
We’d	like	to	thank	the	reviewers	for	their	helpful	comments.		Those	addressing	the	issue	
of	negative	weights	in	our	average	and	how	those	relate	to	the	error	covariance	matrix	
were	particularly	helpful	to	our	understanding.		We	have	updated	our	text	to	reflect	this	
updated	viewpoint.	
	
Responses	to	comments	from	Reviewer	#1	
			
>	The	authors	study	the	correlations	between	errors	in	
>	XCO2	satellite	retrievals,	based	on	reference	lidar	
>	measurements,	and	discuss	various	ways	to	account	for	
>	them	in	atmospheric	inversions.	The	paper	looks	a	bit	
>	like	the	clean	minutes	of	a	brainstorming	meeting:	
>	every	sentence	is	well	written	but	the	logical	flow	is	
>	curvy	and	difficult	to	follow.	The	authors	have	not	
>	done	enough	to	make	their	thoughts	accessible	and	to	
>	take	the	text	beyond	elaborate	speculation,	perhaps	
>	simply	because	their	thinking	is	not	yet	ripe	for	
>	publication.	Maybe	it	doesn’t	matter,	as	the	paper	
>	will	be	cited	anyway	given	the	role	of	this	activity	
>	for	the	OCO-2	team,	but	for	the	few	who	will	bother	
>	to	read	it,	it	may	be	a	daunting	task,	perhaps	in	the	end	wasted.	
	
We	hope	our	replies	to	the	detailed	comments	below	will	address	this	reviewer’s	issues.	
	
>	I	am	listing	a	number	of	comments	here	to	help	clarify	the	presentation.	
	
>			Footnote	1,	p.	25:	the	disclaimer	here	is	a	bit	hidden,	but	
>	it	is	actually	essential.	Basically,	if	the	“good	reasons”	listed	
>	here	are	correct,	all	results	of	the	paper	can	be	ignored.	This	
>	observation	could	be	fatal	for	the	patient	reader	who	painfully	
>	reaches	this	page…	In	the	end,	nothing	is	given	to	convince	the	
>	reader	that	the	MFLL-OCO-2	differences	do	indeed	represent	OCO-2	
>	errors,	that	the	two	scales	of	correlation	lengths	found	(10	and	
>	20	km)	should	be	used	at	all	in	OCO-2	error	models.	It’s	embarrassing.	
	
No	need	for	embarrassment	here.		We	have	attempted	to	calculate	a	correlation	length	
scale	using	the	limited	data	that	is	available	for	that	purpose.		When	more	data	become	
available	to	test	our	conclusions,	that	should	certainly	be	done	--	if	the	reviewer	can	
suggest	some	additional	data	that	we	could	use	to	refine	these	estimates,	we	would	be	
happy	to	work	with	it.		In	the	meantime,	the	derivations	presented	here	using	the	
newly-calculated	correlation	length	scale	remain	valid	regardless	of	what	precise	value	
is	used	for	that	quantity.			We	do	hope	that	the	reviewer	does	not	mean	to	suggest	that	
no	one	can	publish	using	new	data	--	little	progress	would	be	made	in	such	a	world.	
	



	
>		There	is	good	and	interesting	math	here,	but	the	authors	belittle	
>	it	by	arbitrarily	rejecting	certain	math	results:	why	should	the	
>	negative	weights	not	be	physical	(l.	20)	or	considered	undesirable	
>	(l.331)?	They	simply	follow	from	the	authors’	correlation	model:	
>	if	the	authors	are	not	satisfied	with	this	consequence,	they	should	
>	change	the	model	rather	than	fooling	the	math.	
	
Based	on	this	comment	as	well	as	one	of	Reviewer	#2’s	below,	we	have	looked	into	this	
issue	more	and	we	agree	that	there	is	nothing	inherent	in	the	structure	of	the	error	
covariance	matrix	that	precludes	the	individual	weights	in	our	weighted	average	from	
assuming	negative	values	–	for	the	error	correlation	models	that	we	use,	these	negative	
values	are	to	be	expected.		The	main	constraint	provided	by	a	positive	definite	
covariance	matrix	is	that	the	sum	of	all	the	weights	must	not	be	negative	or	zero	–	if	
that	criterion	is	met,	a	weighted	average	may	always	be	calculated	(since	this	implies	
that	the	inverse	of	the	covariance	matrix	is	also	positive	definite,	ensuring	that	the	
denominator	in	(6),	1TR-11,	is	always	positive).	
	
In	terms	of	computing	our	weighted	average,	the	implication	of	this	is	that	there	is	
nothing	in	our	correlation	models	to	prevent	the	mean	value	from	falling	outside	the	
range	of	the	values	going	into	the	average.		If	we	wish	to	enforce	that	more	stringent	
criterion,	then	we	may	require	that	each	individual	weight	be	non-negative,	as	we	have	
done	in	the	paper.			
	
While	there	apparently	is	no	fundamental	requirement	that	the	individual	weights	in	a	
weighted	average	are	non-negative,	one	often	sees	this	given	as	a	basic	requirement.		
Wikipedia,	while	not	an	unimpeachable	academic	reference,	reflects	broader	practice	
when	they	give	on	their	"weighted	arithmetic	mean"	page	the	mathematical	definition	
of	such	a	mean	as	follows:	
"Formally,	the	weighted	mean	of	a	non-empty	finite	multiset	of	data	{	x1,	x2,	…	,	xn	}	,	
with	corresponding	non-negative	weights	{	w1,	w2,	…	,	wn}	is	
<x>	=	sum{wi	xi}	/	sum{wi}		...	
Therefore,	data	elements	with	a	high	weight	contribute	more	to	the	weighted	mean	
than	do	elements	with	a	low	weight.	The	weights	cannot	be	negative.	Some	may	be	
zero,	but	not	all	of	them	(since	division	by	zero	is	not	allowed)."	[emphasis	ours]	
	
The	practical	effect	of	any	individual	weight	being	allowed	to	be	negative	is	that	the	
mean	value	computed	may	fall	outside	the	range	of	the	data	going	into	the	average	–	a	
result	that	is	contrary	to	the	very	idea	of	an	average.		We	are	certainly	justified	in	
imposing	the	requirement	that	all	individual	weights	be	taken	to	be	non-negative	(and	
at	least	one	positive)	as	an	additional	constraint	to	ensure	that	we	obtain	an	average	
that	falls	inside	the	data	range	for	the	work	we	are	presenting	here.		Such	a	choice	is	
hardly	"arbitrary".		It	simply	constitutes	an	additional	constraint	that	we	choose	to	add,	
in	addition	to	the	assumed	correlation	structure,	to	obtain	results	that	don’t	swing	



outside	the	range	of	the	input	values.		We	reject	the	reviewer's	assertion	that	such	an	
approach	is	incompatible	with	the	use	of	this	correlation	model	and	that	we	are	"fooling	
the	math".		There	are	good	reasons	to	do	it.	
	
Requiring	each	individual	weight	to	remain	non-negative,	rather	than	the	sum	of	the	
weights,	can	be	thought	of	as	a	more	local	constraint	than	the	global	constraint	imposed	
by	positive	definiteness.		In	the	text,	we	show	that	it	may	be	used	as	a	filter	to	throw	out	
those	scenes	that	cause	problems	locally.		This	added	constraint	may	be	useful	in	
guiding	us	to	design	a	form	for	the	error	correlations	that	has	the	local	boundedness	
constraint	that	we	seek:	the	constant	correlation	model	violates	this	local	constraint	
generally,	while	the	exponentially-decaying	correlation	model	only	requires	about	5%	of	
the	data	to	be	thrown	out	to	satisfy	it	–	perhaps	if	we	keep	looking	we	can	find	some	
other	simple	error	correlation	model	that	will	satisfy	both	the	local	and	global	
constraints	on	the	weights.	
	
We	have	added	new	discussion	in	the	text	explaining	that	the	correlation	models	we	
assume	should	be	expected	to	drive	individual	weights	in	our	average	into	the	negative	
range,	there	being	no	requirement	against	that	in	the	math.			And	we	have	added	
additional	wording	to	the	text	explaining	that	we	have	forced	the	individual	weights	in	
the	average	to	be	non-negative	in	order	to	prevent	the	averages	from	falling	outside	the	
range	of	the	values	input	to	the	average,	a	result	that	we	feel	is	undesirable	in	our	
averages.			
	
	
>			l.35-37:	the	sentence	seems	general,	but	does	not	apply	to	GOSAT	in	practice.	
The	sentence	in	question	is	this:	"The	resolution	is	limited	both	for	computational	
reasons	(the	models	must	be	run	many	dozens	of	times	across	the	measurements	to	
obtain	the	inverse	estimate)	and	because	the	spatial	coverage	of	the	satellite	
measurements	is	currently	not	dense	enough	to	resolve	spatial	scales	much	finer	than	
this	when	solving	at	typical	time	scales	(the	gap	in	longitude	between	subsequent	
passes	of	a	typical	low-Earth-	orbiting	(LEO)	satellite	is	∼25°,	resulting	in	gaps	of	
between	3°	and	4°	across	a	week,	gaps	which	are	generally	never	filled	in	further	due	to	
the	repeat	cycle	of	the	satellite’s	orbit).	"	
	
The	reviewer	is	correct	that	the	longitude-separation	calculation	at	the	end	of	the	
sentence	does	not	apply	to	GOSAT	data	taken	over	land,	which	may	include	data	for	3,	
5,	or	more	data	points	taken	in	the	cross-scan	direction	(or	effectively	3,	5,	or	more	
parallel	tracks	of	data	per	orbit	groundtrack).		For	GOSAT,	the	resulting	gap	size	would	
have	to	be	divided	by	3,	5,	or	more,	resulting	in	potentially	a	finer	scale	being	resolvable	
over	land.	
	
To	be	clearer,	we	have	added	"taking	a	single	swath	of	data	along	its	orbit	path"	after	
"(LEO)	satellite".	
	



	
>			l.43:	why	would	it	make	little	sense	to	assimilate	the	measurements	
>	individually?	From	the	text,	it	is	obvious	that	it	is	so	much	easier	
>	than	trying	averages.	So,	this	can	make	a	lot	of	sense.	Personally,	
>	I	would	still	prefer	the	averaging	but	for	reasons	that	are	not	
>	discussed	here	(numerical	stability,	but	this	is	only	a	feeling).	
The	sentence	in	question:		"The	individual	OCO-2	retrievals	are	generally	averaged	
together	along-track	across	some	distance	closer	to	the	model	grid	box	size	before	being	
assimilated	in	the	inversion:	this	is	because	the	modeled	measurements	to	which	the	
true	measurements	will	be	compared	in	the	inversion	are	available	only	at	the	grid	box	
resolution,	so	it	makes	little	sense	to	assimilate	each	measurement	individually	when	
assimilating	a	coarse-resolution	summary	value	will	do	just	as	well."	
	
The	answer	is	that	it	reduces	the	computational	load	related	to	the	assimilation	of	the	
data	by	as	much	as	a	factor	of	240	(the	maximum	number	of	individual	scenes	per	10-
second	span)	if	one	averages	the	data	beforehand.		We	don't	understand	why	the	
reviewer	feels	that	it	would	be	easier	to	process	each	point	individually	in	the	
assimilation,	rather	than	averaging	beforehand,	unless	he/she	intends	to	ignore	error	
correlations	altogether	in	the	process	(and	even	then,	the	computational	load	would	still	
be	up	to	240	times	greater).		If	the	same	error	correlations	are	to	be	considered	in	both	
cases,	the	effort	required	to	do	so	is	the	same,	whether	done	inside	the	code	or	outside,	
beforehand.		But	the	computational	savings	obtained	by	pre-computing	the	averages	
remains,	either	way.	
	
>			l.48:	interesting	comment…	The	dependence	of	the	correlations	on	
>	the	scene	questions	the	representativeness	of	the	ACT	measurements	
>	used	here.	This	key	element	is	only	briefly	touched	on	in	the	warning	in	line	181.	
The	sentence	spanning	line	48	is	this	one:	"CO2	mixing	ratios	in	the	upper	part	of	the	
atmospheric	column	(at	all	levels	but	the	immediate	surface	layer)	feel	the	influence	of	
multiple	flux	locations	at	the	surface	due	to	atmospheric	mixing,	causing	errors	in	
adjacent	measurements	to	be	highly	correlated	there.	"	
	
It	is	not	clear	to	us	how	the	comment	relates	to	this	sentence.		It	is	also	not	clear	to	us	
what	argument	the	reviewer	is	trying	to	make	here.		If	the	comment	implies	that	one	
cannot	attempt	to	use	a	correlation	model	with	a	blanket	correlation	length	applying	
across	all	data	points,	when	local	correlation	lengths	are	higher	or	lower	than	that	due	
to	local	conditions,	then	we	must	disagree.		It	is	still	better	to	try	to	use	a	more-accurate	
correlation	model,	even	if	the	non-negativity	constraint	must	be	added	as	well,	than	not	
to	attempt	to	account	for	error	correlations	at	all.	
	
>			l.123:	OCO-2	was	already	defined	in	l.	39.	Same	comment	for	ASCENDS	a	bit	later.	
	
We	thank	the	reviewer	for	catching	these	--	we	have	removed	the	extraneous	re-
definitions.	



	
>			l.168:	the	motivation	behind	removing	the	linear	trend	is	obscure.	
>		For	the	constant	value	removal,	I	do	not	see	how	this	affects	the	
>		calculation	of	the	autocovariances.	
Pertains	to	this	sentence:	"We	then	detrend	this	weighted	difference	timeseries	across	
each	flight	leg	–	subtracting	either	a	single	constant	value	or	a	linear	trend	Y(x),	where	x	
is	the	along-track	distance."	
	
The	reviewer	is	correct	that	a	constant	offset	should	not	effect	the	spectrum	returned	
by	a	harmonic	analysis,	insofar	as	the	harmonic	analysis	usually	solves	for	the	average	of	
the	timeseries	as	part	of	the	analysis	such	that	it	does	not	affect	the	harmonic	terms	
(that	is,	the	harmonic	terms	are	solved	for	to	describe	the	variability	of	the	time	series,	
which	is	described	as	deviations	from	the	mean).		This	depends	on	whether	one’s	
particular	routine	does	in	fact	solve	for	the	mean	and	remove	it	or	not,	however.		Our	
routine	does	not,	so	we	are	forced	to	pre-compute	it	and	pre-subtract	it	before	
presenting	the	variability	timeseries	to	the	routine.		Since	the	main	factor	that	we	
address	here	is	whether	removing	the	linear	trend	or	not	makes	a	difference,	we	will	
refer	to	the	case	where	only	the	constant	offset	(but	not	the	linear	trend)	has	been	
removed	as	the	“linear	trend	not	removed”	case.	
	
Linear	trends	are	often	also	removed	from	a	timeseries	of	data	before	performing	a	
correlation	analysis,	in	order	to	avoid	including	the	harmonic	terms	needed	to	describe	
the	trend	in	with	the	terms	needed	to	describe	the	stationary	variability.		Not	removing	
the	trend	in	a	harmonic	analysis	is	equivalent	to	assuming	that	the	trend	repeats	itself	in	
a	sawtooth-like	pattern	when	the	data	span	is	repeated	end-to-end.		The	spectrum	
needed	to	describe	the	trend	is	red:	not	removing	the	trend	before	doing	a	harmonic	
analysis	will	result	in	a	spectrum	in	which	the	lower	frequencies	elements	are	
exaggerated,	making	it	more	difficult	to	assess	the	longer	frequency	terms	that	pertain	
only	to	the	stationary	variability	(i.e.	the	non-trend	part).	
	
To	be	conservative,	we	have	chosen	to	use	the	spectrum	computed	with	the	trend	not	
removed,	giving	the	longer	correlation	length	(20	km	vs.	15	km)	and	resulting	in	less	
information	being	retained	as	the	data	are	averaged	across	a	given	span	length.		We	
would	also	be	comfortable	with	the	more	aggressive	assumption	that	the	trend	should	
be	removed,	however	(giving	the	shorter	~15	km	length	scale).		We	have	chosen	to	
show	results	for	both	cases	to	help	illustrate	the	uncertainty	in	the	calculation	of	the	
length	scale.	
	
Also,	to	be	clearer,	we	have	also	replaced	“Constant	value	removed”	with	“Linear	trend	
not	removed”	in	Figure	1.	
	
>			l.208	and	219:	Kalman	filters	are	used	to	control	fluid	state	variables,	
>	but	not	boundary	conditions	such	as	surface	fluxes.	They	are	outside	the	
>	scope	of	the	discussion,	unless	the	authors	refer	to	simplifications	like	



>	the	Kalman	smoother,	but	in	this	case	the	assimilation	window	covers	
>	periods	much	larger	than	the	observation	error	correlations	lengths	which	
>	are	discussed	here.	
On	line	208:	"Most	estimation	methods	used	in	global	atmospheric	trace	gas	inversion	
work	(Bayesian	synthesis	inversions,	Kalman	filters,	variational	data	assimilation)	
combine	measurement	information	in	different	timespans	as:"	
On	line	219:	"This	assumption	of	uncorrelated	errors	between	different	timespans	is	
built	into	the	derivations	of	these	inverse	methods	explicitly,	for	example	in	the	Kalman	
filter,	in	which	the	dynamical	errors	related	to	propagating	the	measurement	
information	from	time	to	time	are	assumed	to	be	uncorrelated	with	the	measurement	
errors	themselves."	
	
The	reviewer	is	incorrect	in	asserting	that	boundary	conditions	such	as	surface	fluxes	
cannot	be	included	as	control	variables	in	Kalman	filters.		For	the	CO2	flux	estimation	
problem	that	we	are	dealing	with	here,	one	can	envision	a	state	vector	that	includes	
both	the	current	3-D	CO2	field	and	surface	fluxes	in	its	state	vector	to	be	estimated	--	
new	measurements	would	modify	both	the	CO2	field	and	the	surface	fluxes,	the	two	of	
which	would	be	expected	to	be	highly	correlated.		This	would	not	be	as	effective	as	
including	multiple	past	fluxes	in	that	state,	as	well	(a	situation	that	would	lead	to	it	
becoming	effectively	a	fixed-lag	Kalman	smoother),	but	that	does	not	mean	that	it	
would	be	an	illegitimate	model.		So	Kalman	filters	are	certainly	not	outside	the	scope	of	
discussion.		And	the	Kalman	smoother	is	not	a	simplification	of	the	Kalman	filter	--	the	
reverse	is	actually	true	(the	filter	is	a	simplification	of	the	more	general	case	of	the	
smoother,	for	only	one	lag	step	in	the	state).		It	is	not	clear	what	point	is	being	made	
related	to	the	assimilation	window	length.	
	
>		Section	3.1.3:	Some	main	elements	(the	tridiagonal	influence	matrix,	the	statistically-	
>		optimal	inflation	factor)	have	been	shown	years	ago	by	Chevallier	et	al		
>		(https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2007GL030463)		
>	in	a	short	paper.		It	may	have	been	too	brief,	but	was	much	more	accessible,	I	think.	
	
Yes,	we	have	been	remiss	in	not	mentioning	this	reference,	given	the	good	work	that	
Chevallier	has	done	in	characterizing	errors	in	our	flux	inversion	problem	and	given	the	
similar	approach	that	he	took	in	that	reference	to	what	we	have	used	here	(especially	
the	use	of	the	tri-diagonal	covariance	inverse,	but	also	the	use	of	an	inflation	factor,	
even	if	the	precise	form	for	computing	it	was	not	provided	in	that	reference).		This	was	
an	accidental	oversight.		We	hope	to	rectify	that	here	by	adding	the	following	sentence	
after	equation	(17):		“(Note	that	Chevallier	et	al.	(2007)	handled	exponentially-decaying	
correlated	errors	as	well	and	used	a	similar	tridiagonal	matrix	for	the	inverse	of	the	
covariance.)”	
	
	
	
	 	



Response	to	Comments	from	Reviewer	#2:	
	
>	General	comments.	
>	Authors	propose	an	innovative	approach	to	the	construction	of	the	
>	error	covariance	matrixes	for	XCO2	observations	by	OCO-2	satellite.	
>	The	method	relies	on	comparison	of	OCO-2	retrievals	to	the	collocated	
>	XCO2	observations	by	an	airborne	lidar	made	along	ground	tracks	of	
>	several	tenth	of	km	in	length,	and	thus	avoids	use	of	model	simulations	
>	for	estimating	the	amplitude	and	spatial	statistics	of	the	OCO-2	
>	retrieval	errors,	which	constitutes	a	major	innovation	presented	in	
>	this	work.	Authors	derive	spatial	error	correlation	lengths	in	the	
>	range	of	10	to	20	km,	which	is	a	new	result,	based	solely	on	
>	observations.	Authors	consider	2	variants	of	the	spatial	error	
>	correlation	models	that	are	used	to	evaluate	the	errors	and	errors	
>	correlations	for	target	10	second	averages	derived	from	intermediate	
>	2-second	mean	data,	and	propose	ways	to	overcome	related	technical	
>	difficulties.	The	paper	is	well	written	and	can	be	accepted	after	minor	revisions.	
	
>	Detailed	comments	
	
>	Although	the	problems	and	remaining	deficiencies	are	extensively	
>	discussed	in	the	Summary	and	conclusions,	it	is	worth	revisiting	
>	a	couple	of	topics	below:	
	
>		The	paper	would	benefit	from	deeper	look	at	the	problem	with	negative	
>	covariance	elements,	addressed	in	Sect.	3.2.	Similar	problem	with	
>	spatial	correlations	would	appear	with	covariance	matrixes	for	
>	surface	fluxes	errors	in	the	same	inverse	problem	for	which	the	data	
>	uncertainty	matrix	is	constructed.	But	the	problem	of	negative	elements	
>	for	surface	fluxes	is	not	widely	known,	thus	there	is	a	possibility	
>	that	the	problem	here	is	caused	by	an	unrealistic	design	of	the	
>	covariance	matrix,	but	not	by	statistical	properties	of	the	data	in	hand.	
	
Please	see	the	response	above	to	Reviewer	#1’s	comments	on	lines	20	and	331.	
We	argue	there	that	we	are	justified	in	demanding	non-negative	weights	for	the	average	
as	an	additional	constraint	we	impose	upon	the	problem	to	keep	the	average	from	
falling	outside	the	range	of	the	input	values	
	
Reviewer	#2	argues	above	that	a	similar	negative	weight	problem	ought	to	exist	when	
handling	correlated	errors	in	the	fluxes	(as,	for	example,	when	averaging	fluxes	to	a	
coarser	time	resolution,	while	properly	accounting	for	the	off-diagonal	terms	in	the	
error	covariance	matrix),	but	this	has	never	been	described,	suggesting	that	there	
should	not	be	a	problem	with	negative	weights	in	specifying	correlated	data	errors,	
either,	and	that	some	error	has	been	made	in	the	assumptions	used	in	this	paper,	or	in	



the	construction	of	the	covariance	matrix.		While	that	is	not	the	case,	this	analogy	has	in	
fact	been	very	helpful	to	us	in	adjusting	our	thinking,	and	we	thank	the	reviewer	for	
bringing	it	up.	
	
Any	covariance	matrix	with	off-diagonal	terms	(including	the	ones	we	construct	using	
our	correlation	models)	can	potentially	have	the	elements	of	vector	R-11	(the	individual	
weights	In	our	average,	as	we	define	then)	assume	negative	values.		This	would	be	true	
both	of	the	measurement	error	covariance	matrices	that	we	deal	with	in	this	paper,	as	
well	as	the	flux	error	covariance	matrices	that	the	reviewer	brings	up	in	this	comment.		
The	reason	for	this	is	that	there	is	no	fundamental	requirement	in	the	form	of	the	
covariance	matrices	that	requires	each	individual	weight	to	stay	non-negative.		Instead,	
the	key	criterion	is	that	the	sum	of	the	weights	of	the	terms	going	into	the	average	must	
be	greater	than	zero.		In	that	case,	the	denominator	wT1	=		1TR-11	in	(5)	and	(6)	always	
remains	greater	than	zero	and	the	weighted	average	is	always	well-defined.	The	sum	of	
the	weights,	wT1,	stays	positive	whenever	the	covariance	matrix,	R,	is	positive	definite	
(since	then	R-1	is	also	positive	definite,	and	therefore	1TR-11	>	0,	by	definition	of	positive	
definiteness).		Steps	are	always	taken	in	estimation	methods	to	ensure	that	covariance	
matrices	remain	positive	definite,	in	the	face	of	round-off	error	or	noise	driving	them	in	
that	direction:	divergence	occurs	in	the	Kalman	filter,	for	example,	when	this	condition	
is	violated,	and	dynamic	noise	is	added	when	propagating	the	covariance	matrix	forward	
in	time	to	prevent	this	problem.		So	there	is	does	not	need	to	be	a	problem	in	the	design	
of	our	covariance	matrix	for	this	to	happen	–	it	is	a	natural	feature	of	covariance	
matrices	with	off-diagonal	terms.		And	it	(the	existence	of	negative	weights)	ought	to	
occur	when	dealing	with	flux	error	covariance	matrices,	as	well,	even	if	this	is	not	
generally	well	known.	
	
			There	is	no	problem,	as	long	as	the	user	is	satisfied	with	the	net	impact	of	the	data	
(the	mean	data	value	in	the	case	where	the	data	is	averaged	before	assimilating,	or	the	
net	effect	of	the	data	in	the	inversion	if	each	individual	scene	is	assimilated	separately)	
potentially	falling	outside	the	range	of	that	given	by	the	individual	data	when	these	
correlation	models	are	used.		However,	we	do	see	this	as	a	problem	–	we	do	not	want	
our	average	to	fall	outside	the	range	of	our	input	data	--	and	seek	to	mitigate	it,	while	
hopefully	retaining	the	other	advantages	of	the	correlation	models.		To	do	that,	we	must	
impose	an	additional,	more	stringent,	constraint	in	demanding	that	each	individual	
weight	be	non-negative,	rather	than	just	the	sum	of	the	weights.		This	criterion	(that	
each	individual	weight	be	non-negative)	keeps	the	average	value	from	straying	outside	
the	range	of	the	data	being	averaged	–	this	is	certainly	reasonable,	and,	since	it	is	an	
effect	that	is	caused	by	assuming	a	non-zero	error	correlation	model	itself	in	the	first	
place,	it	is	solved	by	adding	an	additional	constraint	outside	of	the	correlation	model.	
We	have	modified	our	text	in	Section	3.2	to	discuss	the	points	raised	above.		We	
continue	to	demand	the	additional	constraint	that	each	individual	weight	be	non-
negative	as	before,	but	the	additional	text	puts	that	decision	into	better	perspective.	
	
>			Unfortunately	authors	do	not	provide	information	on	the	amplitude	of	



>	the	correlating	component	–	what	is	a	fraction	of	the	(OCO-2	–	lidar)	
>	difference	that	is	correlated	at	10	km	or	less	scale.	If	that	is	only	
>	a	fraction	of	the	1.5-2	ppm	of	error	as	found	by	comparison	with	TCCON,	
>	then	the	origin	and	spatial	scales	of	remaining	is	unknown,	thus	it	can	
>	be	treated	as	random	and	uncorrelated.	Bell	et	al	(2020)	notice	that	
>	the	correlations	at	local	scale	are	pretty	low,	they	write:	“We	conclude	
>	from	these	low	correlations	that	for	an	average	scene	with	no	strong	
>	variability	in	the	XCO2	field,	OCO-2	and	the	MFLL	do	not	typically	“see”	
>	the	same	small-scale	features”.	In	practice,	the	adopted	level	of	
>	correlation	coefficients	as	shown	on	Eq.	15	do	not	appear	justified	by	
>	the	comparison	with	MFLL	and	may	possibly	come	from	a	separate	source.	
	
Yes,	the	coefficients	shown	in	(15)	come	from	a	separate	source	–	an	independent	
analysis	make	by	Dr.	Susan	Kulawik	–	we	have	added	a	note	in	the	text	that	she	did	not	
use	the	MFLL	data	in	her	analysis,	but	rather	based	it	in	part	on	TCCON	and	in	situ	
aircraft	observations.		Actually,	we	feel	that	the	+0.3	correlation	coefficient	calculated	
by	Kulawik	for	use	over	land	agrees	quite	well	with	the	correlations	that	we	computed	
using	the	MFLL	data,	shown	in	Figure	1,	when	applied	to	10-second	averages:	the	
integral	of	+0.3	from	0	to	67.5	km	gives	a	value	of	about	200,	compared	to	an	integral	
under	the	blue	line	on	the	left	panel	of	Figure	1	of	something	very	close	to	that	across	
the	same	range	on	the	x	axis.		This	agreement,	based	on	very	different	data	sources,	
gives	us	some	confidence	in	the	results	of	our	MFLL-OCO2	analysis.	
	
The	reviewer	is	correct	that	we	should	have	reported	the	magnitude	of	the	variability	
corresponding	to	the	correlations	we	report.		This	can	be	computed	directly	from	the	
spectrum	shown	in	Figure	1	by	multiplying	the	blue	curve	by	the	normalization	factor	
that	we	have	divided	by	to	get	the	correlation	spectrum.		For	the	case	in	which	we	
remove	the	trend,	that	factor	is	0.84	sigma	when	we	analyze	x_i	/	sigma_i,	and	0.59	
ppm	when	we	analyze	x_i	itself	without	dividing	by	the	associated	uncertainty.		For	the	
case	in	which	we	do	not	remove	the	trend,	the	values	are	1.04	sigma	and	1.003	ppm.		
This	means	that	the	RMS	difference	between	the	MFLL	and	OCO-2	values	is	about	1.0	
ppm	for	the	non-detrended	case,	so	that	the	correlation	coefficient	of	+0.3	associated	
with	separation	distances	of	from	20	to	40	km	is	describing	an	RMS	variability	of	about	
1.04	*	sqrt(0.3)	=	0.57	ppm.		Or	in	terms	of	the	fraction	of	the	variability	described	at	
scales	of	10	km	or	less	that	the	reviewer	asks	about,	anywhere	from	100%	of	the	
variability	at	zero	separation	distance	to	about	sqrt(0.37)=60%	of	the	variability	(in	
terms	of	concentration	difference	instead	of	its	square)	at	a	separation	distance	of	8	km	
(the	first	dot	to	the	right	of	zero	in	Figure	1).		This	is	a	substantial	portion	of	the	full	
variability,	so	we	don’t	think	it	would	be	fair	to	discount	it	as	being	unimportant.		It	is	
also	not	fair	to	discount	it	compared	to	the	RMS	difference	of	1.5	to	2	ppm	(OCO-2	
compared	to	TCCON)	since	that	number	includes	biases	in	both	TCCON	and	OCO-2	that	
would	drop	out	in	any	analysis	of	variability	between	the	two.		The	true	RMS	error	in	the	
OCO-2	data	taken	over	land	is	down	in	the	1.2-1.5	ppm	range	at	the	moment,	so	the	1	
ppm	RMS	difference	between	MFLL	and	OCO-2	is	capturing	about	half	of	that	–	the	



other	half	could	plausibly	be	attributed	to	longer	correlation	scales	than	those	that	can	
be	assessed	here.		We	have	added	text	discussing	the	magnitude	of	the	variability	
associated	with	the	MFLL	–	OCO-2	differences	we	have	analyzed	here.	
	
>	Minor	comments,	technical	corrections:	
	
>	L9		‘Errors	in	the	CO2	retrieval	method	have	long	been	thought	to	be	
>	correlated	at	these	fine	scales’	–	It	would	be	more	accurate/safe	to	
>	say	that	data	are	correlated,	rather	than	the	errors.	
	
By	data,	we	both	mean	retrievals	here.		We	actually	do	mean	to	point	to	correlations	in	
the	errors	rather	than	in	the	data	themselves,	since	the	errors	are	what	are	being	
quantified	in	the	covariance	matrices	we	discuss.		Since	the	data	are	obviously	strongly	
correlated	due	to	their	large	background	(~400	ppm)	and	large	variability	on	seasonal	
and	synoptic	timescales,	it	might	appear	safer	to	only	talk	about	them,	but	that	is	really	
besides	the	point.		We	know	that	the	accuracy	of	the	retrievals	is	strongly	tied	to	the	
accuracy	of	the	assumed	surface	properties,	atmospheric	scatterers,	and	atmospheric	
gases	needed	as	part	of	the	retrieval,	and	the	a	priori	values	assumed	for	these	in	the	
retrievals	all	have	errors,	so	it	is	not	surprising	that	we	should	talk	about	correlations	
between	errors	in	the	retrieved	values	themselves,	rather	than	just	in	their	values.	
	
>	L44	Alternatively,	one	can	call	this	‘summary	value’	an	‘average	value’	
	
Ok,	we	made	that	change.	
	
>	L48	Authors	imply	the	errors	here	correspond	to	model-observation		
>	difference,	and	contributed	by	model	errors	related	to	smoothing	due	
>	to	coarse	model	resolution.	Its	better	to	define	somewhere	above	this	
>	point	what	is	implied	by	‘errors’.	
The	errors	referred	to	here	are	measurement	errors,	more	specifically	errors	between	
the	retrieved	and	true	XCO2	values.		We	think	the	sentence	on	lines	45-46	already	does	a	
good	job	specifying	the	errors	we	are	discussing:	“Whether	the	individual	OCO-2	retrievals	
or	some	coarser-resolution	average	measurement	are	assimilated	into	the	inverse	model,	
correlations	between	the	errors	in	the	individual	CO2	measurements	must	be	considered.”		The		
following	sentences	delve	into	what	factors	cause	errors	in	the	XCO2	retrievals,	and	some	
of	these	factors	do	involve	modeled	variables	used	in	the	retrievals.		We	do	not	get	into	
the	exact	cause	of	those	errors,	because	that	is	not	our	focus	here.	

>	L86	Adding	some	MIP	paper	reference	should	be	useful	here	(eg	Crowell	et	al.	2019).	
	
Yes	it	would	–	we	have	added	a	reference	to	Crowell	et	al.	(2019)	at	the	end	of	this	long	
sentence.	
	
>	L167	Any	rationale	for	detrending	Y	rather	than	X	itself?	



	
Analyzing	the	timeseries	Yi	=	Xi	/	sigmai	instead	of	Xi	itself	is	better,	because	it	places	the	
proper	weight	on	deviations	that	are	large	in	a	statistical	sense	(in	sigma	space)	rather	
than	in	an	absolute	sense.		If	just	Xi	was	analyzed,	it	would	be	dominated	by	large	
deviations	in	places	where	the	measurements	are	less	certain,	and	the	parts	of	the	time	
series	containing	the	most	reliable	data	would	be	de-emphasized.		That	said,	we	also	
performed	the	analysis	directly	on	the	Xi	time	series	and	the	spectrum	did	not	change	
much.		A	note	on	this	has	been	added	to	the	text.	
	
>	L203	As	the	MFLL	data	are	first	aggregated	to	7-9	km	blocks,	it	
>	appears	that	one	needs	to	clarify	here	on	how	the	analysis	would	
>	become	useful	for	finer	scales.	
	
As	noted	here,	because	of	this	initial	aggregation	into	7-9	km	blocks,	scales	finer	than	
this	cannot	be	addressed	by	this	analysis.		To	be	able	to	say	something	at	finer	scales,	
this	blocking	would	have	to	be	done	across	a	shorter	length	scale	--	this	could	be	done	
down	to	the	2.3	km	length	of	an	individual	OCO-2	cross-scan,	at	the	expense	of	
increased	noise	in	the	MFLL	measurements.		Whether	the	best	fit	to	the	spectrum	
would	remain	in	the	15-20	km	range	determined	here	or	would	decrease	would	remain	
to	be	seen.		A	note	to	this	effect	has	been	added	to	the	text.	
	
>	L221	Although	temporally	uncorrelated	errors	are	convenient	for	
>	Kalman	filters,	it	does	seem	to	be	an	excessive	requirement,	need	to	
>	add	a	reference	to	appropriate	text,	if	exists.	
This	sentence	is	being	referred	to:	“This	assumption	of	uncorrelated	errors	between	different	
timespans	is	built	into	the	derivations	of	these	inverse	methods	explicitly,	for	example	in	the	
Kalman	filter,	in	which	the	dynamical	errors	related	to	propagating	the	measurement	
information	from	time	to	time	are	assumed	to	be	uncorrelated	with	the	measurement	errors	
themselves.”		

Kalman	filters	were	designed	originally	for	use	inside	real-time	control	loops,	e.g.,	for	a	
missile,	rocket,	or	statically-unstable	fighter	aircraft.		All	the	information	needed	to	
define	the	estimate	at	a	given	time	is	derived	from	new	measurements	at	that	time	and	
the	previous	estimate	propagated	forward	in	time	with	a	dynamical	model.		The	errors	
between	the	different	values	in	the	new	data	vector	may	be	correlated,	and	the	
dynamical	errors	may	be	correlated,	but	explicit	correlations	between	the	state	
estimates	at	different	times	can	only	be	included	by	adding	the	state	estimates	at	
previous	times	into	the	state	vector	(a	step	that	effectively	turns	the	Kalman	filter	into	a	
fixed	lag	Kalman	smoother).		We	had	added	a	reference	to	Applied	Optimal	Estimation,	
Gelb	ed.,	The	M.I.T.	Press,	1974,	374	pp.	to	support	this.	

	
>	L627	Mistype:	correct	‘Zendolo’	to	‘Zenodo’	
	



Corrected,	thanks	for	catching	that.	
	
>	L660	For	web	document,	need	to	give	url.	
	
Thanks	for	catching	this.		We	have	added	the	link:	
https://cce.nasa.gov/ascends_2015/ASCENDS_FinalDraft_4_27_15.pdf	
	
	


