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Abstract.

We present a test case of river plume spreading to evaluate numerical methods used in coastal ocean modeling. It includes

an estuary-shelf system whose dynamics combine nonlinear flow regimes with sharp frontal boundaries and linear regimes

with cross-shore geostrophic balance. This system is highly sensitive to physical or numerical dissipation and mixing. The

main characteristics of the plume dynamics are predicted analytically, but are difficult to reproduce numerically because of5

numerical mixing present in the models. Our test case reveals the level of numerical mixing as well as the ability of models to

reproduce nonlinear processes and frontal zone dynamics. We document numerical solutions for Thetis and FESOM-C models

on an unstructured triangular mesh, as well as ones for GETM and FESOM-C models on a quadrilateral mesh. We propose an

analysis of simulated plume spreading which may be useful in more general studies of plume dynamics. The major result of

our comparative study is that accuracy in reproducing the analytical solution depends less on the type of model discretization10

or computational grid than it does on the type of advection scheme.

1 Introduction

Rivers supply coastal areas with freshwater and both organic and inorganic materials. The correct representation of river mouth

dynamics and plume spreading in a numerical coastal ocean model is a prerequisite for accurate simulation of biogeochemical

water content and ecosystem dynamics. If we consider river plumes as zones under freshwater influence beginning from the15

source of freshwater, we would naturally embrace a wide range of processes with different spatial and temporal scales. They

would include (but not be limited to) geostrophic currents, frontal processes, and a wide range of mixing processes induced

by river momentum, stratified shear, wind and tidal forcing. The expression of these processes as well as river plume behavior

in general, depends heavily on local topography at the river mouth, bathymetry detail, discharge characteristics (such as the

induced density gradient and discharge rate), and the local Coriolis parameter. These parameters are usually the basis for20

predicting plume behavior and plume classifications (e.g., Whitehead, 1985; Garvine, 1995, 1987; Yankovsky and Chapman,

1997; Avicola and Huq, 2002, 2003; Chant, 2011; Horner-Devine et al., 2015).
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The prototypical plume structure (e.g., Horner-Devine et al., 2015) assumes the presence of a source zone (where initial

buoyancy and momentum �uxes are introduced), a near-�eld, a bulge area, and a coastal current (Fig. 1). These areas are dif-

ferentiated based on the processes which dominate the momentum balance. However, these zones are not mutually independent25

and should be treated as an interconnected system. Local conditions can prevent the representation of one or another of these

plume-structural elements (e.g., Garvine, 1984; Yankovsky and Chapman, 1997; Hetland, 2005; Horner-Devine et al., 2015,

2009). Furthermore buoyant plumes can be categorized separately either as bottom-advected, surface-advected or intermediate

(Yankovsky and Chapman, 1997). In this work we will only focus on surface-advected plumes; they are detached from the

bottom and their dynamics are not in�uenced by near-bottom processes.30

According to the review of the subject by Horner-Devine et al. (2015), the near-�eld zone is a jet-like zone encompassing

the mouth area, where river momentum predominates over buoyancy. Here typically lies the so-called `lift-off' region for

surface-advected plumes; across this region, river water loses contact with the bottom, and the interface rises rapidly seaward.

The dynamics of the near-�eld zone suggest intense mixing.

The bulge zone (or mid-�eld zone) is the area where Earth's rotation begins to predominate, turning the plume down-coast35

(anticyclonically in the Northern Hemisphere) and creating a gyre. The bulge zone is pronounced in surface advected plumes if

river mouths are relatively narrow compared to the Rossby deformation radius and if large mixing sources and ambient currents

are absent (e.g., Horner-Devine et al., 2015, 2009; Yankovsky and Chapman, 1997; Garvine, 1995; Avicola and Huq, 2003;

Huq, 2009).

Near the coast one portion of the bulge water returns to the gyre while another transforms into the coastal current. This40

bifurcation area is characterized by predominance of the non-linear terms in the momentum balance, with small effect of

horizontal pressure gradient (e.g., Beardsley et al., 1985; Garvine, 1987). The proportion of water returning to the gyre or

transforming into the coastal current and the position of the bifurcation area depend on the water �ow characteristic angle in

the near- and mid-�eld areas (e.g., Garvine, 1987; Avicola and Huq, 2003; Horner-Devine et al., 2006; Whitehead, 1985). It

should be noted that after a (typically short) time interval of 1-2 inertial periods from the beginning of the plume history, the45

gyre enters into a gradient-wind balance despite continuing to dilate (Nof and Pichevin, 2001; Horner-Devine et al., 2015,

2009).

Coastal current is a feature typical of all plumes (surface- and bottom-advected as well as intermediate); it represents a

buoyancy-driven current in the presence of the Earth's rotation. Being in nearly geostrophic balance, it stays adjacent to the

coast and propagates to the right in the Northern Hemisphere.50

Despite the fact that plume behavior has been simulated, observed and reproduced in the laboratory in many con�gurations

(e.g., Whitehead, 1985; Garvine, 1987, 1995; Yankovsky and Chapman, 1997; Fong and Geyer, 2002; Avicola and Huq, 2003;

Huq, 2009; de Boer et al., 2009; Liu et al., 2009; Hetland, 2005, 2010; Horner-Devine et al., 2015, 2006; Kärnä, 2020; Chawla

et al., 2008; Jiang and Xia, 2016; Fischer et al., 2009; Vallaeys et al., 2018; Beardsley and Hart, 1978; Chen et al., 2009),

the analysis of the requirements and limitations helping to reproduce plume behavior in a numerical model is still missing. In55

particular, spurious numerical mixing in circulation models can destroy strati�cation and frontal features, and signi�cantly alter

the plume dynamics. Spurious numerical mixing can be attributed to the advection schemes (e.g., Burchard and Rennau, 2008;
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Klingbeil et al., 2014), vertical grid (Grif�es et al., 2000; Hofmeister et al., 2010, 2011; Gibson et al., 2017), discretization

or time-stepping. Some idealized test cases allow diagnosing spurious mixing (see, e.g., Il�cak et al., 2012). Also the effect

of numerical mixing on estuarine processes has been demonstrated in several studies (e.g., Kärnä and Baptista, 2016; Ralston60

et al., 2017; Burchard, 2020). However, the effect of spurious mixing on plume dynamics is still poorly understood.

We have therefore devised a test case that deals with a geometrically simple river-shelf system which has an analytical

solution and is very sensitive to numerical and physical mixing. The existing extensive work on plume dynamics allowed us

to predict both qualitatively and quantitatively how the plume would behave in the various zones depending on the initial

parameters of the system. We have chosen a river channel oriented perpendicularly to the shelf to ensure that domain geometry65

is representable with both structured and unstructured meshes. We selected discharge parameters ensuring supercritical �ow in

the river mouth area. In this case long internal wave disturbances can travel only upstream. Adjusting the con�guration further,

which included the width of the estuary, discharge rate, density gradient, and Coriolis parameter, we created a system with

a thin surface-advected plume comprising all the classical zones and characterized by a pronounced bulge (75 % of the river

discharge should stay there). Despite the geometrical simplicity of the test case, the analytically predicted behavior of the plume70

is hard to reproduce numerically. The described bulge features and mouth dynamics with naturally meandering isopycnals are

responsible for the sensitivity of the test case to any source of mixing - physical, numerical, vertical or horizontal. This feature

distinguishes the proposed test case from other simulations of natural plume systems, most of which are not as sensitive to

numerical mixing. We introduced no additional mixing sources (such as wind or tidal forcing) into the proposed test case, and

used a zero eddy diffusivity coef�cient to be able to compare the numerical results with the analytical solution and to have a75

transparent diagnostic of numerical mixing.

We describe a set of simple and ef�cient diagnostics of numerical diffusive transport intended to test the performance of

tracer advection schemes, limiters, time-stepping and diffusive �lters. The article provides some new insights into plume

dynamics. In particular, the theoretical prediction of the plume behaviour is derived, explained and analysed. The test case has

been designed to highlight the effects of numerical diffusion on plume dynamics. Due to availability of the reference solution80

and spatial design, it can serve multiple purposes: to diagnose how well the numerical solution reproduces the complex multi-

scale dynamics of the plume formation and spreading; to test stability and quality of tracer advection schemes (with and without

limiters); to determine the level of numerical mixing in simulated �ows; and to gauge freshwater mass conservation.

High-order advection schemes (with various limiters) are currently being implemented in coastal models. They are more

accurate but also more resource-intensive. It is crucial to understand their limits as well as where and how they can be applied85

successfully in practice, and the proposed test case is well suited for that. Its advantages include simple preparation and set-up,

simple output analysis, short simulation periods, and straightforward interpretation of why plume behaviour can deviate from

the analytical solution. Model users wishing to apply models to explore baroclinically dominated �ows may also �nd it useful

because it immediately reveals possible gaps in the dynamics under a given set of parameters and limiters, and gives a sense of

the �delity of the model.90

The article is organized as follows. Section 2 describes the modelling setup including information about basic parameters

and notation. In Section 3, an analytical solution for the test case is presented. The numerical results are presented in Section
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5, followed by, discussion and conclusions. Appendix A contains information and analysis of additional runs. Appendix B

summarises test case con�guration for reproducibility purposes.

Figure 1. The sketch of the river-ocean dynamical system. Left panel: prototypical plume structure. Right panel: vertical cross-section

marked by the black dashed line in the left panel.

2 Modelling setup95

The test case simulates a surface-advected plume with non-trivial near-shore dynamics and all four prototypical zones (Fig.1).

To be able to compare the simulated behavior with the analytical solution the eddy diffusivity coef�cient is set to zero. There

is no forcing except for river discharge. The integration domain is closed except for the river. The system can be considered as

a two-layer one for analytical consideration.

The comparison with analytical solution is focused on the position of the lift-off zone, bulge characteristics at a given time100

(offshore spread — the width of the bulge, and alongshore diameter — the length of the bulge), the depth of the coastal current,

its cross-front width, and velocity. The details of required output are summarized in the last section of the manuscript.

2.1 The basic notation and parameters

The basic notation and parameters of the test case are presented below. The parameters for the additional set of experiments

used in discussion (Section 6) are given in the brackets.105

W = 0:5 km is the width of the mouth,

h0 = 10 m is the in�ow depth,

Qr = 3000(3900)m3/s is the river discharge rate,

f = 1 :2 � 10� 4 s� 1 is the Coriolis parameter,

hb is the averaged thickness of layer occupied by plume (buoyancy layer) on the shelf,110

H is the full depth,

u0
�= 0:6(0:78) m/s (Qr =(Wh0)) is the river velocity in the channel in a steady regime,

ub is the averaged velocity of the layer occupied by plume,
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� r = 1000:65kg/m3 is the density of river water,

� 0 = 1023:66kg/m3 is the ambient/shelf water density,115

g0= g � a � � 0
� a

� 0:225m/s2 is the reduced gravity,

c0 =
p

g0h0 � 1:5 m/s is the reference phase speed,

r 0 = c0
f = 12:5 km is the in�ow Rossby radius,

cb =
p

g0hb is the internal gravity wave speed,

r b = cb
f is the internal Rossby radius,120

L 0 = u 0
f = 5(6 :5) km is the inertial radius,

L b = 4

q
2Q r g0

f 3 � 5:28(5:65) km is the internal Rossby radius for the bulge based on the geostrophic depth,

F r 0 = u 0
c0

= 0 :4(0:52) is the initial Froude number,

T0 = 2�
f = 14:54h is the inertial (rotational) period.

2.2 Setup description125

labelsec:setup

We consider a steady �ow of a fresh water through a narrow channel into a wide, uniformly sloping shelf with relatively

dense and initially motionless water. The straight river channel is 10 km long and 0.5 km wide. The shelf zone occupies a

rectangular domain 700 km� 500 km (Fig. 1). The river channel divides the shelf coastal line into fragments of 300 km and

400 km to the west and east respectively. The water depth in the channel is 10 m; on the shelf, it increases linearly from 10 m130

at the coast to 30 m offshore forming a slope of 0.003; further offshore the depth stays constant at 30 m. The river discharge is

set to 3000 m3/s.

The river water is fresh with zero salinity. The shelf water has salinity 30 in practical scale ('practical scale' is omitted

below). For the sake of simplicity, temperature is kept constant at 15oC. In the current work we use mostly monotonic

advection schemes (ensured by limiters) and a linear equation of state:135

� (S) = � 0 + 0 :767kg2 m� 3 g� 1(S � 30gkg� 1): (1)

The initial value of salinity in the river channel should be equal to river salinity. We increased the discharge linearly to the

reference value of 3000 m3/s during �rst simulated hour to avoid an initial shock.

The offshore boundaries are impermeable to enable tracing the freshwater volume conservation. The Coriolis parameter

is 1:2 � 10� 4 s� 1. The simulation time is limited to 35 hours. In the presented simulations, bottom friction is deactivated. The140

eddy vertical viscosity is calculated based on second-order turbulence model (k � � style), the horizontal viscosity is set to zero.

We performed the simulations on triangular and quadrilateral meshes with variable resolution. The quadrilateral mesh is

a bit coarser in the plume spreading area (Fig. 2). The triangular mesh consists of 76524 triangles and 37900 vertices. The

quadrilateral mesh consists of 59706 vertices and 59122 cells.145
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The 3D reference grid haskmax = 40 sigma layers zoomed parabolically towards the surface at� (0):

j � (k) j=
�

k
kmax

� 2

; for k = 0 ; :::;kmax : (2)

Note, the sign of the sigma depends on the code realization and how the z axis is directed.

Figure 2. Top panel: the triangular mesh with a re�nement in the plume spreading area; the lines indicate cross-section positions. Bottom

panels: edge length of the triangular and quadrilateral meshes, m, with a zoom in the plume spreading area.

Since our main intention is to learn about the effect of hidden mixing, the experiments mostly differ by the used advection

schemes and limiters. Their description is presented in Table 1. The models, advection schemes and limiters are described150

below in Subsection 2.3.

Discussion of the viscosity effect is largely based on the additional set of simulations with constant vertical eddy viscosity

coef�cient equaled to2:5 � 10� 4 m2/s and increased discharge equaled to 3900 m3/s (Table A1). (These simulations are not

considered in Section 5, but only in Section 6.)
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2.3 Circulation models155

2.3.1 FESOM-C

FESOM-C is a coastal branch of the global Finite volumE Sea ice Ocean Model (FESOM2) (Danilov et al., 2017; Androsov

et al., 2019; Fofonova et al., 2019; Kuznetsov et al., 2020). FESOM-C solves 3-D primitive equations in the Boussinesq,

hydrostatic and traditional approximations for the momentum, continuity, and density constituents, and uses a terrain-following

coordinate in the vertical. It has the cell-vertex �nite volume discretization (quasi B-grid) and works on any con�gurations of160

triangular, quadrangular or hybrid meshes (Danilov and Androsov, 2015; Androsov et al., 2019). The schemes to compute

vertical eddy viscosity and diffusivity can be chosen via the coupled General Ocean Turbulence Model (Burchard et al., 1999).

The numerical scheme of FESOM-C splits the fast and slow motions into barotropic and baroclinic subsystems (Lazure and

Dumas, 2008). It uses an asynchronous time-stepping, assuming that integration of temperature and salinity is half-step shifted

with respect to momentum.165

Three schemes have been implemented in the FESOM-C for horizontal advection (Androsov et al., 2019): upwind, Miura

(Miura, 2007) and MUSCL-type (van Leer, 1979). The �rst two are based on linear reconstruction and are second-order in

space and time. The linear reconstruction upwind scheme and the Miura scheme differ in the implementation of time stepping.

The �rst of them needs the Adams-Bashforth method to be second-order with respect to time. The scheme by Miura reaches

this by approximately tracking the volumes advected through the faces of control volumes.170

The third approach used in the model is based on the gradient reconstruction (MUSCL-type scheme). The idea of this

approach is to estimate the tracer at control volume faces by a linear reconstruction using the combination of centered and

upwind gradients. It represents a combination of the 3rd order and 4th order �uxes in space in a fraction of 85% and 15%

respectively. The method is second order accurate in time.

The upwind advection scheme is used together with a third order scheme in vertical, the Miura and MUSCL-type schemes175

use a 4th order vertical advection.

In all cases, momentum advection is treated with a second order upwind scheme.

In this paper, the tracer advection schemes are run in a combination with the FCT (�ux corrected transport) algorithm.

We use three options to constrain the antidiffusive �ux which is added to the solution obtained with the positivity-preserving

low-order scheme. In thefct1 option the admissible increments for each scalar point are sought over its horizontal neighbors180

and in the clusters above and below them, which leaves wide bounds because typically vertical gradients are larger. Thefct2

option is similar to thefct1 except for the search of vertical bounds which is done locally (tracer values above and below). In

thefct3 option the vertical bounds are taken into account only if they are narrower than the horizontal ones. In all options the

admissible increments are computed with respect to the combination of the low-order solution and the solution at the previous

time step.185
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2.3.2 Thetis

Thetis is a 3D hydrostatic circulation model based on Discontinuous Galerkin (DG) �nite element formulation (Kärnä et al.,

2018; Kärnä, 2020). Thetis uses an unstructured triangular or quad mesh in the horizontal direction, and an extruded prismatic

3D mesh. All prognostic variables are discretized with linear discontinuous elements (PDG
1 ); in 3D the elements arePDG

1 in

both horizontal and vertical direction. A second order Strong Stability Preserving (SSP) Runge-Kutta time integrator is used190

to march the equations in time. The 3D dynamics are treated explicitly except vertical diffusion which is treated implicitly;

split-implicit mode-splitting technique is used to solve the free surface dynamics. The 3D mesh tracks the position of the

free surface. Tracer advection is implemented with upwind �uxes at element interfaces. In addition, ageometric slopelimiter

(Kuzmin, 2010) is employed as a post-process step to suppress overshoots: if tracer value at a node exceeds the maximum mean

value of the neighboring elements, it is marked as an overshoot. The tracer is then redistributed in the element, until none of the195

nodes violate the extrema conditions, or the element is fully mixed (i.e. all nodes have the same value). The geometric limiters

and the SSP time integration method guarantees that the advection scheme is positive de�nite, i.e. no spurious overshoots are

generated. The same advection scheme is applied to both tracers and momentum. The discretization of Thetis dynamical core

is described in Kärnä et al. (2018).

The Thetis solver is formally second order in space and time with the exception of vertical diffusion (�rst order in time)200

and areas where the slope limiter is active (reducing the scheme to �rst order). Especially the slope limiters do impose some

numerical diffusion to the solution even in the case tracer diffusion operators are omitted.

2.3.3 GETM

GETM is an open-source coastal ocean model (Burchard and Bolding, 2002, www.getm.eu). It solves the Reynolds-Averaged

Navier-Stokes equations under the Boussinesq approximation together with transport equations for temperature and salinity on205

a C-staggered structured �nite-volume grid. For the present study the non-hydrostatic option by Klingbeil and Burchard (2013)

and the temperature equation are not activated. The numerics of GETM are similar to other coastal ocean models (Klingbeil

et al., 2018). The free surface is integrated in a split-explicit mode-splitting procedure. For the present study the 3D timestep of

60sis split into 24 subcycles. In the vertical GETM supports adaptive terrain-following coordinates (Hofmeister et al., 2010;

Gräwe et al., 2015), but for the present study �xed sigma coordinates according to (2) are used. Advection of momentum210

and tracers is carried out by directional splitting with TVD schemes. In the current study the same scheme was used for both

advection of momentum and tracer. In order to induce minimum numerical mixing (Klingbeil et al., 2014), in the present study

the superbeelimiter is applied, which is known by its anti-diffusive (anti-viscous) character, in a combination with the 2nd

order advection scheme (spatially and temporally). Additionally, the HSIMT 3rd order TVD scheme (2nd order temporally)

equipped withSweby'slimiter is applied (Wu and Zhu, 2010). If necessary, in individual water columns the vertical advection215

is automatically iterated to comply with the CFL condition in very thin cells. The turbulent vertical viscosity is calculated by

the turbulence module of GOTM (Burchard et al., 1999) in terms of strati�cation and shear provided by GETM.
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3 Analytical prediction for the plume behavior

In this section we summarise the qualitative and quantitative predictions of the the plume behavior in the absence of diffusive

processes and shortly if they are present in the system (see the respective notes at the end of the subsections) during two �rst220

inertial periods.

3.1 Mouth area and near-�eld zone

The mouth area represents a control section for classical hydraulic channel �ow (Gill, 1977). The narrow mouth causes rapid

shoaling and seaward expansion of the pycnocline, and an acceleration of the upper fresh layer with a signi�cant Froude

number gradient, reaching supercritical conditions as freshwater comes out of the river channel. In effect this means that the225

entire disturbance is swept downstream. Shear increases at the base of an accelerating plume, resulting in very pronounced

viscous effects. The presence of the supercritical conditions causes a nearly fully inertial momentum balance (Garvine, 1987).

The acceleration of the plume in the near mouth area leads to a drop in surface pressure following the Bernoulli principle,

such that we expect a local drop in sea surface height relative to the channel (e.g., Hetland, 2010). In the limit of zero eddy

diffusivity in the tracer equation, for the narrow river mouth and large discharge, the water exchange between the river channel230

and the shelf is very limited due to constraints imposed by hydraulic control, river momentum (e.g., Gill, 1977; Stommel and

Farmer, 1953; Farmer and Armi, 1986; Hetland, 2010; Armi and Farmer, 1986) and the Knudsen (1900) relation.

The experiments with larger discharge –3900 m3/s – suppose that the interface in the mouth area between layers of different

densities should reach the bottom (the freshwater should extend all the way to the bottom) given absence of bottom friction

and presence of relatively large river velocities (which are larger than the frontier velocities in the lock-exchange experiment235

corresponding to the given pressure gradient). According to the Armi and Farmer (1986) we are in the case of intermediate

barotropic �ow (induced by river momentum), when the dense water stays motionless and does not penetrate through the

constriction (in our case it is mouth). Thus we are expecting that the area where the freshwater �ow loses contact with the

bottom and aplumeactually forms is situated directly in the mouth area (e.g., MacDonald and Geyer, 2005).

The experiments with a smaller discharge – 3000 m3/s – suppose penetration of the dense water into the river channel only in240

case when the large viscous effect initiated by the hydraulic jump are neglected at least partly (e.g., by prescribed upper bound

for the eddy vertical viscosity or only background viscosity in numerical solutions). In the inviscid theory of Armi and Farmer

(1986) the barotropic force initiated by the river momentum in this case can be characterised as a transition between moderate

to intermediated �ow conditions, and penetration of the dense water into the river channel can take place. The viscous effects

naturally block the dense water penetration into the river channel, however numerical mixing may provoke it. Even in the245

absence of explicit diffusion operators there is some mixing in numerical simulations. Numerical mixing is largely attributed to

the advection scheme and the limiters built in it. It can lead to dense water penetration into the river channel and the appearance

of new salinity classes in the river channel. For any tracer c, the total (advective plus diffusive) tracer �ux per unit area of a

transect or isohaline can be de�ned as:F c = un c� K n @n c whereun is the outgoing normal velocity,@n c is the tracer gradient

normal to the surface, andK n is diffusivity in the direction normal to the surface. Let us take the mouth transect directly250
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upstream from supercritical conditions. It is clear that the presence of a large enough numerical mixing can provoke the dense

water penetration into the river channel. The density intrusion in this case will have a hydraulically controlled, blunt-faced

pro�le (e.g., Jirka and Arita, 1987). If we apply the written above equation to the isohaline of the freshwater layer and activate

vertical eddy diffusivity, we will also get dense water penetrating into the system, with the hydraulic control setting the upper

limit of exchange as well as a more complex interface (e.g., MacCready and Geyer, 2001). We will return to this topic in the255

Discussion.

3.2 Bulge

Here we revisit the de�nition of a bulge according to the review by Horner-Devine et al. (2015) as a continuation of the near-

�eld zone in which Earth's rotation in the momentum balance begins to predominate, turning the plume to the right (in the

Northern Hemisphere) and creating a gyre in thermal wind balance. Note that the near-�eld-zone, bulge and coastal current have260

a very complex dynamic structure, such that the consideration of various discharge characteristics is needed to clearly describe

it. We prefer to avoid this by focusing on the resulting plume-spreading characteristics: maximum offshore plume spreading

position, internal bulge radius (nearshore radius) and the along-shore bulge length. Avicola and Huq (2003) had shown that on

average the bulge along-shore spread is longer than its offshore spread, and that this ellipticity is constant through time and

equal to� 1:3. Thus it suf�ces for us to locate the maximum of bulge offshore spreading and let the along-shore scale be a265

control point.

We know that when the channel is at a right angle to the coast the bulge grows continuously over time because its increasing

size creates a balance between the momentum �ux associated with the downstream current and the compensating Coriolis

force associated with the migration of the gyre center away from the coast (e.g., Fong et al., 1997; Nof and Pichevin, 2001;

Horner-Devine et al., 2006, 2009). But the expansion of the bulge leads to radial and advective acceleration terms that are two270

orders of magnitude smaller than the terms of the gradient-wind balance. Accordingly, the gradient-wind balance is expected

to apply even for a growing bulge as long as its radius is suf�ciently large (Horner-Devine et al., 2006, 2009). Recent studies

have shown that the bulge offshore radius and displacement of bulge center from the wall (nearshore radius) can be scaled

respectively with the internal Rossby radius (L 0) and inertial radius (L b), both of which are constant over time (Horner-Devine

et al., 2009). In our caseL � = L 0
L b

� 1, so the river �ow is one of the main factors pushing the bulge offshore, the anticyclonic275

circulation is nearly symmetric (in terms of nearshore and offshore radii); and the bulge is prone to instability (Horner-Devine

et al., 2009). Thus the net shore-directed Coriolis force is small, the angle of incidence of the recirculating bulge �ow that it

makes with the coast is greater than90� (�ow directed back upstream) (Whitehead, 1985; Horner-Devine et al., 2009), and the

majority of the impinging �uid is directed back into the bulge. This feature largely makes the bulge size sensitive to any source

of mixing in the model. The laboratory and theoretical studies mentioned above have found that the plume starts turning to the280

right in the Northern Hemisphere approximately at one-fourth of the inertial period at a radius of aboutL 0 and reaches thermal

wind balance after one to two rotation periods.
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To obtain an estimate for the offshore spreading of the bulge in the absence of diffusive processes, we re-visit the equations

provided by Yankovsky and Chapman (1997), and propose some modi�cations. We consider �ow in the bulge as being in

cyclostrophic balance as described by the following momentum equation:285

�
u2

c

r
� fu c = � g0@hb

@r
; (3)

whereuc is the azimuthal cyclostrophic velocity at the radial distancer from the anticyclone center,hb is the thickness of the

buoyant layer.

Because of a purely surface-advected plume at the shelf, we assume no interaction of the plume with the bottom and a plume

thickness ofhb which changes little from the mouth area to the center of the anticylonic bulge, and gradually decreases to zero290

along the outer edge. This means that@hb
@r is equal to zero along the streamline from the mouth to the anticyclonic center, and

it can be expressed as� h c
r from the bulge center to its offshore edge, wherehc is the depth of the bulge center andr is offshore

radius of the bulge. Returning to (3) we get:

r =
� (g0hc + uc

2)
fu c

: (4)

To getuc, the Bernoulli function for the buoyant layer (Gill, 1982) can be applied:295

B = g0hb +
u2

b

2
; (5)

whereub is the averaged velocity of the layer occupied by plume.In the absence of diffusionB should be constant along

the streamline. In Yankovsky and Chapman (1997), in�ow is connected to the outer edge andhc = h0 (h0 is the in�ow depth).

This poses two major problems: (i)h0 andhc can be signi�cantly different in a purely surface-advected plume as (in our case)

a lift-off point is situated immediately at the mouth or even upstream and is accomplished by the hydraulic jump in the mouth;300

(ii) the bulge continuously grows over time.

As mentioned above, the gradient-wind balance is expected to apply even to a growing bulge as long as its radius is suf�-

ciently large (Horner-Devine et al., 2006, 2009). So (ii) can be addressed as follows: we determine the radius of the bulge when

the plume forms even though at that point the coastal current is already in place and the bulge is in thermal wind balance. Our

particular test case places no focus on a slow mode of bulge growth (as covered in Nof and Pichevin (2001)); our task is rather305

to obtain a short-term prediction once the bulge has reached thermal wind balance. Point (i) can be addressed by introducing

the so-called geostrophic depth,hg, or the depth of the plume in the near-�eld zone within critical conditions and taking into

account that the diffusive processes are absent in our consideration. It is well-known that the in�ow momentum is the most

important factor de�ning the position of the bulge center (e.g., Horner-Devine et al., 2006), and that the depth of the bulge

center becomes proportional to the geostrophic depth as soon as the bulge attains the thermal wind balance (e.g., Avicola and310

Huq, 2003; Yankovsky and Chapman, 1997). The equation forhg above is based on consideration of a two-layer Margules

front system that has a quiescent lower layer and an upper layer in thermal wind balance or in the geostrophic cross-shore

momentum balance (valid for a coastal current, see below) with uniform vertical shear of the alongshore plume velocity. Then
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we assume that theentire buoyancy in�ow transport (=Qr ) accumulates in the frontal zone (e.g., Yankovsky and Chapman,

1997; Fong and Geyer, 2002). Finally, we get:315

hc = hg =

s
2Wu0h0f

g0 = 1 :8(2)m: (6)

So, we can determine the properties of the bulge when the bulge center is located at this level. Naturally, it takes place only at

the beginning of the plume evolution. The bulge continuously grows not only offshore, but also in depth, however, at a slower

rate. The whole discharge accumulates in the bulge only for a very short period of time prior to the appearance of the coastal

current. The front is expanding at approximately the surface gravity wave speed within the layerhg; so we connect the outer320

edge to these �ow conditions:

3
2

g0hg =
3

p
2

p
Wu0h0fg 0=

u2
c

2
(7)

uc = � 4
p

18Wu0h0fg 0= � 4
p

18Qr fg 0 � � 1:1(1:17)m/s (8)

325

r =
4

p
3

p
g0hg

f
� 12:2(12:9)km (9)

This radiusr in Equation (9) represents an offshore radius of the bulge in our test case as soon as the gyre is in thermal wind

balance and its center is abouthg thick. Based onL � value calculated above, the nearshore radius should be close to offshore

radius. This can be expected after one to two rotational periods based on laboratory experiments and simple calculations from

the internal Rossby radius,hg or hc and associated surface gravity wave speed (e.g., Hetland and MacDonald, 2008; Wright330

and Coleman, 1971; Hetland, 2010). The predicted radius is consistent with laboratory experiments published by Avicola and

Huq (2003) and Horner-Devine et al. (2006) after approximately one to two rotational periods as soon as the gyre is in thermal

wind balance. However, these experiments predict for such a radius (relatively to the Rossby radius) at least one-and-a half

times (Horner-Devine et al., 2006) or even twice (Avicola and Huq, 2003) as much deepening at the center. (Horner-Devine

et al. (2006) related their �ndings of a smaller central depth to different measurement techniques.) De�ning the bulge depth335

based on reference buoyancy (20% of the in�ow buoyancy) instead of the maximum vertical gradient, one obtains greater

deepening. Deepening of the gyre center is a relatively slow process and is usually quasi-stationary after several rotational

periods. Deepening at the center is largely attributed to mixing and dilution processes at the plume base and the analytical

solution does not consider the in�uence of diffusive processes. In our simulations we are omitting the physical diffusivity

(eddy diffusivity is set to zero in the tracer equation), in order to reproduce the analytical estimations about the bulge offshore340

spreading. As for the position of the bulge center relative to thex-axis, re-circulation of the discharged water can take place

only to the right of the river mouth. On the other hand we have de�ned the bulge in such a way that a part of it is found to the
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left of the source. Baroclinic instability can also lead to rotated structures in the area of interest due to relatively fast radial (as

compared to vertical) bulge growth (e.g., Avicola and Huq, 2003). We therefore are not going to �nd the exact bulge center

position de�ning it only on thex-axis as the site of maximum offshore spreading of the bulge.345

Note, that in our idealized conditions the bulge becomes nearly symmetrical and tends toward instability, which suggests a

solution sensitive to mixing. Any additional diffusion in the bulge zone or/and near-�eld zone will directly reduce the bulge

external radius, displace its center, and change the angle at which the bulge characteristics impinge upon the coastal zone. A

small isohaline area requires greater mixing than a large one to maintain the same freshwater discharge across the isohaline

(Hetland, 2005; Burchard, 2020). So either the bulge tends to be less restricted offshore and in parallel deeper or/and the bulge350

tends to be less restricted offshore together with reduced discharge rate associated with the bulge (the bulge will be sliced off

and impinge angle will be changed).

3.3 Coastal current

In this subsection we are going to derive the coastal current characteristics, in particular the bounds for the coastal current

depth near the wall, the bounds for the near wall speed and the coastal current offshore spread. Typically, the coastal current355

has a quasi-triangle pro�le in the offshore cross-section, so when we are talking about near the wall depth and speed we mean

maximum depth and speed at each offshore cross-section. Below we will omit 'near the wall' for simplicity.

We can calculate the discharge attributed to the coastal current,Qcc, based on the current bulge vorticity (e.g., Nof and

Pichevin, 2001):

� =
� 2uc

f � r
� 1:5(1:51) (10)360

Qcc

Qr
=

1
1 + 2�

� 0:25(0:248) (11)

Based on the obtainedQcc , we arrive at a minimum freshwater layer thickness to be expected for the coastal current:

hmin =

s
2Qccf

g0 � 0:9(1)m (12)

Naturally, the geostrophic depthhg calculated above gives us the maximum freshwater layer thickness,hmax , to be expected365

in the coastal current, if the total discharge from the river goes for some reasons to the coastal current. We have known already

that in our case a large portion of the freshwater stays in the bulge. However, whenL � is large, the bulge may be unstable,

separating from and re-attaching to the wall and causing a pulsed �ow of the coastal current (Horner-Devine et al., 2006).

Furthermore when the coastal current forms, a different portion of the freshwater may go with it depending on the time moment.

The geostrophic depth therefore provides a good estimate of the maximum depth of the layer in�uenced by the coastal current.370

The coastal current propagates at a speed given bycn =
p

g0� h, the propagation speed should therefore be between 0.45

(0.47) and 0.64 (0.67) m/s taking in considerationhmin andhmax respectively. Based on these values we derive a local Rossby
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radius equal to 3.75 (3.9)-5.3 (5.6) km. We can expect that the coastal current will occupy this width in the nose zone at the

beginning of the plume history. Predicting the width of the coastal current in the upstream area between the source and the

nose is not a trivial task (a problem already identi�ed by Garvine (1995)). However, it is clear that the position of the bulge375

center should largely determine the coastal current maximum offshore width in the considered time frame. We already know

that a nearshore radius of the bulge is of about 12 km after one to two rotational periods, which is at about two internal Rossby

radii. This result is in agreement with the laboratory experiments (Avicola and Huq, 2003; Horner-Devine et al., 2006) where

the width may be up to two local Rossby radii after one to two rotational periods. To summarize we can provide a relatively

wide window for the expected coastal current offshore width, it can vary between 12 km near the source zone for both runs to380

3.75 (3.9) km in the nose zone.

Note, that in the presence of non-zero eddy diffusivity, we can expect a larger amount of the discharge to enter the coastal

current, because the bulge in the non-diffusive case is nearly symmetrical (in the sense of internal - near coast- and offshore

radii) and reaches maximum offshore extension. Therefore, in principle, the coastal current discharge could be used as an

indicator for numerical diffusivity. Such an approach is not used here, it would require considering many rotational periods for385

a precise estimation.

4 Diagnostic of the numerical diffusivity

The coastal current discharge rate and offshore spread as well as asymmetry or the characteristic impingement angle of the

bulge can all be considered as indirect measures of numerical mixing. However, each of these measures requires additional

analysis and has some limitations.390

We base our analysis on isohalines and salinity classes following the work by Hetland (2005); Wang et al. (2017) and

Burchard (2020). Using the balance equation for salinity and the mass conservation law we obtain a budget equation for the

salt content integrated over all salinities between the river salinitySr and the salinity of the isohaline,S:

@
@t

ZZZ

Sr 6 s6 S

(S � s) dV = ( S � Sr ) � Qr +
ZZ

s= S

fdi� � n d�; (13)

wherefdi� is the diffusive salinity �ux vector, andn is the outward normal unit vector, both located on the isohalineS.395

Neglecting physical diffusion and assuming zero river salinity (Sr = 0 ), the diahaline �ux is related to numerical mixing, so

that the numerically induced salinity discharge (total salinity transport) through the isohalinesS can be calculated as:

F s(S) =
ZZ

s= S

fnum � n d� =
@
@t

0

@
ZZZ

06 s6 Si

(S � s) dV

1

A � S � Qr : (14)

Note, that numerical mixing may also include antidiffusive effects. For further analysis, we divide (14) byS, which gives the

diahaline diffusive freshwater discharge ortotal freshwater transport across isohaline (related to numerical mixing):400

F (S) =
F s(S)

S
: (15)

14



By dividing the dischargesF s(S) andF (S) by the isohaline area,A(S), the respectiveaveragediahaline �uxes/transport are

obtained:

f s(S) =
F s(S)
A(S)

; f (S) =
F (S)
A(S)

: (16)

We further de�ne the diahaline velocity as405

wdia(S) =
@fs(S)

@S
(17)

and note that only under stationary conditions withF s(S) = � SQr bothwdia(S) andf (S) are identical.

For the analysis of the different models results, we will be using time averaged transports and �uxes:

�F s(S) = hF s(S)i ; �F (S) = hF (S)i ; �f s(S) =
hF s(S)i
hA(S)i

; �f (S) =
hF (S)i
hA(S)i

; �wdia(S) =
@�f s(S)

@S
(18)

whereh�i denotes a time average.410

For the diagnostics of numerical mixing presented above the salinity range is divided in isohaline classes and the volume of

each class is calculated. These volumes are useful diagnostics, as soon as numerical mixing creates the volumes between the

�rst and last salinity classes.

5 Results

In describing the results, we focus primarily on the �rst two simulations from Table 1. The differences in the dynamics of these415

runs facilitate the interpretation of other runs. Additional simulations (see Table 1) have been conducted to illustrate the plume

dynamics' sensitivity to certain parameters. Runs11, 12 and13 are performed on a quadrilateral mesh with FESOM-C and

GETM; their performance is described at the end of this section. When comparing runs11, 12and13 with the others, one

should keep in mind that the resolutions of the rectangular and triangular grids are not identical (Fig. 2). The results of these

runs are therefore presented separately despite the fact that they are discussed in the same frame.420
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Table 1.The description of the setups. Bold font in the inner part of the table indicates the changes compared to the default run.

Table 2 contains information about the predicted characteristics of the plume's behavior. To summarize, we would expect

that the bulge's offshore spread extends for no less than 24 km after two inertial periods accumulating at about 75% of the total
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freshwater runoff. We would expect its surface to be fresh, with the coastal current transporting only about 25% of the total

freshwater runoff. We stress that these characteristics are not independent, of course, and that, if the surface of the plume is

fresh, the offshore spread of the bulge can generally be treated as a �nal indicator of the model's performance.425

Figure 3 compares the surface salinity, velocity and elevation for runs1 and 2 after one and (respectively) two inertial

periods, i.e. after 20 h and 35 h. This �gure illustrates that in both simulations, the plume starts turning right after one-quarter

of the rotational period at a distance of one inertial radius (� 5 km). In both simulations, the coastal current begins to form

after one rotational period. But the differences between the way each simulation represents the bulge and the coastal-current

dynamics are nevertheless substantial, even after one and especially after two inertial periods. The main differences between430

the two runs are summarized in Table 2.
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Figure 3. Results of the runs 1 (left panel) and 2 (right panel) after 20h and 35h: a) Surface salinity, in practical scale, at 20h; b) Surface

salinity, in practical scale, at 35h; c) Surface velocity, m/s, at 35h; d) Surface elevation, m, at 35h.
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Table 2. Summary of the results after 20h and 35h of the runs1 and2. The mean value of the coastal current discharge at different time

moments should be compared with the analytical solution. The red numbers demonstrate the bulge offshore spread (width) based on simulated

length divided by 1.3, where 1.3 is the ratio between the length and width obtained in laboratory study.

5.1 Mouth area/near �eld zone

In agreement with observational studies (e.g., Wright and Coleman, 1971; MacDonald and Geyer, 2004), river water leaves

the narrow estuary and rapidly shoals over a distance of a few channel widths in both runs. The velocities in the shoaling zone

reach initial surface gravity wave speeds of� 1:5 m/s and more, which is as expected (e.g., Hetland and MacDonald, 2008;435

Wright and Coleman, 1971; Hetland, 2010). In both runs, the near-�eld area is also characterized by supercritical conditions

and a hydraulic jump (see Fig. 4 and Fig. 6).
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Figure 4. The magnitude of the velocity at the mouth-cross section based on runs1 (left panel) and2 (right) at 20h time moment.

In run2, dense water penetrates into the river channel, showing a hydraulically controlled blunt-faced pro�le. We argue that

the main reason for such a pro�le resides either in the �ux limiting scheme (which should be most active in this area) or in a

relatively lower-order advection scheme. Indeed, the limiters are relatively diffusive horizontally in run2 (as compared tofct1440

andfct2 options in FESOM-C), and the run used a second-order advection scheme. To con�rm our assessment, we conducted

run 4 with a more diffusive limiter de�nitionfct3 (see Section 2 for a description of the limiters) as well as run5 with the

second-order advection scheme and a relatively low diffusive limiter optionfct1. Figure 5, which shows the results after two

inertial periods, con�rms that the simulation yields a blunt-faced intrusion pro�le in both sensitivity runs. Naturally, both the

lower-order advection scheme and the relatively diffusive limiters work toward a more diffusive solution. Interestingly, and as445

will be shown later, run2 is characterized by small diahaline diffusivities (which indicates good performance) for the relatively

higher salinities in the area of the hydraulic jump – this as compared to run1 (Fig. 6) – despite the fact that the latter's vertical

advection scheme is of a higher order than that of run2. Not only that, the surface salinity in run2 is also slightly higher than

it is in run 1 (Fig. 3).
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Figure 5. The surface salinity (left panel) and salinity at the mouth cross-section (right panel), in practical scale, at 35h in different runs

indicated by the number (see Table 1). The bulge offshore spreading and the coastal current propagation are shown by red lines.
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Note that before the river-�ow reaches the mouth area during the initialization phase, both simulations take on an appearance450

typical of lock-exchange dynamics experiments. (We initially �ll the river channel with river water.) However, this picture

vanishes when the river �ux reaches the mouth.

We diagnose the internal hydraulics of the model runs by computing the Froude numbers of the plume layer (Fig. 6). The

Froude number is computed asu bp
hb �g0 (wherehb is the plume layer thickness,ub the mean velocity within this layer andg0 the

reduced gravity). The layer thickness is de�ned by the position of the maximum salinity gradient and maximum stress in runs455

1 and2, respectively. (The difference in de�nition is dictated by different discretization types.) But the plume layer border in

both models still follows the isohaline with salinity� 6.

The locations of the maximum Froude numbers differ between run1 and run2 (see Fig. 6). The difference can be traced to

the velocity disturbances underneath the plume layer (Fig. 4), which are generated by the eddy vertical viscosity reacting to the

shear stress at the near-surface; the latter is induced by a hydraulic jump. A pronounced salinity �nger also appears in the area460

directly downstream of where the maximum Froude numbers occur. In run1, the largest velocities (more than initial surface

gravity wave speed) are more localized, and the maximum Froude numbers are found directly downstream of the mouth area.

22



Figure 6. The salinity patterns, in practical scale, at cross-sections based on runs1 (left column) and2 (right column) after one (20h) and

two (35h) inertial periods. Two upper rows (a, b) illustrate the mouth transect, two bottom ones (c, d) illustrate the coastal current transect.

The light blue line shows the thickness of the plume layer. The dark blue circles identify the approximate Froude numbers of the plume layer

(see additional dark blue axes from 0 to 4 at the right side of each picture). The dark blue line shows the relative position of Froude number

equaled to 1 for the convenience.
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5.2 Bulge and coastal current

Once the bulge (in idealized conditions) becomes nearly symmetric and tends towards instability, it becomes sensitive to any

source of mixing: horizontal or vertical, physical or numerical. Therefore, the use of different advection schemes and limiters,465

and time-stepping results in different dynamics.

The ratio between the length (along-shelf spread) and width (offshore spread) of the bulge called ellipticity (Avicola and

Huq, 2003) is another parameter, which indicates the presence of numerical mixing in the system. Generally, numerical mixing

tends to reduce the bulge's external radius due to a decreasing salinity gradient (horizontal, vertical or both) in the near-�eld or

bulge zone and the resulting reduction in plume-associated offshore velocities. Numerical mixing leads to a deepening of the470

bulge or/and to a changed angle of impingement, such that the center of the bulge gets closer to the coast: the bulge ends up

being sliced off by the coastal wall. Numerical mixing therefore tends to increase the ellipticity. It thus comes as no surprise

that in all con�gurations, including run1, the ratio is too large compared to the expected number (Table 2). Interestingly, the

along shore length of the bulge in runs1 and2 are nearly within the range of analytically predicted values. In run2 as in all

others where a second-order advection scheme or/and relatively diffusive limiters are used (i.e. runs4, 5, 6, 10), the bulge is475

largely sliced off by the coastal wall. In run1 (see Fig. 3 and Fig. 5), this effect presents in a smaller extent.

Further details of the bulge structure can be derived from thev-component of its horizontal velocity. Figure 7 shows the

surfacev-component againstx-position at a �xedy that equals the internal Rossby radius (� 5:3 km, based on geostrophic

depth). Although the line of a �xedy does not cross the bulge center, its approximatex-position can be still identi�ed from

Figure 7. Compared to the other runs on a triangular grid, run1 depicts the bulge's largest spread leftward from the mouth area.480

Consequently, the leftward displacement of the bulge's center is found there; it is also located further from the coastline than it

is in run2.

In run 2, the bulge is less symmetric as expressed by the internal and external offshore radius; consequently, the coastal

current's freshwater discharge is nearly twice what it is in run1. The position of the second cross-section in Figure 2 at the

coastal current is quite far from the mouth area. Therefore, while the front of the coastal current in run2 reaches the cross-485

section after 20h, in run1 the only part of the coastal current extending that far after 20h is the nose area. This explains the

difference in the numbers that pertain to the coastal current at 20 h and 35 h. On average, the coastal current in run1 and run2

respectively transports about 25% and 40% of the initial freshwater discharge during the time period under consideration.
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Figure 7. The surfacev-component of the horizontal velocity at the �xedy-axis position equal to the internal Rossby radius,� 5:3 km, for

different runs at 20h and 35h.

The position of the front of the coastal current can also provide a qualitative estimate of the level of numerical diffusion.

Numerical mixing tends to move the bulge center closer to the coast, and hence a larger portion of freshwater enters the coastal490

current. The position of the head of the coastal current, or the magnitude of its discharge (compared to the analytical solution),

can be used to diagnose numerical diffusion in the system (Fig. 5). Note that numerical diffusion levels may be even higher if

the same small, offshore restriction of the bulge parallels a weakly developed coastal current. In such a case, the bulge and the

coastal current are excessively thick (see e.g., run6, Fig. 5).

Among our triangular discretizations, runs1, 3 are characterized by a larger bulge with a fresh surface and a slower-and-495

wider coastal current that transports less freshwater than it does in other runs and is closest to the analytical solution. Run3

has slightly differentf ct limiting details (it uses thef ct2 option, see Section 2 for the details). Also, in run1 as well as some

of the additional runs the velocity and elevation �elds (see e.g. Fig. 3 and Fig. 5) depict the presence of physical instability

at the frontal zones. However, the elevation �elds there also depict some noise in the areas adjacent to the plume boundaries

(Fig. 3d). The reasons for this noise are the spurious inertial oscillations present on triangular meshes in FESOM-C. Due to500

the absence of tracer diffusivity, specially designed �lters (e.g., the biharmonic �lter) and the expected low levels of numerical

diffusion in run1, such oscillations are not suf�ciently damped there and are present in the simulated patterns.
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