  and 6 are the initial state and the default model parameter vectors, respectively. A
necessary condition for an algorithmic tuning process to converge is that @ is recovered when the tuning process is initialised
with perturbed model parameters 6’ and the default model forecasts are used as pseudo-observations. The aim here is to gauge
which conditions are sufficient in semi-realistic test setting to obtain reliable results, and thus building confidence on the tuning
in fully-realistic cases. A large set of convergence tests is carried in semi-realistic cases applying two different ensemble-
based parameter estimation methods and the OpenlFS model. The results are interpreted as general guidance for algorithmic
model tuning, which we successfully tested in a more demanding case of simultaneous estimation of eight OpenIFS model

parameters.

1 Introduction

Numerical weather prediction (NWP) models solve non-linear partial differential equations in discrete and finite representation.
Sub-grid scale physical processes, such as cloud micro-physics, are treated in specific closure schemes. Once the model struc-
ture is fixed, some parametric uncertainty remains depending on how closure parameter values are specified. Closure schemes
are always simplified representations of the real world, so "universally true’ parameter values do not exist. This uncertainty can
be conceived as a probability density of the closure parameters: the expected value corresponds to the optimal model skill and
the co-variance to their inherent uncertainty. The expected parameter value is the obvious choice for deterministic forecasting
while the co-variance can be utilized to represent parametric uncertainty in ensemble forecasting (Ollinaho et al., 2017).
Model tuning is an attempt to unveil some statistics of the probability density of the closure parameters, and algorithmic
methods add objectivity and transparency to the process (Hourdin et al., 2017; Mauritsen et al., 2012). It is paramount in
algorithmic model tuning that the method applied is able to converge to the correct statistics with limited computing resources.
The aim of this paper is to gauge the circumstances favouring successful model tuning when ensemble-based parameter

estimation methods are used. These include, for instance, differential evolution (Storn and Price, 1997) and its variants, genetic
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algorithm (Goldberg, 1989), particle swarm optimisation (Kennedy, 2010) and Gaussian importance samplers (e.g. EPPES,
Jarvinen et al., 2012; Laine et al., 2012). The results may also be useful for more deterministic algorithms, such as multiple
very fast simulated annealing (Ingber, 1989), and filter based estimation algorithms such as ensemble Kalman filter and its
variants (e.g. Annan et al., 2005; Pulido et al., 2018) as well as particle filters (e.g. Kivman, 2003). Of course, the length of the
time window is limited in filter based estimation methods.

The results are interpreted so as to provide guidance into successful tuning exercises and savings in computing time. Conver-
gence testing is always semi-realistic and can provide insight into how to design fully-realistic model tuning exercises. Based
on a very large amount of testing, the following general guidance can be drawn up.

Trivial testing: It is important to start model optimisation with some trivial testing before proceeding to more demanding
realistic cases. In a recommended trivial test, model parameters are off-set slightly from their default values and optimisation is
confined to a known training sample of model initial states and forecasts. In this case, the chosen optimisation method must be
able to recover the default parameter values. If the optimisation target function is too simplistic, the process may not converge
or convergence is very slow. In the case of ensemble-based sampling, we noted that stochastic initial state enhance the recovery
of the parameters.

Efficiency: It is important to consider how to efficiently allocate computing resources. We noted that it is better to perform
a long convergence test with a small ensemble and varying initial states rather than a short test with a large ensemble — the
variability of atmosphere is thus more robustly sampled. Also, in OpenlFS, it turned out that already a 24-hour forecast range
is sufficiently long for parameter convergence, offering potential savings in computing time.

Reproducibility: It is usually necessary that in realistic testing, the optimisation result is verified in an independent sample.
With the convection parameters of OpenlFS used in this study, reproducibility is better for a relatively short forecast range
(24-hours). At longer ranges, results are less repeatable. Thus, from both the efficiency and reproducibility viewpoints, a 24
hour forecast range seems optimal for the convection parameters used in this study.

Practical concerns: Our testing showed that one should not blindly trust algorithmic tuning — it is an efficient tool that can
potentially accelerate model development (Jakob, 2010), but it must be used cautiously. For example, ensemble-based sampling
works well in fine-tuning of an already well-performing model but less well if the initial uncertainty of model parameters is
large. It is also worth noting the deep-rooted ambiguity in the optimal parameter values which can depend on the forecast
range.

The paper contains the following sections: Section 1 introduces the topic of convergence testing, Section 2 presents tools
and methods needed for running and evaluating convergence tests, Section 3 presents the convergence test set-ups, Section 4

presents the results, Section 5 contains further discussion and Section 6 concludes.
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2 Methods
2.1 OpenlFS and closure parameters of the convection scheme

OpenlFS is the atmospheric forecast model of the Integrated Forecasting System (IFS) of ECMWE. In this study, we use
a version based on the model version being operational from November 2013 to May 2015 (cycle 40r1, ECMWF, 2014).
Convergence tests are run at two resolutions: TL159 and TL399 corresponding to 125 km and 50 km resolutions, respectively,
both with 91 vertical levels. Initial conditions are extracted from the ECMWF operational archive (a control member plus 50
perturbed analyses) for year 2017 to cover different weather regimes and seasons. Each convergence test contains 52 ensemble
forecasts, i.e., an ensemble is initialised once per week. The data set of ensemble initial conditions (Ollinaho et al., submitted)
has been generated with the IFS cycle 43r3. Thus, some spinup/spindown is possible at early forecast ranges of a few hours.
The differences between the two model versions can be found in ECMWF (2019).

We focus on closure parameters of the convection scheme, consisting of a bulk mass flux with an updraught and downdraught
pair in each grid box for shallow, deep and mid-level convection (ECMWF, 2014; Bechtold et al., 2008). The parameters, their
default values and short descriptions are in Table 1. The tests also involve the use of a stochastic representation of model

uncertainty (Stochastically Perturbed Parametrisation Tendencies, (SPPT, Palmer et al., 2009)).
2.2  OpenEPS - ensemble prediction workflow manager

Convergence tests involve running large amounts of ensemble forecasts. Traditionally, ensemble forecasting and research on
ensemble methods have been tied to major NWP centres providing operational ensemble forecasts to end-users. Usually these
platforms are not suited for academic research. Instead, we use a novel and easily portable ensemble prediction workflow
manager (called OpenEPS), developed at the Finnish Meteorological Institute specifically for academic research purposes
(https://github.com/pirkkao/OpenEPS).

OpenEPS has been designed for launching, running, and post-processing a large number of ensemble forecast experiments
with only a small amount of manual work. OpenEPS is very flexible and can be easily coupled with external applications

required in parameter tuning, such as autonomous parameter sampling.
2.3 Optimisation algorithms

Brute force sampling of the parameter space of full-complexity NWP models is computationally far too expensive. Typically,
one can afford running perhaps only some tens or a maximum of a few hundred simulations in a tuning experiment. Therefore,
the tuning methods need to be sophisticated. In these convergence tests, we use two ensemble based optimisation algorithms:
Ensemble prediction and parameter estimation system (EPPES) (Laine et al., 2012; Jarvinen et al., 2012) and differential
evolution (DE) (Storn and Price, 1997; Shemyakin and Haario, 2018).

EPPES is a hierarchical statistical algorithm, which uses Gaussian proposal distributions, importance sampling, and sequen-

tial modelling of parameter uncertainties to estimate model parameters. A parameter sample is drawn from the distribution,
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an ensemble forecast is run with these parameter values and the goodness of the parameter values is evaluated by calculat-
ing a cost function for each ensemble member. The proposal distribution is sequentially updated such that it shifts towards
more favourable parameter values. Here, the shift of parameter mean values between consecutive iterations is limited to a
conservative value of 5%.

DE (Storn and Price, 1997) is heuristically based on natural selection. It consists of evolving population of parameter vectors
where vectors leading to good cost function values thrive, and produce an offspring, while vectors leading to bad cost function
values are eliminated. The population update procedure of DE is achieved by a certain combination of mutation and crossover
steps. These steps ensure that the new parameter vectors differ at least slightly from the vectors that already belong to the
population. The natural selection is achieved through the selection step, where the elements of the current population compete
with the new candidates based on the defined cost function. The fittest are kept alive and proceed to the next generation.
Besides the standard DE algorithm, we use: generation jump (Chakraborty, 2008), DE/best/1 mutation strategy (Feoktistov,
2006; Chakraborty, 2008; Qing, 2009) with randomized scale factor by jitter and dither (Feoktistov, 2006; Chakraborty, 2008)
and recalculation step (Shemyakin and Haario, 2018). Jitter and dither act to increase the diversity of the parameter population
so that they cause small random variation in the parameter values preventing DE from sticking to some specific values. Jitter
corresponds to the approach when the scale factor is randomised for every mutant parameter vector in the mutation process
by sampling from the given (usually uniform) distribution. Dither corresponds to the approach when the fixed scale factor is
slightly randomised for each single component of the mutant vector in the mutation process. The recalculation step enhances
the convergence when the cost function is stochastic. This means that occasionally the parameter vector is not updated but
passed for a new iteration in order to ensure that only those parameter vectors leading to good scores for two times are used in
generation of new vectors.

The main focus here is on the EPPES results. More details about the algorithms and their specific setting are explained in

Appendices 1 and 2.
2.4 Optimisation target functions

We will apply two very different optimisation target functions (hereafter cost functions) in the convergence tests. The first one

is the global root mean squared error of the 850 hPa geopotential height (A Z):

1

AZ = B/(Z850_Z§50)2dD (D

D

where Zgso and Zgs, denote 850 hPa geopotential in the pseudo-observations and perturbed forecast at each grid point. D
denotes the horizontal domain. Pseudo-observations are default model forecasts with fixed default parameter values. Full fields
are three-dimensional but for AZ only two-dimensional slices are used. This is a restrictive cost function formulation and used
here merely as a useful demonstrator. There are three reasons why we expect AZ to perform sub-optimally. First, it exploits
information only from a small fraction of the model domain and the upper parts of the model domain remain unconstrained.

This means that AZ is not (directly) sensitive to perturbations in the middle and upper troposphere where the most influential
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effects of perturbed convection are present. Second, it requires substantial interpolation of forecasts and reference data because
OpenlFS has a terrain following hybrid sigma vertical coordinate, and hence the model levels are not aligned with pressure
levels in lower troposphere. Third, the 850 hPa level intersects with the ground level in mountainous areas.

The second cost function is the global moist total energy norm (A FE,,, e.g. Ehrendorfer et al., 1999) and it is a very com-

prehensive integral measure of the distance between two atmospheric states. The moist total energy norm can be written as

L? op 1 T,
E,, pT’2 21dD—"dn / " 1np?ldD 2
=20, //“ +o%+ +qcpTrq] 5 1 [Ranps] ’ 2)
D

where v/, v', T, ¢’ and Inp’, refer to differences between forecast and pseudo-observations in wind components, temperature,
specific humidity and the logarithm of surface pressure. M, is the mass of the atmosphere, ¢, is a scaling constant for the moist
term, L vaporisation energy of water, ¢, specific heat at constant pressure, 7;. reference temperature and p,. reference pressure.
Here, we set T;- = 280 K and p,, = 1000 hPa as in (Ollinaho et al., 2014). D and 7 denote increments of horizontal and vertical
integrals. Unlike in Ollinaho et al. (2014) we set ¢, to 1 and dn to equal the difference of pressure between consecutive model
levels. Ollinaho et al. (2014) also show instructions how to discretise A F,,, for practical use.

We expect that at short forecast ranges, the linkage between variations in the values of AF,,, and parameter perturbations is

detectable, enabling to estimate parameter densities.
2.5 Evaluation of convergence tests

The parameter convergence is measured with fair continuous ranked probability score (fCRPS, Ferro et al., 2008) formulated
as the kernel representation (see e.g. Leutbecher, 2018). f{CRPS rescales the scores as if the ensembles were infinitely large so
that there is no dependence between ensemble size and the score itself. The property of fairness is essential in comparison of
convergence tests with different ensemble sizes. fCRPS has not been designed for evaluation of ensembles of parameter values,
so a direct application of fCRPS may lead to cancellation of the two terms (see Eq. 6, Leutbecher, 2018) causing difficulties

in interpreting the results. Therefore, we use the two terms separately for each parameter 6,,:

1 M
fCRPSl——Z| 3)
=1
and
1 M M
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=

j=1k=1

where n is the index over tunable parameters, 0})71 and 0, are the parameter values used by ensemble members j and k,

04q,r, is the default parameter value and M is the ensemble size. Each ensemble member is generated applying a unique set of

parameter values. The first part (Equation 3) is a measure of how much the ensemble mean parameter value differs from the
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default value while the second part (Equation 4) indicates how much spread is associated with the ensemble mean parameter
value; in other words how certain or uncertain the algorithm considers the parameter value. Both parts of fCRPS have a perfect

score of zero.

3 Set-ups of the convergence tests

Table 2 shows the outline of our experiments. The table explains the different levels of complexity we use in the convergence
tests. The different levels of complexity are tested to see which is the optimal way to extract information of the parameter
space. On the one hand, keeping convergence tests as simple as possible makes interpretation of the test results easy, but on
the other hand, more realistic tests provide information on how the parameter tuning system would perform in fully-realistic
tuning tasks.

L0, L1 and L3 tests are performed with one set-up: a forecast range of 48 hours and an ensemble size of 50 members. AZ
is only tested at L1 level. Most of the effort is put on L2 testing with AE,,, so they are performed with various combinations
of forecast range and ensemble size. The focus is on L2 tests on one hand because we assume that if the convergence is good
at this level of complexity, it will be good also at lower levels. On the other hand, convergence in L2 and L3 tests is relatively
similar. We use the parameters #; and 05 in LO to L2 tests and parameters 67 to 05 in L3 tests. In LO tests all forecasts are
initialised from an unperturbed initial state of the control forecast (1 Jan 2017 OOUTC). L1, L2 and L3 tests use ensemble
initial conditions from 52 dates.

Throughout the paper, the pseudo-observations are generated with a default model with fixed parameter values (see Table
1). Therefore, the target of the convergence is always known (i.e., the default parameter set), and it stays the same during the

tests. Analyses, re-analyses or real observations are not used in this study.

4 Results

For brevity, we mainly concentrate on discussing results obtained with EPPES, although most of the convergence tests have
been run with both algorithms. Due to the nature of the algorithms, EPPES produces less noise near the end of the convergence
tests. Therefore, results generated with EPPES are easier to interpret. However, none of the results produced with DE contradict

the results of EPPES.
4.1 Selection of level of complexity

We test how much complexity should be included in algorithmic tuning. Figure 1 shows four convergence tests with different
levels of complexity, described in Table 2. As expected the parameters converge slower the higher the level of complexity is as
the parameter uncertainties decrease slower. Both parameters converge very fast in the trivial LO convergence test. Convergence
to the default values in the LO convergence test is trivial as minimisation of the parameter perturbations is the only way to

minimise the cost function values. However, we want to emphasize that fully-realistic tuning at LO level of complexity could
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lead to overfitting of the parameters since the parameters would be optimised for that specific weather state only. LO can still
be used to test that the tuning infrastructure works.

L1, L2 and L3 tests resemble more fully realistic model tuning. Figure 1 shows that the convergence tests at different levels
of complexity behave quite reasonably. The uncertainty cannot vanish completely since some uncertainty is always present due
to ensemble initial conditions.

L1, L2 and L3 tests have a common feature that the parameters tend to converge to some off-default values. This feature is
inherent to convergence tests, which use pseudo-observations generated with the default model. The convergence to off-default
values will be discussed in further below.

We recommend using L1 (only perturbed initial conditions) in fully-realistic model tuning. L1 is the simplest safe option.
Higher levels of complexity do not provide additional information, instead, they only make convergence more difficult. LO is

only recommended for testing purposes. Depending on user needs, L1 can be modified by adding more parameters.
4.2 Selection of optimisation target

Here, we compare convergence tests that use different cost functions. Figure 2 compares L1 convergence tests with AFE,,
(shown with black solid and dash-dotted lines) and AZ (shown with cyan dotted line and shading in the background). Figure 2
shows that AE,,, leads to much faster convergence than AZ. The superior performance of AFE,, is explained by: first, global
integral of several variables catches the signal of parameter perturbations much better than a single level measure. Second,
perturbations of convection parameters do not affect 850 hPa geopotential directly so 48 hours may not be long enough to
develop a traceable signal. Perturbations of convection parameters modify specific humidity, wind components and temperature
directly. These fields must change substantially before the signal is seen in geopotential at 850 hPa.

We recommend in general using a more comprehensive cost function that accounts for more than one atmospheric level
and more than one variable. Targeted forecast range also plays a crucial role in constructing a suitable cost function, and thus
should be carefully chosen based on what type of parameterised processes are being optimised. However, it is likely that with

some other parameters another cost function than A F,,, might work better.
4.3 Finding the most efficient set-up

The process of finding a forecast range and an ensemble size that give satisfactory convergence with a minimal amount of
computational resources is done in two steps. First, we compare forecast ranges. Second, we take the forecast range with the
fastest convergence in order to find optimal ensemble size using L2 level of complexity. We expect that the results obtained
with such a high level of complexity generalise well to lower levels. This step can also be seen as fine tuning of the cost
function.

We take the final parameter values proposed by EPPES to calculate the components of f{CRPS (Equations (3) and (4)). Low
bias and low uncertainty are desired since they indicate that the mean value has converged close to the default value and that
the uncertainty is small. However, we do not expect precise convergence to the default values because initial condition and

model perturbations are activated in the experiments. Figure 3 shows the components of fCRPS of the final ensemble for the
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parameter 65 from numerous convergence tests with different forecast ranges and ensemble sizes. From Figure 3 it is obvious
that the convergence of 5 is the most efficient when the forecast range is 24 hours. It is remarkable that 24 hours and also 48
hours lead to significantly better convergence than 72 hours that was used for example in (Ollinaho et al., 2014). For 64, 12, 24
and 48 hour forecasts are the best and roughly equally good (not shown).

The superior convergence with 24 hour forecasts can be explained by relatively linear response of OpenlFS to parameter
perturbations, which AF,, is able to detect. The sub-optimal performance of 12 hour forecasts compared to 24 hour forecasts
may be, at least partly, due to the spin-up related to to discrepancy of model versions. Consequently, we are somewhat uncertain
about the true performance at very short forecast ranges. Against our expectations, some convergence occurs also at the longest
forecast ranges when the response to parameter perturbations is definitely non-linear. At least some parameter convergence
takes place with all forecast ranges but the convergence is by far the fastest at short ranges.

Figure also 3 shows that there is relatively more error in the parameter mean value than there is spread when long or very
short forecasts are used. This is discussed further below.

‘We now focus on the forecast range of 24 hours and perform convergence tests with different ensemble sizes again measured
with fCRPS. Figure 4 indicates that convergence tests with ensemble sizes > 20 are stable while convergence tests with smaller
ensemble sizes do not show the desired smooth decrease of both parts of the fCRPS. Sampling variance seems to have a
strong effect in those cases. Sampling variance seems to play a smaller role when the ensemble size is 20 or larger. Figure
4 also enables comparison of the convergence tests from the resources point-of-view. For example, tests with 50 ensemble
members and 20 iterations, and 20 members and 50 iterations both use 1000 forecasts. However, the latter option leads to
much better convergence. The same pattern seems to apply to most of the similar pairs. Increasing the ensemble size beyond
about 20 members does not seem to be necessary to achieve good convergence. Results here are for 65 but the same conclusions
can be drawn for #; although the results with 6, are less conclusive (not shown). Interestingly, these results are in line with
the conclusions of Leutbecher (2018) that in ensemble forecasting related research it is better to have large number of small
ensembles than small number of large ensembles.

Based on these results we recommend using relatively short forecasts of 24 hours, at least when convection parameters
are concerned. We also recommend using medium-sized ensembles of about 20 members. Very small ensembles of less than
10 members increase sampling variance and destabilise the convergence. Moreover, convergence with DE was practically
impossible with small ensembles. We are fairly sure that about 20 members is close to the optimal ensemble size at least for

tuning these two parameters. However, we are somewhat uncertain that 24 hours is the optimal forecast range for all parameters.
4.4 Reliability of convergence tests

Two example convergence tests are repeated four times first using L1 and then L2: first one with a sub-optimal set-up of 48 hour
forecasts and 20 ensemble members and the second one with a close to optimal set-up of 24 hour forecasts and 26 ensemble
members. These set-ups are highlighted in Figure 3. We test whether these convergence tests yield similar results every time

i.e. the repeatability.
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Figure 5 shows the evolution of the repeated convergence tests measured with fCRPS in a similar fashion as in Figure 4. L1
convergence tests are on the left-hand side and L2 tests on the right-hand side. Labels A1 to A4 refer to the sub-optimal set-up
and labels B1 to B4 to the optimal set-up. The left-hand side of Figure 5 shows that both L1 set-ups yield fairly reproducible
convergence. However, when the level of complexity is raised to L2, only the more optimal set-up seems to yield repeatable
convergence with EPPES. The results obtained with DE are less conclusive as DE tends to fluctuate around the optimum (not
shown).

We recommend using such a set-up that is the most likely to yield reliable parameter convergence. At least in our case, the
optimal set-up of 24 hour forecasts and about 20 member ensembles is also the most reliable set-up. Also, using only initial
condition perturbations (L1) besides the parameter perturbations leads to more reliable convergence than initial condition plus

stochastic model perturbations (L2).
4.5 Potential pitfalls

First, during the convergence tests, we noticed that some parameters tend to converge to some off-default values. As an example,
the two most used parameters (61 and 65) tend to converge to slightly different values depending on the forecast range used.
0> tends to converge to a value smaller (larger) value than the default value when forecasts longer (shorter) than 24 hours are
used. The opposite is true for ;. However, at least 65 tends to converge in one-parameter convergence tests in the similar way
as in the two-parameter tests. This is illustrated in Figure 6, which shows the mean values of the final parameter for 6, (Figure
6a) and for 65 ( Figure 6b). Convergence of 0, seems to depend very strongly on the forecast range used in the convergence
tests. We now examine the cost functions for two sets of six hours to six days long ensemble forecasts, one using the default
parameters and one using parameters obtained from the optimisation (Fig 6). Both sets of ensemble forecasts were compared to
respective control forecasts with AF,,,. The tests were repeated with only initial condition perturbations active and with initial
condition plus stochastic model perturbations active. Results show that globally optimal parameter values are different from
their respective default values even though the default model is used as reference. It is indeed possible to obtain lower cost
function values with some off-default parameter values than with the default parameter values. This means that the peculiar
dependence is not caused by any deficiencies in the cost function or optimisation algorithms. However, convergence tests and
fully-realistic tuning are so different that we are unsure whether this dependency even exists at all in fully-realistic tuning.
Even if the dependency exists, it is unclear whether it hinders tuning after all.

A potential pitfall might emerge if there is a need to do algorithmic tuning with ensembles of very different sizes. At least
the two algorithms, EPPES and DE, are difficult to set up so that they would work satisfactorily regardless of the ensemble
size. If the algorithms produce good convergence with small ensembles of ~5 members, the parameter convergence is very
slow with medium-sized and large ensembles or the parameters may even diverge. Vice versa, if the algorithms work well with
medium-sized and large ensembles, they tend to be unstable with small ensembles.

At least two potential pitfalls are related to bad initialisation of tuning exercises. The first pitfall is that convergence of
EPPES suffers from too large initial parameter off-sets, while DE is very robust. For example, in an extreme convergence test,

where parameter off-set is an order of magnitude, convergence of EPPES may stop while DE suffers much less. The second
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pitfall may be encountered if the initial uncertainty of some parameter is too small with respect to the initial off-set, which
makes convergence to some local optimum likely. Both algorithms show that in such a case, the badly initialised parameter
remain practically unchanged while the other parameters appear to compensate the error.

We do not recommend completely blind algorithmic tuning. The parameter off-set should not be excessively large, and the
initial parameter off-set and uncertainty should be well proportioned. We also recommend to pay attention to selection of the
tuning algorithm. In case of tuning very uncertain parameters, we recommend to use robust algorithms, which do not suffer

from large parameter off-set.
4.6 A recipe for successful tuning

Our recipe for economic and efficient tuning is summarised below:

level 1 of complexity (at least initial condition perturbations, possibly also stochastic model perturbations)

a comprehensive measure is used as a cost function (A E,, in our case)

arelatively short forecast range is used (24 hours in our case)

a relatively small ensemble size (20 in our case)

Here we put the recipe into test with more demanding convergence tests with EPPES. We run four five-parameter tests with
TL159, two five-parameter tests with TL399 and one eight-parameter test with TL159 resolution. The parameters in the five-
parameter tests are the same as in the L3 convergence tests. In the eight-parameter test there are three additional parameters
from the convection scheme (see Table 1). The parameters are initialised randomly with either 10% too large or too small value,
and large uncertainty. The set of initial conditions is the same as before meaning 52 iterations.

We discuss all the four TL159 and the two TL399 convergence tests at once, meaning there are a total of 30 converge cases
to be discussed (six experiments all involving five parameters). In these six tests, the parameter values converge towards the
default values during the convergence tests in 20 out of 30 cases. 61 converges to an off-default value in four of the cases as
does 603. 6, converges to an off-default value twice. Furthermore, 65 tends to converge to a slightly smaller value, and 64, 6,
and 65 to slightly larger value than their respective default values. In 25 out of 30 cases the final parameter value and the default
value are both within two standard deviations uncertainty of each other, and hence the default value is inside the parameter
distribution proposed by EPPES. In the remaining five cases the remaining parameter off-set is slightly more than two standard
deviations. These five cases distribute so that each parameter ends up outside of two standard deviations distance to the default
value for one time. In all 30 cases, the uncertainty of the parameter value decreases during the convergence tests meaning that
the parameters do converge even though in some cases they converge to some off-default values.

The results of the eight-parameter convergence test are presented in Figure 7. It shows convergence of the eight parameters
in normalised form, and the text boxes in each panel indicate the remaining parameter off-set after 52 iterations. All parameters

converge towards their default values. In case of 05, the default value is outside of the uncertainty range. Additional dimen-

10



310

315

320

325

330

335

sionality seems to slow down the convergence only a little, which definitely encourages to use algorithmic tuning methods for

large parameter sets.

5 Discussion

The choice of the cost function is an essential part of the tuning problem. In order to illustrate the importance of choosing a
suitable cost function, we intentionally chose two radically different cost functions: the root-mean squared error of geopotential
at 850 hPa and the moist total energy norm. The former was, as expected, a bad choice, whereas the latter was a clearly
more suitable choice. However, the moist total energy norm was not a perfect choice due to the properties of the tunable
parameters. The two parameters 6; and 65 are not equally sensitive to the components of the moist total energy norm. ¢, which
is related to the shallow convection, is active only in the lowest 200 hPa layer of the model atmosphere. §; mainly affects how
specific humidity is distributed in the layer. Therefore, contribution of 8, comes almost only from lower tropospheric specific
humidity. 65 controls deep convection so it has direct impact on wind, temperature and specific humidity throughout the
model troposphere. Therefore, contribution of 65 to the cost function dominates, which may in some cases decrease the overall
sensitivity of the moist total energy norm when estimating the two parameters simultaneously. An option would be to use
multiple cost functions, having one dedicated for each tunable parameter. However, this could lead to a question of scaling:
would each cost function have equal weight or are some of the cost functions considered more important? At the moment we
do not have a definitive answer for this.

In our study, we aimed at finding an optimal set-up for convergence tests by studying different combinations of forecast
range and ensemble size. Using an ensemble of 20 members and a forecast range of 24 hours gave the best results. When
the ensemble size is too small, the sample size will also be small, which could lead to the case of not having a representative
sample. A forecast range of 24 hours seems optimal. When the forecast range is shorter, 8; tends to converge to smaller values
and 65 to larger values than the default parameter value, whereas a longer forecast leads to 6, converging to larger value and 65
to smaller value than the default value. The question whether the parameter values depend on the forecast range is profound.
The entire forecast range could also be considered, but may lead to similar scaling issues (e.g. Ollinaho et al., 2013) as when
using multiple cost functions.

The two optimisers used in this study, EPPES and DE, have different properties. EPPES converges more slowly and estimates
the covariance matrix of the parameters, whereas DE gives faster but less steady convergence. The optimisers could therefore
be used at different stages of the optimisation: first, DE could be used as a coarse tuner finding the approximate direction, and
then EPPES could be used to fine tune the results. This type of tuning process would be of most use when the parameters are
known poorly a priori.

Local minima of the cost function is a potential problem. According to our observations, this may occur if the initialisation of
the parameter values is bad. A large initial distance from the optimal value combined with a too small initial uncertainty range
might lead to a case where the cost function becomes locally minimised, and the algorithm gets stuck exploring parameter

values from around this local minimum. Other parameters may compensate the error, and the cost function becomes locally
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minimised. When the parameters are initialised appropriately and initial condition perturbations are active, problems of this
sort are less likely.

We compared the perturbed forecasts against the control forecast run with default parameters. In this case, one would expect
that forecasts with default parameters would result in minimum cost function, but this turned out not to be the case. This leads
us to the question whether changing the values of the model parameters affect properties of the ensemble, such as its spread.
In a well-tuned ensemble prediction system not only should the model be as good as possible (i.e., having optimal parameter
values) but the relationship between the spread of the ensemble and the ensemble mean skill should be in balance. We leave

this question open for future studies.

6 Conclusions

In this paper we have studied the convergence properties of two algorithms used for tuning model physics parameters in a nu-
merical weather prediction model. The tuning process is a computationally demanding task and using an optimal experimental
set-up would minimise the amount of computational resources required.

In our experiments we studied two different tuning algorithms and how the convergence properties were affected by (1) the
choice of cost function, (2) forecast range, (3) ensemble size, and (4) the complexity of the model set-up (perturbations of
initial conditions and stochastic physics turned on or off). In our case, we focused on tuning two parameters of the convection
scheme of the OpenlFS model. The model resolution in these tests was T159 (about 125 km).

Our goal was to find an optimal set-up of forecast range and ensemble size with the highest likelihood for fast and reliable
convergence; hence, minimising the amount of computations. We ran many convergence tests with different experimental set-
ups, calculated the moist total energy norm between the forecasts with perturbed parameters and the control forecast having
default parameters values, calculated a fair verification metric (fair-CRPS), and finally compared the experiments against each
other. The optimal set-up in our experiments was an ensemble of 20 members and a forecast range of 24 hours.

We tested the optimal set-up for a more complex optimisational task: tuning five and eight parameters at once. In these
experiments, the ensemble had 20 members, the forecast range was 24 hours, and the algorithm was run for 52 iterations. Such
an experiment would be the same as running a single 1040-day long forecast consuming roughly 400 core hours for TL159
model resolution and 4200 core hours for TL399 model resolution on Intel Haswell computation nodes. These experiments
showed that the convergence of most of the parameters was good.

Finally, we conclude our study by answering the question whether algorithmic tuning (of model physics parameters) could

be trusted: yes when used with care.

Code and data availability. Basic version of OpenEPS is available under Apache licence version 2.0, January 2004 on Zenodo
(https://doi.org/10.5281/zenodo.3759127). Amended version of OpenEPS, which was used in the convergence tests, is also available under
Apache licence version 2.0, January 2004 on Zenodo (https://doi.org/10.5281/zenodo0.3757601). The amended version contains various
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modifications such as set-up scripts for EPPES and DE, scripts for calculating cost function values and scripts for processing and plotting
output of convergence tests. Besides the archived versions, we encourage to check out also the maintained versions of basic and amended
OpenEPS in Github (https://github.com/pirkkao/OpenEPS and https://github.com/laurituppi/OpenEPS). Licence for using OpenlFS NWP
model can be requested from ECMWF user support (openifs-support@ecmwf.int), and the model can be downloaded from ECMWF ftp
site (ftp.ecmwf.int). EPPES is available under MIT licence on Zenodo (https://doi.org/10.5281/zenodo.3757580) , and DE is available upon
request from vladimir.shemyakin@Iut.fi. The initial conditions used in the convergence tests belong to a larger data set. Availability of the
data set will be described in (Ollinaho et al., submitted). We want to emphasize that reproducing the results does not require using exactly
the same initial conditions than in this paper but any OpenIFS ensemble initial conditions can be used. Output data of the convergence tests

is not archived since it can be easily reproduced.
1 Experimental details of EPPES

EPPES needs four hyperparameters: p, 3, W, and n. The two former describes the initial guess for the distribution of the
parameters that are to be estimated, whereas the latter two describes how accurate the initial guess is.

Let 8 = {0,,...,0,.} be the closure parameters. In EPPES, the prior guess it that the closure parameter follows a Gaussian
distribution 8; ~ N (u,X), where p is the mean vector of € and X the covariance matrix.

Details of initialisation of the parameter distribution are listed in Table Al and other settings of EPPES are summarised in

Table A2. The mean values are always multiplied with 0.9 or 1.1 in the initialisation of the convergence tests.
2 Experimental details of DE

DE requires the boundaries for the parameter search domain to be specified. DE does not explicitly limit any searching di-
rections by default, but some constraints can be specified in order to avoid unfeasible parameter values. In our case, we are
targeting to only non-negative values.
Initial search domain is specified in Table A3 and other settings written in the namelist file are summarised in Table A4.
Recalculation step is employed every fifth iteration, it substitutes all usual DE steps (mutation, crossover, selection) and just

computes/updates the value of the cost function in the current environment for the elements already in the population.

Author contributions. Lauri Tuppi and Pirkka Ollinaho designed the convergence tests, and Lauri Tuppi carried them out. Pirkka Ollinaho
provided initial conditions and OpenEPS with comprehensive user support. Vladimir Shemyakin provided hands-on assistance in using
DE in the convergence tests. Lauri Tuppi prepared the manuscript with contributions and comments from all co-authors. Heikki Jérvinen
and Madeleine Ekblom helped with clear formulation of the text. Heikki Jdrvinen supervised the experimentation and production of the

manuscript.
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Figure 1. Comparison of convergence tests at different levels of complexity. Panels (a) and (b) show the evolution of distribution mean value
(p) and the mean value +2 standard deviations uncertainty (p + 20) for 61, and (c) and (d) show the same as (a) and (b) but for 02. The
purple dots show the parameter default values. The x-axes show running number of iterations, i.e., how many ensemble forecasts that have
been used. AE,, is used as the cost function, and the levels of complexity are summarised in Table 2. EPPES is used as the optimiser, the

ensemble size is 50 members and the forecast range 48 hours.
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Figure 2. Convergence tests with different cost functions. Convergence of 61 on the left and 6> on the right. The x-axes show running number
of iterations. Solid black lines show the evolution of distribution mean values () and black dash-dotted lines the mean values 42 standard
deviations when A E,,, is used as cost function. Cyan dotted lines and shading in the background show the same for A Z. Default value shows
the fixed parameter value used in the default model. Both convergence tests are L1 tests with 50 ensemble members and 48 hour forecasts.

EPPES is used as optimiser.
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Figure 3. Components of fair CRPS from the final iteration of the convergence tests with various forecast ranges and ensemble sizes. In this
example, the optimisation algorithm is EPPES and the parameter is 62. The left-hand side of each block represents the average distance of
the parameter values from the default value (equation 3), and the right-hand side represents the spread of the parameter value distribution
(equation 4). Low values and blue colours of both sides of the blocks indicate good convergence. Green and yellow boxes highlight the tests

repeated in Figure 5.
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interpretation of the blocks is the same as in Figure 3. The number of iterations indicates how many iterations of the algorithm have been

done, or in other words how many ensemble forecasts have been run. Components of fCRPS have been calculated using equations (3) and
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Figure 5. Evolution of 0 in repeated convergence tests with two selected forecast range — ensemble size combinations highlighted in Figure
3. The level of complexity is L1 on the left and L2 on the right. Tests A1 to A4 have been run with forecast range of 48 hours and ensemble
size of 20 members, and tests B1 to B4 with 24 hours and 26 members. EPPES was used as an optimiser in these examples. Components of

fCRPS have been calculated using equations (3) and (4).
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and mean values of 6 in (b). Purple (green) colour means that the final mean values are larger (smaller) than the default value.
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Figure 7. Progress of the convergence in the eight-parameter test. The parameter values and uncertainties have been normalised with their
default values. Black dots show sampled parameter values, red line with stars shows parameter mean value, blue lines with dots show mean
value +2 standard deviations and the green line shows the default parameter value that is 1.0 due to the normalisation. The text boxes indicate
the remaining parameter off-set, which is the relative distance between the final parameter mean value and the default value. Initial parameter

off-set is randomly plus or minus 10 %.
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Parameter Default value Short description

ENTSHALP (6,) 2.0 Entrainment rate scaling factor for shallow convec-
tion

ENTRORG (62) 1.75-10 3 m™* Entrainment per unit length for deep convection

DETRPEN (63) 0.75-107* m™* Turbulent detrainment per unit length for deep con-
vection

RPRCON (0,4) 1.4-1073s71 Conversion factor from cloud water/ice to rain/snow

RDEPTHS (05) 20000 Pa Depth of layer for shallow convection

RMFDEPS (66) 0.3 Fractional massflux for downdrafts at level of free
sinking

RHEBC (07) 0.9 Critical relative humidity below cloud for evapora-
tion

ENTRDD (6s) 3.0-107*m™! Average entrainment per unit length for downdrafts

Table 1. Parameters of the convection scheme of OpenIFS. 6, and 6> are used the most in this study.
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Number of parameters Different initial condi- | Stochastic physics (SPPT)
tions
Level 0 (LO) | 2 No No
Level 1 (L1) | 2 Yes No
Level 2 (L2) | 2 Yes Yes
Level 3(L3) | 5 Yes Yes

Table 2. Summary of convergence tests with different degrees of complexity.
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Parameter ‘ Mean ‘ Variance Lower bound | Upper bound

ENTSHALP (6;) | 2.0 0.5625 0.5 6.0
ENTRORG (65) | 1.75¢-3 | 1.40625¢-7 le-4 le-2
DETRPEN (05) | 0.75e-4 | 2.25e-10 le-5 le-3
RPRCON (6,) | 1.4e-3 7.84e-8 le-4 le-2
RDEPTHS (65) | 20000 1.6¢7 1000 60000
RMFDEPS () 0.3 0.08 0.1 0.6
RHEBC (67) 0.9 0.01 0.5 1.0
ENTRDD (s) | 3.0e-4 | 0.65¢-9 3.0e-5 3.0e-3

Table A1. Initial values of the convection parameters for EPPES.
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Namelist object ‘ Value ‘

Explanation

maxn
maxstep
lognor

useranks

5
0.05

Length of memory in iterations

Maximum change of parameter mean value in one iteration
Use log-normal distribution, 0=no

Ranking of cost function values instead of using values them-

selves

Table A2. Other settings of EPPES.
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Parameter Lower bound | Upper bound
ENTSHALP (6,) 1.0 4.0
ENTRORG (62) 1.25e-3 2.25e-3
DETRPEN (65) 5.0e-5 1.0e-4
RPRCON (04) 1.0e-3 1.8e-3
RDEPTHS (65) 15000 25000
Table A3. Initial parameter value search area of DE.

28



Namelist object ‘ Value ‘

Explanation

F
CR
JP

mutation_type

scale_factor_type

F_l
F_u

pop_function

Jttr

0.5
0.9
0.1

2

5
0.5
1.0

positive

0.01

Control for amplification of differential variation
Crossover probability
Probability of generation jumping
Use the best parameter vector in mutation
Scale factor randomisation scheme
Lower boundary for scale factor F
Upper boundary for scale factor F
Limits parameters to be positive

Scale factor randomisation

Table A4. Other settings of DE.
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