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Abstract. Modelers tend to focus more on advancing methods of statistical and mathematical modeling than developing 

novel techniques for comparing modeled results with observations or establishing metrics for model performance 

assessment. Perhaps solely the most extensively applied "goodness-of-fit" measure especially for assessing performance of 

regression models is the coefficient of determination R2. Normally, high R2 tends to be associated with an efficient model. 

Nevertheless, R2 has been cited to have no importance in the classical model of regression. Even in its use in descriptive 10 

statistics, R2 is known to have questionable justification. R2 is inadequate in assessing model performance because it does not 

give any information on the model residuals. Furthermore, R2 can be low for an effective model. Contrastingly, a very poor 

model fit can yield high R2. Regressing X on Y yields R2 which is the same as that if Y is regressed on X thereby invalidating 

its use as a coefficient of determination. Taking into account the drawbacks of using R2, this paper introduces coefficient of 

model accuracy (CMA) the derivation of which comprises an analogy to the R2. However, instead of simply squaring an 15 

ordinary Pearson's product-moment correlation coefficient to obtain R2, CMA comprises the product of nonparametric 

sample correlation and model bias. Acceptability of the introduced method can be found demonstrated through comparison 

of results from simulations by hydrological models calibrated using CMA and other existing objective functions. MATLAB 

and R codes as well as an illustrative MS Excel file to compute the CMA were provided. 

1 Introduction 20 

Despite the advances in methods of statistical and mathematical modeling, Alexander et al. (2015) asserts that there 

continues to exist considerable lack of focus on improving ways to judge the quality of the models. Here, quality can be 

thought of in terms of  how well a model fits a set of observations and this can be described as "goodness-of-fit". The 

coefficient of determination (hereinafter denoted as R2 or interchangeably used with R-squared) is perhaps solely the most 

extensively applied measure of "goodness-of-fit" especially for regression models (Kvålseth, 1985). In various studies from 25 

the various disciplines of Geosciences (also called Earth sciences) such as atmospheric science, hydrology, and 

environmental science, R-squared is commonly applied in many studies. For instance in hydrology, some of the studies 

which applied correlation and/or R2 to evaluate model performance include Chen et al. (2019), Lane et al. (2019), Faiz et al. 

(2018), Krysanova et al. (2018), Nagraj et al. (2018), Unduche et al. (2018), Bennett et al. (2013), and Ritter and Muñoz-
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Carpena (2013). In various studies, researchers also commonly use correlation and/or R2 to evaluate reanalyses or satellite 30 

precipitation products. Examples of such studies include Fallah et al. (2020), Shaodan et al. (2020), Irvem and Ozbuldu 

(2019), Trinh-Tuan  et al. (2019), Zandler et al. (2019), Derin et al. (2017), Jiang et al. (2017), Wang  et al. (2017), Peña-

Arancibia et al. (2013), and Ward et al. (2011).  

 In assessments of "goodness-of-fits", there is the common tendency to associate a high value of R2 to an effective 

model (Quinino et al., 2013). However, there have been very strong statements made by some researchers such as Goldberg 35 

(1991), and Cameron (1993) on the use of R2 to measure "goodness-of-fit". Goldberg (1991) asserted that "the most 

important aspect of R2 is that it has no importance in the classical model of regression". Furthermore, R2 is not a statistical 

test, and there seems to be no intuitive justification for its use as a descriptive statistic" (Cameron 1993), suggesting that the 

value of R2 should not even be reported (Quinino et al., 2013). The use of correlation-based approaches (such as R2) for 

evaluating model performance has been argued by a number of researchers such as Legates and Davis (1997) and Willmott 40 

(1981) to be an inappropriate practice. Further insights on the limitations of R2 were given by some researchers such as 

Sherri and McGuire (2019), Li (2017), Alexander et al. (2015), Krause et al. (2005), Schemper (2003), Golbraikh (2002), 

Weglarczyk (1998), and Cameron and Windmeijer (1997). A few reasons why R2 is inadequate to assess predictive power of 

models are that: R2 can be low for an accurate model, and on the other hand, an inaccurate model can yield high R2 (Shalizi, 

2015). Another problem is that the value of R2 when we regress X on Y turns out to be the same as the R2 attainable by 45 

regressing Y on X. This means that R2 cannot be taken to be indicative of the variance in observations explained by a model, 

thereby invalidating the use of R2 as the coefficient of determination. Furthermore, the value of R2 does not give any 

information on the model residuals. In other words, R2  only quantifies dispersion but not bias in the data. For instance, if we 

take 10% of observed data to act as modeled results, the R2 value will still be 100% despite the 90% bias. This means that R2 

should always be accompanied with residual analyses. The common practice is to use residual plots to give an insight on the 50 

bias. Furthermore, support for the analyses of residuals tend to be independently obtained using Root Mean Squared Error 

(RMSE), and the Model Average Bias (MAB). By the time of writing this paper, there was no formula available which 

addresses the shortcomings of R2 by comprehensively quantification of dispersion and the measure of bias. 

 Therefore, this study aimed at introducing coefficient of model accuracy (CMA) the derivation of which bears an 

analogy to the well-known R2.  The formula of CMA was carefully derived as a product of non-parametric correlation 55 

coefficient and the measure of model bias. CMA varies over the range 0–1. The remaining parts of this paper were organized 

as follows. Section 2 comprises a stepwise derivation of CMA. Comparison of CMA and other "goodness-of-fit" measures 

was made using a modeling and simulation case study as presented in Section 3. Results and discussion of the case study 

were presented in Section 4. Finally, conclusions were made in Section 5. 
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2 Materials and methods 60 

2.1 The new approach 

2.1.1 Basis of the CMA 

Let one variable, for instance the modeled series of sample size n, be denoted by Y. Again, let the other variable (or the 

observed series) be denoted by X. If x  and y are the mean values of the xi's and yi's and r refers to the sample Pearson's 

product-moment correlation coefficient while m is the least squares linear regression slope, r and m can be given by 65 
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Based on a cursory look at Eqs. (1) and (2), r and m are noticeably related via the co-variance of X and Y or 
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If we let 
2R denote the coefficient of determination based on the ordinary (for instance, the Pearson's) correlation coefficient 

r, while γ is the ratio of  
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Highlights of a few reasons why R2 is not suitable for use as a "goodness-of-fit" can be noticed from Eq. (4). First of all, the 75 

deviations of X and Y from their means to obtain γ are assessed independently, thus, the model errors are not taken into 

account. Secondly, possible outliers in X or Y would influence m, γ and, eventually R2. Analogous to the expression in Eq. 

(4), this paper proposes a new metric CMA. 
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2.1.2 Step-wise derivation of CMA 

The first step is the transformation of modeled data Y. To do so, consider ui as the number of times the ith data point is 80 

exceeded by others within the given sample. Again, for the given sample, take vi as the number of times the ith data point 

exceeds others. Let ei denote the number of times the ith data point appears within the sample. We can non-parametrically 

transform Y and X in terms of the difference between exceedance and non-exceedance counts of data points to obtain series 

dy and dx, respectively using  

, , , , ,2    y i y i y i y i y id v u n e u  for 1 ≤ i ≤ n               (5) 85 

, , , , ,2    x i x i x i x i x id v u n e u  for 1 ≤ i ≤ n               (6) 

where uy, vy, and ey denote u, v, and e applied to y's. Similarly, the ux, vx, and ex represent u, v, and e applied to X. For an 

illustration, consider the dataset Y  with n = 10 such that y = {5, 8, 3, 6, 2, 5, 8, 1, 4, 6}. It means uy = {4, 0, 7, 2, 8, 4, 0, 9, 6, 

2},  vy = {4, 8, 2, 6, 1, 4, 8, 0, 3, 6}, ey = {2, 2, 1, 2, 1, 2, 2, 1, 1, 2}, and dy = {0, −8, 5, −4, 7, 0, −8, 9, 3, −4}.  

The second step entails computation of non-parametric linear trend slope f  for regression of Y on X. The transformations in 90 

Eqs. (5) and (6) lead to a special case in which the non-parametric correlation between X and Y is the same as f. If we 

substitute the x and y in Eq. (1) with dx and dy, respectively,  f can be obtained using 
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          for   1 ≤ i ≤ n                                               (7)  

It is worth noting that the dy and dx from Eqs. (5) and (6), respectively, can be comparable to simply ranking Y and X in 

descending order. The difference between simply ranking the data in descending order and applying transformation using 95 

Eqs. (5) or (6) is that the ordinary data ranks would all be positive and with their mean not equal to zero; however, dy or dx 

has a mean of zero and varies over the range  1 .n  Thus, the f in Eq. (7) is simpler to compute using dy and dx than 

when ordinary ranks of Y and X are considered. The values of f ranges from -1 to 1. When 0,f  it means X and Y are 

totally uncorrelated or the non parametric linear regression slope is zero. The cases  Y X and Y X yield 1f    and 

1,f respectively. Importantly, unlike r from Eq. (1),  f  (Eq. 7) is not susceptible to possible outliers in the data. 100 

The third step of deriving CMA includes quantification of the measure of model bias. Ordinarily, model bias or error tends to 

be in terms of the difference between the modeled and observed data points. In this case, summation of the errors requires 

normalization by a measure of the variability in the observations. This is the basis for a number of metrics such as MAB, 

RMSE, and NSE which all present the common issue of not having their values within the "standard" range of zero to one. 
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For the new method, penalties are first assigned to the modeled series and model errors obtained in terms of the deviations 105 

from the mean of observed data. Let H be a new series derived from the modeled data by taking into account some penalty. 

For every positive observed value, if the modeled data point is negative (or vice versa), a penalty is awarded. Expressly, for 

1 ≤ i ≤ n,  

   0 if 0 and 0 or  0 and 0  

, otherwise

i i i i

i

i
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h
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Let the comparison baseline  be a function of x for instance ,  x 2 ,  x and 3 .  x  Here, x as defined in Eq. (1) 110 

is based on the original or untransformed X . Consider the deviations 1  and 
2 to be used in expressing the measure of 

model bias β.  If min and max denote the minimum and maximum of any two values,  

  
2

1, ,  i i imin h x                                                                                              (9) 

  
2

1, ,  i i imax h x                                                                                             (10) 

Normally errors of opposite signs can cancel each other during their summation. This was avoided in Eqs. (9)–(10) by 115 

squaring of the terms in brackets in the right hand side. Based on the magnitude of the deviation of hi or xi from 

considering 1 ≤ i ≤ n,  we can obtain
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deviations are summed up separately,  the terms 1  and 
2 were considered such that for 1 ≤ i ≤ n, 
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therefore, the measure β of model bias can be given by  
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The values of β ranges from zero to one. An ideal model yields β = 1. When β = 0, it means the outputs of the model can 

simply be represented by the mean of observed data.  Analogous to Eq. (4), the CMA can be computed using, 
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The values of CMA ranges from 0 to 1. CMA equal to one
 
 indicates a perfect model (no errors). However, CMA equal to 

zero  indicates that the model is not better than the comparison baseline (such as the mean of observed data). An important 

note on selection of  is that putting   x  in Eqs. (9) and (10) makes 1  and 
2 conservative. However when 3 ,  x  

the values of 1  and 
2 become exaggerated. In other words,   x  makes CMA approach its maximum value of one 

slowly. On the other hand, with 3 ,  x  CMA
 
approaches 1 fast. Therefore, to ensure that 1  and 

2 are neither 130 

conservative nor amplified, 2  x was adopted in this paper. 

3 Case study 

3.1 Data and selected models 

It is a common practice to compare a new method with existing ones in geosciences. To do so, quality controlled daily 

hydro-meteorological data consisting of the Blue Nile flow observed at El Diem, as well as potential evapotranspiration 135 

(PET) and rainfall over and around the basin were adopted in a catchment-wide form from a previous study (Onyutha, 2016). 

The adopted PET, river flow and rainfall were daily series covering the period 1980-2000. Two hydrological models selected 

were selected to generate "goodness-of-fits" for comparison. These models included the Hydrological Model focusing on 

Sub-flows' Variation (HMSV) of Onyutha (2019), and Nedbør-Afstrømnings-Model (NAM) (Danish Hydraulic Institute 

DHI, 2007; Madsen, 2000; Nielsen and Hansen, 1973). These models were adopted for illustration because of their lumped 140 

conceptual frameworks or structure which are compatible with the adopted catchment-wide averaged PET and rainfall. Daily 

PET and rainfall were used as model inputs. The model output was runoff and this was compared with the observed river 

flow. 

3.2 Comparison of the CMA with other "Goodness-of-fits" 

For the calibration of HMSV and NAM, the strategy for automatically changing the model parameters was based on the 145 

Generalized Likelihood Uncertainty Estimation (GLUE) of Beven and Binley (2001). As a Bayesian approach, GLUE 

required several sets of model parameters which were randomized within stipulated limits. For each set of parameters, an 

objective function (also herein taken as the "goodness-of-fits") was selected and the HMSV or NAM run to obtain 5000 sets 

of simulations. The objective functions included the CMA (Eq. 14), the ordinary coefficient of determination R2 (Eq. 4), 
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RMSE (Eq. 15), MAB (Eq. 16), NSE (Nash and Sutcliffe, 1970) Efficiency NSE (Eq. 17), and IoA (Willmott, 1981) IoA 150 

(Eq. 18) proposed the  such that 
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The number of parameter sets for which each hydrological model was run was set to 5000. The optimal parameters were 

those in the set which yielded the best value of the objective function. In other words, the best set of parameters was obtained 

with the maximum values of CMA and R-squared, while RMSE and MAB were required to at their minimum. The 

calibration was able to yield 5000 values of each "goodness-of-fit" for comparison. 

For further analyses, simulated modeled was obtained based on the calibration using each of the objective functions. 160 

Comparison of the "goodness-of-fits" was made in terms of the difference between observed and modeled flow computed 

using 8 criteria or metrics annual maximum series (MMaxS), annual minimum series (MMinS), long-term mean of the daily 

series, Coefficient of Variation (CV), skewness, kurtosis, and Inter-Quartile range (IQR). 

 The "goodness-of-fits" were ranked such that the one with the lowest absolute difference was given a rank of 1. In other 

words, a rank of 6 was given to the "goodness-of-fit" which yielded the largest absolute difference. The sum of ranks from 165 

all the 8 criteria was obtained. The "goodness-of-fit" with the lowest sum of ranks was considered to yield the best modeled 

results. 

4 Results and discussion 

4.1 Comparing CMA with R-squared, RMSE, and MAB 

Figure 1 shows plots of each of the "goodness-of-fit" measures (MAB, RMSE, CMA
 
and R-squared) against the other. The 170 

relationship between RMSE and MAB is linear with a negative slope (Fig. 1a). This means the values of both RMSE and 
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MAB are large in magnitude for a poorly fit model. However, with increasing performance of the model, both RMSE and 

MAB tend toward zero. However, based on whether the model over-estimates or under-estimates the observed data points, 

MAB can take any positive or negative value, respectively. From Fig.1b, it is evident that for MAB of large magnitude, the 

CMA
 
is zero indicating a model with a very poor fit. However, as the magnitude of MAB reduces, CMA

 
increases such that 175 

for the set of optimal parameters, MAB and CMA
 
tend o zero and one, respectively. The relationship between RMSE and 

CMA (Fig. 1c)
 
 was found to follow a power function. Just like for the MAB, CMA

 
is zero for large values of RMSE (Fig. 

1c) indicating poor model fit. With improvement in the model performance, RMSE reduces while CMA
 
tends towards 1.  

 

An ideal model yields MAB or RMSE of zero. However, both RMSE and MAB do not have standard ranges. RMSE takes 180 

any value from zero to positive infinity. MAB ranges from negative infinity to positive infinity. Thus, when MAB or RMSE 

is not zero (which is often the case in normal modeling practices), the judgment of the model performance becomes 

subjective. Sums-of-squares-based error or deviation statistics such as the mean-absolute deviation and RMSE yield values 

which are counterintuitive and are therefore inappropriate measures of the typical errors (Mielke and Berry, 2001). This 

problem stems from the fact that each squared error may not meaningfully be comparable with other squared errors which 185 

lead to the set of squared errors; in other words, the triangle inequality may not be satisfied (Mielke and Berry, 2001). 

Eventually, there are interpretational difficulties or ambiguities inherent in sums-of-squares-based error statistics (such as 

RMSE) due to their dependence on the average error and the variability within the set of error magnitudes (Wilmott, 2009).  

 

It is noticeable that R-squared remained high whether RMSE or MAB was high or low (Fig. 1e-f). Furthermore, when CMA 190 

remained zero, R-squared varied over a wide range with some values close to 1 (Fig. 1d). This was because the R-squared 

does not quantify model bias as done by CMA. However, as CMA
 
increased from zero towards one, the variability of the R-

squared reduced. This showed that with improvements in the model performance, the variability in observed and simulated 

data become increasingly comparable. Nevertheless, the general poor performance by the R-squared depicted its limitations 

(see Introduction Section) in case it is to be used for assessing model performance. capture model bias (an element which 195 

basically influences performance of models).  

Generally, the results from the HMSV agree with those of NAM with respect to the overall relationships between the 

"goodness-of-fits". However, because the HMSV and NAM have different structures and parameters, some slight differences 

between results from the two selected models the in terms of the magnitudes of the "goodness-of-fits" are noticeable. This 

difference is expected and cannot be surprising. In fact, even if one model was to be calibrated against observations from two 200 

systems (i.e. catchments in this case), there would still be some differences in model results. This is because, the model 

inputs (such as rainfall and PET) and physiographic characteristics such as catchment area would differ and eventually, the 

parameter spaces to lead to model optimality would never be the same. 
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With respect to comparison of R2 and CMA, an important question to answer is: If X is regressed on Y, is it similar to 

regressing Y on X? Answering this question requires a close look at Eqs. (1), (4), (7) and (13)–(14). Here, R2 (Eq.4) is 205 

considered equal to the r (Eq. 1) squared.  In Eq. (1), the multiplication of  ix x  and  iy y  just like the product of

 
2

1


n

ii
x x  and  

2

1


n

ii
y y  is commutative thereby ensuring that the value of r (and eventually the R2) remains 

the same whether we are considering X versus Y or Y versus X. Similarly, f  from Eq. (7) remains unchanged when we 

consider X versus Y or regressing Y on X. However, because of the differences in the means of X and Y, the 1 (Eq. 9) 

obtained by regressing X on Y is different from that when Y is regressed on X. Again, the 2 (Eq. 10) obtained through 210 

regression of  X on Y is not the same at that for when Y is regressed on X. Therefore, so long as means of X and Y are not the 

same, β (Eq. 13) and eventually CMA (Eq. 14) obtained by regressing X on Y is always different from that when Y is 

regressed on X.  This explains why CMA is superior to R2.  

>> INSERT Figure 1 

4.2 Comparison of CMA with NSE and IoA 215 

Figure 2 shows values of NSE, IoA, CMA
 
and R-squared obtained during model calibration. Like in Fig. 1e-f, results of both 

the HMSV and NAM are comparable with respect to the relationships between the values of the objective functions. For 

negative values of  NSE, CMA
 
was zero (Fig. 2a). However, with improvement in the model fit, both NSE and CMA

 
tended 

towards 1. It is worth noting that NSE has a wide range of values. In Fig. 2a, c-d, NSE was as low as −60. Actually, NSE can 

yield values down to  −∞. NSE is known to be sensitive to bias in model prediction and is normally influenced by the 220 

outliers if present in the series (McCuen et al. 2006). The suitability of NSE has been on the modelers' radar for decades (see, 

for instance, Garrick et al.(1978), Martinec and Rango (1989), Legates and McCabe (1999), Krause et al.(2005), Criss and 

Winston (2008), Le Moine (2008), Gupta et al. (2009), Ehret and Zehe (2011), Legates and McCabe (1999), and Legates and 

McCabe (2013)). As a result there are several variants of NSE based on its modifications to address some of the issues 

related to the use of the original version of Nash and Sutcliffe (1970). For instance,  to overcome the oversensitivity of NSE 225 

to peak high values stemming from the influence of squaring the error terms, logarithmic NSE is widely used (Krause et al. 

2005). Another improvement was by Legates and McCabe (1999) by considering the ratio of the sum of absolute (instead of 

squared) differences between modeled and observed series divided by the sum of absolute (and not the squared) deviations 

of the observed data points from their mean. Despite the improvements, the original NSE continues to be more applicable 

than its variants, and thus its adoption in this study. 230 

The IoA increased towards its maximum value of one more rapidly than CMA (Fig. 2b-c). When CMA
 
was zero (or for 

negative NSE), the values of IoA were noticeably high up to about 0.8 (Fig. 2b-c). In the same line, for negative NSE 
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(indicating very poor model fit as depicted by zero CMA), the values of  R-squared were high or close to 1 conversely 

showing good model performance (Fig. 2d-e). From Fig. 2e, it can be seen that for a small IoA, R-squared exhibited large 

values and vice versa. In the same line, for MAB of large magnitude, the IoA was still large (Fig. 2f). Unlike the NSE, other 235 

metrics IoA, and R2 range from 0 to 1. The issues on the use of R2 for model assessment were already given in the 

Introduction Section. The original version of IoA (Willmott, 1981) which was adopted for comparison purpose has a major 

drawback of giving high values (close to 1) even for poorly fit models (Krause et al., 2005). This was the reason why when 

CMA was zero, the IoA was as high as 0.6 (Fig. 2b). To address the problems related to the use of IoA, Willmott et al. 

(2012) reformulated the IoA such that the refined metric is bounded by −1 and 1 like the correlation coefficient. In a relevant 240 

communication by Legates and McCabe (2013), they remarked that the refinement of the original IoA by extending its 

bound over the range  −1 to 0 was unnecessary. Other limitations of the refined of the refined IoA can be found elaborately 

given by Legates and McCabe (2013). 

 

>> INSERT Figure 2 245 

4.3 Comparison of observed and modeled series 

Figure 3 shows observed versus modeled series. The optimal parameters obtained based on calibration by the various 

objective functions can be seen from Appendix A1. The corresponding values for the sets of optimal parameters based on the 

various objective functions were summarized in  Appendix A2. As often done in hydrological modeling, the full time series 

is normally divided into two periods. The first and second periods are for calibration and validation, respectively. However, 250 

in this study, the entire or full time series was used for calibration. This was because the focus of this study was more on the 

evaluation of "goodness-of-fits" or objective functions than transferability of model parameters from calibration period to 

perform simulations over the validation period. The bias in capturing peak high flows varied among the objective functions 

(Fig. 3a-f). For instance, the use of MAB for calibration of the HMSV and NAM respectively led to over-estimations and 

under-estimations of high peak flow events (Fig. 3e). Possible contrast in the peak flows from the two models was due to the 255 

differences in model structures and also the parameter spaces considered for calibration. Nevertheless, the results from the 

models calibrated using the various objective functions adequately captured the variation in observed flow. This indicated 

the acceptability of CMA as a "goodness-of-fit" measure. 

>>INSERT Figure 3 

Figure 4 shows a results of observed and modeled flow in terms of distribution parameter and hydrological extremes. Apart 260 

from the over-estimation based on MAB, variance and long-term mean of daily flow, CV, MMinS, and IQR were well 

captured based on calibrations using the various objective functions (Fig. 4a, d-f, h). It was found that the minimum 
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difference in variance of observed flow and NAM-based modeled series was obtained when calibration was performed using 

the IoA as the objective function. R-squared was the best in reproducing the IQR when used to calibrate HMSV. However 

for NAM, the largest difference between the IQR of observed and that of modeled series was obtained using R-squared. 265 

Again, the use of MAB for calibrating NAM (HMSV) reproduced the most (least) biased MMaxS.  Over-estimations for 

skewness and actual excess kurtosis were slight and large, respectively. Usually when both skewness and actual excess 

kurtosis are zero, it means that the data follows a normal distribution. As realized from Fig. 4b-c,  the observed flow was 

slightly positively skewed (skewness = 1.60) and leptokurtic (kurtosis = 1.79). This showed that the central peak of the 

distribution of observed data was higher and sharper while its tails were fatter and longer than the normal distribution. The 270 

under-estimations of skewness and kurtosis could be due to failure of the models to capture the large intermittency (or large 

difference between maximum and minimum values) in the river flow data. In a data scarce region (like where the study area 

is located), extreme high and low peak flow events (like those falling outside the IQR) tend to be difficult to capture by 

hydrological models because of the data limitation and poor quality. 

Results also show that on one hand, the use R-squared for calibration led to larger over-estimations of observed variance, 275 

MMinS, and IQR (Fig. 4a, f, h) by NAM than HMSV. On the other hand, over-estimations of observed variance, MMinS, 

and IQR were larger for HMSV than those of NAM (Fig. 4a, f, h). Outputs from two models can not be the same because of 

the difference in model structures. For HMSV and NAM, the minimum difference between MMaxS of observed and 

modeled series was obtained using R-squared and MAB, respectively. For an ideal (or completely unbiased) model, the 

difference between observed and modeled flow is zero. Model bias can be brought about by various factors such as 280 

unrealistic assumptions in developing the modeling concept, observation errors of model inputs, etc. When we consider only 

one model, results from Fig. 4 were comparable. This, again, showed the acceptability of the introduced "goodness-of-fit" 

metric. 

>>INSERT Figure 4 

 285 

5 Conclusions 

This study introduced the CMA for assessing model performance. CMA is obtained as the squared product of non-

parametric correlation and the measure of bias. CMA ranges from 0 to 1. CMA = 1 indicates an ideal model (no errors). 

However, CMA = 0  shows that the model is not better than the comparison baseline (such as the mean of observed data). 

Unlike R-squared, regressing X on Y  yields CMA which is different from that when Y is regressed on X. To demonstrate the 290 

suitability of the CMA, two hydrological models HMSV and NAM were calibrated using the GLUE strategy (Beven and 

Binley, 1992) based on a number of objective functions including CMA, R2, RMSE, MAB, NSE, and IoA. Results from the 
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calibration were compared among the objective functions. Because the CMA combines quantifications of both the dispersion 

in the data and model bias, it outperformed R2 and was highly competitive with the other "goodness-of-fit" measures. 

Therefore, CMA can be considered as an alternative to R2 in evaluation of model performance. 295 
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Figure 1: Comparison of a) MAB and RMSE, b) CMA and MAB, c) CMA and RMSE,  d) CMA and R2, e) R2 and RMSE, 

and f) R2 and MAB 
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 420 

Figure 2: Comparison of a) CMA and NSE, b) CMA and IOA, c) NSE and IOA,  and d) R2 and NSE 
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Figure 3: Time series plots of observed flow and modeled series from HMSV and NAM obtained using a) NSE, b) CMA, c) 

R-squared, d) RMSE, e) MAB, and f) IoA as objective functions for calibration 
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 425 

Figure 4: Comparison of modeled and observed flow in terms of a) variance, b) skewness, c) kurtosis, and d) CV, as well as 

the mean of e) long-term daily flow, f) MMinS,  g) MMaxS, and h) IQR. 
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Appendix A: Model parameters and objective functions 

Table A1: Optimal parameters of HMSV 430 

Model 

parameter 

Parameter limits Objective function for calibration 

Lower Upper NSE CMA R-squared RMSE MAB IOA 

Smax 135 145 137.63 139.81 136.67 136.88 139.91 136.95 

a1 8 10 8.84 9.69 8.17 8.19 9.47 9.45 

ta 380 400 397 394 397 384 395 389 

a2 4 7 6.74 6.97 6.73 6.70 5.66 6.24 

tb 34 38 38 37 35 34 38 36 

a3 6 8 6.27 6.01 6.39 6.29 6.11 6.19 

c3 1 4 3.35 3.80 3.41 2.90 3.64 3.17 

b3 2 7 3 3 5 3 5 4 

tv 1 4 3 2 3 4 2 4 

Definition of model parameters: 

 a1      :   Baseflow parameter                                              a3      :   Overland flow parameter 1  

  t1       :   Baseflow recession constant (day)                        tb       :   Interflow recession constant 

(day) 

  tu       :   Overland flow recession constant 1 (day)             a2      :   Interflow parameter  

  tv       :   Overland flow recession constant 2 (day)             c3      :   Overland flow parameter 2  

 Smax  :   Maximum limit of soil moisture storage deficit (mm) 

Table A2: Optimal parameters of NAM 

Model 

parameter 

Parameter limits Objective function for calibration 

Lower Upper NSE CMA R-squared RMSE MAB IOA 

Umax          0.2 0.5 0.387 0.489 0.448 0.395 0.206 0.491 

Lmax 8 15 8.740 14.092 13.593 8.143 9.537 12.714 

CQOF 0 0.2 0.009 0.008 0.016 0.011 0.008 0.010 

CKIF 4 15 7.969 10.748 8.407 12.695 7.441 12.456 

CK1 20 35 22 21 25 26 30 24 

CK2 1 6 1.590 2.139 1.533 2.482 5.683 1.423 

TOF 0.01 0.2 0.051 0.154 0.088 0.017 0.018 0.198 

TIF 0.01 0.2 0.127 0.036 0.055 0.116 0.144 0.067 

TG 0.01 0.2 0.091 0.059 0.118 0.041 0.120 0.072 

CKBF 48500 55000 54800 50800 50900 50200 53500 54300 

Definition of model parameters: 

 Umax   :   Maximum surface storage   (mm)                Lmax    :   Maximum lower zone storage  (mm) 

 CQOF  :  Overland flow runoff coefficient                 CKIF    :  Time constant for interflow (day) 

 CKBF  :  Time constant for baseflow  (day)                 TIF      :  Threshold value for interflow 

 TOF     :  Threshold value for overland flow                TG       :   Threshold value for groundwater  recharge                   
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CK1 , CK2  :  Time constants for routing overland and interflow using two serially connected linear     

                     reservoirs (day) 

 

Table A3: Values of objective functions for optimal parameters of HMSV 

Objective 

function  

Value of objective function 

NSE CMA R-squared IOA RMSE MAB 

NSE 0.857 0.522 0.891 0.960 616.551 1.011 

CMA 0.840 0.566 0.804 0.952 649.625 0.928 

R-squared 0.795 0.484 0.959 0.930 733.624 0.792 

RMSE 0.854 0.515 0.878 0.960 612.771 0.975 

MAB 0.404 0.502 0.790 0.900 1252.726 1.484 

IoA 0.844 0.491 0.876 0.959 641.590 1.097 

In the row for NSE, it means that NSE was used as objective function during 

calibration; however, the values of the goodness-of-fits were computed for the 

optimal parameters. 

Table A4: Values of objective functions for optimal parameters of NAM 

Objective 

function  

Value of objective function 

NSE CMA R-squared IOA RMSE MAB 

NSE 0.897 0.529 0.572 0.973 519.482 1.028 

CMA 0.896 0.578 0.579 0.971 522.478 0.959 

R-squared 0.649 0.506 0.875 0.910 1203.688 1.553 

RMSE 0.896 0.495 0.566 0.972 522.832 1.044 

MAB 0.792 0.455 0.503 0.926 740.257 0.804 

IoA 0.898 0.501 0.576 0.973 518.134 1.037 

 435 
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Appendix B: MATLAB code to compute CMA 

function[cm]=CMA(x,y) 

 %x=Observed; 440 
 %y=Modeled; 

 %cm: Value of the metric CMA 

 %How to call the function: 

 %x=rand(100,1); 

 %y=x*rand(); 445 
 %[cm]=CMA (x,y); 

  

 n=length(x); %sample size of the observed data 

  

%============================================= 450 
%INITIALIZATION 

%********************************************* 

Dx=zeros(n,1); %for transformed observed series 

Dy=zeros(n,1); %for transformed modeled series 

ux=zeros(n,1); %number of exceedance - observed series 455 
uy=zeros(n,1); %number of exceedance - modeled series 

wx=zeros(n,1); %number of times a data point appears in observed series 

wy=zeros(n,1); %number of times a data point appears in modeled series 

h=zeros(n,1);  %Penalty-based series derived from modeled data 

A=zeros(n,1); 460 
B=zeros(n,1); 

C=zeros(n,1); 

D=zeros(n,1); 

  

%COMPUTING THE PARAMETRIC COMPONENT OF THE MODEL EFFICIENCY 465 
%********************************************************** 

x_mean=mean(x); % Mean of observed series 

  

%Penalty-based series derived from y or modeled series 

%********************************************************* 470 
for i=1:n 

    if (x(i,1)<0 && y(i,1)>=0) || (x(i,1)>0 && y(i,1)<=0)  

        h(i,1)=0; 

    else 

        h(i,1)=y(i,1); 475 
    end 

end 

%========================================================= 

  

for i=1:n 480 
       A(i,1)= (min(x(i,1),h(i,1))-2*x_mean)^2; 

       B(i,1)= (max(x(i,1),h(i,1))-2*x_mean)^2;  

       C(i,1)= min (A(i,1),B(i,1)); 

       D(i,1)= max (A(i,1),B(i,1)); 

end 485 
  

 

if (sum(D)==0 || sum(h)==0); 

    beta1=0; 

else 490 
    beta1=(sum(C)/sum(D)); 

end 
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%TRANSFORMATION OF OBSERVED SERIES  

%********************************** 495 
for i=1:n 

    wx(i)=sum(x==x(i));  %counting how many times a data point x(i) appears in observed 

series X 

    ux(i)=sum(x>x(i));   %counting how many times a given value x(i) is exceeded from an 

array X 500 
    Dx(i)=n-wx(i)-2*ux(i);  %this is the transformed observed series 

end     

      

%TRANSFORMATION OF MODELED SERIES 

%********************************* 505 
for i=1:n 

    wy(i)=sum(y==y(i));  %counting how many times a data point y(i) appears in from an array 

y 

    uy(i)=sum(y>y(i));  %counting how many times a given value y(i) is exceeded from an 

array y 510 
    Dy(i)=n-wy(i)-2*uy(i);  %this is the transformed modeled series 

end 

  

%Computing non-parametric trend slope and CMA 

%********************************************* 515 
if (sum(Dx.^2)==0 || sum(Dy.^2)==0); 

    rc=0; 

else 

    rc=sum(Dx.*Dy)/sqrt(sum(Dx.^2)*sum(Dy.^2)); 

end 520 
 

cm =(rc)^2*beta1^2; 

  

end 

 525 

 

 

 

 

 530 

 

 

 

 

 535 

 

 

 

 

 540 
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Appendix C: R or RStudio code to compute CMA 

MCA<-function(x,y) 

{ 

#  x<-Observed; 545 
# y<-Modeled; 

# cm: Value of the metric CMA 

# How to call the function: 

# x<-runif(100) 

# y<-x*runif(100) 550 
# cm<-MCA(x,y) 

# cm 

   

  n<-length(x) # %sample size of the observed data 

   555 
  #creating empty variables to hold computed values 

  A <- matrix(nrow=n, ncol=1) 

  B <- matrix(nrow=n, ncol=1) 

  C <- matrix(nrow=n, ncol=1) 

  D <- matrix(nrow=n, ncol=1) 560 
  wx <- matrix(nrow=n, ncol=1) 

  ux <- matrix(nrow=n, ncol=1) 

  Dx <- matrix(nrow=n, ncol=1) 

  wy <- matrix(nrow=n, ncol=1) 

  uy <- matrix(nrow=n, ncol=1) 565 
  Dy <- matrix(nrow=n, ncol=1) 

  tDx <- matrix(nrow=n, ncol=1) 

  tDy <- matrix(nrow=n, ncol=1) 

  tDxy <- matrix(nrow=n, ncol=1) 

  h <- matrix(nrow=n, ncol=1) 570 
   

  # COMPUTING THE PARAMETRIC COMPONENT OF THE MODEL EFFICIENCY 

  # ********************************************************** 

      x_mean<-mean(x) #% Mean of observed series 

       575 
      # Penalty-based series derived from y or modeled series 

      for (i in 1:n) 

      { 

        if (x[i]<0 & y[i]>=0)  

        { h[i]=0 } 580 
        else if (x[i]>0 & y[i]<=0) 

        {h[i]=0} 

        else 

        {h[i]=y[i]} 

      } 585 
      for (i in 1:n) 

      { 

         A[i]= (min(x[i],h[i])-2*x_mean)^2; 

         B[i]= (max(x[i],h[i])-2*x_mean)^2;  

         C[i]= min (A[i],B[i]); 590 
         D[i]= max (A[i],B[i]) 

      } 

     

      if (sum(D)==0 | sum(h)==0) 

        { beta1=0 } 595 
      else 

      { beta1=(sum(C)/sum(D)) } 
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    #TRANSFORMATION OF OBSERVED SERIES 

      for (i in 1:n) 600 
      { 

         wx[i]=sum(x==x[i])  #counting how many times a data point x(i) appears in observed series X 

         ux[i]=sum(x>x[i])   #counting how many times a given value x(i) is exceeded from an array X 

         Dx[i]=n-wx[i]-2*ux[i] #this is the transformed observed series 

      }     605 
    

    #TRANSFORMATION OF MODELED SERIES 

      for (i in 1:n) 

      { 

        wy[i]=sum(y==y[i]) #counting how many times a data point y(i) appears in from an array y 610 
        uy[i]=sum(y>y[i])  #counting how many times a given value y(i) is exceeded from an array y 

        Dy[i]=n-wy[i]-2*uy[i] #this is the transformed modeled series 

      } 

       

      for (i in 1:n) 615 
      { 

        tDx[i]=(Dx[i])^2 

        tDy[i]=(Dy[i])^2 

        tDxy[i]=Dx[i]*Dy[i] 

      } 620 
       

    #Computing non-parametric trend slope and CMA 

      if (sum(tDx==0) | sum(tDy==0)) 

      { rc=0 } 

     else 625 
      { rc=sum(tDxy)/sqrt(sum(tDx)*sum(tDy)) } 

     

      cm =(rc)^2*beta1^2 

       

    return(cm) 630 
} 
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