Revision report and Author’s response to the Reviewer
comments

We thank to the reviewers who provided precise and valuable feedbacks on our manuscript. We
addressed all the points in the responses as follows. We are happy to submit the revised manuscript
that reflects these changes, which significantly improves the quality of our manuscript.

The reviewer comments are quoted in italic with some minor editorial adjustments, and our
responses to them follows them. All the comments are numbered (A0, B002, etc), and corresponding
changes in the text and figures are annotated on the margins in the revised manuscript. Some
modification are separated into multiple blocks and each of them is annotated with the same tag.
Those changes corresponding to Reviewer #1 and to #2 are marked with red and blue, respectively,
which include deletion/addition/replacement of the figures. Since numbers of figures and equations
are changed, there are many small changes in these reference numbers, which are annotated with
brown tags in the revised manuscript. Also, after including all the changes, English check is done
by a company, which is also annotated with brown.

Response to Anonymous Reviewer #1

We thank the reviewer for presenting several key points that will indeed improve the manuscript.
We have addressed these concerns below.

Summary

(A0) F. Saito et al. paper addresses the problem of numerical computation of ice age
in ice sheet models. Indeed, calculation of ice age is the major challenge of ice sheet
modeling in various applications beginning with the preliminary choice of potential
target place for deep drilling of ice sheets and ending with the accurate interpretation
of ice cores. The study area in Saito et al. manuscript is limited by a summit
position of an ice sheet where the benchmark — an analytical solution for the ice age
can be set. The authors examine two semi-Lagrangian RCIP schemes performance
and compare results with more traditional Fulerian upwinding schemes for solving an
advection equation.

Thank you very much for your summary. We agree that the topic of the manuscript is limited
to 1-d computation under summits, and believe that this is a necessary step for future extension of
the new scheme to 3-d field computation, as the referee remarks in the following.

General remarks

(A1) It should be noted that a family of RCIP schemes have been applied earlier in
various problems of hydrodynamics, hydraulics etc., but their application for ice age
calculation in ice sheet modeling is a novel and, perhaps, a promising approach. In
reality, of course, we face with 3D problems of ice age computation, either when it is
necessary to build the ice age field of the whole ice sheet or to construct a model
chronology of a virtual ice core. From this point of view, the submitted research of



Saito et al. may be considered as just an academic exercise comparing various
numerical methods for highly idealized environmental conditions, which never occur
in reality. Nevertheless, such kind of research are useful because they indicate
possible pitfalls of rather traditional methods and introduce new approaches for
solving tantalizing tasks in ice sheet modeling. In the ‘Discussion and conclusion’
section the authors reasonably point that the advection problem can be attributed not
only to ice age calculation but also to calculation, for instance, of ice temperature.
Anyway, further application of the RCIP method and its comparison with the
FEulerian schemes in 3D will inevitably face with the choice of a true benchmark,
which are, indeed, absent except in case of visual calculation of annual ice layers in
ice cores. Moreover, for model interpretation of ice cores a very effective back-tracing
method was suggested (Huybrechts et al., Climate of the Past, 2007) which is a
powerful tool for dating of ice cores using ice sheet modeling technique. In the
‘Discussion and conclusion’ section authors mention that their aim is to proceed with
examination of the RCIP scheme in 3D. In this view, I think it would be reasonable
to outline possible restrictions, challenges and limitations of future research.

First of all, thank you for the evaluation and your precise understanding of this paper. Yes, this
paper may be regarded as an exercise, however, as the reviewer kindly points out, we believe that
this is a useful approach which we should not avoid when introducing a new scheme.

We agree in particular to the last remark. Citing Huybrechtes et al. (2007), we introduced
possible restrictions and limitations of this approach in the discussion section. The small but main
advantage of RCIP method than the powerful back-tracing method is that it is a forward scheme
— it is not necessary to record all the past velocity field during the simulation. RCIP may do a
good job for preserving the flux information at the deposition (annual layer thickness in the case
of dating), however, detection of ‘points of origin’ requires another technique, e.g., the back-tracing
method itself. Thus we consider that the combination of the high precision forward scheme and
the powerful backward scheme will be a good choice for ice-core dating issue. Thanks a lot for this
comment.

(A2) Another problem, which was not elucidated in the manuscript is the
computational cost of application of different numerical schemes. I think it would be
easy to do since all experiments were performed on the same computer facility. There
is only short note on that (Line 239). The trade off between time of computation and
accuracy in some cases may play for the simpler but faster method. In general, the
manuscript is well structured, the figures are informative (except the note below
concerning an a possible additional figure).

Thanks a lot for pointing it out. Typically we computed 4 x 7 different configuration of 1d
column in one run on an Intel Xeon E5-2609 6 core PC. The mean computational costs for one job
in the case of 129 levels with the first-order upstream, the second-order, RCIP, RCIP with correction
are 30, 28, 32, and 34 seconds, respectively. Those in the case of 513 levels are 338, 296, 364 and
392 seconds, respectively. These are described in the text in addition to the original text relating
to the ratio of computing times.



Line by line comments

(A000) The title of the paper. The core of the paper is a set of comparisons between
performance of the semi-Lagrangian RCIP schemes and the FEulerian once. Actually,
there is nothing in the manuscript about ice sheet models. Therefore, it would be
reasonable to be more precise in formulation of the title.

Thanks a lot for your suggestion. In particular for title, we agree to your suggestion. Since the
word ‘ice-sheet’ should be kept because the focus is on it, only the last word is not necessary to satisfy
your remark — ‘Implementation of RCIP scheme and its performance for 1D age computations in
ice-sheet’. Generally, however, ‘an ice-sheet model’ means various things: recently in most context
it seems a dynamic ice-sheet flow model, but an ice-sheet dating model can be also an ice-sheet
model. Also, as discussed shortly in the manuscript, we will extend RCIP implementation onto our
ice-sheet flow model, so we keep most of the terminology in the main text.

(A001) Line 15. “ .- more generally in tracer transport ---”. This statement is

somewhat confusing. Dating of ice cores is not limited to tracer transport. This
definition (tracer transport) may be attributed to Lagrangian or semi-Lagrangian
methods only.

All right, we agree it was confusing. The block ‘tracer transport...” are now deleted. Also the
paragraph are slightly adjusted according to this change.

(A002) Section 1.1 and 1.2 The section lacks short general description of the
semi-Lagrangian method in the context of its comparison with the pure Lagrangian
and the Eulerian. Since the problem of interpolation is the most important in
semi-Lagrangian schemes, it will be very much handful to make a (sketch) figure
illustrating application of a 1-D semi-Lagrangian approach using definitions of the
variables mentioned in the manuscript (arrival and departure points etc.). It would
be also appropriate to address the reader to a classical paper (Stanoforth and C6té,
1991, Semi-Lagrangian integration schemes for atmospheric models: a review.
Mon. Weather Rev., 119(9), 2206-2223.)

This is a good point. A short general descriptions are inserted in Sects 1.1 and 1.2 with a
schematic figure to explain the design of semi-Lagrangian, arrival /departure points (new Figure 1).
The classical paper the reviewer mentioned is cited also.

(A003) Line 61. Please comment on the first use of g(x;). What is it, what is the
purpose of its introduction etc.

The term g(z;) is abbreviation of function g(x) (i.e. the spatial derivative of f(x)) at the grid-
points x;. The definition of g(x) was already documented before Eq.(4), but A short description is
inserted again here in order to emphasize it.

(A004) Line 187. To be precise, Rybak and Huybrechts (2003) did not employ
semi-Lagrangian approach, but pure Lagrangian particle tracing.

Thanks. ‘Lagrangian’ is also inserted here.



(A005) Line 394. “Figure 14 is the result---” should be reformulated like, for
instance, “Results of transient experiments are presented in Figure 14 ---”. Same is
in Line 395: “same as IN Fig. 6 AND 7.” Same is in the next sentence.

They are reformulated following your suggestions, with including the suggestion of the reviewer
ii.

(A006) Line 459. Please, check equation for (. What is Z'*? Please, explain why did
you use this particular formula for the smooth discretization? What did you mean
under “some trial and error”. In my view, you should be more exact.

Thanks a lot for point it out. The term Z'* is Z to the power of 14. We try the ¢ formulation
as (Z +~v2Z%)/(1 + +) with two parameters v and 1. The constrain we force was (i) ((Z =0) =0
(ii) ¢((Z =1) =1, (iii) d{/dZ > 0. The formulation above is simple and satisfy these requirements.
With varying x and y, we found the formulation in the text is one of them to resolve the target
annual layer thickness at the target depth. These are now described around here.

(A007) Line 482. Please, indicate that your computations can be related to the
summit points of ice sheets only, which are accepted stable throughout the time spell
of numerical experiments.

All right. The restriction of this study as you mention is now inserted.

(A008) Line 482. In my view, the fragment of the text “ -- ice-sheets under various
configurations” is somewhat confusing. The results of the study are attributed to
summits of ice sheets only, and their configurations have no any connection with the
research.

All right. The word ‘various’ is too much and removed. Together with the previous remark, the
sentence are written more precisely. Thanks a lot.



Response to Reviewer {2

We thank Shawn Marshall for a number of detailed review that significantly helped us to improve
the quality of our manuscript. We have addressed these concerns below.

(BO) The authors present a detailed examination of a novel (in ice sheets)
interpolation scheme with promise for improved tracing of ice age as well as annual
layer thickness reconstructions in ice sheets. This study focuses on 1D examples with
scenarios (e.g. mass balance accumulation rates/vertical velocities) typical of the
East Antarctic plateau, with direct relevance to ice core dating and age modelling.

Thank you very much for your summary.

(B1) The study is comprehensive, with superb attention to detail and to explaining
the method and the mathematical implementation, such that this should provide a
strong foundation for building on and for others that choose to adopt these methods.
It is a valuable study, as age modelling or other passive tracer advection studies (e.g.,
isotopes, dust layers, or other chemical horizons) have not been given much attention
in ice sheet studies in recent years, and are likely due for a resurgence as radar
reconstructions are giving increasing detail on 3D ice sheet structure (e.g. McGregor
et al., 2015); 3D tracer modelling offers an important avenue for improving and
constraining ice sheet models. The methods introduced here should be seriously
considered as an alternative to more ‘classical’ semi-Lagrangian interpolation
schemes such as upwind differencing.

MacGregor, J. A., M. A. Fahnestock, G. A. Catania, J. D. Paden, S. Prasad
Gogineni, S. K. Young, S. C. Rybarski, A. N. Mabrey, B. M. Wagman, and M.
Morlighem (2015a), Radiostratigraphy and age structure of the Greenland Ice Sheet,
J. Geophys. Res. Earth Surf., 120, 212-241, doi:10.1002/2014JF003215.

Thanks a lot for such a positive evaluation.

(B2) I am attaching a copy of the manuscript with several minor points. The English
needs a bit of a double check throughout, for articles, but it is extremely well written
and thorough, overall. I will confess that I did not work through the mathematical
derivations carefully and have no experience with the RCIP or CIP techniques, so I
cannot comment specifically on the rigour and appropriateness of this aspect of the
manuscript, or on the novelty of the ideas (vs. e.g., existing implementations in other
contexts such as atmospheric models). It is new and relevant to ice sheet modelling.

Responses to all the minor points are appended at the next section. We are grateful to the
reviewer for the careful and detail review. We believe that the manuscript is now significantly
improved after modification following the suggestions and comments.

(B3) There is a large number of figures, and it could be worthwhile to consider
condensing the presentation of results a little. For instance, with new
experiments/sensitivity tests after Figure 7, it could be possible to show only one
result (of Figures 8 and 9, and of Figures 14 and 15; maybe elsewhere), while still



discussing both experiments in the text. I am also OK with the manuscript as is.
Sometimes it is nice to see everything laid out and presented, without relegating
additional results to supplements.

All right, we agree. We reduce the figures while keeping the text accordingly. Figures 9, 13, 15
are now removed.

(B4) A couple of suggestions for the authors’ consideration:

The accumulation rates in the experiments are very low, typical of the East Antarctic
Plateau during the glacial period. I guess that it does not affect the performance of
the different interpolation/advection models, but am curious to confirm this for the
case of e.g. accumulation rates 10 times higher, more typical of Greenland. Also,
combined with this, high-amplitude, millennial-scale climate oscillations that are
typical of Greenland (D-O cycles). Are there specific recommendations or differences
in RCIP behaviour specific to these conditions?

This is a good point.

Actually, as far as the shapes of normalized vertical velocity profile are identical, the normalized
shapes of the solutions are also identical. In other words, for example, the age solution under the
configuration of 30cm /yr surface mass balance, 0 basal mass balance, and 3000m ice thickness, has
the same normalized shape with the solution with that under 3cm/yr, 0 and 3000m, respectively.
Another example: Fig. 17 in the manuscript shows the results of annual layer thickness at 1000kyr
in terms of mm, under the square wave surface mass balance between 3cm/yr and 1.5cm/yr with
total duration of 10,20, and 50kyr. These results can be, as they are, interpreted as annual layer
thickness at 100kyr in terms of 10mm, under those of 30cm /yr-15cm/yr with the duration 1,
2, and 5kyr, respectively (i.e., corresponding 1/10 unit time.). Therefore roughly speaking, the
situation the referee is interested (millennial scale and typical Greenland) is already covered by the
same experiment. We have examined a part of sensitivity studies with 10 times higher accumulation
to confirm the above idea (figure is not shown). The idea of scaling can be additional demonstration
worthwhile to present. We insert this idea in the introduction and result section, and also insert
actual discussion in the last section. Thanks a lot for this point.

(B5) The model is developed specific to 1D age modelling in ice core settings (i.e.
purely vertical flow, positive surface mass balance). Extension to 3D is discussed
near the end, but would require consideration of positive (emergence) velocities, 3D
flow fields, and (typically) much lower horizontal gradients of ice age. This first
comes up on p.8, 1.197, where the authors develop a formulation that assumes
negative vertical velocity throughout, which will not be compatible with 3D modelling.
I appreciate that the extension to 3D is for future study and we already have much to
chew on with the current presentation of ideas and results, but this discussion could
be extended a bit and I am curious about the author’s opinion of whether the more
complex RCIP type of approach is warranted for the lower horizontal gradients in 3D
interpolation models.

Yes, the negative mass balance experiment is just a demonstration and may not be compatible
with 3d situation. RCIP is in a sense merely a variation of semi-Lagrangian scheme: instead of



spatially increasing the number of grid-points for achieve higher-order interpolation, it does add a
field variable to solve (the gradient term). Therefore RCIP is essentially the same method with
the other higher-order semi-Lagrangian scheme, so we believe that this approach has a comparable
characteristics with other semi-Lagrangian schemes that the many past studies have already pre-
sented and discussed. In addition, the spatial gradient of age is not a diagnostic (passive) field but
prognostic under the RCIP scheme. So we speculate that the precision of the spatial gradient is no
worse (hopefully better) than the other higher-order semi-Lagrangian methods. Such an extension
of this discussion are inserted in the text. Thanks a lot for such a stimulating comment to improve
our manuscript.

(B6) Related to 3D models: the authors explore what would be considered as high
vertical resolution in ice sheet models, from 129 to 513 vertical layers. This is much
higher than many operational 3D ice sheet models that look at 3d (Stokes) solutions
to the velocity field or Ice Age timescales: nz = 40 may be more typical. In the
section on vertical resolution, it would be helpful to include an experiment with e.g.
nz=33 to evaluation model performance at lower resolution. Does it further degrade
the interpolation schemes and exaggerate the differences in modelled ice age, or do
models converge as resolution declines?

Actually, we have already performed, some of e.g., nz=33 cases. An example result is inserted
in the manuscript (new Figure 17). Also, Fig. 14 (which was Fig.16 in the first manuscript) now
contains a lines corresponding to nz=33. The preservation of annual layer thickness is reduced at
shallower depth.

(B7) I am interested in the relatively strong results of the first-order upwind scheme.
The authors do discuss this, but why is this consistently better than 2nd-order upwind
schemes in almost all of the model experiments? In some cases it is of comparable
performance to RCIP. Would the authors recommend always using 1st-order over
2nd-order upstream advection/interpolation models, and under what conditions might
1st-order advection schemes be adequate, vs. the RCIP-corr approach? A short
discussion of ‘practical suggestions’ for eventual application of this technique in ice
sheet models would be valuable.

Yes, we were surprised to see that, too. The relatively better performance of the first-order
upwind scheme is already presented in past studies (Greve et al 2002 cited at L.282), which attributes
to cancellation of errors between discretization and numerical diffusion. Moreover, as discussed in
the manuscript, the design of mid-point rule on the first-order upwind scheme is not a true first-
order scheme. Figure 3 presents that the solution by true first-order scheme (UP-1n) is worse by
magnitude one than the second-order (UP-2), as we expected. It is possible to implement similar
mid-point rule on the second-order scheme, which may improve the result of second-order Or, a
different design of second-order scheme as Greve et al (2002). These may change the relative
performances. Despite several difference of the past study, the result show similar performances
qualitatively: the first-order results may better than the second-order except for the bottom.

Figure 3 also RCIP with upstream correction significantly improves the solution than RCIP
without correction, which suggests an importance of non-constant velocity between the arrival and
departure points to take into account. A mid-point rule formulation on the first-order scheme, in
principle, corresponds to the former, with upstream correction.



The shape of normalized vertical velocity profile also may play a role for the relative performance.
The bottom part is less linear than the upper part, thus the first-order approximation becomes
worse. Some or all of these points lead the better performance of the first-order. We extend these
discussion in the manuscript.

About practical suggestions. We considered that, as far as the annually layer thickness is not our
concern, the classical upwind schemes are not a bad choice for dating. Using a first-order upwind
scheme, a detail structure of surface mass balance history disappears very rapidly, but average
features are quite well computed except for near the bottom. The second-order scheme preserves
the history than the first, but without an effective slope limiter strange oscillation can strike the
result as we demonstrated in the paper. We did not try any of such slope filters presented in the
past studies because it is not our purpose, that is one of the reasons that second-order seems to be
worse than the first. However, as far as the annually layer thickness is not a focus, the results by
the second-order schemes are slightly better than those of the first-order throughout the experiment
except for the most simple case (honestly, not better but more close to RCIP solution). Slope
filters for higher-order upwind schemes on a non-uniform discretization is possible (as mentioned
in the text citing Murman et al 2005), but rather complex than uniform discretization case. The
conclusion of Greve et al (2002) already present such ‘practical suggestions’: the second-order, the
TVDLF scheme with minmod filter, and even the first-order schemes are their proposal for dating.
Our suggestion after this statement: if you expect good performance in annual layer thickness
computation close to the bottom, using non-uniform discretization, then we strongly recommends
to apply RCIP. We cite their statement and our new suggestion are inserted accordingly. Thanks
a lot for pointing it out.

(B8) Many thanks for this interesting contribution - I look forward to seeing the final
version advance to GMD and push the research community forward.

Again, thanks a lot for all of the fruitful comments which definitely improve out manuscripts.

Minor points

(B000) page=1 areas. Or “the potential ... area.”
All right. Replaced with ‘areas’.

(B001) page=2 I feel compelled to note that this work on semi-Lagrangian tracer
schemes was initiated in Clarke and Marshall (2002), and Tarasov and Peltier
(2003) built off of this. Clarke et al. (2005) and Lhomme et al. (2005) built further,
through the introduction of mass-balance based interpolation schemes to better
address the age-depth relationship (as noted here) in several different Greenland
cores. Clarke, G.K.C., Marshall, S.J., 2002. Isotopic balance of the Greenland Ice
Sheet: modelled concentrations of water isotopes from 30,000 BP to present.
Quaternary Science Reviews 21, 419-430

Good point. Thank you very much for the information. We introduce Clark and Marshall (2005)
here and other places.

(B002) page=2 performing a time-splitting....



All right, inserted ‘a’, accordingly.
(B0O03) page=2 on the time-splitting...
All right, inserted ‘the’, accordingly.

(BO04) page=5 here, does x refer to x4.,, per the line above? Or it would be more
logical to me that x; in Eq (24) is x4ep, the fixed point of departure.

After posting of the author’s comment, we found an error on Eq. (24), which may confuse the
reviewer. The function of Eq. (24) is a linear formulation of w on any z between z; and z;j11,
not between x; and x;;11 as in the original submission. So, any x between z; and z;;+1, including
T = Tqep satisfies this formulation, as the reviewer pointed out. In order to integrate along x between
xj and Zgep, we need such a formulation for x in this range. Correcting the error, we believe that
this point is more clearly described now. We are sorry about the mistake, and thanks a lot to the
reviewer for pointing it out.

(BO05) page=6 delete “of”
All right, deleted ‘of” accordingly.
(B006) page=7 Do you mean Eq. (32) here?
Correct. Thanks a lot.
(BO07) page=7 is adopted
Thanks a lot. We modified the noun (representations) instead.
(B008) page=8 Clarke and Marshall, 2002
Thanks a lot. Together with citation of the paper at page 2, this is introduced.

(B0O09) page=8 although note that this will fail to accommodate full ice sheet
conditions, e.g. in tracing layers into ablation zones

You are right. This sentence somewhat overstates ice sheet dating computation. We modify the
statement according to your comment.

(B010) page=10 computations
All right, ‘computations’ accordingly.
(BO11) page=10 what do you mean, for p? for p=1°%¢

Sorry, the correct sentence is ‘... and setting M's = —M©b for arbitrarily p.” The word ‘arbitrarily’
was placed at wrong position.

(B012) page=10 suggest ~ rather than “around”, here and later in this sentence



)

All right. ‘Around’ hear and later are be replaced with ‘~’.
(B013) page=12 We use a...

)

All right. Rewritten as ‘We use a uniform grid spacing of ...” accordingly.

(B014) page=12 I am unclear on the units here - this is the error in years, perhaps,
rather than kyr? At face values, it appears to have negative and positive biases of
more than 10 kyr, but that is not consistent with (a)

The unit is correct. Indeed the small oscillation at the bottom in (b) is obscured by the bench-
mark line in (a). Zooming up of the figure (c) is inserted.

(B0O15) page=13 as a vertical
All right, inserted ‘a’, accordingly.

(B016) page=13 a very simple
All right, inserted ‘a’, accordingly.

(B017) page=14 These values are all fine but are extremely low for a lot of
glaciological situations, e.g. in Greenland or WAIS divide, etc. Perhaps reflective of
the glacial Antarctica plateau (8 cm/yr), but sensitivity tests could explore values and
order of magnitude higher than this to be more representative of other ice sheet
conditions.

We definitely agree to this point. Please check our response above (B4). Roughly speaking, the
proper scaling of the result are examined. Also, the additional experiments with 10-times larger
accumulation are discussed here, which may draw more attention from readers. Thanks a lot for
the suggestion.

(B018) page=15 Did you explore sensitivity to nz? It might be good to discuss -
nz=129 is greater resolution than many ice sheet modelling studies.

Actually, yes (see response to B6). Using lower resolution, the preservation of annual layer
thickness is reduced at shallower depth. This is discussed in the text.

(B019) page=20 of numerical performance of different schemes
Thanks a lot. Corrected accordingly, with inserting a word ‘levels’.
(B020) page=23 (a) to (c) are backwards here, I think
Yes, that’s right. Corrected accordingly. The labels above the figures are correct.

(B021) page=24 This is a great plot, but is hard to compare with the reference
resolution in Figure 17 - perhaps each could be shown on the same y axis from e.g.
1000 to 2600 m?

Great idea. We extend the y-axis accordingly. Thanks a lot.
(B022) page=25 a non-smooth grid

All right. inserted ‘a’, accordingly.
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Abstract. Ice sheet age computations are formulated using an Eulerian advection equation, and there are many schemes
that can be used to solve them numerically. Typically, these differ in numerical characteristics such as stability, accuracy,
and diffusivity. Furthermore, although various methods have been presented for ice sheet age computations, the constrained
interpolation profile method and its variants have not been examined in this context. The present study introduces one of its
variants, a rational function-based constrained interpolation profile scheme (RCIP) to one-dimensional ice age computation;
and demonstrates its performance levels via comparisons with those obtained from first- and second-order upwind schemes.
Our results show that the RCIP scheme preserves the pattern of input surface mass balance histories; in terms of the vertical

profile of internal annual layer thickness, better than the other schemes.

1 Introduction

Core samples extracted from ice sheets can provide an archive of past climate history data, and a major issue for researchers
attempting to utilize ice-core properties is defining the age of ice along the depth of the ice sheet. This process is often called
dating. Dating with numerical ice-flow models is an important approach; because it allows researchers toone-can estimate age
profiles before actual drilling of ice cores. For example, in Fischer et al. (2013), the authors present an application of ice-flow

models to evaluate potential ‘Oldest-Ice’ study areasarea.

Various methods for use in ice-sheet model dating;—er-mere—generallyin—tracer—transpert have been adopted and com- ,—

pared. Miigge et al. (1999) compared particle tracking (Lagrangian) and Eulerian schemes under simulated steady-state three-
dimensional (3D) velocity fields of Antarctic ice sheet. That study concluded that the Eulerian scheme works well, except for
the bottom part, which encounters problems due to numerical diffusion. In Rybak and Huybrechts (2003), the authors also
compared the Lagrangian and Eulerian schemes for simulated Antarctic ice sheets under various schematic steady-state con-
ditions and analytical solutions, as well as under different 3D velocity fields. Similarly, they concluded that the Lagrangian
method produced less error than an Euler approach, although the difference was small over a large part of the domain. Greve
et al. (2002) compared several Eulerian schemes such as central difference schemes, first- and second-order upwind schemes,
Quadratic Upstream Interpolation for Convective Kinematics (QUICK), and total variation diminished (TVD) Lax-Wendroff

(LW) schemes. From comparisons of the one-dimensional (1D) steady-state age profiles produced by these schemes, they
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concluded that the second-order upwind and TVD-LW schemes performed well for typical ice sheet age profiles. Compar-

isons among semi-Lagrangian schemes have also been performed. Introduction of a semi-Lagrangian trace scheme to ice-sheet — Aoo1

modeling was initiated by Clarke and Marshall (2002). They simulate the temporal and spatial variations of water isotopes in

the Greenland Ice Sheet over the past 30,000 years. In-Tarasov and Peltier (2003), the authors compared various interpolation

schemes in order to compute upwind departure points in a semi-Lagrangian tracer model in terms of preservation of input
signal phases and amplitudes, while Lhomme et al. (2005); Clarke et al. (2005) developed a new interpolation method that can
be used in a semi-Lagrangian scheme: and discussed computed ice-core age-depth relationships for the Greenland Ice Core
Project (GRIP) ice-core.

To date, various methods have been presented and demonstrated for use in ice-sheet age computations. However, there are
still a variety of numerical schemes that have not been examined within this context. These include the constrained interpolation
profile (CIP) method (e.g., Yabe et al., 2001) and its variants. Accordingly, the present study introduces a CIP method variant
named the rational function-based constrained interpolation profile (RCIP) method (Xiao et al., 1996) for use in 1D ice age

computations and demonstrates the performance of the scheme.
1.1 Brief introduction of RCIP scheme

This section describes a standard algorithm of the CIP scheme family that is used to solve a 1D advection equation with a

non-advection term as follows:

of of _

where f = f(x,t) is a free variable to solve, u = u(x,t) is a velocity field, h = h(x,t) is an arbitrarily (non-advection) field,
and ¢ and z are temporal and spatial coordinates, respectively.

As introduced in the previous section, there are three major approaches to solving an advection equation: Eulerian, La-
grangian, and semi-Lagrangian. The CIP scheme family corresponds to a semi-Lagrangian method variation. The basics of the
semi-Lagrangian approach, within the context of its comparison with the Lagrangian and Eulerian approaches, have already
been presented in a number of past studies. For example, Staniforth and Coté (1990) presented a review of these methods
and described the implementation and application of a semi-Lagrangian method in detail. Although a full description of the

semi-Lagrangian is not repeated in this paper, its basic principles will be described later in this section.

In CIP schemes, Eq. (1) is solved by performing a time-splitting algorithm (e.g., Yabe and Takei, 1988) into two phases as
follows:
0 0
a—{ +u(z, t)a—i =0, the advection phase 2)
af .
i h(z,t) . the non-advection phase 3)

Appendix A presents a note on the time-splitting technique.




55 The primary characteristic of this CIP scheme is the introduction of an additional equation to solve the spatial derivatives of

f at the same time. Differentiation of Eq. (1) provides the equation for g(x,t) = 9f.

— Oz
dg dg _ah_ @
o Ty, o Yor

Equation (4) is an advection formula that is similar to Eq. (1) with the non-advection function fz(m,t) in the right-hand side,

h(z,t)

“)

which is solved using a time-splitting procedure similar to those used in Eqs. (2) and (3):

60 % + u(m,t)% =0, advection phase ®)
dg - .
5= h(z,t) . non-advection phase (6)

The algorithm used to solve the advection phases (Eqs. 2 and 5), which is a core characteristic of the CIP scheme family,
is described here, after which the algorithmfellewed-by—that used to solve the non-advection phases (Eqs. 3 and 6) will be

discussed.

65 In semi-Lagrangian approaches, a particle at (x,t + At) originates from the position of the upstream departure point Zgep
such that
f(x7t+At):f(xdepvt) 5 (7)
where
t
Tdep =T + / dtu(z,t) . (8)
t+At

70 Figure 1 shows a schematic illustration of semi-Lagrangian scheme. The particle at z; at time ¢,,, +- At originates from a particle
at Z4ep, Which is not necessarily on a discretized grid point ;. Therefore, the free variable f(z) must be interpolated using the
value on the grid points (represented by color shading in the figure).

The CIP method constructs an interpolation function F);(x) for the f(x) between two adjacent grid-points x; and its upwind

point z ;41 when u; < 0 in order to assess the value at the departure point. Introducing (£) = zqep — ;- as the distance to the

75 original point; allows the time evolution of f(x;) (which is the original free variable to solve) and g(z;) (which is the spatial

derivative of f at the grid-points ) to be solved as simple advection equations:

fxj,t+At) = f(x; + (). 1) = Fj(z; +(£) s
g(wj,t+ At) = g(x; +(€),t) = Gj(z; +(£)) ,

where G (z) = %I;j . Note that computationCemputation of the distance to the departure point will be described in Sect. 1.2.

The piecewise interpolation function F)j(x) for 2; < <z, is defined to be constrained by the continuity condition at x;

€))

80 andxj;iq as

Fi(zj) = f(z;), Fj(zj41) = f(@)41),

Gj(zj)=g(x;), Gi(@jt1)=g(xj+1)-

(10)



85

90

t, +At

X;j Xdep Xj+1

Figure 1. Schematic illustration of advection and semi-Lagrangian scheme. The new state computation for a target point x; from time ¢,,
in the case of u; < 0 is presented. The colors symbolically express the value of field variables. The boxes correspond to model grid points.
The solid arrow is the trajectory of one particle and the solid circle is the departure point. In a semi-Lagrangian scheme, the distance to the
departure point, (£), is computed using an assumed trajectory. Interpolating the state at departure point x4ep, the value is advected to the
arrival point (z;,tm + At). The dotted arrow and circle correspond to the trajectory and departure point in a different case while assuming

a constant velocity, which may lead to a different state.

A cubic polynomial is chosen in the original CIP scheme, as
Fj(X)=Co+C1 X +CoX? +C3X3 (1)

where X = x — x;. The four coefficients Cy, C1, Co, and C'3 in Eq. (11) are determined to satisfy the constraints (Eq. 10). The

RCIP scheme framework is occasionally extended to introduce a rational function (Xiao et al., 1996) such as

B Co+C1 X +CyX?

Fi(X) T+ DX

12)

The interpolation function is switched from the cubic (11) to the rational (12) if g; < S; < g;41 orif g; > S; > gj41, where

_ fiv1 =1

S.
Ji y
Azjig

A‘Ij—i-% =Tj41 — Ty - (13)

Additionally, the four coefficients Cy, C1, Co, and D; are determined in order to satisfy the same constraints. The two inter-
polation functions Egs. (11) and (12) are integrated by introducing a switching parameter a:

B Co+C1 X +CrX24+C5X3
N 14+aD X '

Fj(X) (14)



The five coefficients used to satisfy the constraints are computed as

1 Si—g;
Dy = =95 1] , (15)

LAz {gﬂl—sj

i — S+ (giv1 —S;)(14+aD1Ax. 1
6,3:93 i+ (gi+1 J)(2 1 g+2)’ (16)
Azjiy
Cyp = SiaDy+ 291 _ oA 17
95 (= Sja 1+Ax- -~ CsAz, g, (17)
Jt+s

Ci1 =g, + fjaDy, (18)
Co=f;. (19)

The switching parameter «v € [0, 1] is chosen as 1 when it is necessary to use rational interpolation. In other cases, 0 is selected.
If {f;} and {g; } at time ¢ are known, the new states { f; } and {g; } are predicted by shifting by distance along the characteristics
100 (Eq. 9) to the departure point (£), as follows:

£ = Fy((g)) = S0t Calf) & Cal)* + Cale)’

1+0[D1<£> ’ (20)
*—G-((g))—Cl+202<€>+303<£>2_ oD .
95 =5 B 1+ aDq () 1+aDy(6)77 "

The solutions above are those of the advection phases (Eqs. 2 and 5). The time evolutions of f and g in the non-advection
phases are again calculated according to Egs. (3) and (6), typically by using a forwarding scheme, starting from the solution of

the advection phase { f7 } and {g] }, as an intermediate solution:

filt+a0—f;

h,

At /
105 21
gi(t+A) —g; @b

At -

As discussed in Xiao et al. (1996), the formulation of the RCIP scheme possesses attractive properties, such as convexity and

monotone preservation, as well as phase speed.
1.2 Upstream departure point

The interpolation method used for the field variables, which characterize each scheme, is one of the most important topics in

110 semi-Lagrangian schemes. Another major topic common to the semi-Lagrangian schemes is the method used to compute the

departure point.

Equation (8) gives the distance to the departure point:

t+At
(€=~ / dtu(w,t) . (22)

t



A simple and primitive way to integrate Eq. (22) is to use the local velocity even if the velocity is a function of time and space

115 (e.g., Toda et al., 2009), such that
(€) = —ujAt. (23)

Figure 1 shows a trajectory and departure point under a constant velocity (dotted line and circle) assumption. As can be

seen, the computed departure point can be different from a general non-uniform velocity situation. Another way is to apply

the ‘mid-point rule’, where both spatial and temporal mean velocity between the target and departure points replaces u; in

120 Eq. (23), which is generally computed in an iterative fashion (Tarasov and Peltier, 2003). In the present paper, a third approach
is adopted. First, a steady and linear velocity field between the target and the upstream adjacent pointsdep&ﬁufepe'tﬂfs

T j+1%aep, 1S assumed such that B004

uw(z) = u(z;) + (v — zj)u’ forz; <z <wjyq, (24)

where v’ is a constant spatial gradient of the velocity. In order to solve the time evolution of the velocity of a particle at (t,,,x;),

125 Eq. (24) is differentiated by time ¢:

duv dz ,
—_— = — e 2
T dtu wu, 25)

which is solved as
w(t) = u(ty)exp[u'(t —t,)] . (26)

Introducing Eq. (26), Eq. (22) is integrated as

tm+AL
130 (§)=-— / dtu(t) = —u(t,) At [e}(p(z,i?_l} : (when v’ # 0) Q27)
tm
(€) = —u(tm)At, (when v/ = 0). (28)

Based on the above, it can be interpreted that the distance to the departure point is that of constant velocity case (Eq. 23 or 28),
multiplied by the bracket term in Eq. (27) as a correction factor. Here, it should be noted that the correction factor reaches 1
toward the limit of v’ — 0, which definitely corresponds to the constant velocity case. The velocity gradient v’ already appears

135 in the advection equation of the g term (Eq. 4), which is reused in the departure point computation.



2 Model description
2.1 Governing equation

The computation used to determine the age of the ice, i.e., the elapsed time since the ice deposit, is performed with the pure
advection equation':

dA

140 — = 2
0 dt ’ (29)

where A is the age and ¢ is time, which is the Lagrangian approach. Eq. (29) is then reformulated into the Eulerian equation

for a 1D problem,

92 w2 =

ot !

30
0z ’ (30)

where A = A(z,t) and w = w(z,t) are the age and vertical velocity fields, respectively, and z is the vertical coordinate. Some
145 models introduce an artificial diffusion term in order to achieve stable integration(e.g., Miigge et al., 1999). However, the pure

advection form is kept throughout the present paper. Following most ef-large-scale numerical ice-sheet models (Greve and

Hutter, 1995), the vertical coordinate z is scaled with the local thickness. Introducing the scaled coordinate ( as

z—b
(= T (€1}

Eq. (30) is reformulated as follows:

oA oA
150 Eera—Cfl, (32)

where 7 = ¢ is the corresponding time coordinate in this system, b = b(t) is the bedrock topography, and H = H (t) is the ice
thickness. The new velocity term w = w({,7) in 7,{-system is computed as

_ %, %
wEws S (33)

where derivatives of  are computed as:

0 1

155 a—i =7 (34)
Since the ice thickness H, which actually reflects the changes in the boundary conditions, may not be constant throughout the
time period, H = H (t) is prescribed independently of the boundary conditions in this paper. The surface mass balance term
M (mass input into the domain), surface evolution, and the vertical velocity at the surface z = h(t) are related as

160 w(z=h(t)) = %—FMs(t), (36)

'Some models adopt O for the right-hand side (e.g., Rybak and Huybrechts, 2003) simply because they use a different age definition. For such cases,
redefining A as A — ¢ results in an equation that is identical to Eq. (29).



which is derived from the kinematic boundary conditions based on the assumption of a flat surface. The spatial derivative of .4

used in the RCIP scheme is derived as follows:

DA 0N dw
5 T = e (37)

where A’ = %.
165 In order to solve the time evolution of age and its gradient (Eqs. 32 and 37), the initial and boundary conditions are required.

At the free surface z = h(t) (or ¢ = 1), a Dirichlet-type boundary condition,
A((=1)=0, (38)

holds when the surface mass balance is positive (i.e., Mg > 0). In contrast, when the surface balance is negative, the boundary
condition is not necessary, because the departure point of the free surface is inside the ice. A special treatment is required for
170 the zero mass balance at the surface, M; = 0. In this case, the velocity term in 7,(-system, w becomes 0, so Eq. (3243) is —(Boos )

simplified as

%f _1. (39)
which, again, requires no boundary condition for age. The boundary conditions at the bottom ¢ = 0 simply mirror those at the
surface.
175 The age derivative, A’, also satisfies the boundary condition at the free surface as
A(C=1)= ", (40)
M

when M > 0. Conditions similar to age hold for the age derivative when M < 0 and M, = 0.

In the present study, equivalent but different coefficient representationsrepresentation-efcoefficients (Eqs. 15-19) are adopted

foren the RCIP method implementation, which is described in Appendix B.

180 2.2 Discretization

The spatial discretization of Eqgs. (32) and (37) can be either uniform or non-uniform. In the present paper, both types of
discretization are examined. Since uniform discretization is a special case of non-uniform discretization, the latter can be
described effectively without a loss of generality.

One way to introduce a non-uniform discretization is to apply a non-smooth grid (Shashkov, 1995), which prescribes irreg-

185 ular discretization of the coordinates:

0= << <(n,—1=1, (41)
and
Aliy1/2=Chp1—Ce -  fork=0,--- Ny —2 (42)



Another way to introduce a non-uniform discretization is to apply a smooth grid (Shashkov, 1995), which uses a smooth
190 function to transform the coordinate system. One more coordinate transformation is then performed for a non-uniform smooth-

grid system as follows:

DA . 0A
T TWaz =1, (43)
QA OA oW, @

oT 9z — 9z
where T and Z are the time and vertical coordinates in the new system. A smooth transformation of Z = Z(() or its inverse
195 (¢ = ((Z) is prescribed where necessary. Similarly, a new velocity term W = W(Z, T) in T, Z-system is computed as
Wit (45)
Equations (43) and (44), which are the target equations to solve, are simply replacements for Eqs. (32) and (37), respectively.
The velocity term W = W(T,Z) is prescribed (as will be explained later). The terms A, W, and 1 on the right-hand side
correspond to f, u, and h, respectively, in the RCIP scheme framework (Eq. 1). Although it is possible to introduce further
200 non-uniform discretization on the Z-coordinate, in the present paper, only a uniform discretization is examined on the smooth-

grid discretization:

k

ly=——
k Nk717

fork=0,--- ,Np—1. 46)

Actually, the discretization of the (-coordinate corresponds to the special case of non-uniform smooth discretization with Z = (.
Therefore, for both uniform and non-uniform discretization, the scheme will be described hereafter using the Z-coordinate

205 instead of the (-coordinate.
2.3 Comparing other schemes with RCIP schemes

In the present paper, two numerical schemes, the first- and second-order upwind schemes, are examined in comparison with
the RCIP schemes. While there are other numerical schemes suitable for such comparisons, including Lagrangian, other semi- ,—
Lagrangian. or even higher-order upwind schemes, these have already been reported in past studies (Miigge et al., 1999;

210 Greve et al., 2002; Rybak and Huybrechts, 2003, Clarke and Marshall, 2002, Tarasov and Peltier, 2003; Clarke et al., 2005).

Furthermore, since our study focuses on a demonstration of RCIP schemes in relation to the topic of ice dating, a wide range

of comparisons is beyond the scope of this paper.

The “first-order’ upwind scheme in the present paper evaluates the advection term using the velocity at staggered grid points

as follows:
0A App1 —Ar /
215 Wﬁ _— = Wk+1/2Tk+% = Wk+1/2/‘\ I(Zk+%) ) 47)

when Wy /5 <0and Wy,_y /5 <0. The velocity at staggered grid points is computed by linear interpolation of the two adja-
cent velocities at normal grid points. Equation (47) corresponds to numerical integration with the midpoint rule if a Dirichlet-

type boundary condition is applied on the upper surface (Eq. 38) and the velocity is kept negative throughout. It is especially
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225

230

235

240

245

notable that, for ice dating at summits, positive (upward) vertical velocity is rarely considered. Therefore, the mid-point rule

formulation mentioned above is sufficient for apphcatlon Smee—pesmvewemeah*e}eeﬁj%elﬁe%}defed#eﬁ%ypiea{ﬁee
3 e torr- On the other hand, a different ap-

proach is generally required for a grid point where two velocities at staggered adjacent grid points have opposite signs. In this

paper, the velocity term is simply replaced by that at the normal grid point:

0A
oz

where Wy, < 0, and Wy, 1/ and Wy, _; /5 have opposite signs.

W ~ WkA/I (Zk-&-%) 5 (48)

=7,

For the ‘second-order’ upwind scheme, the derivative of the age term is replaced by the second-order upwind difference

formulation as

0A
Woz

where

~ WA 11(Z) (49)
7=7,

(2AZ; 1 +AZyy 3)A U Zgy 1) = AZy 1 A2y 3)
A'n(Zy) = = 2 2 2 2 for k < N —2 50
11(Zk) AZ,,, + A2, or kb <Nj —2, (50)

A/H(Zk) = QA/I(Zk) _.A/kJrl 5 for k = Nk -2 5 (51)

for the Wy, < 0 case. The age derivative at the surface is required (A1 in Eq. 51), which is provided as a boundary condition
(Eq. 40). For higher-order numerical schemes, the introduction of a slope limiter is a standard method for suppressing the
development of oscillations near a discontinuity and/or steep gradients (details are described in Greve et al., 2002). Although
it is possible to apply such slope limiters in irregular grids (Murman et al., 2005), an easier approach was adopted instead.
Specifically, the formulation is switched back to the first-order scheme when A’y > 0 > A’j; or A’; < 0 < A’f1. Although this
method may be insufficient to stabilize the solution near a strong discontinuity, the implementation of more sophisticated slope

limiters is beyond the scope of the present paper.

3 Experiment and Results
3.1 Experimental design

Following some modeling studies on the dating of deep drilling sites that used simplified 1D vertical ice flow models (e.g.,
Parrenin et al., 2007), the present study adopts an analytical vertical velocity profile under the assumption that there are no

horizontal variations in the bedrock elevation, surface, and basal mass balances:

wlQ) = | (3428~ 58 Y o) - a4 (52

where M and M), are the surface and basal mass balance (positive is input), respectively, H is the ice thickness, and w(() is
the normalized velocity profile. Assuming no basal sliding, ©w({) can be approximated by

_p+2 Lo e
#0=1-2 20+ Lagre, 53

10



where p is a parameter for the profile (Parrenin et al., 2007). Under the Glen’s flow law with a steady-state isotropic ice
condition, p is equal to the flow law exponent n (typically n = 3). In addition, the RCIP scheme requires the derivative of the

250 velocity, which is computed using the derivative of w, as

ow  p+2
5 =y =T >

In addition to the vertical velocity, the time evolutionsevelution of the surface and basal mass balances and the ice thickness
are required for the age computations. These will be presented in each of the following sections.

The initial conditions foref the A and A’ fields are set to 0 for all our experiments. In these cases, the age derivative A’ is

255 kept O under the level at which the age reaches the integration time. Starting from the 0 field, time integration is computed for
2000kyr for most of our experiments.

It is worth mentioning that formulations like Eq. (52), which is a function of normalized depth, make it possible to interpret
example results for different configurations when appropriate spatial/temporal dimension scaling is used. In this case, the
spatial and temporal characteristic scales can be defined, for example, by the ice thickness and the surface mass balance. This

260 means that the age solution under the configuration of 3 and Ocm yr—! for the surface and basal mass-balance, respectively,

has the same normalized shape as that under 30 and Ocm yr—1, by scaling all the time-related terms as 1/10.
All the computationseomputation in our present study were performed on a personal computer (PC) equipped with an

Intel Xeon E5-2609 central processing unit (CPU) and compiled with GNU Fortran. Each surface/basal mass balance, ice
thickness, and vertical resolution configuration is repeated using four numerical schemes: the RCIP with departure correction

265 (RCIP+corr), the RCIP without correction (RCIP), the second-order upwind scheme (UP-2), and the first-order upwind scheme
with mid-point rule (UP-1). Additionally, athe first-order scheme without 2 mid-point rule (UP-1n) is sometimes used. Multiple
1D-column experiments with different boundary configurations using one numerical scheme are examined simultaneously in
one run. For example, the mean computational costs for one run (with 28 different configurations) in the case of 129 levels
over 200kyr are 30, 28, 32, and 34 seconds, using UP-1, UP-2, RCIP, and RCIP+corr, respectively. Those in the case of 513

270 levels are 338, 296, 364, and 392 seconds, respectively. Details differ among the configurations, and it takes 30 to 40% more

time to perform a RCIP+corr run than to perform a UP-2 or UP-1 run.
3.2 A verification experiment using uniform velocity

Before performing an experiment under a typical ice sheet configuration, verification of the numerical model used in the

present study is presented under further simplified conditions, namely, the constant velocity case. This is easily performed using

275 Eq. (52), in which the parenthesis term equals 0, in other words, by keeping H constant and arbitrarily-setting My = — My, for
arbitrarily p.
Figure 2 shows the computed age profile under the uniform velocity of —15cm yr—! and H = 3000 m. Uniform grid spacing @

of 129 levels is adopted, which corresponds to Z = ¢ and AZ = A¢ = 1/27 (i.e., Az = 23.4375m) using the smooth grid. The

time step is set as 100 yr, which corresponds to the Courant—Friedrichs—Lewy (CFL) condition ~ 0.64. The vertical age profile

11



280 is formulated as

z

A(z,t) = min t,/dz'% , (55)
h

thus the exact solution for an uniform velocity is
A(z,t) = min(¢, —z/w,) , (56)

where w. = —15cm yr~!. For completion purposes, the results of the RCIP scheme are plotted in the figure, which is (by
285 definition) identical to those of RCIP+corr scheme. For the steady state, a linear age profile from Oyr at the surface and 20kyr
at the bottom is expected (corresponding to the thick gray line in Fig. 2), which is obtained by all the methods after integration

of around 27kyr (not shown). In contrast, the transient states are different among the results of the four schemes examined.

00

Figure 3 shows the computed age profile relative to the exact solution, with three different time steps, 100, 50, and 25y,
for each scheme. The results of RCIP+corr (and thus RCIP) are shown to be less sensitive to the time step than the upwind
290 schemes, which reflects the fact that both the interpolation and the departure point calculation are successful. At 20kyr, a
linear age profile should be obtained, but all four results show ages that are younger than the exact solution, due to numerical
diffusion. Additionally, while all of the schemes show relatively good performance for the upper part, the result obtained by the
UP-1 scheme deviates the most from the solution. Specifically, it deviates 1 yr from around 2/3 of the total depth and reaches
almost 1kyr at the bottom, which is already visible in Fig. 2. In contrast, the other results deviate from the solution only near
295 the bottom ~ 9/10areund-9/18 of the total depth, and reach ~ 100 yrareund—1+00yE, or even less, at the bottom. The error at
the bottom of UP-1 is 759 to 902yt (3.8 to 4.5%), while that of RCIP is 76 to 98 yr (0.38 to 0.49%), and the best of UP-2 is
even better at 7.5 to 154 yr (0.04 to 0.77%).

3.3 Experiment with steady non-uniform vertical velocity

Hereafter, non-uniform velocity experiments are performed using p =n =3 in Eq. (53). First, simple cases with constant
300 surface/basal mass balances, as well as thicknesses that correspond to steady vertical velocity profiles, are shown. Since Eq. (55)
cannot be solved using (52), profiles created by numerical integration (the Runge—Kutta scheme) are used as ‘benchmark’
solutions in this and the following section.
The ice thickness and the accumulation rate chosen in this and the following sections are ~ 3000m and ~ 3cm yr‘l,
respectively, which correspond to typical quantities for the East Antarctic Plateau during the glacial period (e.g., Parrenin
305 et al., 2007; Fischer et al., 2013). On the other hand, there are other cases with similar thicknesses and ten-times higher
accumulation (~ 30cmyr~1), typically in Greenland or West Antarctica (e.g, Clarke and Marshall, 2002). As mentioned in
Sect. 3.1, with proper scaling, the results in these sections can be interpreted as results with such higher accumulation rates.
This will be examined in the Discussion (Sect. 4).
Two sets of basal melting are presented: no basal melting and 3mm yr~!. The other two parameters are fixed. Surface

310 mass balance is set as 3cmyr~! and thickness is set as H = 3000m. We use a uniformUniferm grid spacing of 129 levels

(Az =23.4375m), and the time step is set as 100 yr, which is the same configuration used in the previous section.

12
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Figure 2-1. Experimental results obtained using a uniform velocity of w = 15cm yr~'. Snapshots of the computed vertical age profiles
obtained by RCIP with correction, RCIP, second-, and first-order upwind schemes at ¢ = 5,10, 15,20kyr are shown. Since the ‘correction
factor’ of the departure points is 1 (Eq. 28), the results of RCIP with correction are identical to those of RCIP. The results of the second-order

upwind scheme are close to those of the RCIP, which are barely visible in this scale. The solution is also shown as a benchmark (thick gray

line). Symbols are plotted for every eight vertical levels.
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Figure 32. Experimental results obtained using a uniform velocity of w = 15cm yr~ . Snapshots of computed vertical age profiles obtained
by RCIP with correction, RCIP, and second-, and first-order upwind schemes at ¢ = 20kyr relative to the exact solution are shown. The
results of different time steps of 100, 50, and 25, yr are shown for each scheme. The results of RCIP with correction are identical to those of

RCIP. Age differences are shown on a logarithmic scale, except for those near 0, which are shown on a linear scale. Symbols are plotted for

every eight vertical levels.
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Figure 4-3. Experimental results obtained under steady vertical velocity profiles with H = 3000m, My = 3cmyr~ ! and M, = 0mm yr~*

(a) Computed vertical age profiles by RCIP with departure point correction (RCIP+corr), the RCIP scheme, the second-order upwind scheme
(UP-2), the first-order upwind scheme (UP-1), and the first-order upwind scheme without the mid-point rule (UP-1n) at ¢ = 2000kyr, (b)
those relative to the benchmark profile obtained by numerical integration, and (c) a zoomed-in portion of the bottom part of (a) showing that

the differences among the experiments is on the order of 10kyr. Age differences are shown on a logarithmic scale, except for those near 0,
which are shown on a linear scale. Uniform grid spacing of 129 levels is adopted in this simulation.

Figures 4a and 5a show computed age profiles at ¢ = 2000kyr for all the schemes along with the benchmark age profiles. (4 )
Very few differences can be seen among the profiles over most parts of the figures under this scale. Deviations from the
benchmark are shown in Figs. 4b and 5b. The results of each scheme show larger errors near the bottom than near the upper @

315 part. Some results show sudden increases in the error at certain depths, which correspond to the depths around where the age

should reach the time of integration.

The RCIP+corr scheme shows the best result for all depths. The UP-1 scheme shows the second-best result, which is even
better than the RCIP scheme around the depth of 2600 m. However, it also shows the largest errors among all the schemes
examined at deeper depths. The good performance of UP-1, in spite of its smallest spatial accuracy, which is attributed to the

320 cancellation of errors due to discretization and numerical diffusion, has already been presented in Greve et al. (2002). The mid-
point rule formulation (Eq. 47) also plays a role in the increased accuracy. Due to simple situations, such as the one-direction
advection and the constant upper boundary conditions, the age profile computation can be formulated as a vertical integration
from top to bottom. This means that the mid-point rule integration actually has second-order accuracy. A true first-order

upwind scheme can be applied by using Eq. (48) over the whole domain. In this case, vertical integration from top to bottom
325 corresponds to an Euler integration, which has first-order accuracy. Figures 4b and 5b also contain results obtained using such @

a scheme, marked as UP-1n. However, as expected, when such a normal-grid velocity is introduced for the advection equation,

14



M,=3cmyr! M, =3mmyr!
0 Q\ I I | } ] -
S Benchmark | ) L
:O RCIP+corr | b j |
| —@— RCIP ‘Z
1% —v— uP-2 ] N
1% ———— UuP-1 - ‘ =
2000 | T ‘
= 1 % L ([ | -
= 1 8 ] }1 I
o Q | ]
o 1 N\ a | :
Q) 2000 s :
: A\ L f | -
i ™N I | L
14 N I ‘ L
3000 T - i —
0 200 400 -10 10110010 107" 10
A(kyr) AA(kyr)
Z: 129 levels [uniform A(] ¢ =2Myr
Figure 5-4. Same as Fig. 4a, b, except for the experiment with M, = 3mm yr .

the results have less accuracy than those of the second-order upwind (UP-2). Furthermore, as shown in Greve et al. (2002), the
improved performance of the UP-1 scheme is limited to the upper part, and the errors become larger as the depth increases.
The results of the RCIP scheme show relatively larger errors than the other methods, except for the top and the bottom part,
330 which highlights the importance of accurate departure point calculations. The result of the UP-2 scheme shows intermediate

errors between RCIP and UP-1 at the bottom.
3.4 Non-steady surface mass balance experiments

This section presents the results of experiments conducted with non-steady velocity profiles, which were performed with the

prescribed surface mass balance time series. First, a very simple square-wave formulation is adopted for the time evolution of —{ Bo16

335 the surface mass balance.

Ms(t) =ay, (0< mod (t, PT) < Py) 57)
Ms(t) =a., (PH< mod (t,PT) <Pr=P4+HR)

where ay and a are the prescribed high and low surface mass balance terms, Py and P, are the durations with high- and
low-value phases, and Pr is the duration of one cycle. Figure 6 shows the time evolution of a normalized surface mass balance @
with Py = 100kyr cycles and a phase pattern of Py, P =1 : 1 as an example. Several experimental configuration combinations
340 are examined, including P4, P=1:1,7:1,0r1:7;and M}, =0, 0.3, or 3mm yr_l. The other patterns examined in this paper
are provided as a supplementSupplement to this paper.
Figures 7 and 8 show computed age profiles at £ = 1000kyr under the square-wave surface mass balance, where the lower

1

surface mass balances are set as a; = 1.5cmyr~! and 0.75cm yr~!. The higher surface mass balances and the basal are set

1

as ay =3cmyr~ and M} =0, respectively. For reference purposes, the benchmark solutions with constant surface mass
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Figure 6-5. Schematic figure showing the time evolution of the surface mass balance adopted in these experiments. Only the first two cycles

are plotted.

aw,a = 3,1.5emyr~!, Pr =100kyr, Py : P, =1:1 [square] M; =0mmyr!

| | | | | | 11 1 | | | [
0 Benchm‘ark | i
M, = ay
M, =ar N -
M, =an | </ - ]
— RCIP+corr \ - —
£ 1000 - —e— kap
~ | ——4—— UP-1 : | : : A i
£ f = | | &7 |
d% 2000 1S - - 7
2 5
i i I )431 L
i i L ’)_’iff L
i i L A L
1  a— b | f__/tjﬂ_ig% c |
3000 T T T I T I T j>7 T T }HHHH M T 7 T T T TTTTT T T T TTTTT T
0 200 400 600 800 1000  _19  _1ofio-" 10 101 1 10
A(kyr) AA(kyr) A(mm)

Z: 129 levels [uniform A¢(] ¢t =1Myr

Figure 7-6. Results of transient experiments with square-wave surface mass balances of ay,a. = 3,1.5cmyr~ !, Pr = 100kyr, Py : P =
1:1=50:50kyr, square-wave, My, = 0, and constant H = 3000m. (a) Vertical profiles of the computed age and (c) annual layer thickness
at 1000kyr using RCIP+corr, RCIP (overlapped on RCIP+corr), UP-2, and UP-1 are shown. The last 500yt is clipped from (c), where the
age gradient (inverse of ) is close to O reflecting the initial condition. (b) The computed age differences at the same depth relative to the
result of the RCIP+corr case are shown on a logarithmic scale, except for those near 0, which are shown on a linear scale. For reference
purposes, the gray lines indicate benchmark solutions for the constant surface mass balance cases of an, ar, and am. Uniform grid spacing

of 129 levels is adopted in this simulation.

345 Dbalances of ay and a are shown with gray lines. The black line is the benchmark solution with the constant surface mass
balances of the mean, apm = (apy + aL)/2. As shown in these figures, the computed age profiles are close to the benchmark
solution with ay, particularly at the bottom. For the upper part, the computed age profiles are along the benchmark solutions

for the constant surface mass balance cases of a .
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Figure 87. Same as Fig. 7, but for the results of transient experiments using a square-wave surface mass balance of a. = 3,0.75cm yr .

Since there are few visible differences among the computed ages, the computed age profiles relative to the one produced by
the RCIP+corr scheme (Fig. 7b) are shown. The figures show comparable relative performance levels in spite of the different
input surface mass balance histories. The age profiles produced by the RCIP scheme deviate systematically from RCIP+corr
by less than 1kyr throughout the depth range, which reflects the differences in computing the departure points. The other two
schemes deviate around 10kyr at most. The age difference oscillations seen in the UP-2 and UP-1 schemes are visible near
the age corresponding to the time when switching was conducted between the high and low surface mass balances. (AA vs.
A plots are presented in the Supplement). These oscillations reflect the characteristics of the UP-2 and UP-1 schemes at the
discontinuities.

Figures 7c and 8c show the computed annual layer thickness, A, against the depth. In the present paper, the annual layer
thickness is defined as the inverse of the age gradient. For the RCIP+corr and RCIP methods, the computed field of the age
derivative itself (A’ in Eq. 44) is used with the coordinate transformation. On the other hand, for the UP-2 and UP-1 methods,
the diagnosed field is used (A’y or A’y in Egs. 47,50,51, respectively). An infinite or a very large annual layer thickness may
be present near the bottom, due to the zero gradient of age as a consequence of the initial experiment conditions. In this study,
the last 500yt is clipped from the figures.

The annual layer thickness has the following relationship in terms of the thinning rate:
oA _ou
ot 0z

while assuming that layers remain horizontal (Cuffey and Paterson, 2010). When the basal mass balance is 0 and the thickness

(58)

is constant, the vertical velocity gradient can be formulated from Eq. (52) as

ow @

9z CaC (59)
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Finally after some derivation, the vertical gradient of annual layer thickness can be formulated as

oN A Ow
9 " waoc “
which is a function of A and the normalized vertical velocity shape. This experiment was conducted with zero basal mass
balance, constant thickness, and the same normalized velocity. Therefore, the vertical profile of the annual layer thickness
should go back and forth on the two lines produced by those computed using the constant surface mass balances.

In terms of computed annual layer thickness profiles, the RCIP+corr and RCIP (which overlap with RCIP+corr in the figure)
methods show particularly good performance over the upper part, as shown in Figs. 7c and 8c. Dissipation at the discontinuity
becomes larger towards the bottom, but the solution of RCIP+corr (RCIP) is somewhat more stable on the two benchmark
lines than the other schemes. Overshooting at the discontinuity is shown for the solution by the UP-2 scheme, which becomes
larger as the difference between the high and low surface mass balances increases. In the present study, this is considered to
be a consequence of an inadequate slope filter. In addition, the annual layer thickness is diagnosed with Eq. (50) for the UP-2
scheme, which may exaggerate the oscillation of age gradients more than the simple first-order Taylor expansion. For the UP-1
scheme results, the annual layer thickness diffuses with the depth level and approaches the constant accumulation case of its
mean. In deeper areas, the annual layer thickness is found in the vicinity (above or below) of the mean a) benchmark profile
in all of the numerical schemes.

The same exercises were performed using a different shape for the time evolution of the surface mass balance. Figure 9

shows the results forFigares—8-and-9-are-theresults—of an experiment conducted using the cosine-wave formulation of the

surface mass balance (Fig. 6), which is relatively more continuous than the square-wave version. Similar performance levels

were obtained by the UP-2 and RCIP+corr (RCIP) methods for the small amplitude case (Fig. 9¢c). Instability also arises at

)

low-to-high transitions when the ratio of high/low accumulation is larger (archived in the Supplement)dFig—9e). ,—-

Figure 10 shows the results obtained by square-wave forcing in terms of computed annual layer thickness, A, against the
computed age for all the schemes, obtained by the relative duration of the Py : PL. = 1:1 case (similar figures obtained by
other experimental configurations are archived in the Supplement). Since the periodicity of the input cycle is 100kyr in this
experiment, the annual layer thickness profiles should show the same periodicity. The obtained results show relatively good
performance for the RCIP+corr(RCIP) scheme in terms of the phases when compared with the UP-2 and UP-1 schemes.
Dissipation at the discontinuity blur the square-wave shapes, particularly at the deeper part, but the phases are still maintained
better by the RCIP+corr (RCIP) scheme than by the UP-2 scheme.

3.5 Non-steady thickness experiments

The time evolution of the surface mass balance often involves the evolution of ice thickness as a response. In this section,
age computation performance levels under non-steady mass balance and ice thickness conditions are presented. In the present

paper, the time evolution of thickness is computed as follows:

OH 1
Ez—f{H—Href(Ms)} ; (61)
TH
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Figure 10. Results of transient experiments with square-wave surface mass balances of (a) an,aL = 3,1.5cmyr~! and (b) 3,0.75cm yr—*
with high- and low-value phase durations (Eq. 57) set as Py : PL =1:1=50: 50kyr. The basal mass balances are set as 0. The computed
annual layer thickness of A against the computing age is shown (RCIP overlaps with RCIP+corr). The gray lines indicate benchmark solutions
of the constant surface mass balance cases of ay and ai, while the black lines am = (an + ar)/2 are provided as references. Uniform grid

spacing of 129 levels is adopted in this simulation.

400 where H,qf(Mj) is the reference thickness as a function that depends solely on the surface mass balance and 7 is the response
thickness timescale. Under ideal conditionsan-idealized-condition, the steady-state ice thickness at the summit is proportional
to the 1/(2n + 2) power of the surface mass balance, where n is the Glen’s flow low exponent (Cuffey and Paterson, 2010).

Following this relationship, the reference thickness is formulated as

1/(2n+2)
M(t) } . 62)

Heet (M) = H(t = 0) st(t:())

405 For cases where H(t =0) = 3000m, ap,a. = 3,1.5cm yr~! and Pr = 100kyr, the evolution of H over the first two cycles
can be computed as shown in Fig. 11 using Eqgs. (61) and 62. The lower thickness limit in this case is 3000 x (1.5/3.0)1/8 ~
2751.01m.
Several experimental configuration combinations are examined. These include square-wave or cosine-wave forcing; ay,a =
3,1.5ecmyr~! or 3,0.75cmyr—!; 7y = 3kyr or 10kyr; Py, P=1:1,7:1,0r 1:7; My =0, 0.3, or 3mmyr—!. Figure 12
410 shows the resultFigures12-and13-are-theresults of experiments conducted with response time scales of 10kyr for theunder ,—.
G . The gra

lines in the figures are the benchmark solution with constant surface mass balances of ay and a and their corresponding

100kyr cycle square-wave case provided as an example

reference thickness of H,¢. The black line is computed using the mean surface mass balance apm = (ap +ar)/2, and the mean

thickness over the last cycle of its evolution.
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Figure 11. Prescribed time evolution patterns of ice thickness adopted in the non-steady thickness experiment. The thickness evolution
evolution-of-thickness is computed using anthe e-folding time of 10kyr against square-wave and cosine-wave formulation of the surface
mass balance with an,a. = 3,1.5cmyr~—* (Fig. 6) provided as an example.
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Figure 12. Same as Fig. 7, but for the results of non-steady thickness experiments conducted with the response timescale set as 77 = 10kyr. (6 )

The reference thickness values H for the benchmark profiles are explained in the text.

21



415

420

425

430

777777777 AR AP AR AParaar00A 777777 //////// R AR 777777777777 7777777777777
///////////////////////3 1 5////////_//1/ ?/ 11;@[( u//;o, ,P :E 1 1502520007 g////////u 20777 1ﬁ}§uu//u///uuu/////uu/////uuu////
Y A= 7 Y R Y Y Y Y Y Y Y Y Y Y Y Y VYY)
25000 W20 INYY 27057 T,,,, S AAN L,, %351!“3 5257 , B I T 000 0000050000000000000555000000000057
2200000007 A A AR A
527 50005405000050500507 Gt 000000000000000000000000007 2227777777
A o /u;yuM;u;pu/\//Numwym/ nrry” z 202N 2 1A Nu/yu4-/4/4/yyyy\/////4/;;$;/u
A AT /u;u}uuubuu 25757 7 A A A B s
R 777 7 z D R Y Y Y Y Y VY 2227
T o vk e o, z 00000005000000000050000000000500000000000 77272
A 22277 D R Y Y Y Y Y Yy YY) vy
S Oy Yy oy VY VY] 22272

PR XY VY. ] ) 2 R Y Y Y Y Y Y Y Y Y Y Y Y Y Y] I
777777773777 77777477777772777757777 7777777777 7777277707772777727277727772727272100877 7777

AR AR T T I I IIIIY ] A Y Y Y Y Y Y Y Y Y Y Yy YY) a
Ry Y IVEr7 P I I I 07777777777777727777 (7272

sy 2200000 Py VY Y YYYY, Yy Yy
R R s P s 077777777777777777 477 22277
277 R Y R A A AR CAAAAAAAAAAAAAAAA AR
Y R 27707777777 R Y Y Y Y Y Y Y VYY) 2227
277 Ry 2 A . 22272
277 AL AR ¢ 27
277 AR G Py A v Y YY) 22222
277 R 2000, 2227
277 sy //////////// A Ry (27272
277 sy vy 2222
277 T o vy 22272
277 s Y Y Y Yy YY) 22277 20002022227277777 A
277 50000000400000000000005000050000 22277 Ry 22222
277 P Y Y Yy VYY) 22272 2000000070707 77770777777777 22222
277 R R Y VY Y Y YY) 27277 R Yy 1Y) f=r222
277 A A AR AR A 22277 Ry Yyl 2222
277 N Y 22777 R ey 2227
277 56000000400000000000005005020050000 22277 AR A (=227
277 D Y R VY VY Y Y Y Y YY) 220N A 2000000000000, L 2272
277 P A Y Y Y Y] Y T T o Yy 22272
277 z 27 27
777 7777 Pl k77777777 477777777477777777A4072727778 77777 A0 7 27777 77777777777777777 7777
277 A Y Y Y Y Y Yy A 22272
22277 R i R R Y Y Y Yy Y Yy (2272
22277 Y Y Y WYY Yy Y 2222
22277 ) R R A Y Yy Yy, Yy Yy, 2227
22277 P2z A s Y Y Y Y Y Y {22222
22277 2702 R R R Y IYY YY) VY Y YY VYY) 227
22277 2070007 R s AR L 22277
22277 P R v, N A, Yy Yy vy |22222
250505 WYYy T v, Y, Y Yy Yy
22272 S R Yy Vi s Y. v, i vy 22272
22277 R R IV ¥ e |22}, \27272
22277 P Y Y vy A 2277
2222277 D A A R R Yy Y Y Y YYY vy, 22277
2222277 7. 277 277
7777777 VR ////\//// ////V///j////)f/// srrr¥ s s s s s KRVIAAZ W’H’)’P/ 77777
2000000770777, 7 277 221N, 722777
A A 550508 29007 227 z 5555505005005 22007
oy 2492222227, 7 2277 2277 227727777 227277
Ry 2N 500777 5555 2077 220 222227772 202077
277 227777

A comparison with the fixed thickness experiments (Fig. 7 vs Fig. 12, or other combinations archived in the Supplement) @
(Figs—6-and-8-vsFigs—2-and-+3) showsshew no significant differences. The preservation of discontinuity in the annual layer

thickness is similar to that seen in the non-steady thickness case. The differences in computed age, as well as the performance
levels of the phases in the annual layer thickness, are qualitatively the same. In addition, all of the combinations examined in

this paper show corresponding results that are qualitatively similar to those obtained in the fixed thickness experiments.
3.6 Occasional non-positive surface mass balance experiments

So far, the surface mass balance values adopted in our experiments have been positive (corresponding to the accumulation
zone). This limitation is sufficient for the usual topics relating to deep ice-core experiments, where the interpretation of ice-
core data may become too complex. However, in order to provide a complete demonstration of the performance levels of
numerical age computations for more general cases, it is worthwhile to examine other cases. Although it may be considered
pointless to examine steady negative mass balance cases because they simply mirror the steady positive cases presented above,
the surface mass balance level adopted in this section is examined with zero or negative a; in Eq. (57) and Fig. 6. One @
encountered difficulty is computing vertical velocity when the surface mass balance is negative. Strictly speaking, it is possible
to apply negative M, to Eqs. (52) and (53), but the validity of such a formulation may be questionable because it is based
on an idealized steady-state ice-sheet solution under positive surface mass balance conditions (e.g., Rybak and Huybrechts,

2003). However, for the sake of simplicity, the vertical velocity profiles in the current study are prescribed using the same set of
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Figure 13-14. Same as Fig. 7, but for the results of transient experiments conducted using a square-wave surface mass balance with a. = @
Ocmyr™ .

equations for both positive and negative surface mass balances. This is considered to be sufficient, particularly for evaluations

of the numerical performance levels of different schemesseheme numerical-performaneelevels.

1

The results of the transient experiments that were conducted under a square-wave surface mass balance of i =0cmyr™

are presented in Fig. 13, while the other configuration is the same as in Figs. 7 and 8.Figure14—is—theresult-oftransient

1 onfiouration—icthe
W O O guratio

same-as—Fig—6-or7- The results obtained under a configuration with @i = —1.5cmyr~! are archived in the Supplement.

Figure—+5-is-a-configuration-with-ar——+5em-yr—L For both experiments, theThe thickness is fixed as 3000m, the mass
balances are ay = 3.0cm yr—', M}, = 0, and the phases are Py, PL = 50, 50kyr.

435 experimentsconducted-underthe-square-wave-surface-mass-balance-of-a=Hem-y

Several experimental configuration combinations are examined. In a comparison involvingwith the experimental results of
440 the positive mass balance cases examined in this paper, qualitatively similar results are presented. As the prescribed surface
mass balance at the lower a becomes smaller, errors in the annual layer thickness become clearer around the middle depth.
The A forby the RCIP+corr(RCIP) scheme at the 1600 m depth and below does not extend to the reference gray line (Fig. 13¢)
Figs—4e-and15¢). This is due to the lack of sufficient vertical resolution when capturing the variation. However, the results

are still better than those obtained from the other schemes.

445 3.7 Resolution

Annual layer thickness becomes smaller with depth, which reflects the vertical velocity profile. Therefore, differences in age
between two neighboring levels become larger with increasing depth. At a certain depth, the grid spacing becomes insufficient

to hold the variation of the input age cycles, which means that the preservation of the input variation is lost below that depth.
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Figure 14-16. Vertical discretization adopted in the present study: (a) Z vs ¢ (b) A vs (. FiveFeur patterns are shown: uniform grid

spacing of 129 levels (129e), that of 513 levels (513e), a smooth non-uniform discretization (513p, see text), anda non-smooth, non-uniform

discretization (4770, see text), and uniform grid spacing of 33 levels (33e). Symbols are plotted for every 16 vertical levels. The four gray

1

s

lines in (b) correspond to the layer thickness necessary to resolve 10, 5, 2, and 1kyr differences under the condition of My = 1.5cmyr™
My, =0, and H = 3000m. The two horizontal magenta lines correspond to the depth needed to reach 1000 and 2000kyr under the same

conditions.

shallow depths, for high-frequency input (Fig. 15¢). The square-wave shape pattern seems to be well preserved, at least around
the 1700 m depth (¢ ~ 0.44) in Fig. 15a, and around the 600 m depth (¢ ~ 0.8) in Fig. 15b case (which is beyond the range of
the figure but presented in the Supplement)Fig—17b. Therefore, byin-a comparison with Fig. 14, it can be roughly estimated

that T,es = bkyr and T, = 2kyr or longer are necessary to resolve the Pr = 50kyr and Pr = 20kyr square-wave shapes,
respectively, which correspond to 1/10Pr.

Here, the same series of experiments is repeated using a higher resolution and a uniform grid spacing of 513 levels, which is
four times the resolution of the previous experiments. The vertical line marked as Z: 519¢ in Fig. 14b corresponds to this grid
spacing. As the figure shows, this discretization can hold 5, 2, and 1kyr differences by ¢ ~ 0.19, 0.33, and 0.51, respectively,
corresponding to 2430, 2010, and 1470m in depth, respectively. The time step for higher resolution experiments conducted
hereafter is set as 25yr.

Figure 16 is the same as Fig. 15 except for the vertical grid spacing adopted and with zooming shown near the bottom part.
The patterns seem to be well preserved by around the depths corresponding to the  above, but the computed ages produced by
the RCIP+corr(RCIP) schemes are not on the line My = a| below the corresponding depths.

The number of vertical layers presented above exceeds 100, which is substantially more than those used in many operational
large-scale 3D ice sheet models. The typical number of layers is 30, or even less (e.g., Goelzer et al., 2020; Seroussi et al.,

2020). Therefore, since it would be helpful to evaluate performance levels at such a lower resolution for a broader range of

25
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Figure 15-17. Results of transient experiments conducted with the square-wave surface mass balances of ay,a. = 3,1.5cmyr~* and Py :
P =1:1 (Eq. 57), and the total duration as (a) Pr = 50kyr, (b) Pr = 20kyr, and (¢) Pr = 10kyr
{fe)Lr=-50kye. The basal mass balance is set as 0 for all the experiments in the figure. The vertical profiles of the annual layer thickness
A at 1000kyr using RCIP+corr, RCIP (which overlaps with RCIP+corr), UP-2, and UP-1 are shown. The gray and black lines indicate

B 5

benchmark solutions of constant surface mass balance cases with an, ar, and am = (an + ar)/2 given as references. Uniform grid spacing

of 129 levels is adopted in this simulation. The results covering the depth from 1000 to 2600 m are shown.
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Figure 16-18. Same as Fig. 15, except for the vertical resolution, which is shown as a uniform grid spacing of 513 levels. The results at

2000kyr covering the depth from 10004466 to 2600 m are shown.
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Figure 17. Same as Fig. 7, except for the experiment with the lower vertical resolution of 33 uniform grid spacing. Symbols are plotted for @

every two vertical levels. B6,B013

applications, a series of experiments was performed using a lower resolution. Figure 17 is the same as Fig. 7, except that the @
results are provided using a uniform grid spacing of 33 levels (i.e., Az = 93.75m), which is one-fourth the resolution of the
reference experiment. The time step for the lower resolution experiments was set to 200 yr.

When compared to the higher resolution cases, the annual layer thickness patterns seem to be less preserved. The square-
wave pattern in the results of UP-1 has already disappeared at around 1400m depth, while those in the other schemes are
almost the same, although less than the 129-level cases.

Figure. 14b also contains a line corresponding to athe uniform grid spacing of 33 levels marked as Z: 33e. As the figure
shows, this discretization can hold 10kyr differences by ( ~ 0.67, corresponding to 990m in depth. Similarly, it holdsheld
20kyr differences forby ¢ ~ 0.43, (1710m, not shown in the figure). Figure 17c shows that the result patterns obtained for the

RCIP+corr(RCIP) schemes are well preserved by around the 1400 m depth, which is between the two vertical levels of these

estimations. Thus, likeThus-assame-as the 129-level cases, it can be roughly estimated that 1/10 (or slightly more) duration of
the input cycle is necessary to resolve by one grid.

A comparison between Fig. 17b and Fig. 7b shows that differences in computed age among the schemes are within a @
comparable range (< 10kyr), and thus are neither exaggerated nor converged by reducing this resolution. The high-frequency
oscillation seen near the bottom in Fig. 17b is not in Fig. 17b, which reflects the fact that even the RCIP+corr scheme cannot
preserve the input shape near the bottom with the lower resolution. Nevertheless, it should be emphasized that there are still

systematic 1 to 10kyr biases are left by the upwind schemes.

27



505

510

515

520

525

530

3.8 Non-uniform discretization

So far, all of the experiments were performed with uniform discretization of either 129 or 513 levels. For most cases in

the present study, it is reasonable to adopt non-uniform discretization, which means large spacing toward the top and small

spacing toward the bottom. Sincein-the previous-section; it was previously estimated that at least 1/10 duration of the input

cycle is necessary to resolve one grid, the discretization can be optimized according to the A( profile computed with the
minimum surface mass balance of the experiment. Here, for example, the target experiments are set as the square-wave surface

mass balance with Py = 100kyr, Py: PL=1:1, My, =0, H = 3000m constant, and ap,a. = 3,1.5cmyr—'. This is the

same configuration seen in Fig. 7. For this configuration, the combination of T, = Pr/20 = 5kyr and M = 1.5cm yr—1is @
adopted in order to compute the reference profile in the same way as Fig. 14. This number, which is half the number of the
estimates used in the discussion abovepreviousseetion, was chosen for safety, and to facilitate additional experiments with

other configurations (e.g., . = 0.75cm yr—! and/or Py = 50kyr, which are archived in the Supplement).

Two non-uniform discretization types are adopted in this section. One is a non-smooth grid, and the other is a smooth grid

(introduced in Sect. 2.2). Various methods can be applied for non-smooth discretization. A very simple method, which is

adopted in this study, calls for starting an initial spacing from the top and then keeping the same grid spacing as long as it is

smaller than the reference profile. When the spacing exceeds the reference, it is halved from the coordinates and maintained

at that size until it exceeds the reference again. It is necessary to limit the minimum grid spacing in order to avoid an infinite

number of discretizations. The line marked as Z: 4770 in Fig. 14 is a computed profile following the method mentioned above,

which runs from A¢ = 276 to 27!, It contains 477 levels from ¢ = 0 to ¢ = 1. The vertical coordinate system Z (model logical

coordinate, see Sect.2.2) is identical to ¢, and the series of ( is shown in Fig. 14a.
For non-uniform smooth discretization, a transformation function that follows the reference profile is necessary between ¢

and Z. Since there is no fixed method for choosing the formulation of Z, the following three constraints are adopted for this

paper: (i) ((Z=0) =0, (ii) ((Z=1) = 1, and (iii) g—g >0 for 0 < Z < 1. A simple formulation to satisfy these constraints is

Z+~Z¥
(= £Te (63)
1+~
where the two parameters v (a weight) and v (a power) control the shape of transformation. The linear term Z in Eq. (63) is
needed to avoid infinite 3—? at ¢ = Z =0, which is used for in Eq. (45). After some trial and error with changing « and v chosen

from integer numbers, we found the following formulation can be used to maintain a grid spacing that is less than or equal to

the reference profile until approaching the bottom: A

(2 +42'%)

(=",

k fork=0,--- ,Ng — 1. (64)

“Np—1

The line marked as Z:513p in Fig. 14 is the profile obtained by (64). Thelinearterm; Z/5rinEq—(63)-isneeded-to-avoidinfinite — Aoo6

g—%,—whieh—'rs—used—feﬁﬂ—Eq.—éélé%Here, the same number of levels (513) is adopted to discretize under the Z-coordinate system. —{ A006

reference-profile-until-near-the-bettom-Figure 14a shows the uniform grid spacing of Z, which corresponds to the non-uniform
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Figure 18-19. Same as Fig. 7c, except for the vertical resolution as (a) uniform grid spacing of 513 levels, (b) smooth non-uniform grid
spacing of 513 levels, and (c) non-smooth non-uniform grid spacing of 477 levels. The results at 2000 kyr covering the depths from 2300 to

2900 m are shown.

( grid spacing achieved by this method. Additionally, Fig. 14 marks the two vertical coordinates as references in order to reach
1000 and 2000 kyr, respectively, under the constant condition My = 1.5cm yr_l, My =0, H=3000m.

Figures 18 and 19 show the results obtained using the uniform-spacing (Z:513e), smooth-grid (Z:513p), and non-smooth-
grid (Z:4770) discretization methods, in terms of A vs depth, and A vs age. A comparison with Fig. 7 shows that the latter
preserves the input shape deeper than the former. As shown in Fig. 14, the uniform discretization case (marked as Z:513e)
is expected to fail to resolve 10kyr at age 1000kyr, which is presented in Fig. 19. The results of UP-1 preserved the input
shape deeper than the lower resolution, which are almost only half of those achieved with the RCIP+corr(RCIP) methods.
The results of UP-2 were preserved at slightly deeper depths than those of UP-1. However, their phases are shown to be
shifted from those of the RCIP+corr(RCIP) methods, particularly at the deeper part. For differences in the computed age from
the RCIP method (a and b), quantitatively, the same performance levels as the lower-resolution experiment were obtained by
the other methods. The UP-1 and UP-2 methods deviate from the RCIP method by around 1kyr and 10kyr at most, while
RCIP+corr deviates by around 100yr. Using non-uniform discretization, preservation of the input shape is further extended to
the deeper part (Fig. 18). As shown in Fig. 14, the non-smooth non-uniform discretization case (marked as Z:4770) crosses
the Tres = 10kyr line at ¢ ~ 0.07 (i.e., 2790m depth) for the a = 1.5cm yr~! experiment, which is observed in Fig. 19. The
smooth non-uniform discretization case (marked as Z:513p) crosses the T,.s = 10kyr line slightly below that depth, ¢ ~ 0.06
(2820m depth), which is observed in Fig. 19 again. In addition, similar to the lower-resolution experiment, Fig. 19 shows that

the RCIP+corr(RCIP) scheme performs relatively better in terms of the phases than those with the UP-2 and UP-1 schemes.
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Figure 19-20. Same as Fig. 10, except for the vertical resolution as (a) uniform grid spacing of 513 levels, (b) smooth non-uniform grid

spacing of 513 levels, and (c) non-smooth non-uniform grid spacing of 477 levels. The results at 2000 kyr are shown.

550 4 Discussion and conclusion

The present study demonstrates a method for performing 1D age computations of ice-sheets under varieus—cenfigurations;
sueh-as-uniform—veloeity;constant velocity, variable velocity responding to transient changes in surface mass balance, and/or

changes in ice-sheet thickness. Herein, comparisonsCemparisons of the vertical profiles of computed ages, as well as annual

layer thicknesses, wereare examined among the RCIP schemes (semi-Lagrangian) and upwind schemes (Eulerian). Although
555 the experiments in the present study were limited to 1D computations under summits, we believe the characteristics of the

RCIP schemes have been presented sufficiently to allow evaluations of their performance levels.

Overall, the RCIP schemes show the best performance levels among the schemes examined in the present study. In particular,
the computed vertical profiles of the annual layer thicknesses produced by RCIP schemes follow the expected depth profiles
more reasonably than the other methods. This advantage reflects the design of the RCIP scheme, which explicitly computes

560 the evolution of the age derivative, i.e., the inverse of annual layer thickness, using an advection equation that is similar to the
one used to compute the age itself. Using the other schemes, the computed vertical profiles of annual layer thickness either
show more smoothing at shallower depths than that were found with the RCIP scheme or the development of oscillation at
steep changes in the input surface mass balance. Such oscillation development is shown even when the input is a smooth
cosine-wave type pattern and the amplitude is large. Since the slope filter adopted in this study is extremely simple, it is

565 possible that the results obtained by the use of a second-order upwind scheme with a more suitable filter will change the
characteristics. The introductionlntreduction of slope limiters on general non-uniform discretization for higher-order upwind
schemes is possible (Murman et al., 2005), but the conditions used for switching between a cubic polynomial and a rational

form (Eqgs. 11 and 12) in the RCIP scheme may be simpler and easier to implement. Under some configurations, oscillation
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development is not shown by the second-order upwind scheme. However, the phases of annual layer thickness against the age
are shifted from those expected from the initial inputs, which again demonstrates the advantages of the RCIP scheme.

We examined two methods of computing the departure points in our RCIP scheme experiments. Under a constant velocity
case, the results obtained by the simpler method show even less accurate solutions than the first-order upwind scheme, while
the other ‘correction’ method shows the best performance. The computed age differences between the two RCIP methods
is 1000yr at most for all the configurations examined in the present study, including the vertical resolution. As a result, the
simpler method still performs well if the expected accuracy of the application is less than that period. Under an evolving surface
mass balance, the solution of the upwind schemes deviation is by 10kyr, which is slightly larger.

As has already been discussed in previous studies(Greve et al., 2002), the first-order upwind scheme shows somewhat better
performance than other schemes in some experiments. Greve et al. (2002) attributes this result to the cancellation of errors
between discretization and numerical diffusion. In addition, from comparisons between results obtained via the first-order
upwind scheme, with and without the mid-point rule, (Fig. 4), we find that the mid-point rule does provide an advantage
because the results obtained without the rule are worse by one order of magnitude than those obtained via the second-order
upwind scheme. Furthermore, as discussed above, the upstream correction significantly improves the RCIP solution, which
suggests that it is important to consider the non-constant velocity between the arrival and departure points. Since the mid-point
rule formulation in the first-order scheme, in principle, corresponds to this upstream correction, they are consistent. The shape
of the normalized vertical velocity profile also may play a role in the relative performance levels. For example, the upper part
is more linear than the bottom part, which may increase the accuracy of the first-order approximation. In any case, it is clear
that some or all of these points contribute to the higher performance of the first-order scheme, except for the bottom part.

As long as the annual layer thickness is not a concern, we feel that the classical upwind schemes are acceptable choices for
use when dating. Note that using a first-order upwind scheme causes the structural details of the surface mass balance history
to disappear very rapidly, but average features will compute quite well, except for near the bottom. The second-order scheme
preserves the history better than the first-order scheme, but without an effective slope limiter, strange oscillations can appear in
the results, as we have demonstrated in the present paper. However, in spite of these oscillations in the annual layer thickness,
the results achieved by the second-order scheme are still slightly better than those for the first-order scheme throughout most
of this study’s experiments.

Greve et al. (2002) presented ‘practical suggestions’ for numerical dating schemes: the second-order, the total variation
diminishing Lax-Friedrichs (TVDLF) scheme with the minimum modulus (min-mod) filter, and even the first-order upwind
schemes. In line with those recommendations, we would like to add the following additional practical suggestions. If good
performance is required from the annual layer thickness computation, we strongly recommend the application of RCIP. We
also strongly recommend the application of RCIP if age computations near the bottom are required to be within the error range

of, e.g., 10kyr. In other cases, the classical upwind schemes are acceptable choices.

The ice thickness and accumulation rate values used in the present paper correspond to typical values found on the East
Antarctic Plateau, and the values used for the cycles in surface mass balance are 10 to 100kyr. Providing appropriate scaling

is used, all of the results can be interpreted in the same way as those with different configurations. In order to simplify
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the situation, the set of calculations will herein adopt a configuration with a different magnitude and surface mass balance
cycle, while keeping the same thickness and zero mass balance. Figure 7 is taken as an example. In this experiment, we will
use a figure with the same shape while replacing all the time related variables to 1/10 — ten times higher accumulation
rates (an,a. = 30,15cm yr—1) with 1/10 cycles, Pr = 10kyr, Py, PL = 5,5kyr. The range of the horizontal axis needs to be
adjusted from (a) A from 0 to 100kyr, (b) AA from —1 to 1kyr, and (c) A from 10° to 10> mm, respectively (remember
that the units of annual layer thickness A are substantially mm yr~1). Similarly, Figure 15 can be interpreted as the results
of (a) Pr = 5kyr, (b) Pr =2kyr and (c) Pr = 1kyr, respectively, providing that the horizontal axis is adjusted A from 10°
to 102 mm. In summary, the results in the present paper can be interpreted as cases of ~ 30cm/yr surface mass balance with
cycles of 1 to 10kyr, i.e., millennial-scale climate oscillations on a typical Greenland site. Under the scaled configuration, it
can be interpreted from Fig. 7b that the age profiles produced by the RCIP scheme deviate from RCIP+corr by less than 100 yr
throughout the depth range, which reflects the differences in computing the departure points. The other two schemes deviate
by around 1kyr at most. In addition, from Fig. 15a, it can be seen that the square-wave shape pattern is well preserved, at least
around the 1700 m with Py = 5 (a) even though the higher-frequency properties disappear at shallower depths with Pr = 1kyr
case (c). Moreover, from examining a series of experiments with ten-times higher accumulation under 1/10 shorter cycles, we

confirmed the same normalized shape of the results (not shown).

Although the focus of the present study is limited to 1D age computations, implementation of the RCIP scheme for 3D
computation of the age field is also a suitable subject for future discussions. Extension to 3D would require the consideration
of complex 3D flow fields and typically much lower horizontal ice age gradients. In addition, the negative mass balance
experiment demonstrated in the present study is too simple to be compatible with the 3D situation. One important characteristic
of the CIP scheme family is that the spatial gradient of the field variable (age in this case) is not a diagnostic (passive) value,
but is instead a prognostic field. Yabe et al. (2002) argued that even in an extreme case where values of the three adjacent grid
points are zero, one wave still can exist, and thus, non-zero spatial gradients can be held at these grid points. Therefore, it is
speculated that the accuracy of the RCIP approach is not worse than that of other semi-Lagrangian schemes using higher-order
interpolation techniques over the field variables, which have been discussed in past studies(Clarke and Marshall, 2002; Clarke
et al., 2005).

As described in the present study, RCIP is an effective scheme for preserving the flux information at deposition (annual
layer thickness in the case of dating). However, detection of ‘points of origin’ requires another technique, e.g., the back-tracing
method. Huybrechts et al. (2007) suggested a very effective back-tracing method, which can be sufficient by itself for ice core
dating. The small but primary advantage of the RCIP method over the powerful back-tracing method is that it is a forward
scheme. This means that it is not necessary to record all the past velocity field data during the simulation. Therefore we
consider the combination of the high-precision forward scheme and the powerful backward scheme to be a good choice when

the objective is to obtain rough and detailed pictures of ice age fields.

Furthermore, it is expected that the RCIP scheme will be applicable to other advection problems in ice sheet modeling. The

In-addition;—the evolutions of ice-sheet thickness and temperature are formulated using the transport or advection equations,

which are also good candidates for extending the discussion of this study. For such cases, researchers may be interested in mass
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or energy conservation in the field. Actually, a multi-dimensional conservative formulation of CIP schemes has already been
640 proposed (Yabe et al., 2002). Accordingly, theFhe implementation of the scheme to 3D age and temperature fields in numerical

ice-sheet models has already been set as the next target of our development.

Code availability. The copyright for the exact version of the model used in this study is heldeopyrighted by Japan Agency for Marine-Earth
Science and Technology (JAMSTEC) andwhieh is currently not publicly available. However, accessAeeess to the full code, including the
scripts used to run the model for all the simulations presented in this paper, mayean be granted in response to requests tendereden-demand

645 by-arequest to the corresponding author.

Appendix A: Notes on time-splitting

A time splitting technique (Egs. 2 and 3) is at thea core of the CIP schemes, andwhiech is somewhat difficult to understand at a

first glance. We will attempt to clarify matters with the following simple explanation

If it is assumed that the non-advection term h(z,t) satisfies at least locally h(x,t) = h*(t), i.e., is not dependent on x, a new

650 variable f*(x,t) can be introduced such that

[ (x,t) = f(z,t) f/dth(x,t) ~ f(x,t) f/dt h*(t) . (A1)

Then, by introducinghatredueing Eq. (A1) into the original advection equation (1), a pure advection form of f* can be obtained,

of*
ot

afr
or

+u(z,t)

0, (A2)

655 which is the same form aste the advection phase equation (2). Using a semi-Lagrangian algorithm, solving Eq. (A2) for f* at
time t 4+ At requires f*(x,t), which is identical to f(x,t) by cancellation of the integral term of Eq. (A1). Therefore, Eq. (A2)
is solved by the identical procedure used foref Eq. (2). After solving f*(¢ 4+ At), f(t + At) can be computed using Eq. (A1),
such that

t+At
fla,t+ At) = f*(z,t + At) + / dt h*(t), (A3)

t

660 which is the same as the non-advection equation (3) and the solution (21) where f(z) is integrated with the initial condition
f5-
Appendix B: Implementation of RCIP method in the present paper

‘Machine epsilon’ is defined as the smallest € in a computer such that 1 + € > 1 under floating-point arithmetic. Similarly, an

arbitrarily number f has the corresponding smallest number (hereafter € ;) which satisfies f +e; > f. In very rare cases, the
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authors observed that the age at the upwind grid point becomes close to the value at the target grid point, which differs by ¢
(i.e., fj+1 = fj +€y). Since no representative value exists between f; 1 and f; under floating-point arithmetic, the upwind
value is either f; or f;. Sometimes, f;;, corresponds to a value at a grid point that is too far away to be transported. If there
is an accumulation of errors of this type, the computed age may show unexpected oscillations.

Although rounding up very small differences may be a possible solution for such cases, a different approach was adopted in
the present study. After some trials, finally the authors adopted finally the following procedure for avoiding such oscillations,
which (to the degree they used it) worked better than the rounding-up procedure. In the numerical model of the present paper,
Eq. (14) is transformed as follows:

;X +CoX? +C5X?
1 + OéDlX
where C and Cy are substituted using Egs. (18) and (19). The second term § f can be computed as the difference between f;

Fi(X)=f; + =fi+of, (B1)

and fj41. When ¢ f is non-zero but sufficiently small, i.e., less than €, the value f; 4+ Jf is maintained as f;. After simple

reformulation, F;(X) in the model code is finally formulated as

Ci X +CyX? + C3 X3
Fj(X) = fij+ = (B2)
Do + OéDlX
where new series of constants are
Do =|gj+1—5j (B3)
. S —a:l—lgiiq —S.
Dy =Dy g - 5] = 12 g”A i1 =50 (B4)
:,CjJrl
2
Cr=g;lg5+1 = S5 » (BS)
. . S —a)lgiiq — S .
Co = Calgyas —S;| = Syaby + S =991 =551 (B6)
Azjiy
. =S, R
Cs = C3lgj+1— 55| = |gJA+;+1J| 9 —Si +(gj+1 = 5;) +04D1A$j+%} : (B7)
I3
(B8)
respectively. When g;41 — S; =0 (and o = 1), the coefficients lead to
C3=0, C1=0, Dy=0, (BY)
. S — g,
Co= SjM , (B10)
Azjiy
b, — 15— il , B11)
Azjiy
(B12)
respectively, and using this combination, F};(X) is formulated as
Cy X2
Fi(X)=f + = =fi+S8.X, (B13)
.7( ) f] DlX f] J
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which means a linear profile is adopted, regardless of g;.
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