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FIRST COMMODORE WORKSHOP: COMMUNITY FOR 
THE NUMERICAL MODELING OF THE GLOBAL, 
REGIONAL, AND COASTAL OCEAN

WHat: A total of 47 participants from 9 countries 
representing 15 different oceanic numerical 
models met to review our current understand-
ing of future challenges in the design of oceanic 
dynamical cores.

WHen: 17–19 September 2018
WHere: Paris, France

O ceanic numerical models are used to under- 
 stand and predict a wide range of processes  
 from global paleoclimate scales to short-

term prediction in estuaries and shallow coastal 
areas. One of the overarching challenges, and the 
main topic of the Community for the Numerical 
Modeling of the Global, Regional, and Coastal Ocean 
(COMMODORE) workshop is the appropriate design 
of the dynamical cores given the wide variety of 
scales of interest and their interactions with atmo-
sphere, sea ice, biogeochemistry, and even societal 
processes. The construction of a dynamical core is 
a very long effort that takes years and decades of 
research and development, and requires a collabora-
tive mixture of scientific disciplines. This work in-
volves a significant number of fundamental choices, 
such as which equations to solve, which horizontal 
and vertical grid arrangement is adequate, which 
discrete algorithms allow jointly computational 
efficiency and sufficient accuracy, etc. Nowadays, a 

broad range of numerical methods are implemented 
in models used for realistic ocean simulations, and, 
owed to the advances in computational power, a 
meeting point has been reached between global cir-
culation models and regional local models, such that 
there can be mutual benefits of a cross-fertilization 
between communities. This report outlines an 
initiative to bring together the worldwide leading 
researchers actively contributing to the development 
of oceanic model dynamical cores, such that partici-
pants could network together and focus on next chal-
lenges irrespective of target applications (regional, 
coastal, or global). The first COMMODORE work-
shop (https://commodore2018.sciencesconf.org/) 
was organized in Paris, France, in September 2018. 
In total, the participants represented 15 oceanic 
dynamical cores among the most widely used by the 
research and operational community. The motiva-
tions, topics of discussion sessions, and outcomes of 
the workshop are summarized below.
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CONTEXT. The ocean model developers com-
munity has had the tendency to be split depending 
on the target applications (global vs coastal) and on 
the type of horizontal grids (structured vs unstruc-
tured) and has been organized around relatively 
small modeling groups. However, the models have 
now reached such a high level of complexity that 
model development goes beyond the expertise of 
one given group and requires interactions between 
physicists, mathematicians, and computer scientists. 
In this context, this workshop aimed at gathering 
a community of “model oriented” researchers to 
foster more regular exchanges and share expertise 
on outstanding issues and perspectives. During this 
first workshop, the emphasis was on reviewing the 
characteristics and diversity in the formulation of 
oceanic models used for realistic applications as well 
as on outlining upcoming challenges.

EVOLUTION OF OCEANIC MODELS. 
Historically, global and regional ocean models have 
been based on the hydrostatic primitive equations 
(e.g., Griffies and Adcroft 2008) discretized on 
structured grids using a mixture of finite-difference 
and finite-volume techniques for the discretization 
in space. The time dimension is usually treated 
using standard predictor–corrector or two-level ap-
proaches (e.g., Lemarié et al. 2015b). Those choices 
have been made because of their good compromise 
between simplicity, efficiency, and accuracy. In recent 
years, significant progress has been made for ocean 
modeling on unstructured grids, either via the finite 
volume (e.g., Chen et al. 2003; Ringler et al. 2010; 
Danilov et al. 2017) or finite element (e.g., Zhang 
et al. 2016; Korn 2017; Kärnä et al. 2018) approach. 
Unstructured grid models have reached an unprec-
edented level of maturity at least for two reasons. 
First, the vertical dimension is treated in a structured 
way compared to earlier initiatives trying to get 
three-dimensional unstructured meshes working. 
Second, a better understanding of computational 
modes and dispersion properties associated with a 
wide range of possible choices of finite-element pairs 
has been reached (e.g., Le Roux et al. 2007; Le Roux 
2012; Eldred and Le Roux 2018). For example, Korn 
and Danilov (2017) have recently proposed a specific 
mimetic approach to control the well-known spuri-
ous mode occurring in triangular C grids (Wolfram 
and Fringer 2013). Unstructured grid models have 
been used for coastal applications for many years 
and they have now reached the application phase 
for global applications (e.g., Sidorenko et al. 2015; 
Petersen et al. 2018, manuscript submitted to J. Adv. 

Model. Earth Syst.). A long-standing concern is that 
computational cost per nominal grid point is gener-
ally much larger than for structured grid models, and 
this problem is further compounded by the absence 
of time refinement to locally adjust the time step to 
the mesh resolution when explicit time stepping is 
used. The test strategy presented in the next section 
should provide a way to quantify more rationally the 
difference in terms of computational costs among 
existing models.

Recent advances also include the development of 
hybrid (or generalized) vertical coordinate systems 
based on arbitrary Lagrangian–Eulerian (ALE) 
methods. The vertical distribution of Eulerian 
coordinate levels is predefined, whereas Lagrangian 
coordinate levels freely evolve with the f low. ALE 
methods combine the advantages of well-defined 
(i.e., undistorted) meshes and reduced numerical 
mixing, and also allow adaptation strategies (e.g., 
Bleck 2002; Burchard and Beckers 2004; White et al. 
2009; Leclair and Madec 2011; Petersen et al. 2015). 
A difficulty in this case is the rezoning (also known 
as regridding) phase to maintain the integrity of the 
grid locally and globally.

A tendency in the design of the oceanic dynami-
cal cores is the extension to the nonhydrostatic (NH) 
equations. The most widely used approach nowadays 
in oceanic models is based on the incompressible NH 
system solved using a pressure correction–projection 
method that requires the solution of a 3D Poisson 
equation (Lai et al. 2011; Vitousek and Fringer 2013; 
Voltzinger and Androsov 2016). Recently, Auclair 
et al. (2018) have proposed the use of the compressible 
nonhydrostatic ocean equations with the advantage 
that no global algebraic system needs to be solved to 
compute NH pressure anomalies, but with the dis-
advantage to permit acoustic modes. In this case, a 
specific numerical procedure is required to maintain 
acceptable stability of the whole code.

TEST STRATEGY AND BENCHMARK 
SUITE. Given the wide variety of choices that need 
to be made during the development of dynamical 
cores and their overall complexity, it is crucial to 
define evaluation methods to compare the behavior 
of different models. Such effort has been made over 
the last decade by the global atmospheric community 
[Dynamical Core Model Intercomparison Project 
(DCMIP); Ullrich et al. 2012]. In particular, within 
DCMIP, a collection of test cases that found broad 
acceptance in the community has been designed 
and applied by a large number of modeling groups. 
The workshop highlighted that in the context of the 
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oceanic community, existing test cases are scattered 
in the literature and not always fully documented 
and reproducible. The few existing examples of such 
effort (e.g., Ezer et al. 2002; Gerritsen et al. 2008; 
Ilicak et al. 2012; Souff let et al. 2016) turned out 
to provide valuable feedback on the consequences 
of model formulations. A good test case should be 
easy to configure with analytical data suitable for all 
horizontal grids and different vertical coordinates 
and easy to evaluate while being relevant to test a 
given component of the dynamical core. The evalu-
ation can be done either via analytical solutions (e.g., 
Bristeau et al. 2018), numerically converged solutions 
(provided that all models converge toward the same 
solution), or more subjectively based on an unam-
biguous physical understanding of the processes 
(e.g., Marques et al. 2017). Such a benchmark suite 
is also useful to motivate communication between 
modeling groups and also to open room for pro-
spective approaches from applied mathematicians 
to highlight their effectiveness. Existing initiatives 
aiming at oceanic model intercomparison based on 
realistic simulations (e.g., Chassignet et al. 2000; 
Griffies et al. 2009) are generally too complex to 
clearly associate the observed differences to particu-
lar numerical choices. A way to evaluate numerical 
models in such complex configurations that could 
gain ground in the next few years is the uncertainty 
quantification (e.g., Iskandarani et al. 2016). Such 
an approach provides tools to characterize modeling 
and numerical sensitivities.

CHALLENGES. Throughout the three days of dis-
cussion, different current and future challenges have 
been identified. Addressing these challenges requires 
closer collaboration between the modeling groups.

Multiresolution strategy: Block structured versus 
unstructured. On the one hand, unstructured grid 
models have the ability to allow variable-resolution 
meshes provided an efficient mesh generation tool 
(e.g., Engwirda 2017), for example, to adapt the resolu-
tion to follow the local Rossby radius (Hallberg 2013; 
Sein et al. 2017). On the other hand, structured grid 
models can also locally increase the resolution via 
nesting techniques (Debreu and Blayo 2008; Warner 
et al. 2010; Debreu et al. 2012) or quadtree–octree 
refinement (Popinet and Rickard 2007). One advan-
tage of the nesting approach is to allow the adjust-
ment of the time step and the physical parameters to 
the local resolutions while unstructured models will 
need scale-aware parameterizations and a specific 
procedure for time refinement. Other points to 

investigate are the impact of variable resolution on 
propagating waves and the optimal layout to build a 
multiresolution mesh. A more prospective approach 
could be the use of an adaptive wavelet method 
(Kevlahan et al. 2015).

Energy consistency and resolved/unresolved scales 
coupling. Energy consistency is an important aspect 
for the proper interaction between resolved and 
parameterized scales (e.g., Burchard 2002; Bachman 
et al. 2017). However, as soon as a numerical core 
does not globally conserve energy at a discrete level 
(e.g., because of monotonicity enforcement, vertical 
remapping, or some form of upwinding), the identi-
fication of energy pathways is difficult and requires 
an in-depth analysis to close the energy cycle (e.g., 
Marsaleix et al. 2008; Eden 2016), which can be rather 
tedious (if not impossible) when advanced high-order 
numerics are used. An alternative could be to opt for 
an energy-conserving space and time discretization 
(e.g., Korn 2017; Eldred et al. 2019) with specific care 
(based on explicit numerical dissipation in the dy-
namical core and/or on parameterization of subgrid 
processes) to avoid instability issues of the existing 
approaches (Bell et al. 2017). This consistent coupling 
between dynamical cores and subgrid processes 
(known as physics–dynamics coupling) is an increas-
ingly important topic for the building of geophysical 
models in general (Gross et al. 2018).

Vertical coordinates and spurious numerical mixing. 
Spurious mixing (especially spurious dianeutral 
mixing) is a long-standing issue for oceanic dynami-
cal cores (e.g., Griffies et al. 2000). The use of an ALE 
vertical coordinate is a way to mitigate this issue. 
Despite the fact that Gibson et al. (2017) suggest that 
the vertical component of spurious mixing domi-
nates as horizontal resolution increases, it should 
not overshadow that many components of dynami-
cal cores can be a source of numerical mixing (e.g., 
horizontal advection, time stepping, the stabilization 
of the mode-splitting procedure). There is still a need 
to better understand the implications of different 
choices of momentum/tracers advection schemes, 
rezoning, and remapping procedures on numerical 
mixing. Idealized test cases and efficient diagnostic 
tools are important to tackle this issue (e.g., Ilicak 
et al. 2012; Klingbeil et al. 2014). It would also be 
instructive to keep investigating the improvement 
of quasi-Eulerian vertical coordinates (e.g., Berntsen 
2011). In this context schemes for the internal 
pressure gradient and for isoneutral tracer diffusion 
should also be considered (e.g., Shao et al. 2018).
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Nonhydrostatic pressure contribution. As discussed 
earlier, many oceanic dynamical cores have the 
possibility to account for nonhydrostatic effects. 
A difficulty is now to clearly identify under which 
conditions relaxing the hydrostatic assumption is 
necessary and which resolution is required for proper 
NH modeling. Another challenge is the possibility 
to locally account for NH effects within a primitive 
equations model either in the form of a superparam-
eterization (e.g., Campin et al. 2011) or in the form 
of two-way nesting between coarse hydrostatic and 
fine nonhydrostatic meshes (e.g., Blayo and Rousseau 
2016). Ultimately, further investigations of the merits 
and flaws of the incompressible versus compressible 
NH approaches would be worthwhile, also for global 
applications (Losch et al. 2004).

Coupling with other Earth system compartments. 
Oceanic dynamical cores are often used as a com-
ponent of larger coupled model systems. Coupling 
to several other Earth system compartments is com-
mon, such as to surface wave, sea ice, atmospheric, 
biogeochemical, benthic, and hydrological models. 
The numerical implementation of such coupling can 
become an issue (e.g., Lemarié et al. 2015a; Beljaars 
et al. 2017), especially at high coupling frequency and/
or spatial resolution. More systematic analysis of the 
coupling stability and consistency using simplified 
equation sets and the design of simplified coupled 
test cases must be encouraged.

Vanishing layers, wetting and drying, and shock-resolving 
numerics. An accurate treatment of wetting and drying 
is essential for coastal simulations as well as for climate 
simulations of under-ice-shelf cavities. At a numerical 
level this requires the nonnegativity of the water height 
and an adequate volume-conserving treatment of dry 
states (also known as vacuum states). Standard nu-
merical methods used in oceanic dynamical cores do 
not have the ability to handle vacuum, or equivalently 
shocks. Instead, approaches based on some predefined 
minimum water depth and specific ad hoc manipula-
tion of discrete fluxes are often used (e.g., section 5.2 in 
Klingbeil et al. 2018). However, there is a vast literature 
dedicated to the design of numerical schemes pre-
serving positivity and able to correctly treat vacuum 
states that furthermore satisfy an entropy-preserving 
property; that is, the nonlinear solution is physi-
cally relevant even in the presence of discontinuities 
(e.g., Audusse et al. 2004, 2016). Considering advec-
tion–diffusion equations, for example, for tracers 
(temperature, salinity), there is an obvious benefit in 
using numerical schemes preserving the maximum 

principle. There could be an interest in comparing 
these more advanced approaches with the usual treat-
ment adopted in dynamical cores.

CONCLUSIONS. The workshop gave a broad and 
fresh overview of existing numerical methods used 
in realistic ocean models as well as some examples of 
alternatives from the applied maths community. The 
participants have been enthusiastic and very positive 
about the possibility to sustain this type of workshop 
into a biennial workshop series. A collective article is 
currently in preparation to summarize the challenges 
and prospects for oceanic numerical cores across all 
scales. Moreover, a particular effort will be directed 
toward the formation of an active community of 
model developers with international collaborations, 
starting, for example, with the standardization of 
existing idealized test cases as the basis for model/
methods intercomparison studies. The next meeting 
will be organized either in fall 2019 or winter 2020 in 
Hamburg, Germany.
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