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Abstract. The successful and efficient approach at the basis of SolveSAPHE (Munhoven, 2013), which determines the carbon-

ate system speciation by calculating pH from total alkalinity (AlkT) and dissolved inorganic carbon (CT), and which converges

for any physically sensible pair of such data, has been adapted and further developed to work with AlkT & CO2, AlkT & HCO−3

and AlkT & CO2−
3 . The mathematical properties of the three modified alkalinity-pH equations are explored. It is shown that

the AlkT & CO2 and AlkT & HCO−3 problems have one and only one positive root for any physically sensible pair of data5

(i.e, such that [CO2]> 0 and [HCO−3 ]> 0). The space of AlkT & CO2−
3 pairs is partitioned into regions where there is either

no solution, one solution or where there are two. The numerical solution of the modified alkalinity-pH equations is far more

demanding than that for the original AlkT-CT pair as they exhibit strong gradients and are not always monotonous. The two

main algorithms used in SolveSAPHE v1 have been revised in depth to reliably process the three additional data input pairs.

The AlkT & CO2 pair is numerically the most challenging. With the Newton-Raphson based solver, it takes about five times as10

long to solve as the companion AlkT & CT pair; the AlkT & CO2−
3 pair requires on average about four times as much time as

the AlkT & CT pair. All in all, the secant based solver offers the best performances. It outperforms the Newton-Raphson based

one by up to a factor of four in terms of average numbers of iterations and execution time and yet reaches equation residuals

that are up to seven orders of magnitude lower. Just like the pH solvers from the v1 series, SolveSAPHE-r2 includes automatic

root bracketing and efficient initialisation schemes for the iterative solvers. For AlkT & CO2−
3 data pairs, it also determines the15

number of roots and calculates non-overlapping bracketing intervals. An open source reference implementation of the new al-

gorithms in Fortran 90 is made publicly available for usage under the GNU Lesser General Public Licence version 3 (LGPLv3)

or later.

1 Introduction

Among all the aspects of the ongoing global environmental changes (climate change, ocean acidification, . . . ), the solution20

chemistry of carbon dioxide (CO2) is one of the best known. The related chemistry of the carbonate system in the oceans

and other aqueous environments is well understood and routinely monitored and modelled. The equilibria between the car-

bonate system species involves four variables: [CO2] (or equivalently the partial pressure of CO2, pCO2, or its fugacity,
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fCO2), [HCO−3 ], [CO2−
3 ] and [H+] (or equivalently pH). The speciation, i.e., the determination of the concentrations of the

individual species, therefore also requires four constraints. Two of these are given by the equilibrium relationships that char-25

acterize the equilibria between dissolved CO2 and HCO−3 on one hand, and between HCO−3 and CO2−
3 on the other hand,

assuming that the respective equilibrium constants are known or can be calculated. Two more independent constraints are thus

required to completely characterize the system. These two additional constraints are generally chosen among the four tradi-

tional measurables of the system (see, e.g., Dickson et al., 2007): (1) the total concentration of dissolved inorganic carbon,

CT = [CO2] + [HCO−3 ] + [CO2−
3 ]; (2) total alkalinity, AlkT; (3) pH and (4) pCO2 or fCO2. Recently, a procedure to measure30

[CO2−
3 ] has been developed as well, thus increasing the number of measurables to five (Byrne and Yao, 2008; Patsavas et al.,

2015; Sharp and Byrne, 2019). This latter has, however, not yet been widely adopted. With these two additional constraints,

the concentrations of all the individual species as well as CT & AlkT can then be calculated.

There are ten different data pairs that can be composed from the set of five independent measurable variables of the carbonate

system; there are fifteen if we further include HCO−3 as a sixth independent variable, although currently not (yet) measurable.35

Most modellers will call upon CT and AlkT which, besides being measurable, are also conservative and thus convenient for a

budgeting approach. Experimentalists will use the pair that best suits their analytical equipment and expertise. Depending on

the study requirements, not all pairs are equally attractive though. The analysis of Sharp and Byrne (2019) reveals that it is

always advisable to measure pCO2 directly if that variable is required: the uncertainty of calculated pCO2 is always five to

ten times as large as that of the directly measured one. [CO2−
3 ] can be calculated with lower uncertainty from AlkT & CT data40

than it can be directly measured; calculating it from other data pairs always bears greater uncertainty than directly measuring

it. The most peculiar combination of uncertainties affects the results derived from paired measurements of pCO2 and CO2−
3 :

they allow to calculate pH with the same uncertainty as if directly measured, thus providing nearly optimal values for the three

individually measurable species. The uncertainties of the AlkT and CT calculated from it are, however, about twenty times

as large as if directly measured. The currently most attractive pairs are AlkT & pCO2 and CT & pCO2, both of which allow45

to calculate pH with better and [CO2−
3 ] with only slightly larger but still acceptable uncertainty than the direct measurement

would offer. Direct [CO2−
3 ] measurements, which might be most advisable for tracing carbonate mineral saturation states, are

best paired with AlkT or CT (Sharp and Byrne, 2019). It can nevertheless be expected that, once it becomes more widely used,

the measurement uncertainty currently affecting that still young measurable can be reduced and eventually become better than

that of [CO2−
3 ] calculated from AlkT & CT, which is currently the best option (Sharp and Byrne, 2019).50

Eleven out of these fifteen possible pairs of independent parameters of the carbonate system can be directly solved or require

at most the resolution of a quadratic equation. The remaining four pairs require iterative procedures. Besides the AlkT & CT

pair which was addressed in full detail by Munhoven (2013) these are (1) AlkT & CO2, (2) AlkT & HCO−3 and (3) AlkT

& CO2−
3 . Such calculations are performed to an advanced level of detail with dedicated and highly specialised packages.

The review of Orr et al. (2015) offers a systematic analysis of subsisting uncertainties and inconsistencies between ten such55

packages, focusing on the sets of equilibrium constants adopted, pressure corrections applied, etc. Here, we do not focus on

these aspects, but on the design of algorithms that can solve the underlying mathematical problem with as little user input as

possible. The aim is to reduce user input to the bare essentials: besides the fundamental information about temperature, salinity,
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pressure and the thermodynamic data, this ideally had to be any physically meaningful data pair only; the algorithm should be

able to derive any other auxiliary information, such as root brackets or starting values for iterations, on its own.60

In the companion paper (Munhoven, 2013), such autonomous algorithms with robust convergence properties for a wide range

of environmental conditions are presented for usage with the AlkT & CT pair. Here, we are revisiting that approach, extending

and adapting it so that the AlkT & CO2, AlkT & HCO−3 and AlkT & CO2−
3 pairs can be processed with the same ease and

reliability. For the sake of completeness – and with minimal details only – “recipes” for solving the other eleven explicit cases

are provided in the appendix. Alternative approaches can be found in the literature, such as in Zeebe and Wolf-Gladrow (2001)65

or Dickson et al. (2007). Dickson et al. (2007) also provide pathways for using triplets or quartets of input data, which only

require the knowledge of one of the two dissociation constants or of their ratio, or none of them. That kind of approach is,

however, not considered in this study.

2 Theoretical Considerations

In the following, it is assumed that the temperature T , salinity S and applied pressure P are given and that adequate values for70

all the required stoichiometric equilibrium constants are available. It is furthermore assumed that the total concentrations of all

the other relevant acid systems (borate, hydrogen sulfate, phosphate, silicate, etc.) are known.

2.1 Revisiting the mathematics of the alkalinity-pH equation

Cornerstone to the speciation calculation is the resolution of the following equation, which I call the alkalinity-pH equation as

it derives from the definition of total alkalinity:75

RT([H+])≡ AlknW([H+]) +
KW

[H+]
− [H+]

s
−AlkT = 0, (1)

i.e., Eq. (21) from Munhoven (2013). In this equation, [H+] is the proton concentration expressed on one of the commonly used

pH scales (total, seawater) and s is a factor to convert from that scale to the free scale. s depends on temperature, pressure and

salinity of the sample and its value is close to 1 (typically between 1.0 and 1.3). The first term at the right-hand side is that part of

the total alkalinity that is not related to the water self-ionization: AlknW([H+]) =
∑

i AlkA[i]
([H+]),where i denumbers the acid80

systems resulting from the dissolution of acids A[i] whose dissolution products contribute to total alkalinity. For the purpose of

this study, AlknW([H+]) is partitioned into carbonate alkalinity, AlkC([H+]), and non-carbonate alkalinity, AlknWC([H+]),

AlknW([H+]) = AlkC([H+]) + AlknWC([H+])

since the relevant carbonate system parameters (the concentrations of CO2, HCO−3 and CO2−
3 and their sum, CT) are all

directly related to AlkC. Similarly to AlknW, AlknWC admits an infimum and a supremum which can both be derived from the85

total concentrations of all the acid-base systems considered. We denote these two by AlknWCinf and AlknWCsup, respectively.

Eq. (1) is thus formally rewritten as

RT([H+])≡ AlkC([H+]) + AlknWC([H+]) +
KW

[H+]
− [H+]

s
−AlkT = 0, (2)
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The carbonate alkalinity term writes, as a function of CT

AlkC([H+]) =
K1[H+] + 2K1K2

[H+]2 +K1[H+] +K1K2
CT (3)90

where K1 and K2 are the first and second stoichiometric dissociation constants of carbonic acid. The individual carbonate

species fractions of CT can be expressed as a function of [H+]:

[CO2] =
[H+]2

[H+]2 +K1[H+] +K1K2
CT (4)

[HCO−3 ] =
K1[H+]

[H+]2 +K1[H+] +K1K2
CT (5)

[CO2−
3 ] =

K1K2

[H+]2 +K1[H+] +K1K2
CT. (6)95

Accordingly, AlkC([H+]) may be rewritten in one of the following forms

AlkC([H+]) =
K1[H+] + 2K1K2

[H+]2
[CO2] (7)

AlkC([H+]) =
K1[H+] + 2K1K2

K1[H+]
[HCO−3 ] (8)

AlkC([H+]) =
K1[H+] + 2K1K2

K1K2
[CO2−

3 ]. (9)

In order to get a first idea about the complications that we might encounter for the solution of the three new data pairs, we start100

with an exploratory analysis using SolveSAPHE version 1.0.3 (Munhoven, 2013–2021). The three panels in the upper row of

Fig. 1 show the pH and the HCO−3 and CO2−
3 concentration distributions for a reduced SW3 test case from Munhoven (2013),

with the CT range extending from 0 to 4 mmol kg−1 and the AlkT range from −1 to 3 mmol kg−1 only. The pH distribution

from Fig. 1a is then used to derive the corresponding CO2 (not shown), HCO−3 and CO2−
3 concentration distributions (Figs. 1b

and c). Since we intend to solve the alkalinity-pH equation for given AlkT, and either one of [CO2], [HCO−3 ] or [CO2−
3 ], we105

furthermore produce the concentration isolines for the three species on a pH-AlkT graph (Figs. 1d, e and f). For these three

latter, we first calculated AlkC from AlkT by using Eq. (2). Positive AlkC were then used with Eqs. (7), (8) and (9) to derive

the corresponding [CO2], [HCO−3 ] and [CO2−
3 ], respectively. Blank areas represent the pH-AlkT combinations that lead to

negative AlkC.

The V- or U-shaped isolines for HCO−3 on the CT-AlkT graph and for CO2−
3 on the CT-AlkT and on the pH-AlkT graphs110

show that the CT & HCO−3 and the AlkT & CO2−
3 pairs will not always provide unambiguous results. This is illustrated by

the blue and the black stars in Figs. 1c and 1f: they both lie on the 100 µmol kg−1 [CO2−
3 ] isoline and on the horizontal line

drawn through AlkT = 2.3 mmol kg−1. For that pair of data values there are thus two compatible CT and correspondingly two

possible pH values. On the other hand, with the same AlkT, a [CO2−
3 ] of 1 mmol kg−1 would not provide any solution as the

1 mmol kg−1 isoline has its minimum at AlkT = 2.63 mmol kg−1. Similarly, there are pairs of CT and [HCO−3 ] values that are115

compatible with two AlkT values and thus two pH values, others with none: a vertical line drawn through CT = 2.2 mmol kg−1

crosses the 2.0 mmol kg−1 isoline for [HCO−3 ] twice and so that pair of data values leads to two pH solutions; a vertical line
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drawn through CT = 2.05 mmol kg−1 does not cross that 2.0 mmol kg−1 isoline for [HCO−3 ] at all and that pair of data values

does not have any pH solution.

As will be shown below, the SolveSAPHE approach of Munhoven (2013), which is based upon the use of a hybrid iterative120

solver safeguarded by intrinsic brackets that can be calculated a priori, can be easily adapted for the AlkT & CO2 and AlkT &

HCO−3 pairs. According to the outcome of our preliminary analysis above, the AlkT & CO2−
3 pair requires a more in-depth

analysis. We show that it is nevertheless possible to diagnose the different cases that can theoretically be encountered and, in

case there are two solutions, to derive bracketing intervals for each of the two and to isolate them efficiently. For each pair, we

(1) establish the analytical properties of the modified alkalinity-pH equation; (2) derive brackets for the root(s); (3) develop a125

reliable and safe algorithm to solve the problem; (4) design an efficient initialisation scheme. The CT & HCO−3 pair, which

requires only a quadratic equation to be solved, is straightforwoard to diagnose a priori (see the corresponding recipe in the

appendix).

We will now in turn analyse the mathematical properties of the alkalinity-pH equation that results from the substitution of

CT by the concentration of one of its individual species.130

2.2 The AlkT & CO2 Problem

2.2.1 Mathematical Analysis

The AlkT & CO2 pair can be dealt with in a similar way to the AlkT & CT pair in the original SolveSAPHE. The AlkC([H+])

term in Eq. (2) is written as in Eq. (7). Equation (2) then becomes(
K1

[H+]
+

2K1K2

[H+]2

)
[CO2] + AlknWC([H+]) +

KW

[H+]
− [H+]

s
−AlkT = 0. (10)135

Just like the AlkC([H+]) expression from Eq. (3) is monotonously decreasing with [H+] for CT fixed, that from Eq. (7) is

monotonously decreasing with [H+] for [CO2] fixed. The expression at the left-hand side of Eq. (10) decreases from +∞ to

−∞ for [CO2]> 0 as [H+] varies from 0+ to +∞. Eq. (10) thus always has exactly one positive solution.

2.2.2 Root bracketing

Intrinsic brackets for the solution of Eq. (10) can be derived similarly to what is done in Sect. 5.1 in Munhoven (2013). The140

lower bound Hinf can be chosen such that(
K1

Hinf
+

2K1K2

H2
inf

)
[CO2] +

KW

Hinf
− Hinf

s
= AlkT−AlknWCinf

i.e., as the positive root of the cubic equation

H3

s
+ (AlkT−AlknWCinf)H

2− (K1[CO2] +KW)H − 2K1K2[CO2] = 0

Let us denote this cubic by P (H). It is important to notice that P (0) =−2K1K2[CO2]< 0 and P ′(0) =−(K1[CO2]+KW)<145

0. The equation P (H) = 0 has therefore one and only one positive root.
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Similarly, the upper bound Hsup can be chosen such that(
K1

Hsup
+

2K1K2

H2
sup

)
[CO2] +

KW

Hsup
−
Hsup

s
= AlkT−AlknWCsup

i.e., as the positive root of the cubic equation

H3

s
+ (AlkT−AlknWCsup)H2− (K1[CO2] +KW)H − 2K1K2[CO2] = 0150

which has also one and only one positive root, for the same reasons as above.

The positive roots of these cubic equations can be found by adopting a strategy similar to that used for the cubic initialisation

of the iterative solution in SolveSAPHE (Munhoven, 2013, Sect. 3.2.2):

1. Locate the local minimum of the cubic, in Hmin > 0;

2. Develop the cubic as a quadratic Taylor expansion, Q(H), around that minimum;155

3. Solve Q(H) = 0 which has two roots and chose the one that is greater than Hmin.

In this particular case, it is, however, not necessary to solve these equations exactly as we only need approximate bounds of

the root for safeguarding the iterations while solving Eq. (2). For Hinf we may actually chose the Hmin of the first cubic which

is lower than the positive root and thus sufficient. Regarding Hsup, it should be noticed that P (H) =Q(H) + (H −Hmin)3/s.

Accordingly, P (H)>Q(H) for H >Hmin and therefore the greater root of Q(H) for the second cubic is greater than the160

positive root of that cubic. The greater of the two roots of Q(H) is therefore a sufficient upper bracket and may be used instead

of the exact Hsup.

Any bracketing root-finding algorithm can then be used to solve the modified alkalinity pH equation (10).

2.3 The AlkT & HCO−
3 Problem

2.3.1 Mathematical analysis165

For the AlkT & HCO−3 pair, the AlkC([H+]) term in Eq. (2) is written as in Eq. (8):(
1 +

2K2

[H+]

)
[HCO−3 ] + AlknWC([H+]) +

KW

[H+]
− [H+]

s
−AlkT = 0. (11)

The expression at the left-hand side of Eq. (11) decreases monotonuously from +∞ to −∞ for [HCO−3 ]> 0 fixed as [H+]

varies from 0+ to +∞. Equation (11) thus always has exactly one positive solution.

2.3.2 Root bracketing170

The lower bound Hinf can be chosen such that(
1 +

2K2

Hinf

)
[HCO−3 ] +

KW

Hinf
− Hinf

s
= AlkT−AlknWCinf
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i.e., as the positive root of the quadratic equation

H2

s
+ (AlkT−AlknWCinf− [HCO−3 ])H − (2K2[HCO−3 ] +KW) = 0.

Similarly, the upper bound Hsup can be chosen such that175 (
1 +

2K2

Hsup

)
[HCO+

3 ] +
KW

Hsup
−
Hsup

s
= AlkT−AlknWCsup

i.e., as the positive root of the quadratic equation

H2

s
+ (AlkT−AlknWCsup− [HCO−3 ])H − (2K2[HCO−3 ] +KW) = 0.

Both equations always have two roots, one positive and one negative — their product is negative as indicated by the constant

term. With the respective positive roots, we have again bounds for the solution of the modified alkalinity-pH equation and any180

bracketing root-finding algorithm can be used to solve it.

2.4 The AlkT & CO2−
3 Problem

Whereas any physically meaningful AlkT-[CO2] or AlkT-[HCO−3 ] concentration pairs will always provide one and only one

[H+] (or equivalently pH) value as demonstrated above, this cannot be the case for every AlkT-[CO−3 ] pair, as can be deduced

from Figs. 1c and 1f. On one hand, there are two compatible CT, and equivalently two pH values, for most AlkT-[CO2−
3 ] pairs.185

This little-known fact was already documented in the 1960s (see, e.g., Deffeyes (1965)).1 On the other hand, there are also

AlkT-[CO2−
3 ] pairs that do not allow for any solution, as they lead to negative carbonate alkalinity. To our best knowledge,

none of the currently available carbonate system speciation programs takes this possibility into account.

2.4.1 Mathematical analysis and root bracketing

The solution of the AlkT & CO2−
3 problem thus requires a more in-depth mathematical analysis. To start, we write out Eq. (2)190

with the AlkC expression for [CO2−
3 ] (Eq. (9)):

K1[H+] + 2K1K2

K1K2
[CO2−

3 ] + AlknWC([H+]) +
KW

[H+]
− [H+]

s
−AlkT = 0.

Let us collect all the terms that are related to carbonate or water self-ionization alkalinity at the left-hand side, introduce the

shorthand

γ =
[CO2−

3 ]

K2
− 1

s
.195

1Zeebe and Wolf-Gladrow (2001) appear to be aware of it. In their recipe for given AlkT and [CO2−
3 ] (on pp. 276–277), they indicate that the quintic

equation to solve with their practical alkalinity approximation has two positive and three negative roots and that the larger positive one should be used (without

any further justification, though). As shown here, this statement is not universally true – there are instances where that equation has only one positive or no

positive roots. It is nevertheless true for typical seawater and the lower of the two positive roots actually implies unrealistically low, yet physically sensible,

CT (see discussion in Sect. 2.4.2 below).
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and rewrite the equation as

γ[H+] +
KW

[H+]
+ 2[CO2−

3 ] = AlkT−AlknWC([H+]). (12)

The value of γ is one of the main controls on the number of roots that this equation has.

1. If γ < 0, the equation has similar mathematical characteristics as the usual alkalinity-pH equation (Eq. (1). It has exactly

one root which can be calculated using similar procedures as in the original SolveSAPHE. Please notice though that this200

means that [CO2−
3 ]< K2

s . Since K2 is of the order of 10−9 mol(kg-SW)−1 and s is of the order of 1, this case is only

relevant for CO2−
3 concentrations of the order of 1 nmol(kg-SW)−1 and less.

2. If γ = 0 (i.e., if [CO2−
3 ] = K2

s ), the equation has exactly one root if AlkT−2[CO2−
3 ]−AlknWCinf > 0, no root otherwise.

3. If γ > 0, the left-hand side is not monotonous: it decreases from +∞ in [H+] = 0+ to a minimum (see below) and then

increases back to +∞ as [H+]→+∞. The right-hand side is bounded and strictly increasing over the same interval205

(Munhoven, 2013). As a result, the equation has no root if the right-hand side is too low, exactly one if the two curves

become tangent and two roots if the right-hand side is great enough.

To alleviate notation let us define the two parametric functions

L([H+];γ) = γ[H+] +
KW

[H+]
+ 2[CO2−

3 ] (13)

R([H+];A) =A−AlknWC([H+]), (14)210

where [H+] is the independent variable and γ and A (alkalinity) are parameters. With these two function definitions, Eq. (12)

then rewrites L([H+];γ) =R([H+];AlkT). Schematic representations of the three γ cases and of the L and R functions are

shown in Fig. 2.

Case γ < 0

The first case can be handled similarly to the AlkT & CO2 and AlkT & HCO−3 pairs. Equation (12) always has exactly one215

root with γ < 0 as the equation function is monotonous and strictly decreasing with [H+]. Upper and lower bounds for that

root can be derived by solving the (quadratic) equations

γHinf +
KW

Hinf
+ 2[CO2−

3 ] = AlkT−AlknWCinf (15)

for Hinf and

γHsup +
KW

Hsup
+ 2[CO2−

3 ] = AlkT−AlknWCsup (16)220

for Hsup, and retaining the respective positive roots of each.
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Case γ = 0

The second case might be considered to be only mathematically of importance as it only applies for one exact (and thus

improbable) CO2−
3 concentration value. For the sake of completeness, I nevertheless solve it.

As mentioned above, if γ = 0, Eq. (12) has one solution if and only if AlkT−AlknWCinf > 2[CO2−
3 ], and no solution else.225

The root can be easily bracketed from below. It is sufficient to chose Hinf such that

KW

Hinf
= AlkT− 2[CO2−

3 ]−AlknWCinf

leading to L(Hinf;γ)−R(Hinf;AlkT)> 0. The analogue equation for Hsup, with AlknWCinf replaced by AlknWCsup (cf. eqs. (15)

and (16)) does not work if AlkT−AlknWCsup ≤ 2[CO2−
3 ]. The newly derived asymptotic approximation for AlknWC([H+]) as

[H+]→+∞ (see the Mathematical and Technical Details report in the Supplement) nevertheless provides a means to derive230

an upper bound. It is sufficient to chose Hsup such that

KW

Hsup
= AlkT− 2[CO2−

3 ]−AlknWCinf−
∑

i[ΣA[i]]K1,[i]

Hsup

where i denumbers the acid systems considered, except for the carbonate system, [ΣA[i]] is the total amount of the acid i

dissolved and K1,[i] is the first dissociation constant of the acid system i. This equation always has a solution and, taking into

account that235

AlknWC([H+])<AlknWCinf +

∑
i[ΣA[i]]K1,[i]

[H+]
,

which is valid for [H+]> 0, it is straightforward to show that L(Hsup;γ)−R(Hsup;AlkT)< 0 with this choice. Equation (12),

which is equivalent to L(H;γ)−R(H;AlkT) = 0 thus has one single root between Hinf and Hsup.

Case γ > 0

The third case is the most commonly encountered, and the most challenging. With γ > 0, L([H+];γ) has a minimum and the240

location of that minimum is a critical parameter in the analysis of this case. Let us denote the location of that minimum by

Hmin and the value that L takes there by Lmin:

Hmin =

√
KW

γ
and Lmin = 2

√
γKW + 2[CO2−

3 ].

There are two ranges of AlkT values where firm conclusions can be drawn right away.

1. If R(Hmin;AlkT)> Lmin, i.e., if AlkT > Lmin +AlknWC(Hmin), Equation (12) has two distinct roots, since R(H;AlkT) is245

bounded. Furthermore, the roots — let us provisionally denote the lower one H1 and the greater one H2 — are such that

H1 <Hmin and H2 >Hmin. Hmin can thus be used as an upper bracket for H1 and as a lower bracket for H2. However,

if AlkT−AlknWCsup > Lmin, the abscissae of the intersection points PLL and PLR (see Fig. 2), which are solutions of

γH +
KW

H
= AlkT− 2[CO2−

3 ]−AlknWCsup

provide tighter brackets than Hmin.250
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2. If AlkT−AlknWCinf ≤ Lmin, i.e., if AlkT ≤ Lmin + AlknWCinf, Eq. (12) does not have any roots.

For intermediate values of AlkT, no firm quantitative statement regarding the root(s) of Eq. (12) can be made a priori. As AlkT

decreases from Lmin + AlknWC(Hmin) to Lmin + AlknWCinf, Eq. (12) will at first still have two roots, but both are greater than

or equal to Hmin. At some intermediate value, L([H+];γ) and R([H+];AlkT) become tangent. At this point, Eq. (12) has one

double root, which is the abscissa of that tangent point, Htan. Htan is actually a universally valid separation limit between two255

roots, if there are any. For lower values of AlkT, the problem does not have any solutions.

The limiting AlkT value for which the two curves are tangent and the corresponding Htan value can be calculated with a

common algorithm to characterize a bracketed local minimum, such as Brent’s algorithm (Brent, 1973). To start, we reconsider

L([H+];γ)−R([H+];A) = 0 not as an equation in [H+] for given parameter values γ (or, equivalently, [CO2−
3 ]) and A, but

rather as an implicit definition for A as a function of [H+], for a given γ (here γ > 0). This implicit function definition can260

actually be solved explicitly here:

A([H+]) = L([H+];γ) + AlkncW([H+]).

Figure 3 shows how the two problems are related and which information can be derived from the analysis of L([H+];γ) and

R([H+];A) to contribute to the solution of the minimization of A([H+]). The determination of Htan is costly, generally more

costly than the subsequent resolution of the pH equation itself. As mentioned right at the beginning of this section, there are265

extended ranges of AlkT values for which the exact knowledge of Htan is not indispensable. In these situations Hmin may be a

sub-optimal but nevertheless sufficient separation limit for the roots (or equal to the double root itself), and cheap to calculate.

If available, Htan can be used as an upper bound for the lower and as a lower bound for the greater of the two roots. To start

the minimization algorithm to derive Htan, we can use the three characteristic [H+] values from Fig. 3 as initial conditions.

These are Hmin together with the abscissae HL and HR of the intersection points between L([H+];γ) and the horizontal line at270

Alkmin−AlknWCinf, which are the roots of

γH2− (Alkmin− 2[CO2−
3 ]−AlknWCinf)H +KW = 0.

By construction, Alkmin−AlknWCinf > Lmin = 2
√
γKW + 2[CO2−

3 ]. The discriminant of this quadratic equation is therefore

strictly positive and the equation has two positive roots (their sum and their product are positive) as required. It is possible

to show that the second derivative of R([H+];A) with respect to [H+] is positive provided that the successive dissociation275

constants Kj,[i] of the different acid systems (denumbered by i) resulting from the dissociation of an acid Hn[i]
A[i] are such

that Kj,[i] <
1
2Kj−1,[i], j = 2, . . . ,n[i] — a very weak constraint as these constants generally generally differ by a few orders

of magnitude. This has been verified to be the case for acid systems with n[i] = 1, . . . ,12 The underlying technical develop-

ments can be found in the Mathematical and Technical Details report in the Supplement. R([H+];A) is thus concave, while

L([H+];γ) is convex for γ > 0. A([H+]) thus has only one single local minimum comprised between HL and HR.280

Once Htan is known, the root brackets can be completed by the intersection points between L([H+];γ) and the horizontal

line at AlkT−AlknWCinf – corresponding to the PUL and PUR points in Fig. 2 with the grey band shifted down to include the

minimum – i.e., by solving the same quadratic equation than for HL and HR, with Alkmin replaced by AlkT. We have again
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AlkT−AlknWCinf > Lmin and the equation has two positive roots. With these brackets on the two roots, any safeguarded iterative

procedure, such as those implemented in SolveSAPHE can be used to find the two roots in a controlled way.285

2.4.2 Two roots: which one to chose?

Since every physical aqueous sample has a pH, the case without roots is essentially a theoretical one: it can actually arise only

if the adopted alkalinity composition is not appropriate or if measurement errors are large. The case where an AlkT & CO2−
3

data pair is compatible with two different pH is, to the contrary, the most common one. SolveSAPHE-r2 has been designed as

a universal pH solver and as such returns all the roots that a data pair may offer, since there is no universal criterion to decide290

which one of the two roots is preferable over the other.

However, at the end of the calculations one of the two has to be chosen. Additional information, qualitative or quantitative is

required to make that decision. This could be a third measurable, but often even qualitative information about, say, the expected

pH or the CT range might be sufficient. For typical seawater samples, the greater of the two [H+] solutions will typically be

the adequate one, following the “use the larger one” advice of Zeebe and Wolf-Gladrow (2001)..295

In the analysis of the AlkT & CO2−
3 problem above, we determined the AlkT ranges that would respectively lead to two,

one or no roots, for a given γ, i.e., [CO2−
3 ]. To better understand the reasons why and when there are two, one or no roots and

what other implications the individual roots have, it is instructive to perform the analysis the other way around: figure out how

[CO2−
3 ] evolves as a function of pH, for a given value of AlkT and determine the [CO2−

3 ] ranges that would respectively lead

to two, one or no roots. Such an analysis is presented in Fig. 4. For that figure, we have reconsidered the sample composition300

previously used in Figs. 1c and 1f. We thus start with AlkT fixed at 2.3 mmol kg−1 and draw the evolution of [CO2−
3 ] as a

function of pH following

CO3([H+];AlkT) =
AlkT−AlknWC([H+])− KW

[H+]
+ [H+]

s

[H+]
K2

+ 2
, (17)

obtained by first using Eq. (9) to express [CO2−
3 ] as a function of AlkC and [H+], and then Eq. (2) to calculate AlkC as a

function of AlkT and [H+] (and the total concentrations of all the other contributing acid-base systems, which we assume to be305

known, as stated initially). CO2 and HCO−3 evolution curves can be derived similarly, by using Eqs. (7) and (8) resp. instead

of (9). The concentration evolutions for the other AlkT contributors can be calculated from their species fraction equations

(see, e.g., Munhoven, 2013). Figure 4a shows the concentration curves for all the species contributing to total alkalinity and

dissolved inorganic carbon, for pH ranging from 3 to 12, and for AlkT = 2.3 mmol kg−1; Fig. 4b shows the [CO2−
3 ] evolution

curves for different AlkT values, ranging from 0.5 to 2.5 mmol kg−1. Solving the AlkT & CO2−
3 problem for our showcase310

sample where [CO2−
3 ] = 0.1 mmol kg−1 thus means drawing a horizontal line through the 0.1 mmol kg−1 concentration level,

and locating the intersection points with the CO2−
3 curve, if any. There are actually two of them, located at pH = 8.03 and

pH = 11.43. With increasing target values for [CO2−
3 ], i.e., moving the horizontal line upward, the two pH roots will move

closer and closer together, until the maximum of the CO3 curve is touched, at CO3 max = 841.7 µmol kg−1. At this exact value,

there will only be one root: pH = 10.1943. Positioning the line higher up does not allow any intersection with the CO3 curve315
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any more: there are no roots for [CO2−
3 ]> CO3 max. As illustrated in Fig. 4b, the value of CO3 max grows as AlkT increases, thus

extending the range of [CO2−
3 ] that allows for roots. Another noteworthy fact in Fig. 4b is that all the displayed CO2−

3 curves

increase to a maximum before declining and reducing to zero at some finite pH. While not all possible curves have that shape (it

is possible to show that curves for AlkT < AlknWCinf + 2K2

s are monotonously decreasing), all of them nevertheless go to zero.

The equation CO3([H+];AlkT) = 0 actually always has exactly one root, for any given AlkT, since this simply requires that320

the numerator at the right-hand side of Eq. (17)) is 0, i.e., that [H+] is the solution of a standard alkalinity-pH equation where

CT = 0. Such an equation always has exactly one positive solution, for any physically meaningful set of total concentrations

of the different acid-base systems at play and any AlkT value (Munhoven, 2013). The pH value at that zero-crossing point is

furthermore the maximum possible pH for the given AlkT: beyond that value, the ever growing [OH+] would inevitably make

AlkT increase above the fixed value, thus requiring AlkC to become negative, which is not possible.325

As can be seen in Fig. 4a, the high-pH solution goes together with CT ' [CO2−
3 ]: CO2−

3 represents only 4.6% of the CT at

pH = 8.03, typical for seawater, but 99.2% at pH = 11.43. Accordingly CT = 0.1008 mmol kg−1 at the high-pH root, which is

unrealistically low for many natural samples. In the marine realm, this observation regarding the high-pH root is actually correct

in general. CO2−
3 represents more than 80% of DIC for pH> 10, and more than 90% for pH> 10.3, as can be calculated from

Eq. (6). In Fig. 4b, one can see that the maxima of the CO3 curves are greater than 0.47 mmol kg−1 for AlkT ≥ 1.5 mmol kg−1330

and that they are located at pH> 10. Since the larger of the two solutions is always at greater or equal pH than the maximum of

the curve that it must intersect, we may conclude that for [CO2−
3 ]< 0.47 mmol kg−1 and AlkT ≥ 1.5 mmol kg−1, the greater

of the two pH roots always implies that CO2−
3 represents more than 80% of CT. Accordingly, even a rough estimate of one of

the other relevant parameters of the carbonate system might be sufficient to reject one of the two roots.

2.5 Initialisation: rationale335

Since we have bracketing intervals for each diagnosed root, we may always use the fall-back initial value H0 =
√
HinfHsup.

This value is, however, often far from optimal. The efficient initialisation strategy of Munhoven (2013) can be generalized and

adapted to each of the three pairs. For each case, we chose the most complex AlkT approximation that leads to a cubic equation.

If the cubic polynomial behind that equation does not have a local minimum and a local maximum, we use the fall-back value.

If such a local minimum and maximum exist, we use the quadratic Taylor expansion around the relevant extremum — this will340

normally be the maximum if the coefficient of the cubic term is negative, and the minimum if that coefficient is positive. If that

quadratic does not have any positive roots, the fall-back initial value is used. The roots for that quadratic are then determined.

For problems that have only one positive [H+] solution (AlkT & CO2, AlkT & HCO−3 and AlkT & CO2−
3 with γ < 0), we

consider that root of the quadratic expansion that is greater than the greatest location of the two extrema: if that root is lower

than Hinf, we use H0 =Hinf; if it is greater than Hsup, we set H0 =Hinf. For problems that have two positive [H+] solutions345

(AlkT & CO2−
3 with γ > 0 and sufficiently great AlkT), the initial value for determining the greater of the two [H+] solutions

can be chosen exactly the same way; the initial value required to calculate the lower of the two [H+] solutions may be more

tricky. If the location of the right-hand side extremum is too close to 0, the estimated root of the cubic may be negative. In this
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case, the quadratic fitted to left-hand extremum should be considered as well and the greater of its roots tested. Because of the

symmetries of a cubic, that root can be calculated with a few extra additions only.350

The developments for each of the three input pairs are presented in full detail in the Mathematical and Technical Details

report in the Supplement.

3 Numerical Experiments

3.1 Reference Fortran 90 implementation

The SolveSAPHE Fortran 90 library from Munhoven (2013) – hereafter SolveSAPHE v1 – has been revised, cleaned up and355

upgraded to allow the processing of the additional three pairs. For the purpose of this paper, only the two main solvers have been

kept: these are solve_at_general, which uses a Newton-Raphson method, and solve_at_general_sec, which uses

the secant method. Both can be still be used with the same Application Programming Interface (API) as in v1. The instances in

SolveSAPHE-r2 are, however, only wrappers to the newly added Newton-Raphson based solve_at_general2 and secant

(or more precisely regula falsi) based solve_at_general2_sec both of which are able to process problems that have two360

roots. They return the number of roots of the problem, as well as their actual values, if any.

In the course of the developments related to the AlkT & CO2 pair the Newton-Raphson based algorithm showed a few

weaknesses. With the AlkT &CT pair that SolveSAPHE v1 had been designed for, each non-water alkalinity term was bounded,

just like its derivative. Once CO2 takes the role of CT these favourable properties are lost: with [CO2] fixed, the carbonate

alkalinity term and its derivative with respect to [H+] become unbounded. Newton iterates can then change by large amounts365

and floating point over- and underflow errors on the exponential correction became common. The rate of change for Newton-

Raphson iterates during each step was therefore limited to a factor of 100. With high CO2 concentration values prescribed,

there was another loss of control on the iteration sequence that had not been encountered before. At some iterations, most often

at the first one, it happened that one of the two root brackets, say the upper one, was reduced to the iteration value. In the

next iteration, that same bound was exceeded by the trial Newton-Raphson iterate, which was then rejected and replaced by a370

bisection iterate on the interval delimited by the previous iterate and the upper bracket. Since both were identical, the bisection

actually produced no variation and falsely led to convergence diagnosis. This has been fixed by changing the interval whereon

the bisection step is performed to that delimited by the lower and the upper brackets of the root, which are always different.2 The

unbounded variations of the carbonate alkalinity term when one of the individual species was used instead of CT furthermore

required to modify the stopping criterion for the iterations: in SolveSAPHE v1 iterations are stopped as soon as the relative375

difference between successive iterates falls below a set tolerance ε (ε= 10−8 by default). However, iterations for AlkT & CO2

and for the greater root of AlkT & CO2−
3 were prone to early termination with that stopping criterion, as iterates only slowly

changed due to the extreme gradients in the AlkC term of the equation. The stopping criterion is therefore now based upon the

width of the bracketing interval and iterations are stopped as soon as (Hmax−Hmin)< ε 12 (Hmax +Hmin), where Hmax and Hmin

2Both corrections have been backported to the version 1 branch of SolveSAPHE and are included in v1.1 in the SolveSAPHE archive on Zenodo

(Munhoven, 2013–2021).
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are resp. the upper and lower brackets of the root, which are continuously updated as iterations progress. As a consequence380

of this change, the number of bisection steps considerably increased. In order to speed up convergence, most bisection steps

were replaced by regula falsi steps on [Hmin,Hmax]. Bisection steps are only used occasionally when either the minimum or

maximum root bracket gets updated too often in a row (three times by default) which indicates that the equation values at Hmax

and Hmin have strongly different magnitudes. Unfortunately, the number of iterations required for the original SolveSAPHE

pair AlkT & CT increase with this stopping criterion, without any appreciable gain in precision (compare, e.g., the number385

of iterations from Fig. 3b and the residuals from Fig. 1d in Munhoven (2013), with the number of iterations required here as

reported in Fig. 6 for SW3 and the synthetic overview of the equation residuals reported in Tables S4 and S5 in the Additional

Results in the Supplement). For modelling purposes, where AlkT & CT is generally the relevant pair of data, SolveSAPHE v1

remains the most efficient choice. Tests have shown that the two safe-guarded algorithms from SolveSAPHE v1 typically

require 40–45% less computing time than their SolveSAPHE-r2 counterparts.390

Finally, as explained above, some AlkT & CO2−
3 combinations require the solution of an auxiliary minimisation problem. For

this purpose, Brent’s algorithm was implemented into SolveSAPHE (translated to Fortran 90 from the Algol 60 version in Brent

(1973, Sect. 5.8), taking into account the author’s errata reported on https://maths-people.anu.edu.au/~brent/pub/pub011.html

and his modifications to the original algorithm as implemented in https://www.netlib.org/go/fmin.f).

3.2 Results and discussion395

3.2.1 Test case definitions

Results from the three test cases SW1, SW2 and SW3 from Munhoven (2013) were used as starting points to define sets of

AlkT-CO2, AlkT-HCO−3 and AlkT-CO2−
3 concentration pairs to drive the test case experiments. Two supplementary cases

were added here: BW4 for surface brackish water with S = 3.5, and ABW5 (based upon the data of Yao and Millero (1995) for

the Framvaren Fjord, Norway) for anoxic brackish water with AlkT and CT values seven to nine times higher than in the open400

ocean, as well as comparatively high alkalinity contributions from phosphates, silicates, sulfides, phosphates and ammonium.

For CO2 and CO2−
3 , which are most conveniently handled on a logarithmic concentration scale, the representative ranges

were adapted so that the range endpoints are integer powers of ten. The adopted ranges and scales are reported in Table 1.

Each of the SW1, SW2 and SW3 test cases is complemented with three sets of temperature, salinity and pressure conditions

for typical environments (surface cold, surface warm and deep cold seawater); for BW4 only one such set for cold surface405

dilute or brackish water is used (T = 275.15 K, S = 3.5) and for ABW5 one set for subsurface brackish water (P = 13.5 bar,

S = 22.82).

For the comparison of the computational requirements for the processing of each set of samples, the adopted [CO2], [HCO−3 ]

or [CO2−
3 ] distributions are adapted. Although the [CO2], [HCO−3 ] and [CO2−

3 ] ranges for each test case reported on Table 1

have been defined on the basis of their respective distributions calculated from the AlkT & CT results and although the adopted410

grids have the same dimensions, they do not cover exactly the same “samples” in any given test case. To overcome that incon-

sistency, each test experiment for the intercomparison is first carried out with the AlkT & CT pair and the results stored. For
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the other three pairs, the pH distribution obtained with the AlkT & CT pair for the corresponding set of temperature, salinity

and pressure is first read in and the corresponding [CO2], [HCO−3 ] or [CO2−
3 ] distribution calculated on the underlying CT-

AlkT grid. The so-obtained arrays of species concentrations are then used to define the set of AlkT-CO2, AlkT-HCO−3 and415

AlkT-CO2−
3 data pairs for the benchmark calculations. This way the test case experiments for the four different characteristic

carbonate system concentrations cover exactly the same set of samples in each test case. These sample sets cannot be repre-

sented on rectangular [CO2]-AlkT, [HCO−3 ]-AlkT or [CO2−
3 ]-AlkT grids, respectively, which is nevertheless irrelevant for the

histogram syntheses presented in Figs. 6 and 7. These variants of the test cases are denoted SW1CT, SW2CT, SW3CT, BW4CT

and ABW5CT.420

3.2.2 Results

While all the test cases have their specific relevance, we are going to focus on SW2 for most of our discussion here. SW2 covers

currently observed sea-water samples, thus encompassing SW1, and conditions expected to occur over the next 50,000 years

as derived from simulation experiments carried out with MBM-MEDUSA (Munhoven, 2009). A wider selection of results also

for the other cases is presented in the Additional Results in the Supplement. pH distributions for the SW2 test case are shown425

in Fig. 5.

The difficulties posed by AlkT & CO2 that were at the origin of most of the amendments to the solver algorithms show up in

the histograms for the number of iterations required to reach convergence shown in Fig. 6 for solve_at_general which

uses the hybrid Newton-Raphson–regula falsi–bisection scheme and in Fig. 7 for solve_at_general_sec which uses the

hybrid secant–regula falsi–bisection scheme. With each one of the two solvers, AlkT & CO2 problems require in general more430

iterations to conclude than the other three pairs. This is especially pronounced with solve_at_general (Fig. 6), where a

considerable fraction of the AlkT & CO2 samples require 45 to 55 and more iterations. In comparison, AlkT & CT samples

typically require about four to eight iterations for naturally occurring compositions, and only in some rare instances more than

twenty for the extreme SW3. The other pairs range between these two, AlkT & HCO−3 coming closest to AlkT & CT. ABW5

shows a few deviations from the other tests cases. Here, solving the AlkT & CO2 problem with solve_at_general nearly435

always takes more than 50 iterations, with solve_at_general almost always nine. The solution of AlkT & CT for ABW5

with solve_at_general_sec takes considerably more iterations than AlkT & CO2−
3 (the fastest) and AlkT & CO2 (the

second fastest).

Finally, Figs. 6 and 7 demonstrate the superiority of solve_at_general_sec over solve_at_general. All in all,

the former requires only one fourth to one half of the number of iterations than the latter, and it produces root approxima-440

tions characterised by equation residuals that are up to seven orders of magnitude lower than those obtained with the former

(see Tables S4 and S5 in the Additional Results in the Supplement). ABW5 again presents an exception to this general pat-

tern: solve_at_general_sec requires typically about twice as many iterations to solve the AlkT & CT problem than

solve_at_general.

All these observations are also reflected in the execution times of the two solvers. The Newton-Raphson based solver takes445

more than five times as much time for the SW2 test case with AlkT & CO2 than with AlkT & CT; for AlkT & CO2−
3 it takes
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four times as much (for both roots though, including the solution of the minimization problem for part of the domain). For

AlkT & HCO−3 , the difference is only 20%. With the secant based method, the picture is completely different: AlkT & CO2

takes only about 30% more time than AlkT & CT, AlkT & CO2−
3 twice as much, whereas AlkT & HCO−3 executes even about

5% faster. For the AlkT & CO2 pair of input data the difference between the two solvers is greatest: the secant based one takes450

less than one fourth of the time taken by the Newton-Raphson based one.

Another key factor that influences the execution times is the initialisation scheme, although the comparisons are not as

clear-cut as in Munhoven (2013). Safe initialisation with the geometric mean of the root brackets (the fall-back initialisation

value mentioned in Sect. 2.5) results in 40–60% increases of the execution times for the AlkT & CT and the AlkT & HCO−3

input pairs, compared to the standard cubic polynomial one. Similar increases are obtained with a constant uniform pH = 8455

initialisation. For AlkT & CO2 and AlkT & CO2−
3 , the differences are much smaller and range between a decrease or an

increase of up to 5%. With these two, the quality of the root brackets seems to be more critical than the initial value.

In the analysis in Sect. 2.4.1, two characteristic thresholds for AlkT have been made out for γ > 0: an upper one at Lmin +

AlknWC(Hmin), above which the problem always has two [H+] solutions, and a lower one at Lmin +AlknWCinf, below which the

problem does not have any solution at all. For intermediate values of AlkT it is necessary to determine Htan and Alktan to find460

out how many roots the problem has, and, in case there are two, where the separation between them lies. The minimisation

procedure required to determine Htan is computationally expensive as can be seen in Fig. 8 (for SW2-sc). The most probable

number of iterations is in all experiments between 21 and 25; the median number is each time 0.9± 0.5 higher than the

most probable number, due to the skew-symmetric nature of the distribution of the number of iterates, as illustrated in the

insert in Fig. 8 (see also Fig. S23 in the Additional Results in the Supplement). The subsequent computation of the roots465

is much cheaper: for the lower root, the secant based algorithm most probably takes five iterations, and only occasionally

15–16, and for the greater root, most probably four and only rarely more than nine. The total number of samples in the

SW2 test case is 1.95 million. 10,500 (0.54%) of these do not have any root for the AlkT & CO2−
3 pair and the solution of

the minimisation problem is required for 173,445 samples (8.89%), because Htan is required to separate the two roots. The

lower threshold essentially turns out as useless: it ranges at about −28 mmol kg−1. This is due to the hydrogen sulfate acid470

system which strongly dominates the AlknWC minimum in seawater, because of the high total sulfate concentration in sea-water

(ST ' 28mmol kg−1). For carbonate ion concentrations below 400 µmol kg−1, i.e., for most of the naturally occurring waters,

the AlkT & CO2−
3 problem will always have two roots and the solution of the auxiliary minimisation problem is not required

to characterise them.

4 Conclusions475

The approach adopted in SolveSAPHE (Munhoven, 2013) to safely determine carbonate speciation in particular, and speciation

calculations of mixtures of acids in aqueous solution in general, knowing only the total concentrations of the different acid

systems and the total alkalinity of the system was adapted and extended here to use [CO2], [HCO−3 ] and [CO2−
3 ] instead of

the total inorganic carbon concentration, CT. The rationale can be entirely transposed to these three pairs: (1) the amended
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alkalinity-pH equations for AlkT & CO2 and for AlkT & HCO−3 still have one and only one positive solution while AlkT &480

CO2−
3 may have no solution, or one or two; (2) intrinsic brackets that only depend on a priori available information can be

derived for the root of the AlkT & CO2 and AlkT & HCO−3 problems, as well as for the two roots of AlkT & CO2−
3 problems

that may have to be solved for naturally occurring sample compositions. More uncommon but physically realistic AlkT &

CO2−
3 problems may additionally require the solution of an auxiliary minimisation problem to determine the threshold AlkT

value below which the problem does not have any roots and above which it has two of them. The solution of this problem485

also provides a separation value of the two roots. To our best knowledge, SolveSAPHE is the first package to offer a complete

solution of the AlkT & CO2−
3 problem, autonomous above all.

The two safeguarded numerical solvers from SolveSAPHE v1 have been adapted to allow for the solution of problems that

may have up to two roots. The Newton-Raphson–bisection based solver required extensive modifications for the reliable solu-

tion of the numerically far more challenging AlkT & CO2, AlkT & HCO−3 and AlkT & CO2−
3 problems. Most bisection steps490

have been replaced by regula falsi steps for increased convergence speed. The secant–bisection solver only required minimal

adaptations. A Fortran 90 reference implementation, SolveSAPHE-r2, was prepared and used to evaluate the performances of

the different methods for solving four benchmark problems. While the secant–bisection method was already slightly superior to

the Newton-Raphson–bisection method in SolveSAPHE v1, that advantage has now become overwhelming: in SolveSAPHE-

r2, it typically requires two to four times less iterations, and for the newly handled pairs, the equation residuals are orders495

of magnitude lower than the Newton-Raphson–regula falsi–bisection based solver (typically of the order of 10−19 – 10−18

compared to 10−13 – 10−12).

For carbonate speciation problems posed by AlkT and either one of [CO2], [HCO−3 ] or [CO2−
3 ] the secant based routine from

SolveSAPHE-r2, solve_at_general2_sec, is thus clearly the method of choice; for calculations on the basis of AlkT &

CT, both solve_at_general and solve_at_general_sec from SolveSAPHE v1 will perform better, although the500

secant based solver is marginally faster, once again.

Code availability. All the Fortran 90 codes of SolveSAPHE version 1 series (of which v1.0.3 was used to derive the results presented in

Fig. 1) are available on Zenodo from Munhoven (2013–2021) for use under the GNU Lesser General Public Licence version 3 (LGPLv3)

or later. The codes for SolveSAPHE-r2 (v2.0.1) that are described in this manuscript are included in the Supplement and made available for

use under the same licence. They are also archived on Zenodo (Munhoven, 2021). Future bug-fix releases and updates will also be archived505

there.

Epitalon et al. (2021) have ported SolveSAPHE-r2 to R (not used here) for usage under the GNU General Public License version 2

(GPL-2) or 3 (GPL-3).
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Appendix A: The direct cases

For the sake of completeness, I provide here succinct “recipes” to calculate all the different carbonate system related variables,520

knowing two of them. Many of these were already known in the 1960s (see, e.g., Park (1969)). The Guide to Best Practices

for Ocean CO2 Measurements (Dickson et al., 2007) lists the most commonly used pairs and furthermore includes procedures

for selected triplets and quartets, for which not all of the equilibrium constants are required. In the following, we assume that

there are direct and invertible relationships between [CO2] and the fugacity (fCO2) or the partial pressure (pCO2) of CO2

and between pH and [H+] on any chosen pH scale. We therefore restrict ourselves to [CO2] and [H+].525

The conditions for the existence of a solution are generally that the concentrations of H+ and of the DIC species are strictly

positive. In some instances, the input data must fulfil additional constraints that are, however, not always straightforward to

quantitatively state a priori.

CT & CO2, CT & CO2−
3 — (1) With these two pairs, the [CO2]/CT fraction, resp. the [CO2−

3 ]/CT fraction, is fixed and

Eq. (4), resp. Eq. (6), defines a quadratic equation in [H+] that always allows for exactly one positive solution; (2)530

calculate the remaining two species concentrations from their respective species fraction; (3) AlkT from Eq. (1). In

addition to the positivity of the species concentrations, the following constraints must be met: [CO2]<CT and [CO2−
3 ]<

CT.

CT & HCO−3 — With this pair, the [HCO−3 ]/CT fraction, denoted by b hereafter, is fixed and Eq. (5) becomes a quadratic

equation in [H+]. That equation has two positive solutions if b < 1/(1 + 2
√
K2/K1), one double root if b= 1/(1 +535

2
√
K2/K1) and no real solutions if b > 1/(1 + 2

√
K2/K1). This is well illustrated in Fig. 1b above: there are CT &

[HCO−3 ] combinations that allow for two different AlkT values and, equivalently, two pH values, and there are others

that do not allow for any. Please notice that the threshold fraction 1/(1 + 2
√
K2/K1) is always lower than 1 and the

natural a priori constraint requiring that b < 1 is thus insufficient to guarantee a solution: for T = 275.15 K, S = 35 and

P = 0 bar, the threshold ratio is 94.48%.540
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When there are two roots, one faces a similar dilemma as with the AlkT & CO2−
3 problem: which one to chose? Most

often the lower of the two will again be the appropriate one, as that one typically leads to AlkT >CT, whereas the greater

one leads to AlkT <CT. This criterion might be sufficient to discriminate between the two – in seawater it generally is –

but in some instances additional information, quantitative or qualitative, might be of order.

In general: (1) solve the quadratic equation and chose the appropriate of the two roots. (2) Calculate [CO2] and [CO2−
3 ]545

from their respective species fractions; (3) AlkT from Eq. (1).

CO2 & HCO−3 — (1) [H+] from K1; (2) [CO2−
3 ] from K2; (3) CT can be calculated from the three carbonate species

concentrations; (4) AlkT from Eq. (1).

CO2 & CO2−
3 — (1) [HCO−3 ] from [HCO−3 ]2 =K1/K2[CO2] [CO2−

3 ]; (2) CT from the three carbonate species concen-

trations; (3) [H+] from K1 or K2; (4) AlkT from Eq. (1).550

HCO−3 & CO2−
3 — (1) Calculate [H+] from K2; (2) [CO2] from K1; (3) CT from the three carbonate species concentra-

tions; (4) AlkT from Eq. (1).

CO2 & H+ — (1) calculate [HCO−3 ] from K1; (2) calculate [CO2−
3 ] from K2; (3) CT from the three carbonate species

concentrations; (4) AlkT from Eq. (1).

HCO−3 & H+ — (1) calculate [CO2] from K1; (2) calculate [CO2−
3 ] from K2; (3) CT from the three carbonate species555

concentrations; (4) AlkT from Eq. (1).

CO2−
3 & H+ — (1) calculate [HCO−3 ] from K2; (2) calculate [CO2] from K1; (3) CT from the three carbonate species

concentrations; (4) AlkT from Eq. (1).

AlkT & H+ — (1) CT from Eq. (2); (2) individual species concentrations from the species fractions.

As illustrated in Fig. 1d–f above, there are AlkT-[H+] combinations that lead to physically unrealistic negative AlkC.560

Following Eq. (3) negative AlkC requires negative CT and vice-versa.

The shape of the blank area depends on the non-carbonate contributors to the total alkalinity. In practice, such incompati-

ble combinations are unlikely to arise from measurements, except if the adopted set of AlkT contributors is inappropriate.

CT & H+ — Individual species concentrations from the species fractions; AlkT from Eq. (1).

19



References565

Brent, R. P.: Algorithms for minimization without derivatives, Prentice-Hall, Englewood Cliffs, NJ, 1973.

Byrne, R. H. and Yao, W.: Procedures for measurement of carbonate ion concentrations in seawater by direct spectrophotometric observations

of Pb(II) complexation, Mar. Chem., 112, 128–135, https://doi.org/10.1016/j.marchem.2008.07.009, 2008.

Deffeyes, K. S.: Carbonate Equilibria : A Graphic and Algebraic Approach, Limnol. Oceanogr., 10, 412–426,

https://doi.org/10.4319/lo.1965.10.3.0412, 1965.570

Dickson, A. G., Sabine, C. L., and Christian, J. R., eds.: Guide to Best Practices for Ocean CO2 Measurements, vol. 3 of PICES Special Pub-

lication, Carbon Dioxide Information and Analysis Center, Oak Ridge (TN), https://cdiac.ess-dive.lbl.gov/ftp/oceans/Handbook_2007/

Guide_all_in_one.pdf, 2007.

Epitalon, J.-M., Gattuso, J.-P., and Munhoven, G.: SolveSAPHE: Solver Suite for Alkalinity-PH Equations, https://CRAN.R-project.org/

package=SolveSAPHE, 2021.575

Munhoven, G.: Future CCD and CSH variations: Deep-sea impact of ocean acidification, Geochim. Cosmochim. Ac., 73, A917, 2009.

Munhoven, G.: Mathematics of the total alkalinity-pH equation – pathway to robust and universal solution algorithms: the SolveSAPHE

package v1.0.1, Geosci. Model Dev., 6, 1367–1388, https://doi.org/10.5194/gmd-6-1367-2013, 2013.

Munhoven, G.: SolveSAPHE (Solver Suite for Alkalinity-PH Equations), https://doi.org/10.5281/zenodo.3752250, 2013–2021.

Munhoven, G.: SolveSAPHE-r2 (Solver Suite for Alkalinity-PH Equations–Release 2), https://doi.org/10.5281/zenodo.4771132, 2021.580

Orr, J. C., Epitalon, J.-M., and Gattuso, J.-P.: Comparison of ten packages that compute ocean carbonate chemistry, Biogeosciences, 12,

1483–1510, https://doi.org/10.5194/bg-12-1483-2015, 2015.

Park, P. K.: Oceanic CO2 System: An Evaluation of ten Methods of Investigation, Limnol. Oceanogr., 14, 179–186,

https://doi.org/10.4319/lo.1969.14.2.0179, 1969.

Patsavas, M. C., Byrne, R. H., Yang, B., Easley, R. A., Wanninkhof, R., and Liu, X.: Procedures for direct spectrophotometric deter-585

mination of carbonate ion concentrations : Measurements in US Gulf of Mexico and East Coast waters, Mar. Chem., 168, 80–85,

https://doi.org/10.1016/j.marchem.2014.10.015, 2015.

Sharp, J. D. and Byrne, R. H.: Carbonate ion concentrations in seawater: Spectrophotometric determination at ambient temperatures and

evaluation of propagated calculation uncertainties, Mar. Chem., 209, 70–80, https://doi.org/10.1016/j.marchem.2018.12.001, 2019.

Yao, W. and Millero, F. J.: The Chemistry Of the Anoxic Waters in the Framvaren Fjord, Norway, Aquat. Geochem., 1, 53–88,590

https://doi.org/10.1007/BF01025231, 1995.

Zeebe, R. E. and Wolf-Gladrow, D.: CO2 in seawater : Equilibrium, kinetics, isotopes, vol. 65 of Elsevier Oceanography Series, Elsevier,

Amsterdam (NL), http://www.sciencedirect.com/science/bookseries/04229894/65, 2001.

20

https://doi.org/10.1016/j.marchem.2008.07.009
https://doi.org/10.4319/lo.1965.10.3.0412
https://cdiac.ess-dive.lbl.gov/ftp/oceans/Handbook_2007/Guide_all_in_one.pdf
https://cdiac.ess-dive.lbl.gov/ftp/oceans/Handbook_2007/Guide_all_in_one.pdf
https://cdiac.ess-dive.lbl.gov/ftp/oceans/Handbook_2007/Guide_all_in_one.pdf
https://CRAN.R-project.org/package=SolveSAPHE
https://CRAN.R-project.org/package=SolveSAPHE
https://CRAN.R-project.org/package=SolveSAPHE
https://doi.org/10.5194/gmd-6-1367-2013
https://doi.org/10.5281/zenodo.3752250
https://doi.org/10.5281/zenodo.4771132
https://doi.org/10.5194/bg-12-1483-2015
https://doi.org/10.4319/lo.1969.14.2.0179
https://doi.org/10.1016/j.marchem.2014.10.015
https://doi.org/10.1016/j.marchem.2018.12.001
https://doi.org/10.1007/BF01025231
http://www.sciencedirect.com/science/bookseries/04229894/65


Table 1. Ranges of variation for the input variables for the five test cases. Experiments always considered AlkT and either one of CT, [CO2],

[HCO−
3 ] or [CO2−

3 ].

SW1 SW2 SW3 BW4 ABW5

scale min max min max min max min max min max

AlkT/[mmol kg−1] linear 2.20 2.50 2.20 3.50 −1.0 5.0 0.0 1.5 17.0 20.0

CT/[mmol kg−1] linear 1.85 2.45 1.85 3.35 0.0 6.0 0.0 1.2 15.0 17.5

[CO2]/[mol/kg] log. 10−6 10−3 10−7 10−3 10−14 10−2 10−12 10−3 10−4 10−2

[HCO−
3 ]/[mmol/kg] linear 1.20 2.40 0.60 3.20 0.0 5.0 0.0 1.0 13.0 17.0

[CO2−
3 ]/[mol/kg] log. 10−5 10−3 10−6 10−3 10−14 10−2 10−9 10−3 10−5 10−3
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Figure 1. (a) pH; (b) HCO−
3 and (c) CO2−

3 concentration isolines in CT-AlkT space; (d) CO2, (e) HCO−
3 and (f) CO2−

3 concentration

isolines in pH-AlkT space. Blank areas in ((d), (e) and (f) represent the pH-AlkT combinations that lead to negative AlkC. The blue and the

black stars in (c) and (f) locate the two possible CT and pH roots for a sample with AlkT = 2.3mmol kg−1 and [CO2−
3 ] = 0.1mmol kg−1

(one of the dashed isolines, as indicated by the open star symbol in the colour scale). Figure 3 in Deffeyes (1965) is similar to (c).
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Figure 2. Schematic representation of the general characteristics of theL([H+];γ) andR([H+];A) components of the alkalinity-pH equation

for the AlkT −CO2−
3 pair. The grey band delimits the (monotonous) variations of R([H+];A), for a given alkalinity A. The band moves up

and down without being distorted as A is increased, resp., decreased. For a given pair of AlkT and CO2−
3 concentrations, the actual equation

to solve is L([H+];γ) =R([H+];AlkT), where γ =
[CO2−

3 ]

K2
− 1

s
. γ = 0 thus corresponds to [CO2−

3 ] = K2
s

.
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Figure 3. Determination of the A value for which the L([H+];γ) and R([H+];A) curves become tangent, or, equivalently, the lowest AlkT

value for which the equation L([H+];γ)−R([H+];AlkT) = 0 has a solution. The top panel shows how relevant characteristic points can be

derived by considering the particular R([H+];A) curve that intersects L([H+];γ) at its minimum. The bottom panel shows the locus of the

solutions of L([H+];γ)−R([H+];AlkT) = 0 in an [H+]−AlkT) graph, i.e., the curve AlkT) = L([H+];γ)+AlkncW([H+]). Please notice

that Amin = Lmin +AlkncW(Hmin) denotes the alkalinity value obtained for [H+] =Hmin, and not the minimum value of the curve shown on

the bottom panel. See text for details.
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Figure 4. (a) Evolutions of the concentrations of the different species composing AlkT and CT, as a function of pH, for AlkT =

2.3mmol kg−1. CT and the concentrations all of its components reduce to 0 at pH = 11.48 (marked by the long-dashed vertical black

line) in this example. The dashed orange line represents the joint contribution of B(OH)−4 and OH− which are the dominant AlkT contribu-

tors at high pH. (b) [CO2−
3 ] as a function of pH for different AlkT values (indicated in mmol kg−1 for each curve). Each curve represents a

horizontal cross-section at the corresponding AlkT level through the [CO2−
3 ] distribution depicted in Fig. 1e.
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Figure 5. pH distributions for the SW2-sc test case (SW2 under cold surface conditions, where T = 273.15K, S = 35 and P = 0bar),

obtained with solve_at_general2_sec: (a) AlkT & CO2; (b) AlkT & HCO−
3 ; (c) the lower [H+] root (higher pH root) of AlkT &

CO2−
3 ; (d) the greater [H+] root (lower pH root) of AlkT & CO2−

3 . The thick grey dashed line in (c) and (d) shows the critical limit above

which the AlkT & CO2−
3 always has two roots. Below this limit further calculations are required to determine the number of solutions. More

details are given in the text and in the Supplement. Please notice the different scales on the horizontal axes and for the pH colour coding in

the four panels.
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Figure 6. Number of iterations to convergence required by the various data pairs (separately for the lower and the greater [H+] roots of

the AlkT & CO2−
3 ), for each of the four test cases, carried out with solve_at_general (using a hybrid Newton-Raphson–regula falsi–

bisection method). The absolute maximum numbers of iterations were 58, 67, 64 and 56, for SW2, SW3, BW4 and ABW5, resp., and 58 for

SW1 (not shown).
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Figure 7. Number of iterations to convergence required by the various data pairs (separately for the lower and the greater [H+] roots of the

AlkT & CO2−
3 ), for each of the four test cases, carried out with solve_at_general_sec (using a hybrid secant–regula falsi–bisection

method). The absolute maximum numbers of iterations were respectively 20, 21, 29 and 27, for SW2, SW3, BW4 and ABW5, resp., and 20

for SW1 (not shown).
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Figure 8. Number of iterations required by Brent’s algorithm in the SW2 test case to solve the auxiliary minimisation problem whose solution

determines the number of roots of the AlkT & CO2−
3 pair and also provides the separation between the two roots. The white area covers the

region where the solution of the minimisation problems is not required as AlkT is sufficiently high so that there were two roots. The insert

shows the frequency distribution of the number of iterations required. The black line in the lower right corner traces the limit between regions

with two roots and without roots (compare with Figs. 5c and 5d).
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