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GENERAL

The author is grateful to Ulrich Schumann for acknowledging that the paper is inter-
esting. The author deemed the comments generated by Schumann constructive for
improving the coefficient of model accuracy (CMA) being introduced. Four comments
that required response are below.

COMMENT 1

While working on contrail cirrus modeling to extend his previous research studies
(Schumann 2012; Schumann and Graf 2013; Schumann and Heymsfield 2017), Schu-
mann noted that high values of coefficient of model accuracy (CMA) are only obtainable
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when the model is nearly perfect in representing the observations. He thinks achieving
high values of CMA becomes a difficult task when observations contain random errors
or in the case where model-observation agreement “goodness” is sensitive to small
shifts in small-scale structures. Schumann remarked that it was demanding for him to
find an optimum criterion for “goodness” while applying CMA.

REPLY

The author agrees with the remarks from Ulrich Schumann that high values of the
version of CMA presented in the discussion paper can be obtained when the model
is nearly effective. This may make it demanding to fulfill the criterion set to determine
acceptability of model results.

This problem was solved as follows. CMA is now expressed as a function of (i) non-
parametric normalized linear regression coefficient (trend slope), (ii) difference be-
tween the variances of observed and modeled data, and (iii) difference between the
means of observed and modeled data.

In determining the measures of co-variation, the comparison baseline was changed
from 2*Ax to 3*Ax where Ax is the mean of the observed data. Stepwise derivation
of CMA was revised and can be found in Eqs. (A1)-(A10) (see Figures 1-2) of this
document. In the revised manuscript, Eqs. (5)-(14) of the discussion paper will be
replaced with Eqs. (A1)-(A10) (see Figures 1 and 2 of this reply). The MATLAB and R
codes for computing MCA were revised and can be found provided as supplementary
materials to this reply. Furthermore, the MATLAB and R codes in the discussion paper
will be revised accordingly during the revision of the manuscript.

Conclusively, it was found that high values of CMA can easily be attained with the
revised formula.

COMMENT 2

Schumann suggested that comparisons made in this paper should comprise the Taylor
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skill score, as given in Eq. (4) of Taylor (2001).

REPLY

Taylor skill score (TSS) as given in Eq. (4) of Taylor (2001) was included in the compar-
ison of “goodness-of-fits”. A part from TSS and CMA, other “goodness-of-fits” included
the Nash Sutcliffe Efficiency NSE (Nash and Sutcliffe, 1970), Index of Agreement IOA
(Willmott, 1981), Root Mean Squared Error (RMSE), and Model Average Bias (MAB).
NSE, RMSE, MAB and IOA can be found in Eqs. (15) to (18) of the discussion paper.

Two rainfall-runoff models including NAM and the Hydrological Model focusing on Sub-
flows’ Variation (HMSV) of Onyutha (2019) were calibrated using a number of objective
functions based on the Generalized Likelihood Uncertainty Estimation GLUE (Beven
and Binley, 2001). Apart from CMA (Eq. A9), other objective functions included the
Nash Sutcliffe Efficiency NSE (Nash and Sutcliffe, 1970), Index of Agreement IOA
(Willmott, 1981), Root Mean Squared Error (RMSE), Model Average Bias (MAB), and
TSS (Eq. A11). NSE, RMSE, MAB and IOA can be found in Eqs. (15) to (18) of the
discussion paper.

For a selected objective function, each hydrological model was calibrated 5000 times
using GLUE strategy. The values of the objective functions were graphically com-
pared. The best modeled series were those obtained using the set of parameters
which yielded the best value of the objective function. The best set of parameters was
obtained with the maximum values of CMA, TSS, R-squared, and IOA while RMSE and
MAB were required to be at their minimum.

Revised results of the "goodness-of-fits" can be found in Figures 3-6 in this document.
The detail description of Figures 3-6 will also be included in the revised manuscript.
Changes were also made to Tables A1-A4 in the discussion paper but will be included
in the revised manuscript.

Specifically, it was found that for a given CMA, values of TSS were generally larger. In
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other words, TSS gets closer the maximum value of 1 faster than the CMA.

COMMENT 3

Schumann noted that CMA makes use of the number of times a data point x(i) appears
in observed series x, as seen in line 497 of the discussion paper. He remarked that
occurrences of data in reality may be characterized by small round-off errors so that x
is nearly equal to a set of values in the observations. The question to answer was on
how the situation of such a near-equality can be accounted for.

REPLY

Generally, to minimize the effects of round-off errors, the floating point precision can be
increased from float to double though this could require large computational resource.

Direct application of arithmetic operators (such as subtraction and addition) to values
which are nearly equal can lead to huge round-off errors. This can be a problem for
any “goodness-of-fits” not only the CMA. The computer codes provided are purpose-
fully basic to depict the stepwise procedure adopted in the derivation of CMA. However,
these codes can provide starting points regarding improvement of the CMA computa-
tion procedure to take into account any possible round-off errors (if any). Such an
improvement could be in a way to enhance precision without the requirement of large
computational resources. Furthermore, dealing with technicality required to minimize
round-off errors in computation is deemed to be an open problem in scientific com-
puting. This requires answering questions regarding accuracy, efficiency, precision,
robustness, suitable algorithms or computer programs, data structures, and computing
architectures.

Instead of using e(i) which represents how many times a data point x(i) appears in
observed series x, we can use v(i)-u(i) as expressed in Eqs. (A6)-(A7) (see Figure 2 of
this document) MATLAB or R codes included as supplementary materials to this reply.

COMMENT 4
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The last comment was that all abbreviations used in the text should be defined.

REPLY

The author recognizes that it was by mistake that abbreviations such as IOA were not
defined in the discussion paper by mistake. During revision of the paper, all abbrevia-
tions will be defined.
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Fig. 1. Part 1 of CMA revised derivation
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Fig. 2. Part 2 of CMA revised derivation
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Fig. 3. Figure 3: Observed versus modeled flow from (a-g) HMSV and (h-n) NAM rainfall-runoff
models calibrated using (a, h) NSE, (b, i) R2, (c, j) CMA, (d, k) IOA, (e, l) RMSE, (f, m) MAB,
and (g, n) TSS
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Fig. 4. Figure 4: Comparison of modeled and observed flow in terms of a) variance, b) skew-
ness, c) kurtosis, and d) coefficient of variation (CV), as well as the mean of e) long-term daily
flow, f) minimum fl

C10



Fig. 5. Observed versus modeled flow from (a-g) HMSV and (h-n) NAM rainfall-runoff models
calibrated using (a, h) NSE, (b, i) R2, (c, j) CMA, (d, k) IOA, (e, l) RMSE, (f, m) MAB, and (g, n)
TSS
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Fig. 6. Comparison of modeled and observed flow in terms of a) variance, b) skewness, c)
kurtosis, and d) coefficient of variation (CV), as well as the mean of e) long-term daily flow, f)
minimum fl
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