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Re: Review of WRF­GC (v2.0): online two­way coupling of WRF (v3.9.1.1) and GEOS­Chem (v12.7.2)

for modeling regional atmospheric chemistry­meteorology interactions

May 10, 2021

We thank the three Reviewers for their helpful comments. In response, wemade the following major changes: (1)

expanded the analyses on the impacts of ARI and ACI on regional meteorology and air quality; (2) added sensitivity

simulations to inspect the impacts of ARI and ACI on the simulated Chinese surface PM2.5 concentrations in winter;

and (3) compared the computational performance of one­way and two­way coupled simulations usingWRF­GC v2.0.

We also revised the writing to improve clarity throughout and to keep the manuscript within reasonable length.

We respond to each specific comment in detail below. The referee comments are shown in red italics. Our replies

are shown in black and modified text is shown in blue. The annotated page and line numbers refer to the revised

copy of the manuscript.

1 Reviewer #1

General Comments

The authors developed and presented the WRF­GC model v2.0, an online two­way coupling of the Weather

Research and Forecasting (WRF)meteorological model (v3.9.1.1) and the GEOS­Chem chemical model (v12.7.2).

The main feature of the WRF­GC v2.0 includes aerosol­radiation Interactions (ARI) and aerosol­cloud interac­

tions (ACI). The authors evaluated the sensitivity simulations with different combinations of ARI and ACI over

1



East Asia during January 2015 and July 2016 using WRF­GC v2.0 The manuscript is well structured. The ob­

jective and methodology described in the manuscript are clear. However, some revisions on the results (chapter

4 and 5) are required prior to the recommendation. Please refer to the major comments below.

Major comments:

R1.1 Table 1. Why did the authors conduct the sensitivity experiments with ARI and ACI only on Case Summer?

If possible, please add the additional sensitivity experiments on Case Winter or one­year test.

Thanks for your suggestions. We added three new sensitivity experiments for January 2015 with different com­

binations of chemical feedbacks (Cases ARIw, ACIw, NO_ACRw). We compared and discussed the impacts of ARI

and ACI to simulated regional meteorology and surface air quality in Section 4 and Section 5. We also added Tables

5 and 6 to summarize the performance of the different sensitivity experiments.

Table 4: Configurations of WRF­GC v2.0 experiments in this study

Experiment Case ACRs (Case Summer) Case ARIs Case ACIs Case NO_ACRs
Simulation time (UTC) 2016­06­27 00Z to 2016­07­31 00Z
Microphysics Morrison two­moment (Morrison et al., 2009)
Shortwave radiation RRTMG (Iacono et al., 2008)
Longwave radiation RRTMG (Iacono et al., 2008)
Planetary boundary Layer MYNN2 (Nakanishi and Niino, 2006)
Land surface Noah (Chen and Dudhia, 2001a,b)
Surface layer MM5 Monin­Obukhov (Jimenez et al., 2012)
Cumulus parameterization New Tiedtke (Tiedtke, 1989; Zhang et al., 2011; Zhang and Wang, 2017)
Aerosol­radiation interaction On On Off Off
Aerosol­cloud interaction On Off On Off
Experiment Case ACRw (Case Winter) Case ARIw Case ACIw Case NO_ACRw
Simulation time (UTC) 2015­01­04 00Z to 2015­01­29 00Z
Microphysics Morrison two­moment (Morrison et al., 2009)
Shortwave radiation RRTMG (Iacono et al., 2008)
Longwave radiation RRTMG (Iacono et al., 2008)
Planetary boundary Layer YSU (Hong et al., 2006)
Land surface Noah (Chen and Dudhia, 2001a,b)
Surface layer MM5 Monin­Obukhov (Jimenez et al., 2012)
Cumulus parameterization New Tiedtke (Tiedtke, 1989; Zhang et al., 2011; Zhang and Wang, 2017)
Aerosol­radiation interaction On On Off Off
Aerosol­cloud interaction On Off On Off
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P13­14, L368­370, L378­383, Section 4.1

We next evaluate WRF­GC’s performance in simulating regional meteorology and surface pollutant concentra­

tions. We conduct two control simulations with full aerosol­cloud­radiation interactions using WRF­GC v2.0, one

during January 2015 (Case ACRw) and one during July 2016 (Case ACRs). Table 4 summarizes the setup of our

simulations.

We further conduct sensitivity simulations over China for January 2015 and July 2016with different combinations

of ARI and ACI to investigate the impacts of chemical feedbacks on simulated meteorology and air quality (Table

4). The setup of these sensitivity simulations are identical to the control cases, except ARI and ACI are configured

differently in each sensitivity simulation (Table 4). In Cases NO_ACRs and NO_ACRw, both ARI and ACI are

turned off, i.e., one­way WRF­GC simulations with no chemical feedbacks to meteorology. The Cases ARIs/ARIw

and the Cases ACIs/ACIw simulations include either ARI or ACI, respectively.

P16, L473­476, Section 4.4

Figures 6a and 6b show the observed and simulated (Case ACRw) average LCODs during January 8 to 28, 2015.

The model reproduces the spatial distribution of LCODs observed by VIIRS over China, including in particular the

high LCODs over Southern China. However, the simulated LCOD is considerably lower than the VIIRS LCOD

observations elsewhere in the domain.

P17, L486­496, Section 4.5

Figures 9a and 9b compare the mean SWDOWN observed by CERES and that simulated by WRF­GC (Case

ACRw) during January 8 to 28, 2015. The spatial distribution of the simulated wintertime SWDOWN also agrees

well with the satellite observations, with a spatial correlation coefficient of 0.93 over the domain. The domain­

average observed and simulated SWDOWN are 111 ± 45 W m−2 and 140 ± 55 W m−2, respectively (model NMB

= 25.9%). The overestimation of wintertime SWDOWN is over the Sichuan Basin, the Tibetan Plateau and the
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Southern China, possibly related to the model’s underestimation of AOD and LCOD over these areas in winter.

Figure 6: Mean LCOD from (a) VIIRS observations (monthly mean in during January 2015), (b) the Case ACRw
simulation, and (c) the Case NO_ACRs simulation during January 8 to 28, 2015. Also shown are the differences in
simulated LCOD between (d) Case ACRw and Case NO_ACRw, (e) Case ARIw and Case NO_ACRw, and (f) Case
ACIw and Case NO_ACRw during January 8 to 28, 2015.
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Figure 9: Mean surface downward shortwave radiation (SWDOWN) from (a) CERES observations (monthly mean
in January), (b) the Case ACRw simulation, and (c) the Case NO_ACRw simulation during January 8 to 28, 2015.
Also shown are the differences in simulated mean SWDOWN between (d) Case ACRw and Case NO_ACRw, (e)
Case ARIw and Case NO_ACRw, and (f) Case ACIw and Case NO_ACRw during January 8 to 28, 2015.

P17, L497­502, Section 4.5

Figure 10a and Figure 11a show the good agreement between the simulated and observed surface air temperature

over China during July 2016 (Case ACRs) and during January 8 to 28, 2015 (Case ACRw), respectively. The spatial

correlation coefficients between the observed and simulated surface air temperature are 0.92 (Case ACRs) and 0.93

(Case ACRw), respectively. During July 2016, the simulated and observed surface air temperature averaged over

all sites are 23.7 ± 5.9 ◦C and 24.6 ± 5.0 ◦C, respectively (NMB of ­3.7%). During January 8 to 28, 2015, the

simulated surface air temperature averaged over all sites is 7.2 ± 6.7 ◦C, with a model NMB of ­13.3 % relative to

the observations.
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Figure 11: Comparison of the observed (filled symbols) and simulated (filled contours) mean surface air temperature
from (a) Case ACRw and (b) Case NO_ACRw during January 8 to 28, 2015. Also shown are the differences in
simulated mean surface air temperature between (c) Case ACRw and Case NO_ACRw, (d) Case ARIw and Case
NO_ACRw, and (e) Case ACIw and Case NO_ACRw during January 8 to 28, 2015.

P18, L536­537, Section 5.1

Figures 5 and 6 show the impacts of ARI and ACI on the simulated LCOD in July 2016 and in January 2015,

respectively.

P18, L539­544, Section 5.1

In particular, we find that the inclusion of ACI greatly reduces the simulated LCOD in both seasons; the inclusion

of ACI corrects the high­biased LCODs simulated by Cases NO_ACRs and NO_ACRw, particularly over Central

and Southern China, around Japan and Korea, and along the southern slopes of the Himalayas. In Cases ACRs and

ACRw, the simulated monthly mean CCN concentrations (at 0.1 % supersaturation) averaged from the cloud bottom

to cloud top are 150 cm−3 and 58 cm−3, respectively. However, when ACI is turned off, WRF­GC uses a constant,

high CCN activation rate (250 cm−3 per time step), leading to overestimation of cloud droplet numbers (effectively

around 250 cm−3) and thus LCOD.
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P18, L545, Section 5.1

Figure 8 and 9 show the impacts of ARI and ACI on the simulated SWDOWN in July 2016 and January 2015,

respectively.

P18, L552­561, Section 5.1

In January, the inclusion of ARI reduces the simulated SWDOWN over Eastern China by 8 to 40 W m−2, while

the inclusion of ACI does not significantly affect the simulated SWDOWN.

Figures 10 and 11 compare the simulated mean surface air temperature from the sensitivity experiments during

July 2016 and January 2015, respectively.

In January, the impacts of ARI on surface air temperature are much stronger than the impacts of ACI. Upon closer

inspection, we find that the simulated responses of surface air temperature to ARI and ACI are spatially similar to

the simulated responses of SWDOWN, but with some exception.

P19, L574­579, Section 5.2

Figures 14d,e,f shows the combined and individual impacts of ARI and ACI on the simulated surface PM2.5

concentrations during January 8 to 28, 2015, relative to the simulation when both ARI and ACI are turned off.

Table 6 summarizes the assessment of the simulated surface PM2.5 concentrations against surface measurements.

The inclusion of ARI significantly increases the simulated surface PM2.5 concentrations by 6 µg m−3 to 15 µg

m−3 over parts of Northern and Southern China, and the Sichuan Basin, thereby improving the agreement with

surface observations (Table 6, model versus observation slope = 0.97 in Case ACRw and 0.9 in Case NO_ACRw,

respectively).
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Table 6: Comparison between the PM2.5 and afternoon ozone concentrations simulated by sensitivity experiments

against the surface observations during July 2016 and January 2015

PM2.5: 388 sites over Eastern China [µg m−2]
Mean ± stdev R Slope

Case ACRw 80.8 ± 32.6 0.77 0.97
Case ARIw 81.6 ± 32.6 0.77 0.97
Case ACIw 77.9 ± 30.4 0.78 0.9
Case NO_ACRw 78.8 ± 30.4 0.78 0.9
Afternoon ozone: 426 sites over Eastern China [ppbv]

Mean ± stdev R Slope
Case ACRs 64.2 ± 16.9 0.56 1.33
Case ARIs 64.7 ± 17.1 0.57 1.34
Case ACIs 65.0 ± 17.6 0.54 1.38
Case NO_ACRs 63.6 ± 17.6 0.52 1.38
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Figure 14: Differences in simulated monthly mean afternoon (13:00 to 17:00 local sun time) surface ozone concen­
trations during July 2016 (a) between Case ACRs and Case NO_ACRs, (b) between Case ARIs and Case NO_ACRs,
and (c) between Case ACIs and Case NO_ACRs. Differences of simulated mean PM2.5 concentrations during Jan­
uary 8 to 28, 2015 (d) between Case ACRw and Case NO_ACRw, (e) between Case ARIw and Case NO_ACRw ,
and (f) between Case ACIw and Case NO_ACRw. Stippled grids represent significant differences (two­tail t­test at
5% significance level).

R1.2 Chapter 4.3, 4.4, 4.5, 4.6 (Validation of the simulated AOD, LCOD, surface downward shortwave radiation,

and air temperature). Among the sensitivity simulations with different combinations of ARI and ACI, the Case

ACR (ARI and ACI are both turned on) had the best consistency with the best observed values? Author should

show the model performance evaluation (MPE) in depth prior to the sensitivity experiments. I believe model

sensitivity itself dose not tell many things.

Thanks you for pointing out this lack of clarity. We added Table 5 to validate the control experiments (Cases

ACRs and ACRw) against observations, as well as to compare the performance of each sensitivity experiments in

simulating regional meteorology. We also revised the text to describe the validation of the control experiments against

observations. For all regional meteorological or air quality parameters examined in this paper, the simulations with
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both ARI and ACI consistently showed best agreement with the observations.

P18, L534­544, Section 5.1

Table 5 summarized the comparison between the monthly mean meteorological variables simulated by the sen­

sitivity experiments and the observations.

In both seasons, the simulated LCODs over Eastern China agree best with the VIIRS observations when ARI

and ACI are both turned on (Cases ACRs and ACRw), compared to the sensitivity simulations when ARI or ACI, or

both, are turned off (Table 5).

In Cases ACRs and ACRw, the simulated monthly mean CCN concentrations (at 0.1 % supersaturation) averaged

from the cloud bottom to cloud top are 150 cm−3 and 58 cm−3, respectively. However, when ACI is turned off, WRF­

GC uses a constant, high CCN activation rate (250 cm−3 per time step), leading to overestimation of cloud droplet

numbers (effectively around 250 cm−3) and thus LCOD.

P18, L546­547, Section 5.1

Again, the simulated SWDOWN over China are most consistent with EPIC­derived and CERES observations,

in terms of magnitudes and spatial correlations, when both ARI and ACI are turned on (Table 5).

P19, L552­554, Section 5.1

In January, the inclusion of ARI reduces the simulated SWDOWN over Eastern China by 8 to 40 W m−2, while

the inclusion of ACI does not significantly affect the simulated SWDOWN.

P19, L556­558, Section 5.1

Again, the inclusion of both ARI and ACI leads to best agreement between the observed and simulated surface

air temperature in both seasons (Table 5).
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Table 5: Comparison of the simulated liquid cloud optical depth (LCOD), surface downward shortwave radiation

(SWDOWN), and surface temperature (T2) from sensitivity experiments against satellite and surface observations

during July 2016 and January 2015

Case
ACRs

Case
ARIs

Case
ACIs

Case
NO_ACRs

Case
ACRw

Case
ARIw

Case
ACIw

Case
NO_ACRw

LCOD over Eastern China (eastward of 100 ◦E) against VIIRS observations
Mean ± stdev 13.0 ±

8.6
22.1 ±
13.0

12.5 ±
8.1

21.8 ±
12.4

9.8 ±
10.4

17.3 ±
18.7

9.6 ±
10.4

17.1 ±
18.6

R 0.64 0.65 0.60 0.62 0.48 0.34 0.46 0.33
RMSE 8.4 10.9 8.7 10.7 15.2 18.4 15.4 18.5
SWDOWN [W m­2] over China against EPIC­derived observations (July) and CERES observations (January)
Mean ± stdev 281± 48 274 ±

49
287 ±
49

278± 51 140± 55 139± 55 144± 57 143± 56

R 0.73 0.65 0.65 0.57 0.93 0.92 0.91 0.9
RMSE 33.7 40.4 37.5 43.5 36.3 35.4 41.2 40.4
T2 [◦C] over China against surface measurements (215 sites in July, 150 sites in January)
Mean ± stdev 23.7 ±

5.9
23.7 ±
6.1

23.8 ±
6.0

23.8 ±
6.0

7.2± 6.7 7.1± 6.7 7.4± 6.7 7.3± 6.6

R 0.92 0.93 0.92 0.92 0.93 0.93 0.93 0.93
RMSE 2.52 2.57 2.56 2.57 2.7 2.8 2.6 2.7

R1.3 Overall, this manuscript is missing interpretations of key physical/chemical processes related to ARI and

ACI in the WRF­GC model v2.0. In chapter 5, there is no explanation on the impacts of ARI and ACI on the

meteorological factors and air pollutants.

Thank you for pointing out this omission. We added diagnostic figures of the impacts of ARI and ACI, either

individually or combined, on surface downward shortwave radiation (Figures 8 and 9), surface air temperature (Fig­

ures 10 and 11), wintertime boundary layer height (Figure 12), wintertime surface PM2.5 and summertime afternoon

surface ozone (Figure 14), and the summertime net chemical tendency of boundary­layer ozone (Figure 15). We also

significantly expanded the discussion (Section 5) of the mechanisms by which ARI and ACI modulated air temper­

ature and surface radiation, and subsequently affected the boundary layer height in winter and the ozone chemical

production in summer.

P19­20, L580­587, Section 5.2
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Figures 12c,d,e show the combined and individual impacts of ARI and ACI on the simulated PBLH during

January 8 to 28, 2015, relative to the simulation when both ARI and ACI are turned off. We find that the simulated

response of surface PM2.5 to ARI is spatially consistent with the simulated responses of SWDOWN, surface air

temperature, and PBLH to ARI. Over the Sichuan Basin and parts of Northern and Central China, the strong aerosol

extinction decrease the SWDOWN and surface air temperature, resulting in lower PBLH and a possibly more stable

conditions within the PBL. The shallower and more stable PBL suppresses the dispersion of air pollutants, thus

increasing surface PM2.5 concentrations. These findings are consistent with previous studies (Wang et al., 2014; Li

et al., 2017; Zhang et al., 2018), although other feedback mechanisms may also play a role.

P20, L589­596, Section 5.3

Figures 14a,b,c show the combined and individual effects of the ARI and ACI on the simulated mean surface

afternoon ozone concentrations in July 2016, relative to the Case NO_ACRs experiment. Overall, the inclusion of

ARI and ACI in WRF­GC slightly reduces the model’s positive bias in simulated surface ozone concentration (Table

6; model versus observation slope is 1.33 in Case ACRs and 1.38 in Case NO_ACRs, respectively). By including

both ARI and ACI, the simulated July afternoon surface ozone concentration decrease by 2 to 10 ppbv over Henan

Province, the Sichuan Basin, and parts of Northeastern China. Over the YRD area and Eastern Inner Mongolia,

turning on ARI and ACI leads to increased afternoon surface ozone concentrations by up to 10 ppbv. These results

are due to the spatially­varied responses of surface ozone to ARI and ACI, respectively (Figure 14).

P20, L597­612, Section 5.3

We further diagnose the net chemical mass tendency of the simulated ozone in the boundary layer over China

during July 2016, to elucidate the mechanisms by which ARI and ACI affect boundary­layer ozone. The net chemical

mass tendency (unit: kg s−1) is the net rate of change of boundary­layer ozone mass due to chemical production and

loss processes over each model grid, and its responses to ARI and ACI are shown in Figure 15. We find that the

spatial responses of the net chemical mass tendency of ozone to ARI and ACI are very similar to the simulated

responses of surface afternoon ozone, SWDOWN, and surface air temperature to these chemical feedbacks (Figures
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8, 10, and 14). This indicates that ARI and ACI affect surface ozone mainly by modulating SWDOWN and surface

air temperature, which in turn affect the emissions of biogenic isoprene and the subsequent chemical production of

ozone in the boundary layer. For example, ARI lead to increased surface air temperature over the YRD area, while

both ARI and ACI lead to increased SWDOWN over that area. These meteorological responses lead to enhanced

local biogenic isoprene emissions and increased surface ozone. Over the Beijing­Tianjin­Hebei (BTH) area of China,

where summertime ozone pollution is most severe (Lu et al., 2018), the effects of ARI and ACI are complex. ARI and

ACI both reduce the local SWDOWN (Figures 8e,f), while ARI increases surface air temperature over southern BTH

and ACI suppresses surface air temperature over the entire BTH (Figures 10d,e). The combined effect of chemical

feedbacks is to increase surface ozone over northern BTH, while decreasing surface ozone over southern BTH. ARI

and ACI may also modulate other meteorological variable to affect surface ozone, and such possibilities warrants

further investigation.
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Figure 12: Comparison of the observed (filled symbols) and simulated (filled contours) mean planetary boundary
layer heights (PBLH) at 20:00 local time (12:00 UTC) from (a) Case ACRw and (b) Case NO_ACRw during January
8 to 28, 2015. Also shown are the differences in simulated PBLH at 20:00 local time (12:00 UTC) between (c) Case
ACRw and Case NO_ACRw, (d) Case ARIw and Case NO_ACRw, and (e) Case ACIw and Case NO_ACRw during
January 8 to 28, 2015.
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Figure 15: Mean simulated chemical mass tendency (unit: kg s−1) for afternoon boundary­layer ozone from (a) Case
ACRs, (b) Case ARIs, and (c) Case ACIs during July 2016. Also shown are the differences in simulated chemical
mass tendencies for afternoon boundary­layer ozone between (d) Case ACRs and Case NO_ACRs, (e) Case ARIs
and Case NO_ACRs, and (f) Case ACIs and Case the NO_ACRs in July 2016.

R1.4 Considerations of ARI and ACI in the WRF­GC v2.0 can alter a variety of meteorological factors in addition

to the surface temperature and shortwave radiation as mentioned in the manuscript. Authors should add the

analysis for the impacts of ARI and ACI on other meteorological factors, such as planetary boundary layer,

relative humidity, and so on.

Thanks for your suggestions. We diagnosed the response of wintertime surface PM2.5 to ARI through modulation

of surface air temperature and PBLH (Section 5.2), as well as the response of summertime surface afternoon ozone

to through modulation of radiation and temperature (Section 5.3). We also pointed out that ARI and ACI may also

affect other meteorological variables to alter air quality, and that such possibilities may be further investigated using

WRF­GC.

P19, L566­572, Section 5.1

The simulated PBLH are also chemically­sensitive, especially in winter. Figure 12 compare the simulated mean
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PBLH at 20:00 local time (12:00 UTC) from the sensitivity experiments during January 8 to 28, 2015. The simulated

PBLH fromCase ACRw (462± 176m) better agrees with the observations (448± 129m), compared to the simulated

PBLH from Case NO_ACRw (491 ± 195 m). We find that the inclusion of ARI reduces the simulated PBLH

throughout Eastern China, particularly over the Sichuan Basin. This response is consistent with previous studies

that showed the strong aerosol extinction in winter has a positive feedback to surface PM2.5 concentration via the

compression of PBLH (Li et al., 2017; Zhang et al., 2018; Miao and Liu, 2019).

P20, L580­587, Section 5.2

Figures 12c,d,e show the combined and individual impacts of ARI and ACI on the simulated PBLH during

January 8 to 28, 2015, relative to the simulation when both ARI and ACI are turned off. We find that the simulated

response of surface PM2.5 to ARI is spatially consistent with the simulated responses of SWDOWN, surface air

temperature, and PBLH to ARI. Over the Sichuan Basin and parts of Northern and Central China, the strong aerosol

extinction decrease the SWDOWN and surface air temperature, resulting in lower PBLH and a possibly more stable

conditions within the PBL. The shallower and more stable PBL suppresses the dispersion of air pollutants, thus

increasing surface PM2.5 concentrations. These findings are consistent with previous studies (Wang et al., 2014; Li

et al., 2017; Zhang et al., 2018), although other feedback mechanisms may also play a role.

R1.5 The results and discussion are too general. What would be benefits of the on­line model applications? If the

purpose of the model update or development is to simulate the regional­scale interaction between meteorology and

air pollutants, the modeling capability should be thoroughly validated as if other regional photochemical models

conventionally do. Model performance evaluations against the surface measurements of the criteria air pollutants

including PM2.5 and O3 are recommended. After that, model sensitivities with or without the ARI and ACI can

show the results of the interactions.

Thanks for your suggestions. We added Tables 5 and 6 (shown in R1.1) to validate the control experiments (Cases
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ACRs and ACRw) against observations, as well as to compare the performance of each sensitivity experiments in

simulating regional meteorology and chemistry. We also revised the text to describe the validation of the control

experiments against observations. We compared and discussed the impacts of ARI and ACI to simulated regional

meteorology and surface air quality in Section 5. We also added Tables 5 and 6 to summarize the performance of the

different sensitivity experiments. The validation for meteorological variables is shown in R1.2.

P19, L575­579, Section 5.2

Table 6 summarizes the assessment of the simulated surface PM2.5 concentrations against surface measurements.

The inclusion of ARI significantly increases the simulated surface PM2.5 concentrations by 6 µg m−3 to 15 µg

m−3 over parts of Northern and Southern China, and the Sichuan Basin, thereby improving the agreement with

surface observations (Table 6, model versus observation slope = 0.97 in Case ACRw and 0.9 in Case NO_ACRw,

respectively).

P20, L590­594, Section 5.3

Overall, the inclusion of ARI and ACI inWRF­GC slightly reduces the model’s positive bias in simulated surface

ozone concentration (Table 6; model versus observation slope is 1.33 in Case ACRs and 1.38 in Case NO_ACRs,

respectively). By including both ARI and ACI, the simulated July afternoon surface ozone concentration decrease

by 2 to 10 ppbv over Henan Province, the Sichuan Basin, and parts of Northeastern China.

R1.6 Specific comments and typos:

Line 407: Add a comma before the “2015” in ‘during January 8 to 28, 2015’.

Line 414 : at 550 nm in July

Line 474 : Please revise the subscripts. (for example, PM2.5 à PM2.5)

Corrected. Thank you for pointing out the mistakes.

P15, L430, Section 4.3
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Figure 3a and 3c compare the AOD at 550 nm wavelength over East Asia as observed by VIIRS and as simulated

by WRF­GC (Case ACRw) during January 8 to 28, 2015.

Figures 3b and 3d compare the observed and simulated (Case ACRs) mean AOD at 550 nm during July 2016.

P18, L518­519, Section 4.6

WRF­GC successfully captures the high PM2.5 in Central China and over the Sichuan Basin but underestimates

the PM2.5 concentrations over the NCP.
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2 Reviewer #2

This is a well­organized and written manuscript. Built on their previous work published on GMD, the authors

further developed WRF­GC to enable feedbacks of aerosol­cloud and aerosol­radiation interactions. The latest

model edition also supports the nest­domain capability. Both GEOS­Chem and WRF models are actively devel­

oped and embrace a large user base worldwide. Coupling them together is a great contribution to the modeling

community. This reviewer recommends publication after minor revisions listed below.

R2.1 In the text, spell out all the acronyms, e.g., WRF­GC, CMAQ, COSMO, SSA, and many more, when they

first appear.

Thank you for pointing out the omissions. We now spell out all acronyms when they first appear. For example:

P2, L39­44, Introduction

A number of two­way models are coupled using the online­access approach, including for example the online

WRF­CommunityMultiscale Air Quality model (WRF­CMAQ) (Byun and Schere, 2006;Wong et al., 2012; Yu et al.,

2014), the Global Environmental Multiscale­Air Quality model (GEM­AQ) (Kaminski et al., 2008), the Consortium

for Small­ScaleModelling­Multiscale Chemistry Aerosol Transport model (COSMO­MUSCAT) (Wolke et al., 2004;

Renner and Wolke, 2010), and the Integrated Forecast System­Model for Ozone And Related Tracers model (IFS­

MOZART) (Flemming et al., 2009).

P7, L181­182, Section 2.2.2

In WRF, two shortwave radiation schemes are coupled to prognostic aerosol information: the Rapid Radiative

Transfer Model for Global Circulation Model (RRTMG) shortwave radiation scheme (Iacono et al., 2008) and the

Goddard shortwave radiation scheme (Chou and Suarez, 1994).

P7, L193, Section 2.2.2

The AOD is interpolated or extrapolated using the Ångström exponent method (Eck et al., 1999), while the single

scattering albedo (SSA) and the asymmetry factor are linearly interpolated.
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P12, L331­332, Section 3.5

The emission module of GEOS­Chem, the Harmonized Emissions Component (HEMCO), has also been updated

to fully objectify its memory space (Keller et al., 2014; Lin et al., 2021).

R2.2 Line 45, replace “advances” with “advancement”.

Changed as suggested. Thank you.

P2, L45­47, Introduction

As such, these stand­alone CTMsmay be independently developed by awider atmospheric chemistry community,

and the resulting CTM advancement may be quickly incorporated into the coupled model via the online­access

structure (Yu et al., 2014).

R2.3 Table 1, DST4 should be “dust bin 4”.

Corrected as suggested. Thank you.

P46, Table 1
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Table 1: Aerosol types in WRF­GC and their prescribed properties and size distributions

Name Species Molecular
weight
(g·mol−1)

Density
(g · cm−3)

Hygroscopicity
(unitless)

Log­normal
distribution
(Geometric mean
dry diameter, µm)

Log­normal
distribution
(Geometric stan­
dard deviation,
unitless)

SO4 sulfate 96 1.7 0.5 0.14 1.6
NIT nitrate 62 1.8 0.5 0.14 1.6
NH4 ammonium 18 1.8 0.5 0.14 1.6
OCPI hydrophilic primary OC 12 1.3 0.2 0.14 1.6
OCPO hydrophobic primaryOC 12 1.3 0.2 0.14 1.6
BCPI hydrophilic BC 12 1.8 1.00E­06 0.04 1.6
BCPO hydrophobic BC 12 1.8 1.00E­06 0.04 1.6
SALA accumulation­mode sea

salt (radius 0.1 ­ 0.5 µm)
31.4 2.2 1.16 0.18 1.5

SALC coarse­mode sea salt
(radius 0.5 ­ 4.0 µm)

31.4 2.2 1.16 0.8 1.8

DST1 dust bin 1
(radius 0.1 ­ 1.0 µm)

29 2.5 0.14 – –

DST2 dust bin 2
(radius 1.0 ­ 1.8 µm)

29 2.65 0.14 – –

DST3 dust bin 3
(radius 1.8 ­ 3.0 µm)

29 2.65 0.14 – –

DST4 dust bin 4
(radius 3.0 ­ 6.0 µm)

29 2.65 0.14 – –

SOAS SOA (simple) 150 1.5 0.14 0.14 1.6

R2.4 Line 389, change “over than 440 nm” to “over 440 nm”.

Corrected as suggested. Thank you.

P14, L410­412, Section 4.2.2

Holben et al. (1998) showed that the uncertainty of AERONET AOD under cloud­free condition was less than

± 0.01 for wavelengths over 440 nm.

R2.5 Line 400, why not include all the monitoring sites within a grid cell for model evaluation?

Thank you for the suggestion. We now calculate the averaged concentrations of PM2.5 and ozone of all sites

within a model grid cell for comparison with model simulations.We update the Figure 13 and validations as follows:

21



P15, L419­421, Section 4.2.3

For comparison between observations andmodel results, we calculate the average PM2.5 and ozonemeasurements

in a WRF­GC grid. In all, we compare model results to summertime ozone observations at 562 sites and wintertime

PM2.5 at 513 sites, respectively.

P18, L515­529, Section 4.6

WRF­GC reproduces the observed spatial distributions of PM2.5 over Eastern China (eastward of 108◦ E); the

spatial correlation between the observed and simulated PM2.5 concentrations is 0.77. The simulated mean PM2.5

concentration over Eastern China (80.8 ± 32.6 µg m−3) is 9.3% lower than the observations (89.1 ± 31 µg m−3).

WRF­GC also underestimates PM2.5 over Western China, likely reflecting a low­bias in the model dust, also

seen in the simulated AODs. WRF­GC also reproduces the temporal variation of hourly PM2.5 during January 8 to

28, 2015. The temporal correlation coefficient between the observed and simulated hourly PM2.5 averaged over all

Chinese sites is 0.77.

WRF­GC reproduces the higher surface ozone concentrations over Northern and Central China, the relatively

lower ozone concentrations near the South China coast, and the ozone hotspots over the megacity clusters (Beijing­

Tianjin­Hebin, Yantze River Delta, and the Pearl River Delta). However, the surface afternoon ozone concentrations

simulated byWRF­GC (64± 17 ppbv) is high­biased compared to the observations (51± 13 ppbv). The normalized

mean bias of the simulation is 25.6%. The overestimation of surface ozone concentrations is most severe over Henan

and Shanxi provinces in Northern China. The temporal correlation coefficient between the observed and simulated

hourly afternoon ozone concentrations averaged over all sites is 0.67.
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Figure 13: (a) Mean observed (symbols) and simulated (Case ACRw, filled contours) PM2.5 concentrations during
January 8 to 28, 2015; (b) mean observed (symbols) and simulated (Case ACRs, filled contours) afternoon surface
ozone concentrations (13:00 to 17:00 local time) during July 2016.

R2.6 Figure 3: it appears that WRF­GC severely underestimates monthly AOD across most of the domain in

comparison with the VIIRS observations. What are the possible reasons? Is it mainly due to emissions, or mete­

orology (e.g., humidity)? A little in­depth analysis may provide useful information for both model improvement

and satellite retrieval.

Thanks for pointing out this issue. Underestimation of satellite­based AOD observations by regional models is

not uncommon (Gao et al., 2014; Gan et al., 2015; Xing et al., 2015; Zhang et al., 2016). Detailed investigation

and remediation of the cause are certainly important but beyond the scope of the current manuscript. We expanded

the text to raise three possible reasons based on previous studies: (1) incorrect assumption about the mixing state of

aerosols in the model, (2) underestimation of aerosols in the model, and (3) high­bias in the satellite AOD products.

We will explore the causes for the biases of AOD in a future work. We revised the manuscript as follows:

P16, L453­463, Section 4.3

Previous comparisons of AODs simulated by regional models against satellite observations also often found

spatial consistency but significant low biases in the models (Gao et al., 2014; Gan et al., 2015; Xing et al., 2015;
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Zhang et al., 2016). Curci et al. (2015) showed that the uncertainties for the model AODs are associated with the

assumed mixing state, refractive indices, and hygroscopicity of aerosols. In particular, assumptions of the aerosol

mixing state can lead to 30% to 35% uncertainty on the simulated AOD (Fassi­Fihri et al., 1997; Curci et al., 2015).

In addition, the WRF­GC model may have underestimated the abundance of aerosols over China, as indicated by the

slight underestimation of surface PM2.5 concentrations shown below (Section 4.6). On the other hand, several studies

showed that the regional distributions of AOD observed by VIIRS and MODIS are consistent with the AERONET

measurements, but both VIIRS and MODIS observations are high­biased compared to AERONET observations over

Asia (Wang et al., 2020). This high­bias in the satellite­observed AOD may partially account for the discrepancy

between the simulated and satellite AODs. The cause of the discrepancy between observed and simulated AOD

should be further investigated in future studies.

R2.7 Figure 4: why not converting the modeled AOD to the one at the observed wavelength for an apple­to­apple

comparison?

Thank you for the suggestion. We now interpolate the simulated spectral AODs at 400 nm, 600 nm, and 999 nm

to the observed spectral AODs at 500 nm, 675 nm, and 1020 nm based on the Ångström exponent method (Eck et al.,

1999). This revision does not have a large impact on the temporal correlation coefficients between the simulated and

observed spectral AODs. We updated the Figure 4 and revised the text as follows:

P15, L445­450, Section 4.3

At each site, we interpolate the simulated spectral AODs at 400 nm, 600 nm, and 999 nm to the AERONET

observation wavelengths of 500 nm, 675 nm, and 1020 nm, respectively, using the Ångström exponent method (Eck

et al., 1999).

The temporal correlation coefficients between the observed and simulated AODs at all sites and wavelengths

range between 0.55 and 0.86, except for the correlation coefficient between the observed and simulated 500 nm
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AOD in Beijing (0.44).

Figure 4: Comparison of simulated daily AOD (Case ACRw) against the AERONET daily AOD observations at 500
nm, 675 nm and 1020 nm at 4 sites during January 08 to January 28, 2015: (a) Beijing, (b) Xianghe, (c) Xuzhou,
and (d) Hong Kong. Also shown are the normalized mean biases (NMBs) and the temporal correlation coefficients
(r) between the simulated and observed spectral AODs.

R2.8 Line 451, add “cloud” after “stratocumulus or stratus”.

R2.9 Line 474, change “2.5” in PM2.5 from superscript to subscript.

R2.10 Line 550, change “WRF­GC’se” to “WRF­GC’s”.

Corrected. Thank you for pointing out these mistakes.

P16, L477­479, Section 4.4

Satellite retrievals of cloud effective radii often show large biases, except over areas dominated by liquid stra­

tocumulus or stratus cloud (Yan et al., 2015; Witte et al., 2018).

P18, L517­519, Section 4.6
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WRF­GC successfully captures the high PM2.5 in Central China and over the Sichuan Basin but underestimates

the PM2.5 concentrations over the NCP.

P21, L624­626, Section 6

We developWRF­GC’s nested­domain capability by improving the State Management Module and the memory­

management in GEOS­Chem (implemented as of GEOS­Chem version 12.4.0).

R2.11 27 km resolution has been applied in the study for model evaluation. This resolution is too coarse to resolve

cloud processes to which the ACI is important. Some discussion may be necessary to clarify this.

Thanks for pointing out the issue. Our simulations are conducted at a typical meso­scale resolution (27 km),

with the cumulus parameterization (new Tiedtke) and the cloud microphysical scheme (Morrison two­moment) both

turned on. Most meso­scale simulations of ACI are configure this way and thus consider only the feedback of

aerosols to large­scale microphysics but do not explicity simulate the impacts of aerosol of sub­grid convective

clouds (e.g., Wu et al. (2011); Zhao et al. (2017)). Wu et al. (2011) previously compared model simulations at 36­km

resolution (with aerosol­sensitive large­scale microphysics and aerosol­insensitive cumulus parameterization) and at

4­km resolution (with only aerosol­sensitive large­scale microphysics). They found that the simulated sensitivity of

clouds and precipitation to aerosols are similar in the meso­scale (36­km) and cloud­resolving (4­km) simulations.

We revised the manuscript to clarify this.

P6, L175­180, Section 2.2.2

Most meso­scale simulations of ACI consider only the feedback of aerosols to large­scale microphysics but do

not explicitly simulate the impacts of aerosol on sub­grid convective clouds (e.g., Wu et al. (2011); Zhao et al.

(2017)). Also, most of the cumulus parameterization schemes in the standard WRF model (v3.9.1.1) do not respond

explicitly to prognostic aerosol information. The only exception is the Grell­Freitas Ensemble scheme (Grell and

Freitas, 2014), which parameterizes the conversion of cloud water to rain water as a function of prognostic cloud
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condensation nuclei (CCN) number. The Grell­Freitas Ensemble scheme will be supported in a future version of

WRF­GC.

R2.12 The ARI and ACI have been specifically linked to RRTMG scheme andMorrison two­moment microphysics

scheme, respectively, in the application. Have the authors considered a more generalized method so that they can

easily link to other radiation and microphysics schemes available to WRF?

Thanks for pointing out the lack of clarity. Our treatment of prognostic aerosol information in theWRF­GC Cou­

pler for ARI and ACI calculations are already abstracted and generalized. These treatments in the WRF­GC Coupler

can be easily applied to any other radiative and microphysical schemes that consider prognostic aerosol information.

However, currently in theWRFmodel, only a few radiative and microphysical schemes can ingest prognostic aerosol

information. All of these schemes (RRTMG shortwave and longwave, Goddard shortwave, Morrison two­moment

microphysics, and Lin et al. microphysics) are supported by WRF­GC. We revised the text to clarify.

P6, L172­175, Section 2.2.2

Only a few radiative transfer and microphysics schemes in WRF are currently coupled to prognostic aerosol

information, and WRF­GC v2.0 supports these existing schemes. However, our treatments of aerosol information

in the two­way WRF­GC Coupler are abstracted and generalized, such that the Coupler may be extended to support

other radiative and microphysical schemes in WRF in the future.

R2.13 Has WRF­GC already been included in the community WRF release? Or will it be included in the standard

WRF release in the near future?

Thank you for pointing out the lack of clarity. WRF­GC, including its parent models and the Coupler (v2.0), is

open­source and freely accessible fromGitHub. WRF­GC has not been included in the standardWRF release, mainly
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because the GEOS­Chem model is independent of WRF and is separately released. We revise the Code availability

section to more clearly describe how to access the WRF­GC (v2.0) code.

P21, L641, Code availability

WRF­GC is free and open­source (http://wrf.geos-chem.org). The WRF­GC v2.0 Coupler can be down­

loaded fromGithub (https://github.com/jimmielin/wrf-gc-release, last accessed: May 9, 2021). The two

parent models, WRF and GEOS­Chem, are also open­source and can be obtained from their developers at https:

//github.com/wrf-model/WRF (last accessed: May 9, 2021) and http://www.geos-chem.org (last accessed:

May 9, 2021), respectively. The version of WRF­GC (v2.0) described in this paper supports WRF v3.9.1.1 and

GEOS­Chem v12.7.2 and is permanently archived at https://github.com/jimmielin/wrf-gc-pt2-paper-

code-nested (last accessed: December 27, 2020) (DOI: 10.5281/zenodo.4395258). TheWRF­GC code used for the

simulations described in Sections 4 and 5 is permanently archived at https://github.com/jimmielin/wrf-gc-

pt2-paper-code (last accessed: December 19, 2020) (DOI: 10.5281/zenodo.4362624).
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3 Reviewer #3

The paper presents a new online two­way coupled model WRF­GC v2.0 based on WRF meteorological model

coupled with the GEOS­Chem chemical model including aerosol­radiation interactions (ARI) and aerosol­cloud

interactions (ACI) based on bulk aerosol mass and composition, and nesting capability for high­resolution simu­

lations. The authors also analyze chemical feedbacks to meteorology considering ARI and ACI mechanisms.

The paper is interesting and can be suitable for publication, but several comments need to be improved and

clarified.

R3.1 The coupling structure modular, which allows the two parent models to be run off­line or online. This is

definitely an advantage. However, it is difficult to classify this model as online­integrated coupled model. Accord­

ing to the definitions (Baklanov et al., 2014) it is still online­access coupling model, like WFR­CMAQ, because

the equations of the meteo and chemical transport parts are solved separately, not on the same grid, not simul­

taneously in each grid­cell and not on each time step (at least it is not clear from the model description). So, in

such way of coupling it is difficult to guarantee the consistency and mass­conservation. Besides, most probably

the convection numerical schemes are different and not consistent in WRF and GEOS­Chem models.

Thank you for pointing out the lack of clarity in our original text. Actually, in the WRF­GC model, grid­scale

advections of meteorological variables and chemical constituents are calculated with the same transport scheme; they

are both performed byWRFmodel, on the same grid and at the same time. This is because the GEOS­Chemmodel is

structured into modular units of atmospheric columns (Long et al., 2015; Eastham et al., 2018; Lin et al., 2020), which

separates the calculation of grid­scale advection of chemical species from other chemical processes. When coupled

to the dynamical models, such as the case in WRF­GC, the GEOS­Chem column model only performs convective

transport, dry deposition, wet scavenging, emission, boundary layer mixing, and chemistry calculations within the

vertical column. These processes are grid­independent in horizontal direction. In addition, inWRF­GC the horizontal

resolution and location of GEOS­Chem vertical columns are managed by WRF, such that the meteorological and
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chemical processes are solved on the same horizontal grid through operator­splitting (Baklanov et al., 2014). This

treatment is exactly the same as that in the WRF­Chem model (Lin et al., 2020). Therefore, the WRF­GC model

maintains mass­conservation and consistency for advection of meteorological variables and chemical species.

It is true that the convective mixing and PBL mixing schemes are not consistent in WRF and GEOS­Chem. The

sub­grid vertical transports of chemical species, including convective transport (Allen et al., 1996; Wu et al., 2007)

and boundary layer mixing (Lin and McElroy, 2010) are performed by GEOS­Chem and driven by WRF­simulated

meteorological variables. More research is needed to investigate the impacts of this discrepancy on the two­way

coupled WRF­GC model.

We revised the manuscript to more precisely describe the model framework of WRF­GC:

P4, L89­98, Section 2.1

AWRF­GC simulation is initialized and managed by WRF, which sets the global clock, dynamical and chemical

time steps, domain, horizontal resolution, vertical coordinates, as well as initial/boundary conditions. In particular,

the 3­D grid system is determined by WRF and is fully adopted by the GEOS­Chem chemical module in units

of atmospheric columns. At each dynamical time step, WRF performs dynamical and physical calculations. WRF

calculates the grid­scale advection of meteorological variables and chemical species using the same transport scheme

(Wicker and Skamarock, 2002), on the same grid system, and at the same time steps, ensuring mass­conservation

of the chemical species. At each chemical time step, the meteorological and chemical information is passed from

WRF to GEOS­Chem through the WRF­GC Coupler. Then, the GEOS­Chem column model is called to perform

convective mixing, dry deposition, emissions, planetary boundary­layer mixing, gas and aerosol chemistry, and wet

scavenging (except advection), in this order, within each atmospheric column at WRF­specified horizontal locations

(Lin et al., 2020).

R3.2 From other side, the model uses a coupler for data transfer from one model to other. Transfer of 3D data

on each time step for each grid­cell will take a lot of time, that makes the modelling system substantially slower
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in comparison with the fully online integrating approach. For example, ECMWF demonstrated that when they

switched from the online­access version IFS­MOZART to the online integrated C­IFS (Huijnen et al., 2010), the

modeling system became much faster.

So, it would be important to demonstrate the consistency tests and the effectiveness of the suggested way of

the coupling.

Thank you for pointing this out. We added Section 3.6 to diagnose the computational performance of WRF­GC

v2.0. We found that the increase in walll time in the two­way simulations relative to the one­way simulation is only

slight (< 12%):

P13, L346­354, Section 3.6

We conduct two­day (June 27 to 29, 2019) simulations using the WRF­GC (v2.0) model and the GEOS­Chem

Classic nested­grid model (v12.7.2), to compare their computational performance. Simulations with both models are

configured with 245×181 atmospheric columns over China. TheWRF­GC simulations have 50 vertical levels, while

the GEOS­Chem Classic nested­grid simulation has 47 vertical levels. The WRF­GC model simulates meteorology

online (2­min dynamical time step), while the GEOS­Chem Classic nested­grid simulation reads archived GEOS­FP

assimilated meteorological dataset (https://gmao.gsfc.nasa.gov/GMAO_products/) and calculates advection

at 5­min time step. All simulations use the same emissions, the same chemical module (GEOS­Chem columnmodel),

and identical chemical time steps. All simulations are performed on the same single­node hardware with 24 Intel

Cascade Lake physical cores, 100 GB of RAM, and a networked Lustre high­performance file system. WRF­GC

uses MPI parallelization, while GEOS­Chem Classic uses OpenMP parallelization.

Table 3 compares the simulationwall times for theWRF­GCv2.0model (with various chemical feedback options)

and for the GEOS­Chem Classic nested­grid model. Similar to our previous diagnosis (Lin et al., 2020), a one­way

WRF­GC simulation (15282 s) is 53% faster than a similarly­configured GEOS­ChemClassic nested­grid simulation

(33601 s). The better computational performance of WRF­GC is due to its faster dynamic calculations and its more
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efficient parallelization of the chemical processes (Lin et al., 2020). The wall times for the two­way WRF­GC

simulations with various combinations of chemical feedbacks (ARI only, ACI only, and both ARI and ACI) are all

less than 11 % higher than the wall time for the one­way simulation. As expected, the slightly longer wall times

in simulations with chemical feedbacks are mostly associated with the the extra calculations within the WRF­GC

Coupler. The ARI calculations incur more wall time increases than the ACI calculations do. For reasons yet unclear,

the wall time for the simulation with ARI only (17002 s) is slightly longer than that for the simulation with both

ARI and ACI (16153 s). Nevertheless, in all WRF­GC simulations the coupling calculations are computationally

economical and consume less than 9 % of the total wall times.

Table 3: Wall times of simulations conducted with theWRF­GC v2.0 model and the GEOS­ChemClassic nested­grid

model (unit: s).

Model WRF­GC v2.0 GEOS­Chem Classic
nested grid

Experiment One­way ARI only ACI only ARI and ACI v12.7.2
Total wall time 15378 17002 15283 16153 33601

Breakdown: WRF 7766 8374 7274 7511 ­
Breakdown: GEOS­Chem 7242 7242 7591 7206 ­

Breakdown: WRF­GC Coupler 370 1391 417 1436 ­
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