
We’d	like	to	thank	the	reviewers	for	their	helpful	comments.		Those	addressing	the	issue	
of	negative	weights	in	our	average	and	the	fact	that	they	are	a	natural	consequence	of	
our	correlation	models	were	particularly	helpful	to	our	understanding.		We	have	
updated	our	text	to	reflect	this	updated	viewpoint.	
	
Responses	to	comments	from	Reviewer	#1	
			
>	The	authors	study	the	correlations	between	errors	in	
>	XCO2	satellite	retrievals,	based	on	reference	lidar	
>	measurements,	and	discuss	various	ways	to	account	for	
>	them	in	atmospheric	inversions.	The	paper	looks	a	bit	
>	like	the	clean	minutes	of	a	brainstorming	meeting:	
>	every	sentence	is	well	written	but	the	logical	flow	is	
>	curvy	and	difficult	to	follow.	The	authors	have	not	
>	done	enough	to	make	their	thoughts	accessible	and	to	
>	take	the	text	beyond	elaborate	speculation,	perhaps	
>	simply	because	their	thinking	is	not	yet	ripe	for	
>	publication.		
	
Where	the	reviewer	has	been	able	to	give	specific	comments,	we	have	attempted	to	
address	them	(below).		If	the	reviewer	can	detail	what	in	particular	he/she	finds	
inaccessible	or	mere	speculation,	we	would	be	happy	to	address	those	points,	as	well.	
	
Maybe	it	doesn’t	matter,	as	the	paper	
>	will	be	cited	anyway	given	the	role	of	this	activity	
>	for	the	OCO-2	team,	but	for	the	few	who	will	bother	
>	to	read	it,	it	may	be	a	daunting	task,	perhaps	in	the	end	wasted.	
	
We	hope	our	replies	to	the	detailed	comments	below	will	address	this	reviewer’s	issues.		
	
>	I	am	listing	a	number	of	comments	here	to	help	clarify	the	presentation.	
	
>			Footnote	1,	p.	25:	the	disclaimer	here	is	a	bit	hidden,	but	
>	it	is	actually	essential.	Basically,	if	the	“good	reasons”	listed	
>	here	are	correct,	all	results	of	the	paper	can	be	ignored.	This	
>	observation	could	be	fatal	for	the	patient	reader	who	painfully	
>	reaches	this	page…	In	the	end,	nothing	is	given	to	convince	the	
>	reader	that	the	MFLL-OCO-2	differences	do	indeed	represent	OCO-2	
>	errors,	that	the	two	scales	of	correlation	lengths	found	(10	and	
>	20	km)	should	be	used	at	all	in	OCO-2	error	models.	It’s	embarrassing.	
	
There	is	no	cause	for	embarrassment	here.		We	have	attempted	to	calculate	a	
correlation	length	scale	using	the	limited	data	that	is	available	for	that	purpose.		When	
more	data	become	available	to	test	our	conclusions,	that	should	certainly	be	done	--	and	



if	the	reviewer	can	suggest	some	additional	data	that	we	could	use	to	refine	these	
estimates,	we	would	be	happy	to	work	with	it.		In	the	meantime,	the	derivations	
presented	here	allowing	the	newly-calculated	correlation	length	scale	to	be	used	remain	
valid	regardless	of	what	precise	value	is	used	for	that	quantity.		So	no,	the	reviewer’s	
assertion	that	“all	results	of	the	paper	can	be	ignored”	if	the	MFLL	correlation	length	
calculation	is	not	perfect	is	not	correct	at	all.		We	feel	that	the	reviewer	is	being	overly	
negative	in	his/her	assessment	of	the	situation	–	we	have	merely	added	some	cautions	
in	the	footnote	to	indicate	what	factors	might	affect	the	correlation	length	that	we	
calculate.	
	
>		There	is	good	and	interesting	math	here,	but	the	authors	belittle	
>	it	by	arbitrarily	rejecting	certain	math	results:	why	should	the	
>	negative	weights	not	be	physical	(l.	20)	or	considered	undesirable	
>	(l.331)?	They	simply	follow	from	the	authors’	correlation	model:	
>	if	the	authors	are	not	satisfied	with	this	consequence,	they	should	
>	change	the	model	rather	than	fooling	the	math.	
	
We	thank	this	reviewer	and	Reviewer	#2	for	highlighting	our	treatment	of	the	negative	
weight	issue.				We	now	agree	with	this	reviewer	that	the	negative	weights	that	we	
obtain	with	both	the	constant	and	exponential-decay	error	correlation	models	are	a	
natural,	“physical”,	and	expected	consequence	of	these	models.		They	only	become	
potentially	“undesirable”	or		“a	problem”	for	the	application	we	have	chosen	to	look	at:	
the	calculation	of	averages	from	the	data.		This	is	because	the	usual	definition	of	a	
weighted	average	specifies	that	the	weights	be	non-negative	(so	that	the	average	falls	
inside	the	range	of	the	averaged	values).		Applications	that	do	not	involve	averaging	(for	
example,	assimilation	of	the	individual	data	values)	would	not	have	to	deal	with	this	
issue	explicitly.		Also,	if	one	chooses	to	take	a	broader	view	of	what	an	average	is,	and	to	
accept	the	negative	weights	and	average	values	outside	the	range	of	the	inputs,	then	
yes,	nothing	more	needs	to	be	done,	and	the	equations	that	we	obtain	using	those	
correlated	average	assumptions	(in	Section	3.1)	may	be	used	straight,	without	the	need	
for	the	additional	data	rejection	criterion	that	we	use	to	enforce	the	traditional	
definition	of	a	weighted	average.		We	will	leave	the	discussion	laying	out	approaches	for	
enforcing	the	non-negative	weight	criterion	(Section	3.2)	in	the	document,	however,	to	
help	those	readers	who	prefer	to	obtain	averages	that	follow	the	traditional	definition	
of	a	weighted	average.		We	investigate	where	the	negative	weight	constraint	is	violated,	
why	it	is	violated,	and	how	this	may	be	avoided	(if	desired).		An	advantage	of	
investigating	the	negative	weight	issue	is	that	this	provides	insight	into	the	possibly-
undesired	effects	of	the	assumed	error	correlations	that	may	extend	to	applications	
other	than	averaging	(e.g.	the	assimilation	of	individual,	un-averaged,	data	values),	
which	data	cause	these	effects,	and	how	these	effects	might	be	mitigated.		
	
We	do	not	agree	with	this	reviewer	that,	if	one	does	not	like	the	consequences	of	these	
negative	weights	(the	average	obtained	being	outside	of	the	range	of	the	values	
averaged),	one	should	therefore	throw	out	the	correlation	model	and	find	another	one.		



We	feel	that	the	approaches	we	have	taken	(either	using	an	uncorrelated	weighted	
average	to	calculate	the	mean,	or	using	the	correlated	average	in	combination	with	a	
filtering	approach	to	throw	out	those	high-uncertainty,	low-weight	data	points	that	
cause	the	negative	weights)	are	reasonable	if	one	desires	to	obtain	an	average	value	
inside	the	range	of	the	input	values.	
	
Non-negative	weights	are	often	given	as	a	basic	requirement	in	defining	a	weighted	
average.		Wikipedia,	while	not	an	unimpeachable	academic	reference,	reflects	broader	
practice	when	they	give	on	their	"weighted	arithmetic	mean"	page	the	mathematical	
definition	of	such	a	mean	as	follows:	
"Formally,	the	weighted	mean	of	a	non-empty	finite	multiset	of	data	{	x1,	x2,	…	,	xn	}	,	
with	corresponding	non-negative	weights	{	w1,	w2,	…	,	wn}	is	
<x>	=	sum{wi	xi}	/	sum{wi}		...	
Therefore,	data	elements	with	a	high	weight	contribute	more	to	the	weighted	mean	
than	do	elements	with	a	low	weight.	The	weights	cannot	be	negative.	Some	may	be	
zero,	but	not	all	of	them	(since	division	by	zero	is	not	allowed)."	[emphasis	ours]	
	
The	practical	effect	of	any	individual	weight	being	allowed	to	be	negative	is	that	the	
mean	value	computed	may	fall	outside	the	range	of	the	data	going	into	the	average	–	a	
result	that	is	contrary	to	the	very	idea	of	an	average.		We	are	certainly	justified	in	
imposing	the	requirement	that	all	individual	weights	be	taken	to	be	non-negative	(and	
at	least	one	positive)	as	an	additional	constraint	to	ensure	that	we	obtain	an	average	
that	falls	inside	the	data	range	for	the	work	we	are	presenting	here.		Such	a	choice	is	
hardly	"arbitrary".		It	simply	requires	an	additional	constraint	that	we	may	choose	to	
add,	in	addition	to	the	assumed	correlation	structure,	to	obtain	averages	that	don’t	
swing	outside	the	range	of	the	input	values.		We	reject	the	reviewer's	assertion	that	
such	an	approach	is	incompatible	with	the	use	of	this	correlation	model	and	that	we	are	
"fooling	the	math".		There	are	good	reasons	to	do	it.	
	
In	the	text,	we	show	that	requiring	each	individual	weight	to	remain	non-negative	leads	
naturally	to	the	use	of	a	filter	that	throws	out	those	scenes	that	cause	the	out-of-range	
averages.			In	the	case	of	the	constant	correlation	model,	about	half	of	the	scenes	
violate	the	negative	weight	constraint,	and	it	is	not	clear	whether	such	a	filter,	
implemented	in	an	iterative	fashion,	would	ever	converge	to	a	satisfactory	subset	of	
data	points.		In	the	case	of	the	exponentially-decaying	correlation	model,	on	the	other	
hand,	only	about	5%	of	the	data	need	to	be	thrown	out	to	satisfy	the	constraint,	for	the	
example	we	have	used	here.		The	use	of	the	exponential-decay	correlation	model	plus	
the	negative	weight	filter	thus	seems	like	a	reasonable	approach	to	use	with	our	data	in	
order	to	reap	the	benefits	of	the	correlated	error	model	in	calculating	both	the	average	
and	the	uncertainty	on	it.			Perhaps	if	we	would	have	kept	looking,	we	could	have	found	
some	other	relatively	simple	error	correlation	model	that	would	not	have	resulted	in	
negative	weights	occurring.		While	that	is	an	interesting	scientific	question	to	
investigate,	it	was	not	our	goal	in	this	paper	–	here,	we	have	investigated	two	simple	
correlation	models,	one	of	which	is	well-suited	to	the	way	we	have	analyzed	the	MFLL	



data,	and	we	have	found	an	approach	(i.e.	using	the	additional	filter)	that	suits	our	
purposes	well.	
	
We	have	added	new	discussion	in	the	text	explaining	that	the	correlation	models	we	
assume	should	be	expected	to	drive	individual	weights	in	our	average	into	the	negative	
range,	there	being	no	requirement	against	that	in	the	math,	and	have	also	added	a	
simple	example	of	that	in	action.			And	we	have	added	additional	wording	to	the	text	
explaining	that	one	may	force	the	individual	weights	in	the	average	to	be	non-negative	
in	order	to	prevent	the	averages	from	falling	outside	the	range	of	the	values	input	to	the	
average,	if	one	feels	that	that	is	desirable	for	one’s	work,	for	example	when	one	is	
explicitly	computing	averages	of	the	data.		The	locations	of	the	changes	in	both	the	
original	and	new	(latexdiff-created)	versions	of	the	manuscript,	are	as	follows:	
	
(Line	numbers	in	old	/	new	(latexdiff)	document:					Change)	
	
20	/	20-22:		Replace	"A	small	percentage	of	the	data	that	cause	non-physical	negative	
averaging	weights	in	the	model	are	thrown	out."	
					with		"Considering	correlated	errors	can	cause	the	average	value	to	fall	outside	the	
range	of	the	values	averaged:	two	strategies	for	preventing	this	are	presented."	
	
106-108	/	113-120:		Replace	"Section	3.2	discusses	a	pathology	in	this	approach	for	two	
of	the	error	models	–	for	some	retrieval	uncertainty	value	combinations,	the	weights	
given	to	some	terms	in	the	weighted	average	may	go	negative,	violating	a	key	criterion	
for	any	average	–	and	gives	a	couple	fallback	options	for	handling	it."	
										with	"When	averaging	data	with	unequal	uncertainty	values,	considering		
correlated	errors	can	cause	the	average	value	computed	to	fall	outside	the	range	of	the	
input	values	to	be	averaged.		While	this	is	a	correct	and	natural	consequence	of	the	
correlated	error	assumption,	it	does	violate	a	key	condition	usually	specified	when	
defining	a	weighted	average	to	prevent	just	that	behavior:	that	all	the	weights	be	non-
negative.		Section	3.2	discusses	this	issue	in	more	detail	and	lays	out	a	couple	fallback	
options	that	we	have	used	to	stay	with	non-negative-weighted	averages,	while	still	
reaping	the	benefits	of	the	correlated	error	assumption."	
	
324-325	/	346-347:	Remove	“However,	both	methods	(treating	the	correlations	in	
averages	or	in	assimilating	the	data	individually)	may	suffer	a	serious	problem,	
described	next.	“ 

326	/	348:	Replace	"The	problem	of	negative	weights"	
					with	"Negative	weights	and	their	implications"	
	
327-331	/	349-357:	Replace	"In	defining	any	weighted	average	of	the	sort	assumed	in	
equation	(5),	the	individual	weights	are	required	to	be	non-negative;	some	could	be	
allowed	to	be	zero,	but	not	all	of	them,	so	that	the	denominator	does	not	go	to	zero.	It	
is	unfortunately	the	case	that	negative	weights	may	occur	for	both	the	constant	and	



exponential	error	correlation	models	that	we	have	outlined	in	the	previous	two	
sections.	The	practical	effect	of	negative	weights	is	that	the	average	value	computed	can	
fall	outside	of	the	range	of	the	values	input	to	the	average,	a	feature	generally	not	
considered	desirable	in	an	average."	
								with	"In	the	definition	of	a	weighted	average,	the	weights	on	the	averaged	values	
are	usually	required	to	be	non-negative,	with	at	least	one	weight	being	positive.		Non-
negative	weights	can	cause	the	averaged	value	to	fall	outside	the	range	of	the	values	to	
be	averaged,	a	result	that	is	generally	considered	undesirable	in	an	average,	and	the	
added	requirement	on	the	sign	of	the	weights	prevents	this.		However,	under	certain	
conditions	the	average	values	given	by	(13)	and	(28)	can	give	negative	weights	and	out-
of-range	average	values."	
	
332	/	358-359:		Replace	"This	very	out-of-range	problem"	
						with	"This	out-of-range	behavior"	
						Also,	remove	"recently".	
	
340	/	366:		Replace	"The	exponential	correlation	model	suffers	a	similar	problem."	
						with	"The	exponential	correlation	model	can	also	yield	negative	weights."	
	
350	/	376-400:	Replace	"How	can	we	sidestep	this	issue	for	practical	problems?		Could	
one	try	just	discarding	the	retrievals	with	higher	retrieval	uncertainties	σj?"	
					with:	
					"A	simple	example	helps	explain	why	the	error	correlation	models	drive	the	weights	
negative	and	the	average	value	out	of	range	of	the	input	values.		Consider	two	data	
points,	each	measuring	a	quantity	for	which	the	true	value	is	Xtrue=0:	let	the	value	and	
uncertainty	on	these	points	be:	x1=1,	x2=-1,	σ1= σ2/β.		The	error	covariance	matrix,	R,	
given	by	diag(σ1,	σ2)	[1	c;	c	1]	diag(σ1,	σ2),	describes	the	(correlated)	errors:	the	
differences	between	the	measurements	and	the	truth,	which,	since	the	truth	equals	
zero,	are	just	the	values	of	the	measurements	themselves.	R-1	=	diag(σ1
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-1)	[1	-c;	-c	
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2cβ	+	1).		For	β=1	(both	uncertainties	being	the	same),	Xavg=0	for	all	values	of	the	
correlation	coefficient,	c,	except	c=±1.		But	for	β>1,	Xavg	moves	more	positive,	closer	to	
the	measurement	with	more	information	or	lower	uncertainty,	until	β=1/c,	at	which	
point	Xavg=+1=x1.		For	larger	β	values,	Xavg>1,	that	is,	outside	the	range	of	the	two	data	
values	being	averaged.		Apparently,	the	correlated	average,	taking	a	clue	from	the	value	
of	the	higher-uncertainty	input,	x2,	believes	that	the	errors	on	both	x2	and	(because	of	
the	positive	correlation)	x1	are	negative	(x2	being	negative),	and	corrects	for	these	errors	
by	choosing	a	more	positive	value	for	the	average	value	than	the	relative	weighting	of	
the	two	measurements,	if	uncorrelated,	would	otherwise	require.		When	the	difference	
between	the	uncertainties,	β,	is	large	enough	(compared	to	1/c),	the	average	value	is	
driven	outside	the	range	of	the	input	values.		The	weight	on	x2	is	driven	negative	to	
achieve	this.		For	this	error	correlation	model,	all	this	makes	sense.	



				If	the	correlated	averages	given	by	(13)	and	(28)	are	physically	realistic,	why	not	use	
them,	even	if	they	do	not	conform	to	the	usual	requirements	of	the	weighted	average?		
If	it	is	clear	that	one's	chosen	model	for	the	error	correlations	is	correct,	then	yes,	they	
should	be	used.		But	if	one	is	not	entirely	sure	of	the	model,	that	might	be	one	reason	to	
be	hesitant	to	accept	an	average	value	that	falls	outside	the	range	of	the	inputs.		Is	there	
an	intermediate	approach	to	fall	back	on	that	enforces	the	usual	non-negative	weight	
constraint	for	the	average	while	still	garnering	the	benefits	of	the	correlated	error	
models?		One	could	try	discarding	the	retrievals	with	higher	retrieval	uncertainties	σj	
that	seem	to	be	driving	the	weights	negative."	
	
402	/	453:	change	"problem"	to	"issue".	
	
537	/	588-589:		Replace	"As	a	workaround,	the	fallback	model	presented	in	Sect.	3.2.1	
was	used	instead"	
						with		"Because	the	team	was	uncertain	how	physically-realistic	these	average	values	
were	at	that	time,	they	fell	back	to	using	the	model	presented	in	Sect.	3.2.1	instead"	
	
553-554	/	605-606:		Replace	"We	discovered	that	this	model	suffers	from	the	same	
negative	weight	problem	that	our	constant-correlation	model	did"	
										with	"We	discovered	that	this	model	produced	negative	weights	just	as	our	
constant-correlation	model	did"	
	
	
>			l.35-37:	the	sentence	seems	general,	but	does	not	apply	to	GOSAT	in	practice.	
The	sentence	in	question	is	this:	"The	resolution	is	limited	both	for	computational	
reasons	(the	models	must	be	run	many	dozens	of	times	across	the	measurements	to	
obtain	the	inverse	estimate)	and	because	the	spatial	coverage	of	the	satellite	
measurements	is	currently	not	dense	enough	to	resolve	spatial	scales	much	finer	than	
this	when	solving	at	typical	time	scales	(the	gap	in	longitude	between	subsequent	
passes	of	a	typical	low-Earth-orbiting	(LEO)	satellite	is	∼25°,	resulting	in	gaps	of	between	
3°	and	4°	across	a	week,	gaps	which	are	generally	never	filled	in	further	due	to	the	
repeat	cycle	of	the	satellite’s	orbit).	"	
	
The	reviewer	is	correct	that	the	longitude-separation	calculation	at	the	end	of	the	
sentence	does	not	apply	to	GOSAT	data	taken	over	land,	which	may	include	data	for	3,	
5,	or	more	data	points	taken	in	the	cross-scan	direction	(or	effectively	3,	5,	or	more	
parallel	tracks	of	data	per	orbit	ground	track).		For	GOSAT,	the	resulting	gap	size	would	
have	to	be	divided	by	3,	5,	or	more,	resulting	in	potentially	a	finer	scale	being	resolvable	
over	land.		However,	for	most	of	the	GOSAT	mission,	a	3-point	cross-scan	pattern	has	
been	used,	and,	given	the	fact	that	this	cross-scanning	is	not	used	over	the	oceans,	and	
that	clouds	reduce	the	data	availability	from	GOSAT	(with	a	~10	km	field-of-view	
diameter)	compared	to	OCO-2	(with	a	~2-3	km	FOV	diameter),	the	difference	between	
the	data	coverage	from	the	two	missions	is	less	than	it	might	otherwise	seem.	
	



However,	to	be	clearer,	we	have	added	"taking	a	single	thin	swath	of	data	along	its	orbit	
path"	after	"(LEO)	satellite"	on	line	37	/	39.	
	
	
>			l.43:	why	would	it	make	little	sense	to	assimilate	the	measurements	
>	individually?	From	the	text,	it	is	obvious	that	it	is	so	much	easier	
>	than	trying	averages.	So,	this	can	make	a	lot	of	sense.	Personally,	
>	I	would	still	prefer	the	averaging	but	for	reasons	that	are	not	
>	discussed	here	(numerical	stability,	but	this	is	only	a	feeling).	
The	sentence	in	question:		"The	individual	OCO-2	retrievals	are	generally	averaged	
together	along-track	across	some	distance	closer	to	the	model	grid	box	size	before	being	
assimilated	in	the	inversion:	this	is	because	the	modeled	measurements	to	which	the	
true	measurements	will	be	compared	in	the	inversion	are	available	only	at	the	grid	box	
resolution,	so	it	makes	little	sense	to	assimilate	each	measurement	individually	when	
assimilating	a	coarse-resolution	summary	value	will	do	just	as	well."	
	
The	answer	is	that	it	reduces	the	computational	load	related	to	the	assimilation	of	the	
data	by	as	much	as	a	factor	of	240	(the	maximum	number	of	individual	scenes	per	10-
second	span)	if	one	averages	the	data	beforehand.		We	don't	understand	why	the	
reviewer	feels	that	it	would	be	easier	to	process	each	point	individually	in	the	
assimilation,	rather	than	averaging	beforehand,	unless	he/she	intends	to	ignore	error	
correlations	altogether	in	the	process	(and	even	then,	the	computational	load	would	still	
be	up	to	240	times	greater).		If	the	same	error	correlations	are	to	be	considered	in	both	
cases,	the	effort	required	to	do	so	is	the	same,	whether	done	inside	the	code	or	outside,	
beforehand.		But	the	computational	savings	obtained	by	pre-computing	the	averages	
remains,	either	way.	
	
>			l.48:	interesting	comment…	The	dependence	of	the	correlations	on	
>	the	scene	questions	the	representativeness	of	the	ACT	measurements	
>	used	here.	This	key	element	is	only	briefly	touched	on	in	the	warning	in	line	181.	
The	sentence	spanning	line	48	is	this	one:	"CO2	mixing	ratios	in	the	upper	part	of	the	
atmospheric	column	(at	all	levels	but	the	immediate	surface	layer)	feel	the	influence	of	
multiple	flux	locations	at	the	surface	due	to	atmospheric	mixing,	causing	errors	in	
adjacent	measurements	to	be	highly	correlated	there.	"	
	
It	is	not	clear	to	us	how	the	comment	relates	to	this	sentence.		It	is	also	not	clear	to	us	
what	argument	the	reviewer	is	trying	to	make	here.		If	the	comment	implies	that	one	
cannot	attempt	to	use	a	correlation	model	with	a	blanket	correlation	length	applying	
across	all	data	points,	when	local	correlation	lengths	are	higher	or	lower	than	that	due	
to	local	conditions,	then	we	must	disagree.		It	is	still	better	to	try	to	use	a	more-accurate	
correlation	model	than	not	to	attempt	to	account	for	error	correlations	at	all.		Yes,	one	
could	attempt	to	construct	a	more	complicated	correlation	model	in	which	the	
correlations	depend	on	the	scene,	but	that	would	involve	a	level	of	complexity	that	we	



did	not	intend	to	address	in	this	paper	(though	we	do	specify	a	separate	correlation	
length	over	land	from	that	over	the	oceans).	
	
>			l.123:	OCO-2	was	already	defined	in	l.	39.	Same	comment	for	ASCENDS	a	bit	later.	
	
We	thank	the	reviewer	for	catching	these	--	we	have	removed	the	extraneous	re-
definitions,	including	one	for	MFLL	(new	lines	134-135,	149-152).	
	
>			l.168:	the	motivation	behind	removing	the	linear	trend	is	obscure.	
>		For	the	constant	value	removal,	I	do	not	see	how	this	affects	the	
>		calculation	of	the	autocovariances.	
Pertains	to	this	sentence:	"We	then	detrend	this	weighted	difference	timeseries	across	
each	flight	leg	–	subtracting	either	a	single	constant	value	or	a	linear	trend	Y(x),	where	x	
is	the	along-track	distance."	
	
The	reviewer	is	correct	that	a	constant	offset	should	not	effect	the	spectrum	returned	
by	a	harmonic	analysis,	insofar	as	the	harmonic	analysis	usually	solves	for	and	subtracts	
off	the	average	of	the	timeseries	as	part	of	the	analysis	so	that	it	does	not	affect	the	
harmonic	terms	(that	is,	the	harmonic	terms	are	solved	for	to	describe	the	variability	of	
the	time	series,	which	is	described	as	deviations	from	the	mean).		This	depends	on	
whether	one’s	particular	routine	does	in	fact	solve	for	the	mean	and	remove	it	or	not,	
however.		Our	routine	does	not,	so	we	are	forced	to	pre-compute	it	and	pre-subtract	it	
before	presenting	the	variability	timeseries	to	the	routine.		Since	the	main	factor	that	
we	address	here	is	whether	removing	the	linear	trend	or	not	makes	a	difference,	we	will	
refer	to	the	case	where	only	the	constant	offset	(but	not	the	linear	trend)	has	been	
removed	as	the	“linear	trend	not	removed”	case.	
	
Linear	trends	are	often	also	removed	from	a	timeseries	of	data	before	performing	a	
correlation	analysis,	in	order	to	avoid	including	the	harmonic	terms	needed	to	describe	
the	trend	in	with	the	terms	needed	to	describe	the	stationary	variability.		Not	removing	
the	trend	in	a	harmonic	analysis	is	equivalent	to	assuming	that	the	trend	repeats	itself	in	
a	sawtooth-like	pattern	when	the	data	span	is	repeated	end-to-end.		The	spectrum	
needed	to	describe	the	trend	is	red:	not	removing	the	trend	before	doing	a	harmonic	
analysis	will	result	in	a	spectrum	in	which	the	lower	frequency	elements	are	
exaggerated,	making	it	more	difficult	to	assess	the	longer	frequency	terms	that	pertain	
only	to	the	stationary	variability	(i.e.	the	non-trend	part).	
	
To	be	conservative,	we	have	chosen	to	use	the	spectrum	computed	with	the	trend	not	
removed,	which	gives	the	longer	correlation	length	(20	km	vs.	15	km)	and	results	in	less	
information	being	retained	as	the	data	are	averaged	across	a	given	span	length.		We	
would	also	be	comfortable	with	the	more	aggressive	assumption	that	the	trend	should	
be	removed,	however	(which	gives	the	shorter	~15	km	length	scale).		We	have	chosen	to	
show	results	for	both	cases	to	help	illustrate	the	uncertainty	in	the	calculation	of	the	
length	scale.	



	
Also,	to	be	clearer,	we	have	replaced	“Constant	value	removed”	with	“Trend	not	
removed”	in	Figure	1.	
	
>			l.208	and	219:	Kalman	filters	are	used	to	control	fluid	state	variables,	
>	but	not	boundary	conditions	such	as	surface	fluxes.	They	are	outside	the	
>	scope	of	the	discussion,	unless	the	authors	refer	to	simplifications	like	
>	the	Kalman	smoother,	but	in	this	case	the	assimilation	window	covers	
>	periods	much	larger	than	the	observation	error	correlations	lengths	which	
>	are	discussed	here.	
On	line	208:	"Most	estimation	methods	used	in	global	atmospheric	trace	gas	inversion	
work	(Bayesian	synthesis	inversions,	Kalman	filters,	variational	data	assimilation)	
combine	measurement	information	in	different	timespans	as:"	
On	line	219:	"This	assumption	of	uncorrelated	errors	between	different	timespans	is	
built	into	the	derivations	of	these	inverse	methods	explicitly,	for	example	in	the	Kalman	
filter,	in	which	the	dynamical	errors	related	to	propagating	the	measurement	
information	from	time	to	time	are	assumed	to	be	uncorrelated	with	the	measurement	
errors	themselves."	
	
The	reviewer	is	incorrect	in	asserting	that	boundary	conditions	such	as	surface	fluxes	
cannot	be	included	as	control	variables	in	Kalman	filters.		For	the	CO2	flux	estimation	
problem	that	we	are	dealing	with	here,	one	could	envision	a	state	vector	that	includes	
both	the	current	3-D	CO2	field	and	surface	fluxes	in	its	state	vector	to	be	estimated	--	
new	measurements	would	modify	both	the	CO2	field	and	the	surface	fluxes,	the	two	of	
which	would	be	expected	to	be	highly	correlated.		This	would	not	be	as	effective	as	
including	multiple	past	fluxes	in	that	state,	as	well	(a	situation	that	would	lead	to	it	
becoming	effectively	a	fixed-lag	Kalman	smoother),	but	that	does	not	mean	that	it	
would	be	an	illegitimate	model.		So	Kalman	filters	are	certainly	not	outside	the	scope	of	
discussion.		And	the	Kalman	smoother	is	not	a	simplification	of	the	Kalman	filter	--	the	
reverse	is	actually	true	(the	filter	is	a	simplification	of	the	more	general	case	of	the	
smoother,	for	only	one	lag	step	in	the	state).		It	is	not	clear	what	point	is	being	made	
related	to	the	assimilation	window	length.		If	‘assimilation	window’	refers	to	the	
timespan	of	fluxes	included	in	the	state,	then	this	could	be	as	short	as	a	couple	time	
steps	of	the	transport	model	or	as	long	as	many	months,	depending	on	the	flux	
optimization	timespan	and	the	number	of	flux	time	steps	included	in	the	state	vector	–	
for	shorter	flux	optimization	spans,	this	could	be	getting	close	to	important	time	
correlation	lengths	in	the	problem.	
	
>		Section	3.1.3:	Some	main	elements	(the	tridiagonal	influence	matrix,	the	statistically-	
>		optimal	inflation	factor)	have	been	shown	years	ago	by	Chevallier	et	al		
>		(https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2007GL030463)		
>	in	a	short	paper.		It	may	have	been	too	brief,	but	was	much	more	accessible,	I	think.	
	



Indeed,	we	have	been	remiss	in	not	mentioning	this	reference,	given	the	good	work	that	
Chevallier	has	done	in	characterizing	errors	in	our	flux	inversion	problem	and	given	the	
similar	approach	that	he	took	in	that	reference	to	what	we	have	used	here	(especially	
the	use	of	the	tri-diagonal	covariance	inverse,	but	also	the	use	of	an	inflation	factor,	
even	if	the	precise	form	for	computing	it	was	not	provided	in	that	reference).		This	was	
an	oversight.		We	hope	to	rectify	that	here	by	adding	the	following	sentence	after	
equation	(17):			
293	/	314-315:	“(Note	that	Chevallier	(2007)	handled	exponentially-decaying	correlated	
errors	as	well	and	used	a	similar	tridiagonal	matrix	for	the	inverse	of	the	covariance.)”		
as	well	as	adding	that	source	to	the	reference	list.	
	
	
	
	 	



Responses	to	comments	from	Reviewer	#2:	
	
>	General	comments.	
>	Authors	propose	an	innovative	approach	to	the	construction	of	the	
>	error	covariance	matrixes	for	XCO2	observations	by	OCO-2	satellite.	
>	The	method	relies	on	comparison	of	OCO-2	retrievals	to	the	collocated	
>	XCO2	observations	by	an	airborne	lidar	made	along	ground	tracks	of	
>	several	tenth	of	km	in	length,	and	thus	avoids	use	of	model	simulations	
>	for	estimating	the	amplitude	and	spatial	statistics	of	the	OCO-2	
>	retrieval	errors,	which	constitutes	a	major	innovation	presented	in	
>	this	work.	Authors	derive	spatial	error	correlation	lengths	in	the	
>	range	of	10	to	20	km,	which	is	a	new	result,	based	solely	on	
>	observations.	Authors	consider	2	variants	of	the	spatial	error	
>	correlation	models	that	are	used	to	evaluate	the	errors	and	errors	
>	correlations	for	target	10	second	averages	derived	from	intermediate	
>	2-second	mean	data,	and	propose	ways	to	overcome	related	technical	
>	difficulties.	The	paper	is	well	written	and	can	be	accepted	after	minor	revisions.	
	
>	Detailed	comments	
	
>	Although	the	problems	and	remaining	deficiencies	are	extensively	
>	discussed	in	the	Summary	and	conclusions,	it	is	worth	revisiting	
>	a	couple	of	topics	below:	
	
>		The	paper	would	benefit	from	deeper	look	at	the	problem	with	negative	
>	covariance	elements,	addressed	in	Sect.	3.2.	Similar	problem	with	
>	spatial	correlations	would	appear	with	covariance	matrixes	for	
>	surface	fluxes	errors	in	the	same	inverse	problem	for	which	the	data	
>	uncertainty	matrix	is	constructed.	But	the	problem	of	negative	elements	
>	for	surface	fluxes	is	not	widely	known,	thus	there	is	a	possibility	
>	that	the	problem	here	is	caused	by	an	unrealistic	design	of	the	
>	covariance	matrix,	but	not	by	statistical	properties	of	the	data	in	hand.	
	
Please	see	the	response	above	to	Reviewer	#1’s	comments	on	lines	20	and	331.	
We	argue	there	that	one	is	justified	in	demanding	non-negative	weights	for	the	average	
as	an	additional	constraint	imposed	upon	the	problem	to	keep	the	average	from	falling	
outside	the	range	of	the	input	values.		We	agree	that	our	correlation	models	do	not	
require	this	and	that	it	is	an	additional	constraint	that	one	may	choose	to	add;	given	our	
focus	on	averaging	in	this	manuscript,	we	do	choose	to	add	it,	or	at	least	to	discuss	it	as	
a	possible	approach	to	use.	
	
Reviewer	#2	argues	above	that	a	similar	negative	weight	problem	ought	to	exist	when	
handling	correlated	errors	in	the	fluxes	(as,	for	example,	when	averaging	fluxes	to	a	
coarser	time	resolution,	while	properly	accounting	for	the	off-diagonal	terms	in	the	



error	covariance	matrix),	but	this	has	never	been	described,	suggesting	that	there	
should	not	be	a	problem	with	negative	weights	in	specifying	correlated	data	errors,	
either,	and	that	some	error	has	been	made	in	the	assumptions	used	in	this	paper,	or	in	
the	construction	of	the	covariance	matrix.		While	we	believe	that	we	have	not	made	
some	such	error	in	describing	this	effect,	this	analogy	that	the	reviewer	has	put	forward	
has	in	fact	been	very	helpful	to	us	in	adjusting	our	thinking,	and	we	thank	the	reviewer	
for	bringing	it	up.	
	
Any	covariance	matrix	with	off-diagonal	terms	(including	the	ones	we	construct	using	
our	correlation	models)	can	potentially	have	the	elements	of	vector	R-11	(the	individual	
weights	In	our	average,	as	we	define	then)	assume	negative	values.		This	would	be	true	
both	of	the	measurement	error	covariance	matrices	that	we	deal	with	in	this	paper,	as	
well	as	the	flux	error	covariance	matrices	that	the	reviewer	brings	up	in	this	comment.		
The	reason	for	this	is	that	there	is	no	fundamental	requirement	in	the	form	of	the	
covariance	matrices	that	requires	each	individual	weight	to	stay	non-negative.		Instead,	
the	key	criterion	is	that	the	sum	of	the	weights	of	the	terms	going	into	the	average	must	
be	greater	than	zero.		In	that	case,	the	denominator	wT1	=		1TR-11	in	(5)	and	(6)	always	
remains	greater	than	zero	and	the	weighted	average	is	always	well-defined.	The	sum	of	
the	weights,	wT1,	stays	positive	whenever	the	covariance	matrix,	R,	is	positive	definite	
(since	then	R-1	is	also	positive	definite,	and	therefore	1TR-11	>	0,	by	definition	of	positive	
definiteness).		Steps	are	always	taken	in	estimation	methods	to	ensure	that	covariance	
matrices	remain	positive	definite,	in	the	face	of	round-off	error	or	noise	driving	them	in	
that	direction:	divergence	occurs	in	the	Kalman	filter,	for	example,	when	this	condition	
is	violated,	and	dynamic	noise	is	added	when	propagating	the	covariance	matrix	forward	
in	time	to	prevent	this	problem.		So	there	does	not	need	to	be	a	problem	in	the	design	
of	our	covariance	matrix	for	this	to	happen	–	it	is	a	natural	feature	of	covariance	
matrices	with	non-zero	off-diagonal	terms.		And	it	(the	existence	of	negative	weights)	
ought	to	occur	when	dealing	with	flux	error	covariance	matrices,	as	well,	even	if	this	is	
not	generally	well	known.	
	
			There	is	no	problem,	as	long	as	the	user	is	satisfied	with	the	net	impact	of	the	data	
(the	mean	data	value	in	the	case	where	the	data	is	averaged	before	assimilating,	or	the	
net	effect	of	the	data	in	the	inversion	if	each	individual	scene	is	assimilated	separately)	
potentially	falling	outside	the	range	of	that	given	by	the	individual	data	when	these	
correlation	models	are	used.		However,	we	do	see	this	as	a	problem	when	we	explicitly	
set	about	to	compute	an	average:	we	do	not	want	our	average	to	fall	outside	the	range	
of	our	input	data	and	so	we	seek	to	mitigate	it,	while	hopefully	retaining	the	other	
advantages	of	the	correlation	models.		To	do	that,	we	must	impose	an	additional,	more	
stringent,	constraint	in	demanding	that	each	individual	weight	be	non-negative.		This	
criterion	(that	each	individual	weight	be	non-negative)	keeps	the	average	value	from	
straying	outside	the	range	of	the	data	being	averaged	–	this	is	certainly	reasonable	to	
require,	and	can	be	solved	by	adding	an	additional	constraint	outside	of	the	correlation	
model.	
	



					We	have	modified	our	text	in	Section	3.2	to	discuss	the	points	raised	above	–	please	
see	our	responses	to	Reviewer	#1	above	for	the	details	of	the	changes	we’ve	made	to	
the	manuscript	to	address	them.		We	continue	to	demand	the	additional	constraint	that	
each	individual	weight	be	non-negative	as	before,	but	the	additional	text	puts	that	
decision	into	better	perspective.	
	
The	question	of	why	this	“problem”	of	negative	weights	has	never	been	discussed	as	it	
relates	to	flux	correlations	is	an	interesting	one.		Modelers	routinely	average	results	at	
coarser	time	and	space	resolutions	than	they	solve	for	in	inversions	(for	example,	
averaging	at	the	monthly	and	continental	scales	from	results	estimated	originally	at	
weekly	scales	across	model	grid	boxes	of	100s	of	km	on	a	side),	so	why	has	this	issue	not	
been	flagged	before”?			Our	first	guess	is	that	most	researchers	are	not	performing	an	
average	of	the	type	done	in	(6),	weighting	with	the	inverse	of	the	covariance	matrix.		But	
for	those	who	are,	we	suggest	that	they	have	not	seen	this	effect	because	the	scales	
that	are	averaged	across	are	generally	quite	a	bit	larger	than	the	scales	at	which	the	
errors	are	correlated.		Consider	the	exponentially-decaying-with-separation-distance	
correlation	model,	for	which	the	individual	weights	go	negative	(according	to	equation	
(36))	when	σi	>	<σ>	cosh(∆x/L),	where	L	is	the	correlation	length	scale,	∆x	the	typical	
separation	distance	between	the	averaged	quantities,	and	<σ>	=	[(σi+1

-1	+	σi-1
-1)/2]-1.		

The	weights-going-negative	condition	rarely	occurs	when	cosh(∆x/L)	is	large,	that	is	
when	(∆x/L)	is	greater	than	2	or	3.		For	surface	CO2	fluxes,	the	strongest	time	
correlations	occur	at	the	daily	and	synoptic	scales,	so	for	a	global	flux	inversion	
estimating	fluxes	at	weekly	scales,	∆x/L	is,	in	fact,	about	7	for	the	daily	frequency	and	
about	2	for	the	synoptic	frequency,	and	the	impact	of	time	correlations	the	averages	
should	be	small.		For	interannual	flux	error	correlations	(e.g.	errors	between	January	
fluxes	in	Year	2	being	correlated	with	the	January	fluxes	in	Years	1	&	3)	this	argument	
fails	–	if	such	correlations	exist	(probably)	and	are	of	significant	magnitude	(not	clear),	
they	should	be	expected	to	have	an	impact	in	multi-year	averages.		(We	believe	few,	if	
any,	inversion	groups	have	tried	to	impose	such	correlations	on	the	a	priori	fluxes	in	
their	modeling,	which	suggests	that	they	are	probably	also	not	looking	for	the	impacts	
of	such	correlations	a	posteriori.		If	it	has	not	come	up	as	an	issue	in	the	literature,	this	
may	suggest	that	the	magnitude	of	such	interannually-correlated	errors	is	not	large).		In	
terms	of	spatial	scales	over	land,	Chevallier	et	al.,	GBC,	(2012)	found	correlation	length	
scales	of	100-200	km	using	flux	towers:	this	may,	however,	represent	the	finest	scale	
that	could	be	resolved	with	such	a	network,	and	if	there	were	flux	towers	available	
every	1	km	in	a	regular	grid,	for	example,	then	the	correlation	length	scale	obtained	may	
have	been	finer.		It	is	likely,	then,	that	the	typical	∆x	used	in	global	inversions	(say	300	
km)	is	quite	a	bit	larger	than	the	typical	L	value	(under	100	km,	say),	such	that	∆x/L>3	
and	the	negative	weight	problem	should	be	negligible.		Over	the	oceans,	for	which	
longer	error	correlation	length	scales	might	be	thought	to	occur	(due	to	greater	
homogeneity	of	surface	conditions	and	due	to	chemical	buffering),	this	is	probably	not	
the	case.			The	fact	that	the	fluxes	over	the	oceans	are	typically	an	order	of	magnitude	
smaller	than	those	over	land	would	make	it	challenging	to	separately	identify	averaging	
errors	due	to	out-of-range	(negative	weight)	conditions	in	the	face	of	spill-over	errors	



from	the	land	regions,	but	it	would	be	interesting	to	look	for	this	effect,	perhaps	first	in	
OSSE	experiments.		In	summary,	we	should	expect	to	see	examples	of	these	negative-
weight-related	out-of-range	averaging	effects	also	when	averaging	fluxes:	possibly	these	
will	become	more	evident	as	finer-scale	flux	inversions	are	done	more	frequently.	
	
	
>			Unfortunately	authors	do	not	provide	information	on	the	amplitude	of	
>	the	correlating	component	–	what	is	a	fraction	of	the	(OCO-2	–	lidar)	
>	difference	that	is	correlated	at	10	km	or	less	scale.	If	that	is	only	
>	a	fraction	of	the	1.5-2	ppm	of	error	as	found	by	comparison	with	TCCON,	
>	then	the	origin	and	spatial	scales	of	remaining	is	unknown,	thus	it	can	
>	be	treated	as	random	and	uncorrelated.	Bell	et	al	(2020)	notice	that	
>	the	correlations	at	local	scale	are	pretty	low,	they	write:	“We	conclude	
>	from	these	low	correlations	that	for	an	average	scene	with	no	strong	
>	variability	in	the	XCO2	field,	OCO-2	and	the	MFLL	do	not	typically	“see”	
>	the	same	small-scale	features”.	In	practice,	the	adopted	level	of	
>	correlation	coefficients	as	shown	on	Eq.	15	do	not	appear	justified	by	
>	the	comparison	with	MFLL	and	may	possibly	come	from	a	separate	source.	
	
Yes,	the	coefficients	shown	in	(15)	come	from	a	separate	source	–	an	independent	
analysis	make	by	Dr.	Susan	Kulawik	–	we	have	added	a	note	on	line	284	/	303-304	in	the	
text	that	she	did	not	use	the	MFLL	data	in	her	analysis,	but	rather	based	it	in	part	on	
TCCON	and	in	situ	aircraft	observations.		Actually,	we	feel	that	the	+0.3	correlation	
coefficient	calculated	by	Kulawik	for	use	over	land	agrees	quite	well	with	the	
correlations	that	we	computed	using	the	MFLL	data,	shown	in	Figure	1,	when	applied	to	
10-second	averages:	the	integral	of	+0.3	from	0	to	67.5	km	gives	a	value	of	about	200,	
compared	to	an	integral	under	the	blue	line	on	the	left	panel	of	Figure	1	of	something	
very	close	to	that	across	the	same	range	on	the	x	axis.		This	agreement,	based	on	very	
different	data	sources,	gives	us	some	confidence	in	the	results	of	our	MFLL-OCO2	
analysis.	
	
The	reviewer	is	correct	that	we	should	have	reported	the	magnitude	of	the	variability	
corresponding	to	the	correlations	we	report.		This	can	be	computed	directly	from	the	
spectrum	shown	in	Figure	1	by	multiplying	the	blue	curve	by	the	normalization	factor	
that	we	have	divided	by	to	get	the	correlation	spectrum.		For	the	case	in	which	we	
remove	the	trend,	that	factor	is	0.84	sigma	when	we	analyze	xi	/σi,	and	0.59	ppm	when	
we	analyze	xi	itself	without	dividing	by	the	associated	uncertainty.		For	the	case	in	which	
we	do	not	remove	the	trend,	the	values	are	1.04	sigma	and	1.003	ppm.		This	means	that	
the	RMS	difference	between	the	MFLL	and	OCO-2	values	is	about	1.0	ppm	for	the	non-
detrended	case,	so	that	the	correlation	coefficient	of	+0.3	associated	with	separation	
distances	of	from	20	to	40	km	is	describing	an	RMS	variability	of	about	1.04	*	sqrt(0.3)	=	
0.57	ppm.		Or	in	terms	of	the	fraction	of	the	variability	described	at	scales	of	10	km	or	
less	that	the	reviewer	asks	about,	anywhere	from	100%	of	the	variability	at	zero	
separation	distance	to	about	sqrt(0.37)=60%	of	the	variability	(in	terms	of	concentration	



difference	instead	of	its	square)	at	a	separation	distance	of	8	km	(the	first	dot	to	the	
right	of	zero	in	Figure	1).		This	is	a	substantial	portion	of	the	full	variability,	so	we	don’t	
think	it	would	be	fair	to	discount	it	as	being	unimportant	and	attempt	to	treat	it	as	
random	and	uncorrelated.		It	is	also	not	fair	to	discount	it	compared	to	the	RMS	
difference	of	1.5	to	2	ppm	(OCO-2	compared	to	TCCON)	since	that	number	includes	
biases	in	both	TCCON	and	OCO-2	that	would	drop	out	in	any	analysis	of	variability	
between	the	two.		The	true	RMS	error	in	the	OCO-2	data	taken	over	land	is	down	in	the	
1.2-1.5	ppm	range	at	the	moment,	so	the	1	ppm	RMS	difference	between	MFLL	and	
OCO-2	is	capturing	about	half	of	that	–	the	other	half	could	plausibly	be	attributed	to	
longer	correlation	scales	than	those	that	can	be	assessed	here.		We	have	added	the	
following	text	discussing	the	magnitude	of	the	variability	associated	with	the	MFLL	–	
OCO-2	differences	on	lines	191/	204-209:	
	
“The	magnitude	of	the	correlated	variability	is	given	by	multiplying	the	square	roots	of	
the	correlation	coefficients	shown	on	Figure	1	by	the	normalization	factors	obtained	in	
computing	them	(0.59	ppm	/	1.003	ppm	when	the	trend	is	removed	/	not	removed,	or	in	
terms	of	multiples	of	the	uncertainty	assumed	on	each	MFLL-OCO2	difference,	0.84	/	
1.04	σ).		Moving	over	to	20	km	on	the	x-axis,	a	coefficient	of	0.25	translates	into	a	
magnitude	of	0.5	x	(0.59	/	1.003)	=	0.3	/	0.5	ppm,	large	enough	to	be	a	significant	
fraction	of	the	systematic	errors	in	the	OCO-2	data	taken	over	land,	which	have	been	
calculated	to	be	about	0.6	ppm	by	Kulawik	et	al.	(2019).”		
	
>	Minor	comments,	technical	corrections:	
	
>	L9		‘Errors	in	the	CO2	retrieval	method	have	long	been	thought	to	be	
>	correlated	at	these	fine	scales’	–	It	would	be	more	accurate/safe	to	
>	say	that	data	are	correlated,	rather	than	the	errors.	
	
(By	data,	we	both	mean	retrievals	here.)		We	actually	do	mean	to	point	to	correlations	
in	the	errors	rather	than	in	the	data	themselves,	since	the	errors	are	what	are	being	
quantified	in	the	covariance	matrices	we	discuss.		Since	the	data	are	obviously	strongly	
correlated	due	to	their	large	background	(~400	ppm)	and	large	variability	on	seasonal	
and	synoptic	timescales,	it	might	appear	safer	to	only	talk	about	them,	but	that	is	really	
besides	the	point.		We	know	that	the	accuracy	of	the	retrievals	is	strongly	tied	to	the	
accuracy	of	the	assumed	surface	properties,	atmospheric	scatterers,	and	atmospheric	
gases	needed	as	part	of	the	retrieval,	and	the	a	priori	values	assumed	for	these	in	the	
retrievals	all	have	errors,	so	it	is	not	surprising	that	we	should	talk	about	correlations	
between	errors	in	the	retrieved	values	themselves,	rather	than	just	in	their	values.	
	
>	L44	Alternatively,	one	can	call	this	‘summary	value’	an	‘average	value’	
	
We	changed	“summary	value”	to	“average	that	summarizes	those	values”,	on	lines	44	/	
46-47.	
	



>	L48	Authors	imply	the	errors	here	correspond	to	model-observation		
>	difference,	and	contributed	by	model	errors	related	to	smoothing	due	
>	to	coarse	model	resolution.	Its	better	to	define	somewhere	above	this	
>	point	what	is	implied	by	‘errors’.	
There	are	two	sentences	here	that	deal	with	errors,	one	ending	on	line	48	and	one	
beginning	there,	and	we	are	not	sure	from	this	comment	which	one	the	reviewer	is	
referring	to.		The	second	sentence	deals	with	errors	in	the	parameters	used	in	the	
radiative	transfer	modeling	used	in	the	retrievals.		While	the	errors	in	these	parameters	
are	partly	due	to	the	coarse-resolution	models	from	which	some	of	these	parameters	
are	taken	(e.g.	the	temperature	profile	taken	from	a	reanalysis	product),	they	are	also	
due	to	model	errors	unrelated	to	resolution	(e.g.	errors	in	aerosol	concentration,	size,	or	
type	in	the	aerosol	product	used	in	the	retrieval,	or	in	the	scattering	model	used	with	
those	aerosols).	The	errors	discussed	in	the	first	sentence	(the	one	ending	on	line	48)	
are	less	clearly	described,	and	are	probably	what	the	reviewer	is	pointing	to.		The	idea	
that	errors	in	the	CO2	mixing	ratios	in	the	upper	part	of	the	column	must	be	correlated,	
because	the	upper	part	of	the	column	is	affected	by	CO2	fluxes	that	occurred	far	afield	in	
both	time	and	space,	could	be	described	more	clearly.		It	comes	from	a	model	of	the	
truth	that	assumes	CO2	mixing	ratios	in	the	interior	of	the	atmosphere	are	determined	
only	by	surface	fluxes	and	atmospheric	mixing,	and	neglects	any	sources	or	sinks	in	the	
interior	of	the	atmosphere.		By	the	time	surface	flux	perturbations	to	CO2	have	been	
transported	up	to	the	upper	part	of	the	column,	they	have	generally	be	blown	a	good	
distance	away	from	where	they	were	emitted	and	have	mixed	with	air	emitted	in	
surrounding	gridcells.		Any	errors	in	the	emitted	fluxes	(or	in	transport)	will	lead	to	
difficulties	in	attributing	the	errors	to	flux	errors	in	any	one	local	area,	due	to	the	mixing	
blurring	out	the	relationship.		An	error	in	upper	level	CO2	then	maps	onto	errors	in	
surface	fluxes	that	are	highly	correlated	in	space	and	time.		Such	a	model	could	be	used	
for	the	CO2	prior	used	in	the	retrieval	or	as	a	measurement	model	relating	measured	or	
retrieved	CO2	mixing	ratios	to	the	surface	CO2	fluxes	that	cause	them.		Here	it	is	better	
to	think	in	terms	of	the	latter,	since	the	CO2	priors	used	in	the	retrieval	are	not	really	
built	up	from	underlying	fluxes	explicitly.		We	have	reworded	the	first	two	sentences	in	
the	paragraph	to	hopefully	clarify	what	errors	we	are	referring	to:	

45-48/	51-55:		Replace	“Whether	the	individual	OCO-2	retrievals	or	some	coarser-
resolution	average	measurement	are	assimilated	into	the	inverse	model,	correlations	
between	the	errors	in	the	individual	CO2	measurements	must	be	considered.	CO2	
mixing	ratios	in	the	upper	part	of	the	atmospheric	column	(at	all	levels	but	the	
immediate	surface	layer)	feel	the	influence	of	multiple	flux	locations	at	the	surface	due	
to	atmospheric	mixing,	causing	errors	in	adjacent	measurements	to	be	highly	correlated	
there.“	

with	“Whether	the	individual	OCO-2	XCO2	retrievals	or	some	coarser-resolution	average	
of	them	are	assimilated	into	the	inverse	model,	correlations	between	the	errors	in	the	
individual	XCO2	measurements	must	be	considered.		CO2	mixing	ratios	in	the	upper	part	



of	the	atmospheric	column	(at	all	levels	but	the	immediate	surface	layer)	feel	the	
influence	of	multiple	flux	locations	at	the	surface	due	to	atmospheric	mixing,	which	
widens	and	homogenizes	the	zone	of	influence	as	time	goes	on.			XCO2	is	a	measure	of	
CO2	across	the	full	column	and	is	dominated	by	such	effects:	any	error	in	XCO2	will	be	
translated	into	highly-correlated	errors	in	neighboring	surface	fluxes	when	used	as	a	
measurement	in	an	inversion	model;	similarly,	any	error	in	surface	CO2	flux	in	a	forward	
model	will	result	in	highly-correlated	errors	in	neighboring	XCO2	measurements	
influenced	by	these	fluxes.”	

>	L86	Adding	some	MIP	paper	reference	should	be	useful	here	(eg	Crowell	et	al.	2019).	
	
Yes,	we	agree	–	we	have	added	references	to	both	Crowell	et	al.	(2019)	and	Peiro	et	al.	
(2021)	at	the	end	of	the	first	part	of	this	sentence,	before	the	hyphen,	on	line	88	/	95,	
and	have	updated	them	in	the	list	of	references:	
	
Crowell, S., D. Baker, A. Schuh, S. Basu, A.R. Jacobson, F. Chevallier, J. Liu, F. Deng, L. Feng, 

K. McKain, A. Chatterjee , J.B. Miller, B.B. Stephens, A. Eldering, D. Crisp, D. Schimel, R. 
Nassar, C.W. O’Dell, T. Oda, C. Sweeney, P.I. Palmer, and D.B.A. Jones, The 2015-2016 
carbon cycle as seen from OCO-2 and the global in situ network, Atmos. Chem. Phys., 19,	
9797–9831, https://doi.org/10.5194/acp-19-9797-2019, 2019. 

 
Peiro, H., Crowell, S., Schuh, A., Baker, D. F., O'Dell, C., Jacobson, A. R., Chevallier, F., Liu, J., 

Eldering, A., Crisp, D., Deng, F., Weir, B., Basu, S., Johnson, M. S., Philip, S., and Baker, I.: 
Four years of global carbon cycle observed from OCO-2 version 9 and in situ data, and 
comparison to OCO-2 v7, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-373, 
in review, 2021. 

	
>	L167	Any	rationale	for	detrending	Y	rather	than	X	itself?	
	
Analyzing	the	timeseries	Yi	=	Xi	/	sigmai	instead	of	Xi	itself	is	better,	because	it	places	the	
proper	weight	on	deviations	that	are	large	in	a	statistical	sense	(in	sigma	space)	rather	
than	in	an	absolute	sense	(the	assimilation	itself	is	essentially	operating	on	the	weighted	
measurements,	not	the	unweighted	ones).		If	just	Xi	was	analyzed,	it	would	be	
dominated	by	large	deviations	in	places	where	the	measurements	are	less	certain,	and	
the	parts	of	the	time	series	containing	the	most	reliable	data	would	be	de-emphasized.		
Since	this	is	true	when	applied	to	trends	in	the	data,	as	well,	we	have	chosen	to	detrend	
Yi	preferentially.		That	said,	we	have	also	performed	the	analysis	by	detrending	the	Xi	
time	series	directly	and	the	spectrum	did	not	change	much,	as	was	already	discussed	on	
lines	173-177	/	185-186	of	the	manuscript.	
		
>	L203	As	the	MFLL	data	are	first	aggregated	to	7-9	km	blocks,	it	
>	appears	that	one	needs	to	clarify	here	on	how	the	analysis	would	
>	become	useful	for	finer	scales.	
	
On	lines	202-203	of	the	original	manuscript,	when	we	wrote	“…in	the	process	we	will	



get	insight	into	how	to	handle	data	assimilated	at	finer	scales,	even	on	an	individual	
retrieval-by-retrieval	basis”,	we	were	thinking	that	the	equations	we	obtained	would	
provide	insight	across	a	wide	range	of	scales	on	either	side	of	the	10-second	averaging	
span	that	we	chose	for	our	application.		It	is	true,	though,	that	because	we	have	not	
examined	the	MFLL-OCO2	differences	at	a	binning	finer	than	7-9	km	(we	could	do	so	
down	to	the	2.3	km	along-track	extent	of	the	OCO-2	cross-scan),	we	cannot	be	sure	
what	the	correlation	would	look	like	were	we	to	do	so	–	maybe	the	correlation	length	
scale	would	turn	out	to	be	finer	than	the	10	km	length	scale	we	plot	in	Figures	2	&	3,	for	
example.		We	have	chosen	not	to	reassess	the	data	at	these	finer	scales,	since	this	is	not	
important	for	the	main	thrust	of	our	paper.		Instead,	we	have	tried	to	make	our	original	
point	clearer	by	rewording	as	follows:	

202-203	/	221-222:		Replace	“but	in	the	process	we	will	get	insight	into	how	to	handle	
data	assimilated	at	finer	scales,	even	on	an	individual	retrieval-by-retrieval	basis.”	

					with		“but	in	the	process	we	will	get	insight	into	how	to	handle	data	assimilated	at	
coarser	scales	and	at	finer	scales	down	to	the	7-9	km	MFLL	binning	size	used	here.”	

	
>	L221	Although	temporally	uncorrelated	errors	are	convenient	for	
>	Kalman	filters,	it	does	seem	to	be	an	excessive	requirement,	need	to	
>	add	a	reference	to	appropriate	text,	if	exists.	
This	sentence	is	being	referred	to:	“This	assumption	of	uncorrelated	errors	between	different	
timespans	is	built	into	the	derivations	of	these	inverse	methods	explicitly,	for	example	in	the	
Kalman	filter,	in	which	the	dynamical	errors	related	to	propagating	the	measurement	
information	from	time	to	time	are	assumed	to	be	uncorrelated	with	the	measurement	errors	
themselves.”		

We	agree	that	this	assumption	may	seem	to	be	excessive	when	dealing	with	data	that	
are	clearly	time	correlated,	such	as	the	satellite	data	we	address	here,	and	we	attempt	
to	remove	this	assumption	in	this	paper.		One	could,	instead,	derive	versions	of	the	
popular	estimation	methods	that	account	for	such	correlated	errors	explicitly.		However,	
this	assumption	(that	errors	between	x1	and	x2	in	(3)	are	uncorrelated)	is	built	into	the	
standard	forms	of	many	estimation	methods,	including	the	Kalman	filter.		In	the	
standard	form	of	the	Kalman	filter,	the	state	estimate	update	step	(in	which	
measurement	information	is	incorporated	into	the	state)	takes	the	form	of	equation	(3)	
if	x2	is	taken	to	be	the	previous	estimate	of	the	state	propagated	to	the	current	time	
step	and	x1	the	new	measurement	information	transformed	into	state	space.		Then	(4)	
and	(3)	become		P+-1	=	P1-1	+	P2-1	=	HTR-1H	+	P--1	and		P+-1	x+	=	HTR-1z	+	P--1	x-	,	which	can	be	
put	into	the	standard	form	of	the	Kalman	filter	update	equations	with	some	algebraic	
manipulation	[here,	the	‘-’	and	‘+‘	notation	indicates	the	state	vector	and	its	covariance	
matrix	before	and	after	the	measurement	update].		To	obtain	this	standard	form	of	the	
equations,	the	errors	in	x1	and	x2	must	be	assumed	to	be	uncorrelated,	that	is	E[dx1	dx2T]	
=	0.		This	is	noted	in	derivations	of	the	standard	Kalman	filter,	for	example	equation	



(7.2-3)	on	page	138	of	Catlin	(1989)	and	equation	(4.2-11)	in	Gelb	(1974),	which	have	
now	been	added	to	the	text	as	references	supporting	this	assertion	(line	221	/	240).		

Catlin,	D.E.,	Estimation,	Control,	and	the	Discrete	Kalman	Filter,	Springer-Verlag,	New	
York,	1989,	274	pp.	

Gelb,	A.,	ed.,	Applied	Optimal	Estimation,	The	M.I.T.	Press,	Cambridge,	MA,	1974,	374	
pp.	

	
>	L627	Mistype:	correct	‘Zendolo’	to	‘Zenodo’	
	
Corrected	in	two	places,	604	/	656		&		627	/	679	--	thanks	for	catching	that.	
	
>	L660	For	web	document,	need	to	give	url.	
	
Thanks	for	catching	this.		We	have	added	the	link:	
https://cce.nasa.gov/ascends_2015/ASCENDS_FinalDraft_4_27_15.pdf	
on	line	660	/	718.		We	have	also	added	a	reference	to	the	ASCENDS	final	report	(Kawa	et	
al.,	2018)	on	the	same	line.	
	
	


