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Abstract. To check the accuracy of column-average dry air CO2 mole fractions (“XCO2”) retrieved from Orbiting Carbon

Overvatory (OCO-2) data, a similar quantity has been measured from the Multi-functional Fiber Laser Lidar (MFLL) aboard

aircraft flying underneath OCO-2 as part of the Atmospheric Carbon and Transport (ACT)-America flight campaigns. Here we

do a lagged correlation analysis of these MFLL–OCO-2 column CO2 differences and find that their correlation spectrum falls

off rapidly at along-track separation distances of under 10 km, with a correlation length scale of about 10 km, and less rapidly5

at longer separation distances, with a correlation length scale of about 20 km.

The OCO-2 satellite takes many CO2 measurements with small (∼3 km2) fields of view (FOVs) in a thin (<10 km wide)

swath running parallel to its orbit: up to 24 separate FOVs may be obtained per second (across a ∼6.75 km distance on the

ground), though clouds, aerosols, and other factors cause considerable data dropout. Errors in the CO2 retrieval method have

long been thought to be correlated at these fine scales, and methods to account for these when assimilating these data into10

top-down atmospheric CO2 flux inversions have been developed. A common approach has been to average the data at coarser

scales (e.g., in 10-second-long bins) along-track, then assign an uncertainty to the averaged value that accounts for the error

correlations. Here we outline the methods used up to now for computing these 10-second averages and their uncertainties,

including the constant-correlation-with-distance error model currently being used to summarize the OCO-2 version 9 XCO2

retrievals as part of the OCO-2 flux inversion model intercomparison project. We then derive a new one-dimensional error15

model using correlations that decay exponentially with separation distance, apply this model to the OCO-2 data using the

correlation length scales derived from the MFLL–OCO-2 differences, and compare the results (for both the average and its

uncertainty) to those given by the current constant-correlation error model. To implement this new model, the data are averaged

first across 2-second spans, to collapse the cross-track distribution of the real data onto the 1-D path assumed by the new model.

Considering correlated errors can cause the average value to fall outside the range of the values averaged: two strategies for20

preventing this are presented. The correlation lengths over the ocean, which the land-based MFLL data do not clarify, are

assumed to be twice those over the land.
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The new correlation model gives 10-second XCO2
averages that are only a few tenths of a ppm different from the constant-

correlation model. Over land, the uncertainties in the mean are also similar, suggesting that the +0.3 constant correlation

coefficient currently used in the model there is accurate. Over the oceans, the twice-the-land correlation lengths that we assume25

here result in a significantly lower uncertainty on the mean than the +0.6 constant correlation currently gives – measurements

similar to the MFLL ones are needed over the oceans to do better. Finally, we show how our 1-D exponential error correlation

model may be used to account for correlations in those inversion methods that choose to assimilate each XCO2
retrieval

individually, and to account for correlations between separate 10-second averages when these are assimilated instead.

1 Introduction30

Column-averaged CO2 mixing ratio measurements taken from satellites provide coverage across the globe that is far more

extensive than that from in situ measurements. These satellite measurements are often used in global atmospheric flux inver-

sions to provide a “top-down" constraint on surface sources and sinks of CO2. The atmospheric transport models underlying

these global inversions are generally run at a coarse resolution, using grid boxes of 100s of km on a side. The resolution is

limited both for computational reasons (the models must be run many dozens of times across the measurements to obtain the35

inverse estimate) and because the spatial coverage of the satellite measurements is currently not dense enough to resolve spatial

scales much finer than this when solving at typical time scales (the gap in longitude between subsequent passes of a typical

low-Earth-orbiting (LEO) satellite taking a single thin swath of data along its orbit path is ∼25◦, resulting in gaps of between

3◦ and 4◦ across a week, gaps which are generally never filled in further due to the repeat cycle of the satellite’s orbit). The

typical field-of-view (FOV) of individual retrievals is often much smaller than this gridbox scale, however: FOVs for retrievals40

from the Orbiting Carbon Observatory (OCO-2) satellite (Crisp et al., 2004; 2008), for example, are typically∼2.25 km along-

track by at most 1.25 km across-track (Eldering et al., 2017). The individual OCO-2 retrievals are generally averaged together

along-track across some distance closer to the model grid box size before being assimilated in the inversion: this is because the

modeled measurements to which the true measurements will be compared in the inversion are available only at the grid box

resolution, so it makes little sense to assimilate each measurement individually when assimilating a coarse-resolution average45

that summarizes those values will do just as well.

Whether the individual OCO-2 retrievals or some coarser-resolution average of them are assimilated into the inverse model,

correlations between the errors in the individual CO2 measurements must be considered. CO2 mixing ratios in the upper part of

the atmospheric column (at all levels but the immediate surface layer) feel the influence of multiple flux locations at the surface

due to atmospheric mixing, which widens and homogenizes the zone of influence as time goes on. XCO2
is a measure of CO250

across the full column and is dominated by such effects: any error in XCO2 will be translated into highly-correlated errors

in neighboring surface fluxes when used as a measurement in an inversion model; similarly, any error in surface CO2 flux in

a forward model will result in highly-correlated errors in neighboring XCO2
measurements influenced by these fluxes. Also,

systematic errors in the individual CO2 retrievals are correlated at finer scales because incorrect assumptions are made about

the scatterers, water vapor, temperature, and surface properties used in the retrieval scheme, and these variables themselves55
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have errors that are correlated at these scales. The OCO-2 satellite, for example, makes 24 separate observations per second,

across a distance of∼6.75 km along the ground track: these data provide mostly-redundant column CO2 information across that

time. When deciding how to weight the satellite data in the inversions relative to the a priori information, some assumptions

about these measurement error correlations must therefore be made: if these errors were assumed to be all independent, the

total amount of measurement information going into the inversions would be much too high, resulting in improper weighting60

versus the a priori or dynamically-propagated information in the problem. Our goal here is to present a new model of the

errors in the OCO-2 CO2 measurements that assumes correlations that die off exponentially with distance, as opposed to the

constant-correlation models used previously. This new model will allow the CO2 measurements to be weighted more accurately

in inversions, yielding more accurate CO2 flux estimates.

Until recently, there have not been any good ground-truth data available to evaluate the satellite CO2 measurement errors65

at finer scales. At the coarser scales, data from the Total Carbon Column Observing Network (TCCON) have been used to

assess the magnitude and seasonal variability of OCO-2 errors (Wunch et al., 2017), as well as what portion of these might be

considered random as opposed to systematic (Kulawik et al., 2019). Worden et al. (2017) have done a similar random versus

systematic partitioning of OCO-2 errors by looking at the variability of retrieved XCO2
across small areas inside of which the

real CO2 is thought not to vary much. Comparison to realistic CO2 fields given by atmospheric transport models (e.g. using70

plausible prior flux estimates and forced to agree with the available in situ CO2 measurements) have also been used to assess

systematic errors in the satellite retrievals (O’Dell et al., 2012; 2018) at seasonal time scales and regional spacial scales. The

TCCON sites provide column-averaged CO2 measurements that can be compared directly to the OCO-2 column measurements,

but because they are available only in a few fixed locations, they cannot assess how these errors vary along-track. There have

been many aircraft underflights of OCO-2, but these generally have taken only in situ measurements of CO2, representative of75

a particular elevation rather than a column average. Some of these flights provide data across most of the atmospheric column

(i.e., vertical profiles), but only generally at widely-spaced locations. None of these data are really well-suited for assessing

along-track errors in the column average.

Over the past several years, however, column-average measurements of CO2 from aircraft-based lidars have become avail-

able. Several of these lidars were instrument test-beds developed as part of NASA’s Active Sensing of CO2 Emissions over80

Nights, Days, and Seasons (ASCENDS) satellite project (Jucks et al., 2015; Kawa et al., 2018). One of these, the Multi-

functional Fiber Laser Lidar (MFLL) (Dobbs et al., 2008; Dobler et al., 2013), has been flown (Campbell et al., 2020) as part

of NASA’s Atmospheric Carbon and Transport (ACT) - America project, an effort to detail CO2 variability as a function of

weather and front location across the eastern half of North America (Davis et al., submitted). Several of these MFLL flights

were designed to pass underneath OCO-2 along its ground track as it passed by, allowing CO2 from the better part of the85

full column to be compared between the two. Bell et al. (2020) have lined up the MFLL and OCO-2 data for these flights

as a function of horizontal location, and have assessed the accuracy of the along-track change in CO2 (the linear slope) from

OCO-2 using the MFLL data as a ground truth: they accounted for the differences in the vertical averaging kernels and vertical

extent between the two measurements in doing this comparison. Here, we use this same Bell et al. (2020) dataset to assess the

along-track correlation length scale of the MFLL–OCO-2 measured column CO2 differences.90
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A team of inverse modelers using the OCO-2 XCO2
retrivals have formed an OCO-2 flux inversion model intercomparison

project (MIP) to help differentiate the CO2 fluxes robustly constrained by the OCO-2 data from the confounding biases in

those same data (Crowell et al., 2019; Peiro et al., 2021): doing this as a MIP helps mitigate the impact of the errors in

individual transport models (by looking at the results across the full ensemble of models) and the impact of any differences

in the measurements and measurement errors used in the inversions (all MIP participants were directed to use the same 10-95

second average OCO-2 XCO2
measurements and uncertainties). Here, we use the OCO-2 XCO2

10-second averaging problem

as an application to test the impact of the newly-computed length scale. We interpret the MFLL–OCO-2 differences as OCO-2

retrieval errors and use the associated error correlation length scale to formulate a new model for the 10-second average XCO2

value and its uncertainty. We then compare the results of this new error model to the results of the current error model to assess

the impact of the newly-calculated correlation length scale, both on the absolute values of XCO2 as well as on the uncertainty100

calculated for the 10-second average values.

To better present the logical flow of our argument, we will split the paper into two parts, presenting both the method and

results of our MFLL–OCO-2 analysis in the first (Sect. 2), then the method and results for the OCO-2 averaging application in

the second. Since a few different averaging approaches have been used over time with the OCO-2 data, these previous methods

will be outlined in this second section for context, before describing a new averaging approach using the correlation length105

scale. Section 3.1 presents a general framework for the OCO-2 data averaging approach, leaving the form of the correlation

matrix, C, general. Section 3.1.1 discusses averages in which all the averaged retrievals are assumed to be independent (i.e.

a diagonal C), Sect. 3.1.2 the case in which the errors in all the averaged retrievals are assumed to be correlated with all

the others in the span with the same positive correlation coefficient (all the off-diagonal terms in C having the same value),

and Sect. 3.1.3 the case in which the correlations are assumed to die out exponentially with distance along the satellite track110

(exponential decay off main diagonal in C). When averaging data with unequal uncertainty values, considering correlated

errors can cause the average value computed to fall outside the range of the input values to be averaged. While this is a correct

and natural consequence of the correlated error assumption, it does violate a key condition usually specified when defining a

weighted average to prevent just that behavior: that all the weights be non-negative. Section 3.2 discusses this issue in more

detail and lays out a couple fallback options that we have used to stay with non-negative-weighted averages, while still reaping115

the benefits of the correlated error assumption. Section 3.3 applies these different correlation models (including both those

with the fallback weighting and those without it) to two simple example cases, calculating the total measurement information

content given by each model. Section 3.4 shows how the exponentially-decaying correlation model (or “exponential” model,

hereafter) may be used to compute the effect of correlations between the full-span averages themselves (instead of the values

going into them). In Sect. 3.5, we assess the impact of the correlation length scale determined from the MFLL–OCO-2 data120

on the averages of actual OCO-2 version 10 XCO2
retrievals, by calculating 10-second average values and their uncertainties

using the new exponential correlation error model and comparing them to those given by the constant-correlation error model.

Finally, we discuss the implications of the new length-scale-dependent correlations in the Conclusion.
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Date Data Length Altitude Leg start Leg end Crossing Flight

[YYYYMMDD] Points [km] [km] ◦lon ◦lat ◦lon ◦lat ◦lon ◦lat location

20160727 46 414 9.0 -77.6 39.5 -78.8 43.1 -78.0 40.8 Pennsylvania

20160805 59 539 9.0 -102.1 43.3 -103.7 48.0 -103.3 46.8 S. & N. Dakota

20170215 58 535 8.7 -101.1 40.1 -99.4 35.5 -100.3 38.2 Kansas - Oklahoma

20170308 43 453 6.0 -76.9 37.0 -78.1 40.9 -77.2 38.0 Virg.-Maryland-Penn.

20171022 78 501 8.9 -98.6 35.4 -100.2 39.7 -99.6 38.2 Oklahoma - Kansas

20171027 66 618 8.5 -99.5 35.3 -101.2 40.7 -100.4 38.5 Oklahoma - Kansas

Table 1. Information on which MFLL–OCO-2 co-location points from which ACT-America flight legs were used in this study, including the

crossing locations (points of closest approach between the aircraft and OCO-2 FOVs). See Bell (2018) and Bell et al. (2020) for more details.

2 Computing a correlation length scale from measured MFLL–OCO-2 column-average CO2 differences

2.1 MFLL measurements and their pairing with OCO-2 overflight data125

The NASA-funded Atmospheric Carbon and Transport (ACT) - America project has flown five aircraft campaigns over the

2016-2019 time period, measuring CO2, CH4, and meteorological variables in an effort to understand the relationship between

atmospheric carbon and weather patterns, as well as the processes driving the uptake and release of carbon. These campaigns

were done across all four seasons, each with flights in the Mid-Atlantic, Mid-West, and Gulf Coast regions of North America

(Davis et al., submitted). As part of this effort, flights were made along the ground tracks of the OCO-2 satellite, instrumented130

with downward-viewing lidars taking CO2 measurements that could be compared with the column-averaged CO2 data taken

by OCO-2.

The OCO-2 satellite measures radiances that are sensitive to dry air CO2 mixing ratios throughout the depth of the atmo-

spheric column. CO2 mixing ratios are retrieved from these data at 20 levels in the vertical, evenly-spaced in terms of pressure.

Because there is not enough information to robustly differentiate these 20 values, a single pressure-weighted vertical average135

value, XCO2
, is computed from these. How much information is contributed to the XCO2

value from each level, as opposed to

being taken from some prior guess, is shown by the shape of the vertical averaging kernel vector (see Fig. 6 of Bell et al., 2020):

a value of 1 meaning all from the measurement, of 0 meaning all from the prior. The satellite flies in a sun-synchronous orbit,

passing over the equator at about 1:30 pm local time, as the Earth rotates underneath it; its 81◦ orbital inclination means that the

flight path over North America is tilted somewhat, with the basic south-to-north motion going a bit SE-to-NW. Its 7077.7 km140

orbital semi-major axis results in a velocity of ∼6.75 km/s for its field-of-view (FOV) on the surface, and gives 15 or 16 orbits

per day. The observed path is at most 10 km wide, located along the ground track in nadir-viewing mode, and roughly parallel

to it in glint mode: there are 8 FOVs in the cross-track direction, each at most 1.25 km wide, and three cross-track scans are

taken per second, making each FOV extend ∼2.25 km in the along-track direction.
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The MFLL lidar (Dobbs et al., 2008; Dobler et al., 2013) was one of several flight instruments developed as a testbed for the145

CO2 lidar to be used aboard NASA’s proposed ASCENDS satellite (Jucks et al., 2015; Kawa et al., 2018). We examine MFLL

data from six OCO-2 underflights here, four taken over the Great Plains, two over the Mid-Atlantic (Table 1). The flight legs

were generally around 500 km in length, the aircraft taking about an hour to fly that distance. The satellite FOV, on the other

hand, would take only about 75 seconds to traverse the same route, so that, although the aircraft and satellite would be looking

at very close to the same point on the ground at some point during the flight, the time difference in viewing could be up to 40150

min or so at the ends of each leg: some change in the CO2 actually measured at the same location could thus be expected due to

the blowing winds. The lidar was carried on a C-130 aircraft flying generally 8-9 km above ground level, or about at 350 hPa;

because the OCO-2 measurements give lower weight to the upper parts of the column, the MFLL data are therefore able to

provide an independent validation constraint on at least the lower 2/3 of the OCO-2 column averages. The vertical weighting of

the two measurements, as embodied in their averaging kernel vectors, is also different, with the MFLL instrument giving more155

weight to the upper part of the measured column, just underneath the flight level, while the OCO-2 weight is more flat with

pressure (see Fig. 6 of Bell et al., 2020). Lining up the two sets of measurements, and accounting for the differences in vertical

weighting, has fortunately already been done by Bell (2018) and Bell et al. (2020). They used this data to test the accuracy of

the spatial trend in CO2 retrieved by OCO-2 across the flight legs; here, we will use a subset of that same data set to look at

shorter-scale spatial variability (Baker et al., 2020). The reader is referred to Bell et al. (2020) for further details of the MFLL160

and OCO-2 measurements, as well as the comparison method and the details of the measurements on each flight leg.

2.2 Method for analyzing a correlation length scale

As described in Bell (2018) and Bell et al. (2020), the MFLL data have been binned and averaged across 60-second blocks,

corresponding to swaths of from 7 to 9 km in length along the OCO-2 ground track, depending how fast the C-130 aircraft

was flying at the time. All valid cloud-free OCO-2 retrievals (those declared “good” by the OCO-2 quality screening criteria)165

falling within the MFLL horizontal location range are similarly averaged. (Note, again, that the co-located MFLL and OCO-2

data may have measurement times that differ by up to an hour or more.) Only those spans with more than about 20 MFLL

and 3 OCO-2 measurements are used in the analysis. Here we use the satellite FOV latitude and longitude to calculate the

distance between different measurement blocks. We subtract the OCO-2 average from its corresponding MFLL average for

each common bin, then divide the difference Xj by the following OCO-2 XCO2
measurement uncertainty value:170

σ2
j = σ2

j,retr + (0.3 ppm)2 (1)

where the XCO2 uncertainty from the retrieval, σj,retr, has been increased by a floor of 0.3 ppm to account for non-linearities

in the uncertainty calculation; this gives Yj =Xj/σj . We then detrend this weighted difference timeseries across each flight

leg – subtracting either a single constant value or a linear trend Ȳ (x), where x is the along-track distance. The autocovariance

function of this difference timeseries was then computed as175

ch =
1

Nh

Nh∑
x=1

(Yx− Ȳ )(Yx+h− Ȳ ) (2)
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Figure 1. The autocorrelation of the MFLL–OCO-2 difference computed across six ACT-America flight legs as a function of the separation

distance ∆x [km] along the OCO-2 ground track (blue), plus its 1-sigma significance bounds (red). Plots are given for two different pre-

conditioning methods (subtracting off a linear trend or only a constant offset from each flight leg). An exponentially-decaying curve with a

correlation length of 20 km is also plotted on both panels.

where Nh is the number of data values falling into each distance lag bin h (using an 8 km resolution) across all six flight

legs. Finally, the autocorrelation coefficient values were computed as rh = ch/co to give the autocorrelation spectrum shown

in Fig. 1. A variety of sensitivity tests were performed, as well: 1) the correlations were computed without first dividing by

the OCO-2 measurement uncertainties; 2) the data used in the analysis were restricted to pairs for which the MFLL and OCO-180

2 sampling times were within some threshold (3000, 1500, 1000 seconds); 3) whole flight legs of data were left out of the

computation in succession; and 4) the pre-conditioning of the timeseries was switched between subracting a constant value

versus a linear trend. The only test that significantly changed the character of the spectrum significantly was the last one.

2.3 Correlation length scale results

As shown in Fig. 1, the autocorrelation of the MFLL–OCO-2 differences falls off quickly, with no significant correlations185

at scales of more than about 20 km along-track. Even those correlations at length scales shorter than 20 km are only weakly

significant (at about the 1.5 σ level); this analysis is pushing the boundaries of what this small set of comparison data can tell us.

Still, for the case in which only a constant offset between the MFLL and OCO-2 timeseries is subtracted off, an exponentially-

decaying curve with a correlation length of 20 km does a reasonable job of fitting the spectrum, although there is a tendency

for the actual spectrum to fall immediately to a correlation level of about +0.4 and then plateau somewhat out to a lag of 40 km.190

When the difference timeseries are detrended with a sloping line, the correlations drop off more quickly, with a correlation

length of about 15 km, not surprisingly since more broad-scale information is removed by subtracting off the trend. We feel
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that subtracting off a sloped trend from spans of OCO-2 data this short (<600 km) is not appropriate, since the actual OCO-2

bias correction procedure is done globally and certainly leaves uncorrected gradients at these scales that ought to be considered

in the analysis, so we believe that the longer length scale (20 km) would be more appropriate to apply as an OCO-2 error195

correlation length. (However, when averaging over very short spatial scales, say 10 km or less, the data would then support a

correlation length scale of about 10 km, due to the rapid initial fall.)

The magnitude of the correlated variability is given by multiplying the square roots of the correlation coefficients shown

on Fig. 1 by the normalization factors obtained in computing them (0.59 ppm / 1.003 ppm when the trend is removed / not

removed, or in terms of multiples of the uncertainty assumed on each MFLL–OCO-2 difference, 0.84 / 1.04 σ). Moving over200

to 20 km on the x-axis, a coefficient of 0.25 translates into a magnitude of 0.5 x (0.59 / 1.003) = 0.3 / 0.5 ppm, large enough

to be a significant fraction of the systematic errors in the OCO-2 data taken over land, which have been calculated to be about

0.6 ppm by Kulawik et al. (2019).

Because the MFLL data have been blocked into bins of 7 to 9 km in length, this analysis cannot resolve scales finer than

that. That we obtain a length scale of two to three times this minimum scale does suggest that it is real and not an artifact of205

the analysis. This 20 km length scale does provide a significant constraint on the information content of the OCO-2 data in an

average: it the scale was shorter, the uncertainty on longer averages would drop considerably, so if we consider the 20 km scale

as an upper bound, we are being conservative (i.e. giving the data less weight in an inversion by applying a larger uncertainty

to it). An exponential-decay model of the shape of the correlations is not perfect, but does not seem unreasonable to try when

implementing the correlation structure found here.210

3 Application: 10-second averages of the OCO-2 XCO2 data

We examine how the error correlation length scale derived above can help in weighting the column CO2 data from the OCO-

2 satellite when used in global flux inversions. We focus here on the specific case of averaging the data across 10-second

measurement spans (equivalent to an along-track distance of ∼67.5 km), but in the process we will get insight into how to

handle data assimilated at both coarser scales and finer scales down to the 7-9 km MFLL binning size used here. We treat the215

MFLL data as the “truth" and interpret the entire MFLL–OCO-2 difference as an error in the retrieved OCO-2 XCO2 values.

An averaging approach that considers these correlation lengths is derived below, along with alternatives that use simpler

assumptions, to help illustrate the differences caused by using our new approach.

3.1 Data Averaging Approach

Most estimation methods used in global atmospheric trace gas inversion work (Bayesian synthesis inversions, Kalman filters,220

variational data assimilation) combine measurement information in different timespans as:

R−1
Σ xΣ = R−1

1 x1 +R−1
2 x2 (3)

R−1
Σ = R−1

1 +R−1
2 (4)
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where xi is a vector of measurements within timespan i and Ri the measurement error covariance matrix for xi. If R−1 is

thought of as measurement “information" (i.e., the Fisher information matrix: see Rodgers, 2000), then R−1
Σ represents the sum225

of the information in timespans 1 and 2, and xΣ can be thought of as a weighted average of x1 and x2 that summarizes their

information. Note, however, that this approach veers wildly between extremes in its treatment of error correlations in time:

measurement vectors x1 and x2 for different timespans are assumed to have errors that are uncorrelated with each other, while

the elements of a measurement vector (at possibly different times inside the same timespan) are permitted to have any non-zero

correlations, as long as they may be described by an error covariance matrix. This assumption of uncorrelated errors between230

different timespans is built into the derivations of these inverse methods explicitly, for example in the Kalman filter, in which

the dynamical errors related to propagating the measurement information from time to time are assumed to be uncorrelated

with the measurement errors themselves ((7.2-3) in Catlin (1989); (4.2-11) in Gelb (1974)). The more general case, in which

errors between measurements at different times are considered to be correlated, may be written out and solved (e.g. see Bennett,

2002, Sect. 1.5.3), but the greater computational complexity and workload involved, coupled with a general lack of knowledge235

as to what the temporal correlations ought to be assumed to be, result in the more simple forms being used more generally.

This same philosophy of considering the error correlations between meaurements within a given time span, but neglecting

them between time spans when assimilating them into inversions, has often been followed in assimilating OCO-2 CO2 data in

global flux inversions: the measurements are first averaged across a certain timespan (with any error correlations across these

finer time/space scales being considered in the averaging process), then when these measurement averages are assimilated240

into the inversion, their errors are considered to be independent, in a manner similar to that used in the inversion methods

themselves.

The OCO-2 satellite makes three cross-scans per second, each of which spans only 10 km across-track and is divided into

eight separate fields of view. Because the satellite “pirouettes" to keep the sun perpendicular to the viewing slit, this cross-scan

is not always perpendicular to the ground track, but can come within about 20◦ of being parallel to it (Eldering et al., 2017).245

Thus, OCO-2 senses only a very thin swath, up to 10 km wide, but which may be as thin as only 2 or 3 km at near-sub-

solar latitudes. The satellite’s FOV moves at ∼6.75 km/sec along-track. Across a single second, then, OCO-2 takes up to 24

measurements across a quadrilateral with sides of 10 km and 6.75 km, flattened to different degrees around the orbit. Not all of

these 24 FOVs produce reliable retrievals due to clouds, high aerosol optical depths, or other problems that prevent the scene

from passing the quality filters (xco2_quality_flag=0 indicating a “good” scene).250

Suppose we want to average the OCO-2 measurements across some distance along-track that will be closer to the grid

box size of the typical atmospheric transport model used in global flux inversion studies (100s of km on a side). The OCO-

2 flux inversion MIP has averaged across a 10-second (67.5 km) swath, so we will use that here. If we form a vector x≡
[X1,X2, . . . ,XJ ]T of J (out of 240) “good" retrieved XCO2

values to be averaged in our 10-second span, then their weighted

average is calculated as:255

X̄ =
wTx

wT1
=

∑J
j=1wjXj∑J
j=1wj

(5)
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with 1 being a vector of ones. Choosing weights w = R−11 gives the scalar version of the sort of measurement information-

weighted average shown in equation (3), which allows correlations between measurement errors within a given measurement

span to be considered by specifying non-zero elements on the off-diagonal portion of the measurment error covariance matrix

R. Suppose we break out the error covariance R into a form that explicitly represents the correlations as R = SCS, where C260

is the correlation matrix, with ones on the main diagonal and the correlation coefficients between the elements of measurement

error dx on the off-diagonals, and where S = diag[σ1,σ2, . . . ,σJ ]. The general form for the average then becomes:

X̄ =
1TR−1x

1TR−11
=

(S−11)TC−1S−1x

(S−11)TC−1(S−11)
=

sTC−1S−1x

sTC−1s
(6)

where s = [σ−1
1 ,σ−1

2 , . . . ,σ−1
J ]T and with the uncertainty in X̄ found from

σ2
X̄ = E((dX̄)2) =

sTC−1S−1

sTC−1s
E[dxdxT ][

sTC−1S−1

sTC−1s
]T =

1

(sTC−1s)2
(sTC−1S−1)(SCS)(S−1C−1s) =

1

sTC−1s
(7)265

Whether we want to consider correlations between these averages X̄ inside a given orbit is a separate matter. We might be

forgiven from considering them to be independent in light of the choices made in the estimation methods themselves, especially

if the along-track averaging length were to be long compared to the dominant error correlation length scale. But more on that

later (in Sect. 3.4).

In the following subsections, we consider three different averages defined by (6), each using a different form for the corre-270

lation matrix C.

3.1.1 Averaging assuming uncorrelated errors

If the data values going into the average are assumed to have independent errors, setting the correlations to zero (C = I) gives:

X̄indp =

∑
σ−2
j Xj∑
σ−2
j

(8)

σ−2
indp =

∑
σ−2
j (9)275

The summations here and hereafter are taken over j = 1, . . . ,J , unless otherwize indicated, to simplify the notation. If σj = σo

for all j, this gives the well-known result that σindp = σo/
√
J .

One might use the straight information-weighted average given by (8) even in cases in which the errors are known to

be correlated, but when no good model for those correlations is available. In such a case, one could calculate an average

uncertainty on the mean as follows:280

σ−2
avg =

1

J

∑
σ−2
j → σavg =

√
J∑
σ−2
j

(10)

This gives an average uncertainty on the mean that is similar in magnitude to the uncertainties of the averaged values, rather

than an uncertainty that decreases to reflect the sum of the incoming information. This former approach was the one used in

the first attempt to compute 10-second averages from the OCO-2 XCO2 data (using the version 7 release) – see Crowell et al.

(2019) for details.285
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3.1.2 Averaging assuming constant correlations not depending on distance

Suppose that the error on each retrieval inside the averaging span is correlated with the error in every other retrieval inside the

span with the same correlation coefficient, c, such that we have the JxJ correlation matrix

C =


1 c . . . c

c 1 . . . c
...

...
. . .

...

c c . . . 1

 (11)

If we define H to be a JxJ matrix with ones in every element, then C = (1− c)I+ cH, and (noting that H2 = JH) we get290

C−1 =
1

1− c
(I− c

Jc+ (1− c)
H) (12)

Solving (6) and (7) with this for C−1 gives

X̄flatc =

∑
xj/σ

2
j − c

Jc−(1−c) (
∑
σ−1
j )(

∑
xj/σj)∑

σ−2
j − c

Jc+(1−c) (
∑
σ−1
j )2

(13)

σ−2
flatc =

1

1− c
[
∑

σ−2
j −

c

Jc+ (1− c)
(
∑

σ−1
j )2] (14)295

Based on work done by Susan Kulawik examining correlations between the OCO-2 retrievals and TCCON and in situ aircraft

measurements (personal communication, mid-March 2019), we used the following positive OCO-2 measurement correlation

values in the MIP:

c=


+0.3 over land

+0.6 over water

+0.6 for mixed land/water (data_type = 9)

(15)

3.1.3 Averaging assuming correlations that decay exponentially with distance300

If an error correlation length, L, is known, consider a 1-D error correlation model with positive correlations of the form

c= e
−∆x
L . We will use the correlation length scale calculated for OCO-2 from the MFLL measurements for L. If we have J

points to be averaged, spaced equally in the along-track direction and separated by distance ∆x, then we have

C =



1 c c2 c3 . . . cJ−1

c 1 c c2 . . . cJ−2

c2 c 1 c . . . cJ−3

c3 c2 c 1 . . . cJ−4

...
...

...
...

. . .
...

cJ−1 cJ−2 cJ−3 cJ−4 . . . 1


(16)

11



with C−1 having the following convenient tri-diagonal form:305

C−1 =
1

1− c2



1 −c 0 0 . . . 0 0

−c 1 + c2 −c 0 . . . 0 0

0 −c 1 + c2 −c . . . 0 0

0 0 −c 1 + c2 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . −c 1


(17)

(Note that Chevallier (2007) handled exponentially-decaying correlated errors as well and used a similar tridiagonal matrix for

the inverse of the covariance.)

Plugging this form for C−1 into (7) and (6) gives

σ−2
clen = sTC−1s =

sT

1− c2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s1− cs2

(1 + c2)s2− c(s1 + s3)

(1 + c2)s3− c(s2 + s4)
...

(1 + c2)sJ−1− c(sJ−2 + sJ)

−csJ−1 + sJ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(18)310

=
1

1− c2
[(s1− cs2)s1 + (sJ − csJ−1)sJ +

J−1∑
j=2

[(1 + c2)s2
j − c(sj−1 + sj+1)sj ]] (19)

=
1

1− c2
[

J∑
j=1

s2
j +

J−1∑
j=2

c2s2
j − c

J−1∑
j=1

sjsj+1− c
J∑
j=2

sjsj−1] (20)

=
1

1− c2
[(1− c2)s2

1 +

J−1∑
j=1

[c2s2
j − 2csjsj+1 + s2

j+1]] (21)

σ−2
clen = σ−2

1 +
1

1− c2
J−1∑
j=1

(
1

σj+1
− c

σj
)2 (22)
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315

σ−2
clenX̄clen = sTC−1S−1x =

sT

1− c2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s1x1− cs2x2

(1 + c2)s2x2− c(s1x1 + s3x3)

(1 + c2)s3x3− c(s2x2 + s4x4)
...

(1 + c2)sJ−1xJ−1− c(sJ−2xJ−2 + sJxJ)

−csJ−1xJ−1 + sJxJ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(23)

=
1

1− c2
[(s1x1− cs2x2)s1 + (sJxJ − csJ−1xJ−1)sJ +

J−1∑
j=2

[(1 + c2)s2
jxj − c(sj−1xj−1 + sj+1xj+1)sj ]] (24)

=
1

1− c2
[

J∑
j=1

s2
jxj +

J−1∑
j=2

c2s2
jxj − c

J−1∑
j=1

sjxjsj+1− c
J∑
j=2

sjxjsj−1] (25)

=
1

1− c2
[(1− c2)s2

1x1 +

J−1∑
j=1

[c2s2
jxj − csjsj+1(xj +xj+1) + s2

j+1xj+1]] (26)

σ−2
clenX̄clen =

x1

σ2
1

+
1

1− c2
J−1∑
j=1

[
c2xj
σ2
j

− c(xj +xj+1)

σjσj+1
+
xj+1

σ2
j+1

] (27)320

giving

X̄clen =

(1−c2)x1

σ2
1

+
∑J−1
j=1 [

c2xj
σ2
j
− c(xj+xj+1)

σjσj+1
+

xj+1

σ2
j+1

]

1−c2
σ2

1
+
∑J−1
j=1 (( c

σj
− 1

σj+1
)2

(28)

To use this 1-D error correlation model for actual OCO-2 data, which may fall as much as 5 km on either side of the center

of the ground track, some averaging in the cross-track direction must be done first. Once that is done, the data could then be

averaged in the along-track direction at scales of anywhere from ∆x= 2.25 km (given by the 3 Hz cross-track scan frequency)325

all the way up to the 67.5 km distance travelled across the 10-second averaging span. To use the 1-D model with real data, for

which there are data gaps, the missing data would be given sj values equal to zero in the formulas above.

The local nature of the average in (28) suggests a second use of this model: as a pre-conditioner for data to be assimi-

lated retrieval-by-retrieval (individually, without averaging) in an inversion, with each measurement assumed to have errors

independent of all the others. Currently, many inversion schemes ingest the data without averaging, retrieval by individual330

retrieval, sometimes inflating the uncertainties on individual data in an ad hoc manner to account for correlations, sometimes

not. Equations (18) and (23) present a way to adjust the data beforehand, so that when it is assimilated retrieval-by-retrieval, the

correlations are accounted for in a statistically-justifiable manner: pass over the data once before assimilating them, modifying

each datum xj and its associated σj using the two data points on either side of it, along-track, such that

σ́−2
j = σ−1

j [(1 + c2)σ−1
j − c(σ

−1
j−1 +σ−1

j+1)]/(1− c2) (29)335

x́j = σ́2
jσ

−1
j [(1 + c2)xj/σj − c(xj−1/σj−1 +xj+1/σj+1)]/(1− c2) (30)
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where the primes indicate the new, adjusted, values. Rather than being an approximation, this will give the same answer, when

each datum is assimilated independently, that assimilating the original data, with correlations handled properly in the equations,

would give.340

3.2 Negative weights and their implications

In the definition of a weighted average, the weights on the averaged values are usually required to be non-negative, with at

least one weight being positive. Non-negative weights can cause the averaged value to fall outside the range of the values to

be averaged, a result that is generally considered undesirable in an average: the added requirement on the sign of the weights

prevents this. However, under certain conditions the average values given by (13) and (28) can give negative weights in (5) and345

out-of-range average values.

This out-of-range behavior was discovered when the constant correlation model from Sect. 3.1.2 was applied to the OCO-2

v9 XCO2
data by the OCO-2 flux inversion MIP team. The weights R−11 for that model are

w = R−11 =
1

1− c
S−1[I− c

Jc+ (1− c)
H]S−11 (31)

=
1

1− c

∣∣∣∣∣∣∣∣∣∣∣

σ−2
1

σ−2
2

...

σ−2
J

∣∣∣∣∣∣∣∣∣∣∣
− c/(1− c)
Jc+ (1− c)

∣∣∣∣∣∣∣∣∣∣∣

σ−1
1

σ−1
2

...

σ−1
J

∣∣∣∣∣∣∣∣∣∣∣
J∑
j=1

σ−1
j (32)350

any element of which can go negative when σ−1
i < 1

J−1+ 1
c

∑J
j=1σ

−1
j or

σi > (
1

J − 1 + 1
c

J∑
j=1

σ−1
j )−1 (33)

Thus, most uncertainties that are larger than average (an average in terms of the inverse of the uncertainty) can cause negative

weights.

The exponential correlation model can also yield negative weights. Taking an interior element of equation (18) as a guide,355

we have

wj = (R−11)j = (S−1C−1s)j =
σ−1
j

1− c2
((1 + c2)σ−1

j − c(σ
−1
j−1 +σ−1

j+1)) (34)

which goes negative when

σ−1
j <

c

1 + c2
(σ−1
j−1 +σ−1

j+1) =
2

c−1 + c+1

(σ−1
j−1 +σ−1

j+1)

2
(35)

or (since c= e−∆x/L) when360

σj >
cosh(∆x/L)

(σ−1
j−1 +σ−1

j+1)/2
(36)
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This condition is violated only somewhat less frequently than (33): whenever σj is cosh(∆x/L) times greater than a similar

average (of the inverses) of the uncertainties of the two neighboring points. When averaging many points at finer scales (∆x <

L), 1< cosh(∆x/L)< 1.54, and up to half the points will cause negative weights.

A simple example helps explain why the error correlation models drive the weights negative and the average value out of365

range of the input values. Consider two data points, each measuring a quantity for which the true value is Xtrue=0: let the

value and uncertainty on these points be: x1 = 1, x2 =−1, σ1 = σ2/β. The error covariance matrix, given by

R =

 σ1 0

0 σ2

 1 c

c 1

 σ1 0

0 σ2

 (37)

describes the (correlated) errors: the differences between the measurements and the truth, which, since the truth equals zero,

are just the values of the measurements themselves. Then370

R−1 =
1

1− c2

 σ−1
1 0

0 σ−1
2

 1 −c
−c 1

 σ−1
1 0

0 σ−1
2

 (38)

Equation (6) gives the correlated mean:

X̄ =
σ−2

1 −σ
−2
2

1− c2
/
σ−2

1 − 2cσ−1
1 σ−1

2 +σ−2
2

1− c2
=

σ−2
1 −σ

−2
2

σ−2
1 − 2cσ−1

1 σ−1
2 +σ−2

2

=
β2− 1

β2− 2cβ+ 1
(39)

For β = 1 (both uncertainties being the same), X̄ = 0 for all values of the correlation coefficient, c, except c=±1. But for

β > 1, X̄ moves more positive, closer to the measurement with more information or lower uncertainty, until β = 1/c, at which375

point X̄ = +1 = x1. For larger β values, X̄ > 1, that is, outside the range of the two data values being averaged. Apparently,

the correlated average, taking a clue from the value of the higher-uncertainty input, x2, believes that the errors on both x2

and (because of the positive correlation) x1 are negative (x2 being negative), and corrects for these errors by choosing a more

positive value to the average value than the relative weighting of the two measurements, if uncorrelated, would otherwise

require. When the difference between the uncertainties, β, is large enough (compared to 1/c), the average value is driven380

outside the range of the input values. The weight on x2 is driven negative to achieve this. For this error correlation model, all

this makes sense.

If the correlated averages given by (13) and (28) are physically realistic, why not use them, even if they do not conform

to the usual requirements of the weighted average? If it is clear that one’s chosen model for the error correlations is correct,

then yes, they should be used. But if one is not entirely sure of the model, that might be one reason to be hesitant to accept an385

average value that falls outside the range of the inputs. Is there an intermediate approach to fall back on that enforces the usual

non-negative weight constraint for the average while still garnering the benefits of the correlated error models? One could try

discarding the retrievals with higher retrieval uncertainties σj that seem to be driving the weights negative.

In the case of the constant-correlation model, this would be impractical, as roughly half of the retrievals would have above-

average σj values, and if those were thrown out, half of the remainder would have to be thrown out, and so on. For the390

exponential correlation model, however, a sort of filtering approach might be feasible when cosh(∆x/L) is significantly above
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one (i.e., for ∆x values approaching L): one could throw out the retrievals with anomalously-high σj values to the point

that σj varied smoothly enough from retrieval to retrieval to ensure that condition (36) would never be violated. This might

be practicable for spans with sparser data (longer ∆x values) or when averaging together data that had already been binned

together at finer scales.395

As an alternative to using the negative weight criterion as a (possibly harsh) data filter, one might specify the form of

the weighted average a priori, in a way that forces the weights to be positive, rather than letting the weights be determined

indirectly by specifying the correlation model as we have done above. For example, one could specify the form of the average

to be the information-weighted mean given in (8), but then impose the correlated error assumptions of one’s choice when

calculating the uncertainty on that mean. Since the mean given by (8) would, in general, no longer be the optimal (minimum400

variance) value for that error model, one might expect that the uncertainties on the mean obtained would be higher than those

given by (14) or (22).

In general, if Cw is the correlation model assumed in setting the weights for the average, and Cerr the correlation model

assumed for the actual errors dx, then

σ2 = E[dxdxT ] =
sTC−1

w S−1

sTC−1
w s

E[dx(dx)T ]
S−TC−1

w s

sTC−1
w s

=
1

(sTC−1
w s)2

sTC−1
w S−1[SCerrS

T ]S−TC−1
w s (40)405

=
sTC−1

w CerrC
−1
w s

(sTC−1
w s)2

(41)

3.2.1 Constant error correlation case with sub-optimal average

When the OCO-2 flux inversion MIP group encountered this out-of-range, negative weight problem when applying equation

(13) to the OCO-2 v9 XCO2 data, this was in fact the work-around that we fell back to: the mean was specified by (8), but the

errors between individual retrievals were assumed to be correlated according to the constant error correlation model from (11)410

(Peiro et al., 2021). Setting Cw = I and Cerr = [(1− c)I+ cH] allows the uncertainty on the mean to be computed as:

σ2
flatc2 =

1

(sT s)2
sT [(1− c)I+ cH]s =

1

(
∑
σ−2
j )2

[(1− c)(
∑

σ−2
j ) + c(

∑
σ−1
j )2] =

1∑
σ−2
j

[(1− c) + c
(
∑
σ−1
j )2∑
σ−2
j

] (42)

In terms of the measurement information, this gives

σ−2
flatc2 =

∑
σ−2
j

(1− c) + c
(
∑
σ−1
j )2∑
σ−2
j

(43)
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Correlation model (Equation) Result for σj = σo σ−2
avg/σ

−2
o

independent errors (9) σ−2
indp = Jσ−2

o J

information-averaged uncert. (10) σ−2
avg = 1

J
Jσ−2

o 1

constant correlations (14) σ−2
flatc = 1

1−c [Jσ−2
o − c

Jc+(1−c) (Jσ−1
o )2] J

1+c(J−1)

" " , fallback weights (43) σ−2
flatc2 =

Jσ−2
o

(1−c)+c (Jσ
−1
o )2

Jσ
−2
o

J
1+c(J−1)

correlation length scale (22) σ−2
clen = 1 + (J − 1) 1−c

1+c
σ−2
o 1 + (J − 1)tanh( ∆x

2L
)

" " , fallback weights (46) σ−2
clen2 =

Jσ−2
o

1+ 2
J

∑J−1
k=1

(J−k)ck

Jtanh( ∆x
2L

)

1− 1−e−J∆x/L

J
csch( ∆x

L
)

i

Table 2. The analytical expressions for the uncertainty on the average given by each correlation model for a simple cases in which all

measurement uncertainties have the same constant value, σo.

3.2.2 Exponentially-decaying error correlation case with sub-optimal average415

If one falls back to using (8) to calculate the means, but still uses the exponential error correlation model, then (setting Cerr =

C from (16)) the uncertainty on the mean is computed (with c= e
−∆x
L ) as:

σ2
clen2 =

1

(sT s)2
sT

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 c c2 c3 . . . cJ−1

c 1 c c2 . . . cJ−2

c2 c 1 c . . . cJ−3

c3 c2 c 1 . . . cJ−4

...
...

...
...

. . .
...

cJ−1 cJ−2 cJ−3 cJ−4 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
s =

1

(
∑J
j=1σ

−2
j )2

[

J∑
j=1

σ−2
j + 2

J−1∑
k=1

ck
J−k∑
j=1

σ−1
j σ−1

j+k] (44)

(45)

or in terms of measurement information420

σ−2
clen2 =

∑J
j=1σ

−2
j

1 + 2[
∑J−1
k=1 c

k
∑J−k
j=1 σ

−1
j σ−1

j+k]/
∑J
j=1σ

−2
j

(46)

3.3 Comparison of the error models for two simple cases

We look now at the uncertainty estimates that the error models above give for two simple example cases (Tables 2 & 3): one in

which all σj = σo, a constant value, and a second in which σ−1
j varies across the sample as σ−1

j = σ−1
o [ 1

2 + j−1
J−1 ]. Both cases425

may be solved analytically.

In Fig. 2, we plot σ−2
avg/σ

−2
o for each of these correlation models as a function of the data spacing ∆x for the two simple

example cases. For the exponential correlation model, where c= e−∆x/L, we divide the 10-second swath into equal increments

17



Correlation model (Equation) Result for σ−1
j = σ−1

o [ 1
2

+ j−1
J−1

] σ−2
avg/σ

−2
o

independent errors (9) σ−2
indp =

∑
σ−2
j α

information-averaged uncert. (10) σ−2
avg = 1

J

∑
σ−2
j

α
J

constant correlations (14) σ−2
flatc = 1

1−c [
∑
σ−2
j − c

Jc+(1−c) (
∑
σ−1
j )2] 1

1−c (α− J2c
Jc+1−c )

" " , fallback weights (43) σ−2
flatc2 =

∑
σ−2
j

(1−c)+c
(
∑
σ
−1
j

)2∑
σ
−2
j

α

1−c+ J2c
α

correlation length scale (22) σ−2
clen = 1

σ2
1

+ 1
1−γ2

∑J−1
j=1 [ γ

2

σ2
j
− 2γ

σjσj+1
+ 1

σ2
j+1

] α
tanh(∆x/L)

− 2γβ+γ2(σ−2
1 +σ−2

J
)

1−γ2

" " , fallback weights (46) σ−2
clen2 =

(
∑
σ−2
j )2∑

σ−2
j +2(

∑J−1
k=1

ck
∑J−k
j=1 σ

−1
j σ−1

j+k
)

α

1+ 2γ
α

[ 1−γJ−1

1−γ Jf− 2
3

1
1−γ2 J

2fg+ 2
3

1
(1−γ)4

h]

α= J
12

13J−11
J−1

, β = 1
J−1

[ 1
4
(J − 1)(J − 3) + 1

2
J(J − 2) + 1

6
J(2J − 1)], γ = e−∆x/L,

f = (J − 3)2 + (J + 1)(10J − 16)/3, g = 1− JγJ−1 + (J − 1)γJ ,

h= (1 + 4γ+ γ2)g− J(J − 1)γJ−1(1 + 2γ+ J(1− γ))(1− γ)2

Table 3. The analytical expressions for the uncertainty on the average given by each correlation model for a simple case in which the inverse

of the measurement uncertainty varies as σ−1
j = σ−1

o [ 1
2

+ j−1
J−1

].

Constant-σ		case	

L=40	km	

L=20	km	

L=10	km	

c=+0.6	

Variable-σ		case	

L=40	km	

L=20	km	

L=10	km	

c=+0.6	

Uncorrelated	errors	
Exponential	correlations	
									“														“,	fallback	
Constant	correlations	
							“												“,	fallback	

Average	uncert.	

Uncorrelated	errors	
Exponential	correlations	
									“														“,	fallback	
Constant	correlations	

Average	uncert.	
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Figure 2. The measurement information content (σ−2
avg/σ

−2
o ) of the 10-second average produced by several different error correlation models,

as a function of the linear separation of the data points, ∆x, for two simple example cases: all averaged values having the same uncertainty

(σj = σo) (left), and the values having uncertainties that vary as σ−1
j = σ−1

o [ 1
2

+ j−1
J−1

] (right). For those models based on the number of

data points, J , we convert to ∆x= (67.5 km)/J for plotting on the x-axis. The correlation models are: independent errors (green), average

uncertainty (black dashed), constant correlations (blue), and constant correlations using the fall-back uncorrelated mean (cyan), assuming

for the latter two models correlations of c=+0.3 (solid) and c=+0.6 (dashed). Also given are the exponential correlation model results with

the original average from (28) (red) and with the fall-back uncorrelated mean (magenta), in both cases for length scales of 10 km (dashed),

20 km (solid), and 40 km (dotted).
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∆x= (67.5 km)/J . For the other error models, which use the number of averaged values J rather than ∆x, we calculate

J = 67.5 km)/∆x for each point on the x-axis, an assumption that forces all the data to be equally spaced along-track for430

those models, too, in these plots. The average uncertainty (dashed black) and independent error (green) models bound the

possible information range as a function of ∆x, with the independent case setting the maximum. There is more variation

with J for the variable uncertainty case: for both simple models, there is a tendency for the constant-correlation model to

provide a more-rapidly increasing measurement information at smaller ∆x than in the exponential correlation model: this

is to be expected, since the correlations in the latter when ∆x<20 km are higher than the +0.3 correlation level used in the435

constant correlation model. In general, the constant and exponential correlation models provide similar results, other than at

the smallest ∆x. The total information content of the average is limited by the correlations to only about three times that of the

typical individual measurement, when assuming an error corrleation length scale of 20 km.

The results for the fallback approaches for the constant- and exponential-correlation models that we derived in Sections 3.2.1

and 3.2.2 to get around the negative weight issue (in which we specified the weighted averaged to be (8) then computed its440

uncertainty using the correlated errors), are also shown in Fig. 2. For the exponential correlation model, the fall-back approach

(magenta lines) results in only slightly less information (or higher uncertainty) for the average, compared to the original

approach (red lines). For the constant-correlation fallback model (cyan lines), the loss of information is greater, though this is

seen only in the variable-σ case, the two models giving the same result in the constant-σ case.

3.4 Calculating correlations between averaging spans445

Above we have accounted for correlated errors between the retrievals going into the 10 second averages. The same 1-D error

correlation model developed above can also be used to compute the correlations between adjacent 10 second average spans, if

an error correlation length scale is known. In that case, the spacing ∆x between the data assumed in Sections 3.1.3 and 3.2.2 is

no longer the spacing between individual retrievals but rather the spacing between the different 10 second average spans, along

the ground track of the satellite.450

Suppose we look at the day-lit side of a single OCO-2 orbit, which we will assume encompasses a third of the full orbit, or

about 13358 km; there are about 198 10-second spans inside it. If we let ∆x= (13358 km)/J , then we may use equations

(22) and (46) again to compute the total information across the orbit. Figure 3 plots this information content for the two

simplified error cases used above as a function of ∆x: for our 10-second averages, we look at ∆x=67.5 km, finding that the

total information multiple is about 200 for the uncorrelated error case (green line), close to the J=198 value, as it should be.455

By comparing the information values for the uncorrelated error case (green line) to the values from the exponential correlation

cases (red & magenta lines), we can see the impact of the correlations in reducing the total information content in the lower

∆x range. Curves for three different correlation lengths (10, 20, and 40 km) are given; curves for measurement errors for

the two different formulations of the mean (from equations (22) and (46), the red and magenta curves in Fig. 2) are both

plotted, but fall on top of each other in this ∆x range. By comparing the information assuming no correlations (green) versus460

exponential correlations (magenta), one can derive a single scalar multiple (greater than 1) of the uncertainties on the 10-second

averages, that will permit the 10-second averages to be assimilated in an inversion scheme with the assumption that they are
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Figure 3. The measurement information content across 13358 km, or 1/3 of an orbit (the typical day-lit portion across which data is taken),

given as σ−2
avg/σ

−2
o , as a function of the distance ∆x spanned by each averaging interval. The number of averaging spans, J , is given

by (13358 km)/∆x. If all averaging spans are assumed to have independent errors (green line), the information ratio equals J ; i.e., the

information is simply summed up. When the exponential correlation model is assumed (magenta lines), the total information is reduced, how

much so depending on the correlation length assumed: 10 km (dashed), 20 km (solid), or 40 km (dotted). For these longer ∆x values, both

assumptions for the weighting of the data going into the average for the correlation length model give the same results to the eye on this plot.

all independent, but will yield the same amount of total measurement information entering the problem as would have been

obtained if the correlations had been accounted for properly using the original uncertainties. Using such an inflation factor is

generally much easier than implementing the machinery for accounting for the correlations properly in the inversion code.465

3.5 Application of the error correlation models to OCO-2 v10 XCO2 data

To apply the exponential error correlation models presented in Sections 3.1.3 and 3.2.2, one must account somehow for the fact

that the real OCO-2 data are not one-dimensional, but fall up to 5 km on either side of the center of the OCO-2 FOV ground

track. As Fig. 2 shows that there is little independent information obtained from data spaced at ∆x values much below the

correlation length scale L, one would be justified in computing an average value at scales that fine using the independent error470

equation (8) and then applying a constant-correlation-based uncertainty to it using (43). To match the cross-track dimension

(10 km) somewhat, we average all the OCO-2 v10 XCO2 data values (Baker et al., 2020) falling inside each 2-second span

(spaced ∆x=13.5 km apart, along-track) in this manner. We could then apply any of the error correlation models that we have

discussed so far (constant or exponential, using the original or fallback forms for the weighted means) to the five 2-second

average values falling inside each 10-second span to get the 10-sec averages. As shown in Fig. 1, the MFLL-OCO-2 spectrum475

suggests that the error correlations fall off even more rapidly at small ∆x than the 20 km correlation length that we decided
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was the best fit to the data across the full ∆x range would suggest: we use a 10 km correlation length in calculating these

2-second averages to reflect that. An average ∆x inside the 10x13.5 km averaging box would be about 6 km (keeping in mind

the stretching of the box that occurs due to the pirouetting), giving an average correlation coefficient of e−6./10.=+0.55. Our

MFLL–OCO-2 data based correlation estimates were taken over land and should apply only there: over the ocean, longer480

correlation lengths are generally assumed to apply. Since we don’t have any MFLL data over the oceans as a guide, we will

just use a correlation length double that over land there, as a guess, giving e−6./20.=+0.74.

Once the 2-second averages are computed, they then may reasonably be averaged up to 10-second values using our 1-D

error model. This is done here for both the constant-correlation and exponential correlation models, using the same OCO-2

v10 XCO2
data (Baker et al., 2020). Because of the difficulty satisfying the condition that all weights remain positive in the full485

constant-correlation case presented in Sect. 3.1.2, we will not calculate results for that model but rather only for the fallback

model presented in Sect. 3.2.1. We will compute this case using both the 2-step process (averaging first across 2-second spans,

then averaging those across 10-second spans) used for the exponential correlation models, as well as using a 1-step process

of averaging all retrievals inside the 10-second span in a single step, without applying the shorter correlation length scales

inside the 2-second boxes. For the exponential correlation models, we will calculate results for both the original model (from490

Sect. 3.1.3) with the data screened to satisfy the positive weight criterion, as well as for the fallback model (from Sect. 3.2.2).

Since we consider the exponential correlation model as an improvement to the constant-correlation model (with the fall-

back weights) given in Sect. 3.2.1, we are interested in how much this new model shifts the average from the old one. We also

compute the difference in the uncertainties for the four cases. We double the correlation length over the oceans from 20 km to

40 km for the calculation of the 10-second averages, as well.495

All 2-second spans without any data have their σ−1
j values set to zero. Those 2-second σj values that produce negative

weights according to (36) have their σ−1
j values set to zero as well, to ensure that the average value stays within the range

of the input values. The 2-second average values thrown out by this approach will tend to be those with higher uncertainties

sandwiched in between adjacent spans with lower uncertainties; those next to a span with no data are less likely to be discarded.

Over the ocean, where the correlation length is doubled, with cosh(13.5/40)=1.057, it could be expected that more of the 2-500

second averages will be discarded than over land, where cosh(13.5/20)=1.24. That was, in fact, the case. However, uncertainties

for adjacent 2-second spans do not seem to vary too much: only about 2.5% of the ocean scenes needed to be discarded and

less than 1% of them over land, for the 2-second averaging spans. The 2-second span length was chosen over the 1-second to

avoid having to throw out more data that this: for the 1-second span, ∼10% and ∼7% of the ocean and land data would have

had to be discarded, respectively.505

Figure 4 shows the number of OCO-2 10-second averages per 2◦x2◦ bin across September 2014 - October 2020, broken into

two halves of the year: Apr-Sep and Oct-Mar, while Fig. 5 gives the 10-second average XCO2
values for the same spans for

the constant-correlation model from Sect. 3.2.1 acting upon the 2-second means (i.e. using the 2-step approach from above).

Figure 6 then gives the difference in 10-sec averaged XCO2
from this 2-step model for both the 1-step constant-correlation

model and the exponential correlation model. It is interesting that the exponential model, which uses completely different510

assumptions about the correlations as a function of ∆x, gives almost identical XCO2 averages as the 2-step constant-correlation
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April	-	September	 October	-	March	

Figure 4. The number of 10-second average spans with good data falling within each 2◦x2◦ bin across Sept 2014 - Oct 2020, for April-Sept

and Oct-March.

April	-	September	 October	-	March	

Figure 5. The 10-sec average XCO2 value for Sept 2014 - Oct 2020, binned into 2◦x2◦ boxes and for April-Sept and Oct-March, given by

the 2-step averaging approach (an information-weighted average of five 2-sec averages).

model. The difference to the constant-correlation averages caused by using the intermediate step of averaging the data across a

2-second span is a larger effect. (Recall that we had to use a 2-step process for the exponential correlation model, to be able to

apply the 1-D error model to it in the first place. So we compute results for a similar 2-step constant correlation model as well,

to allow a more accurate comparison of the two approaches.) The close agreement between the exponential model average and515

the 2-step constant model average is somewhat deceptive, though: when the same comparison (not shown) was done using

1-second averages for both, there was a systematic difference between the averages over the land and ocean of over 0.1 ppm,

of opposite sign. This shift may be related to the greater number of points being thrown out for causing negative weights in the

1-second averaging case.
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April	-	September	 October	-	March	

Figure 6. The difference or shift [ppm] in XCO2 from the 2-step average shown in Fig. 5 given by the 1-step information average (given by

summing all the good scenes within each 10-sec span without first computing 1-sec averages)(top) and by the exponential correlation model

(bottom), for April-Sept and Oct-March.

April	-	September	 October	-	March	

Figure 7. The uncertainty [ppm] in the 2-second average XCO2 values given by the constant correlation model using the information-based

weights (equation (42)) and the half correlation lengths (see text) for April-Sept and Oct-March.
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Figure 7 presents the uncertainty of the 2-second XCO2
averages going into the 2-step constant-correlation averages (cal-520

culated from the uncertainties for the individual retrievals using (42)), while Fig. 8 gives the ratio of total measurement infor-

mation given by four different 10-second correlation models with respect to these 2-sec uncertainty values. These information

multiples are the same as those plotted on the y-axis of Fig. 2 for the two simple error cases, and are meant to show the number

of independent pieces of information allowed by the correlations across the 10-second span (a value between 1 and 5). Both of

the models that addressed the negative weight issue by falling back to the independent-error average of (8), shown in the right525

column of Fig. 8, are similar, and yield slightly more information (or lower uncertainties on the 10-sec averages) than does the

1-step constant correlation model (upper left). The 2-step constant correlation model gives somewhat more information over

the oceans than the 1-step model, despite imposing higher correlations during the 2-second averaging: greater weight given

to 2-second spans with sparser data may explain the difference. The exponential correlation model (lower left) gives signifi-

cantly higher measurement information content (lower uncertainty) than the other three correlation models, especially over the530

oceans. The large difference over the oceans is in agreement with what is seen in Fig. 2 for the simple model with variable

σj (right panel), where the dotted orange line (exponential model for L=40 km) at ∆x=13.5 km is about 25% higher than the

dashed cyan line (showing the constant-correlation result for c=+0.6). In contrast, the values over land are similar between the

models in that figure: compare the solid orange and magenta lines (for the original and fallback exponential models, assuming

L=20 km) to the solid cyan (c=+0.3 constant correlation) curve. The information loss in going from a correlation length of535

20 km over land to 40 km over the ocean in the exponential model is not as large as the loss of information in going from a

correlation of +0.3 to +0.6 in the constant correlation model, at least at ∆x=13.5 km: that explains the different character of

the results over the oceans versus land.

The exponential correlation model seems to be quite sensitive to data dropout: if every other 2-second average along-track

is thrown out, the total information returned in the average goes up, as can be seen from equation (21). This is counter-intuitive540

and is a feature of this model that deserves more investigation.

4 Summary and Conclusions

It has long been recognized in the atmospheric modeling community that “measurement errors” in flux inversions must include

not just instrumentation errors, but also errors incurred when representing the measurements in the models, especially the

coarse-resolution transport models used in global inversions. In the case of in situ measurements, the former might be on the545

order of 0.1 or 0.2 ppm, while the latter could range from as low as 0.2 ppm in the remote Southern Hemisphere to multiple

ppm for continental sites farther north, especially those feeling the effects of nearby forests or cities. Correlations between

measurements located near to each other in space or time should similarly be due to modeling errors in these “model-data

mismatch" (MDM) errors. In inversions using just in situ data, the MDM errors would be increased to deweight multiple

sites located close to each other (e.g., Bermuda East and West), or multiple data streams from different measurement groups550

or different types of sensors at a single site (Mauna Loa, Cape Grim, South Pole). To account for diurnal modeling errors,
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	Exponential	correlations	

2-step	constant	correlations	1-step	constant	correlations	

	Exponential	correl.,	fallback	

Figure 8. The ratio of the measurement information, defined as σ−2, for the XCO2 10-second average given by four error correlation models

over the measurement information of the 2-second average values shown in Fig. 7, computed across Sep 2014 - Oct 2020 (annual, not

half yearly). The four correlation models are the 1-step and 2-step constant correlation models (upper left, upper right) and the exponential

correlation model using (8) and (28) to calcuate the average (bottom left, bottom right).

continuous measurements would be deweighted versus daily measurements, and both against weekly flask measurements.

Aircraft profiles spanning multiple vertical levels might be deweighted to account for vertical mixing errors.

For satellites such as GOSAT, which take discrete column-averaged measurements spaced generally over 100 km apart from

each other around the orbit, the need for modeling correlations between measurements was less immediate: a modeling error555

could be added to the retrieval error in quadrature in a plausible error treatment. For a satellite like OCO-2, however, with up

to a thousand measurements taken in a thin swath across a 300 km span, there are sure to be correlations in the retrieval errors

on those scales (due to the parameters assumed in the retrievals, and the modeling errors on them, varying on those scales), not

to mention atmospheric modeling errors, as well.

For the OCO-2 version 7 XCO2
data, the OCO-2 flux inversion MIP team used a two-step averaging approach: the data were560

first averaged across a 1-second span using an information-average (eq. (8)), and then an uncertainty was placed upon this

value that was a combination of the average uncertainty given by (10), derived from the retrieval uncertainties, and the standard

deviation of the retrieved XCO2 values going into the average. Those 1-second spans with good data were then averaged using

(8) with an uncertainty placed upon the average that assumed that each 1-second span had errors independent of all the others,

according to equation (9). Finally, a modeling error was added in quadrature to the MDM error so calculated: this modeling565
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error ended up being so large compared to the measurement-derived error that, in practice, the details of the measurement-

derived part did not matter much. See Crowell et al. (2019) for details.

For version 9 of the OCO-2 retrievals, the OCO-2 flux inversion MIP team attempted to do a better job modeling correlations

between the XCO2 values. Based on how quickly the difference between the OCO-2 XCO2 values and nearby TCCON XCO2

values was reduced as adjacent OCO-2 retrievals were averaged at progressively longer scales along-track, Kulawik estimated570

that the OCO-2 retrievals over land were correlated with a flat +0.3 coefficient, and those over the ocean at +0.6: no depen-

dence of these values on separation distance was calculated. The MIP team derived the constant-correlation model outlined in

Sect. 3.1.2 and attempted to apply it to the v9 data, but discovered that it yielded an average value that often fell outside the

range of the input values, and determined that this was due to the weights on individual terms in the average being calculated to

be negative by the model. Because the team was uncertain how physically-realistic these average values were at that time, they575

fell back to using the model presented in Sect. 3.2.1 instead: the average was calculated using the old information average of

(8), with a newly-calculated uncertainty given by (42), using the constant correlation coefficients. The average was performed

in a single step across the 10-sec span, without first computing averages at shorter spans. (This was because Kulawik et al.

(2019) had found that giving the sparser OCO-2 data more weight via the previous 2-step approach resulted in a poorer fit to

the TCCON data: the sparser data, while providing better spatial coverage, also are apparently more susceptible to errors due580

to nearby clouds or other scatterers.)

The MFLL–OCO-2 differences that we have analyzed here suggest that the assumption that the OCO-2 error correlations

are constant across scales all the way up to the 67.5 km 10-second averaging length is not a good one: if the MFLL–OCO-2

differences are, in fact, a good proxy for errors on the full XCO2
column1, then Fig. 1 shows that their correlations drop off

rapidly, with a decorrelation length of about 20 km fitting the data well across most of the measured spectrum. These data585

also suggest that much of the correlation in the differences falls off even more rapidly, to a coefficient of below +0.4 at the

finest resolvable scale of 8 km, corresponding to a correlation length of more like 10 km at these finest scales. These two

scales might be due to separate error sources at the two different ∆x scales: for example, more-quickly changing errors due

to surface-related parameters in the retrieval (albedo, pressure over topography) versus more-slowly changing errors due to

atmosphere-related parameters such as water vapor, temperature, or aerosols.590

With these correlation length scales in hand, we derived here a one-dimensional error model with exponentially-decaying

correlations as a function of the along-track distance (Sect. 3.1.3). We discovered that this model produced negative weights

just as our constant-correlation model did, though to a lesser extent, and derived a similar fallback model as was used with

the constant-correlation approach as one way to get around this problem (Sect. 3.2.2). We applied all these correlation models

to two simple cases that could be solved analytically, to get a better understanding of how the models behaved with different595

averaging assumptions (different separations ∆x of the incoming average values).

1There are good reasons why the MFLL–OCO-2 difference might not be a good proxy for errors in OCO-2 XCO2 retrievals: much of the difference might

be due to errors in the MFLL retrieval, or to problems matching the two measurement types in time and space, or to errors in accounting for the different

vertical averaging kernels; also, only the lower 2/3 of the OCO-2 column may be compared to the MFLL data, given the cruise height of the aircraft.
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Finally, we applied both our new exponential model and our old constant-correlation model to the recently-released OCO-2

version 10 XCO2
data. For the exponential model, we first averaged the data across a 2-second span, to force the cross-track

retrievals onto the 1-D satellite FOV ground track. By choosing this pre-averaging span to be 2 seconds long, we were able

to reduce the number of spans that had to be thrown out for violating the positive weight criterion to just a couple percent,600

allowing the original exponential model (from Sect. 3.1.3) to be applied for a subset of the data similar to that used in the

other error models. The new exponential model caused generally negligible shifts in the average XCO2
values as compared to

the constant-correlation model at seasonal to annual scales. This is good news for our previous results and suggests that the

constant correlation coefficients that we used in the OCO-2 v9 MIP studies (Peiro et al., 2021) do a good job approximating

the correlations across the 10-second spans, on average, even though those appear to vary as a function of the distance. Shifts605

in XCO2 for individual retrievals are found at the level of a few tenths of ppm, and systematic shifts in seasonal and annual

XCO2 between land and ocean of from 0.1 to 0.2 ppm were found when pre-averaging across 1- rather than 2-second spans.

Since the MFLL data were only taken over land, they cannot say what the OCO-2 XCO2
correlation length scale might

be over the oceans. As a guess, we have simply doubled the land values here to get ocean values. For that assumption, the

exponential correlation model gives uncertainties on the 10-second averages that are significantly lower than those given by610

the constant-correlation model using the +0.6 coefficient value. Possibly this indicates that we should use longer correlation

lengths over the ocean than simply doubling the land values. But from the differences seen between the constant and exponential

correlation models at coarser scales in the right panel of Fig. 2, this may indicate that the new exponential correlation model is

providing better uncertainty estimates (ones which, when used in the inversions, will give more weight to the OCO-2 data with

respect to the prior information). Lidar underflight data similar to the MFLL data used here, but collected over the ocean, are615

much needed to help extend the utility of this approach globally.

The 1-D error model with exponentially-decaying correlations that we have derived here also has immediate application

in two other areas: 1) in the calculation of correlations between adjacent 10-second averaging spans, and 2) in the treatment

of correlated satellite data in those inversion schemes that choose not to average the individual retrievals before assimilating

them, but choose to handle the correlations inside the scheme itself. Regarding point 1), by comparing the uncertinties given620

by the exponential correlation model (with ∆x equal to the distance between the 10-second span, or whatever longer averaging

span is being considered) to those given by assuming that the error in each 10-second span is independent from all others

(i.e. by comparing the magenta and green curves from Fig. 3), an overall inflation factor may be computed which, when

the uncertainties on individual 10-sec average values are multiplied by this factor, will allow them to be assimilated in the

inversion assuming independent errors, but will still give the proper weight vis-a-vis the prior information in the problem that625

would have been obtained had the correlations between 10-second averages been modeled explicitly in the inversion. Similarly,

regarding point 2), equations (30) and (29) provide a way to adjust the pre-averaged measurements (the 2-second averages in our

presentation here) and their uncertainties in a manner such that when each of these measurements is assimilated in the inversion

assuming independent errors, the same answer is obtained as if the correlations between the errors in each measurement were

explicitly modeled in the inversion itself (e.g., by using off-diagonal terms in R). We make this argument using the 2-second630

averages instead of the original retrievals themselves because the original retrievals are not strictly laid out in a one-dimensional
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string, but have a distribution extending up to 10 km in the cross-track direction that must be dealt with before the 1-D model

can be applied.

The one-dimensional model that we have examined here can provide some insight that might be useful for satellites whose

data extends across wider swaths, like the proposed CarbonSat mission, or to missions that scan full continents in a truly two-635

dimensional manner (GeoCarb). As Fig. 2 shows, the correlation length scale sets a limit on the total number of independent

pieces of information contained across a certain span: as a very rough approximation, the number of independent pieces of

information is about equal to the total averaging span (e.g. 67.5 km) divided by the correlation length scale. In going to the

more general 2-D problem, this suggests that the total information across a given area is proportional to the number of squares,

of the correlation length wide, that will fit into the area. The uncertainties of individual shots within the area may then be640

scaled such that their total information, when they are assimilated independently, equals that given from the correlation length

analysis.

Code and data availability. The data and code used in this analysis may be downloaded from the CERN-based Zenodo archive at https://doi.

org/10.5281/zenodo.4399884. This includes co-located MFLL and OCO-2 column CO2 measurements for six underflights and the MATLAB
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