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Abstract 10 

We describe the development of a non-hydrostatic version of the regional climate model 11 

RegCM4, called RegCM4-NH, for use at convection-permitting resolutions. The non-12 

hydrostatic dynamical core of the Mesoscale Model MM5 is introduced in the RegCM4, 13 

with some modifications to increase stability and applicability of the model to long-term 14 

climate simulations. Newly available explicit microphysics schemes are also described, 15 

and three case studies of intense convection events are carried out in order to illustrate 16 

the performance of the model. They are all run at convection-permitting grid spacing of 3 17 

km over domains in northern California, Texas and the Lake Victoria region, without the 18 

use of parameterized cumulus convection. A substantial improvement is found in several 19 

aspects of the simulations compared to corresponding coarser resolution (12 km) runs 20 

completed with the hydrostatic version of the model employing parameterized convection. 21 

RegCM4-NH is currently being used in different projects for regional climate simulations 22 

at convection-permitting resolutions, and is intended to be a resource for users of the 23 

RegCM modeling system. 24 
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Introduction 28 

Since the pioneering work of Dickinson et al. (1989) and Giorgi and Bates (1989), 29 

documenting the first regional climate modeling system (RegCM, version 1) in literature, 30 

the dynamical downscaling technique based on limited area Regional Climate Models 31 

(RCMs) has been widely used worldwide, and a number of RCM systems have been 32 

developed (Giorgi 2019). RegCM1 (Dickinson et al., 1989, Giorgi and Bates, 1989) was 33 

originally developed at the National Center for Atmospheric Research (NCAR) based on 34 

the Mesoscale Model version 4 (MM4) (Anthes et al, 1987) . Then, further model versions 35 

followed: RegCM2 (Giorgi et al. 1993a,b), RegCM2.5, (Giorgi and Mearns 1999), 36 

RegCM3 (Pal et al. 2007), and lastly RegCM4 (Giorgi et al 2012). Except for the transition 37 

from RegCM1 to RegCM2, in which the model dynamical core was updated from that of 38 

the MM4 to that of the MM5 (Grell et al. 1995), these model evolutions were mostly based 39 

on additions of new and more advanced physics packages. RegCM4 is today used by a 40 

large community for numerous projects and applications, from process studies to paleo 41 

and future climate projections, including participation in the Coordinated Regional 42 

Downscaling EXperiment (CORDEX, Giorgi et al. 2009; Gutowski et al. 2016). The model 43 

can also be coupled with ocean, land and chemistry/aerosol modules in a fully interactive 44 

way (Sitz et al. 2017). 45 

The dynamical core of the standard version of RegCM4 is hydrostatic, with sigma-p 46 

vertical coordinates. As a result, the model can be effectively run for grid spacings of ~10 47 

km or larger, for which the hydrostatic assumption is valid. However, the RCM community 48 

is rapidly moving to higher resolutions of a few km, i.e. “convection-permitting” (Prein et 49 

al. 2015; Coppola et al. 2020) and therefore the dynamical core of RegCM4 has been 50 

upgraded to include a non-hydrostatic dynamics representation usable for very high 51 

resolution applications. This upgrade, which we name RegCM4-NH, is essentially based 52 

on the implementation of the MM5 non-hydrostatic dynamical core within the RegCM4 53 

framework, which has an entirely different set of model physics compared to MM5. 54 

 55 

RegCM4-NH is already being used in some international projects focusing on climate 56 

simulations at convection-permitting km-scales, namely the European Climate Prediction 57 

System (EUCP, Hewitt and Lowe 2018) and the CORDEX Flagship Pilot Study dedicated 58 
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to convection (CORDEX-FPSCONV, Coppola et al. 2020), and it is starting to be used 59 

more broadly by the RegCM modeling community.  60 

For example, the recent papers by Ban et al. (2021) and Pichelli et al. (2021) document 61 

results of the first multi-model experiment of 10-year simulations at the convection-62 

permitting scales over the so-called greater Alpine region. Two different simulations with 63 

RegCM4-NH for present day conditions have contributed to the evaluation analysis of 64 

Ban et al. (2021). They were carried out at the International Centre for Theoretical Physics 65 

(ICTP) and the Croatian Meteorological and Hydrological Service (DHMZ) using two 66 

different physics configurations. The results show that RegCM4-NH largely improves the 67 

precipitation simulation as compared to available fine scale observations when going from 68 

coarse to high resolution, in particular for higher order statistics, such as precipitation 69 

extremes and hourly intensity. Pichelli et al. (2021) then analyse multi-model ensemble 70 

simulations driven by selected CMIP5 GCM projections for the decades 1996–2005 and 71 

2090–2099 under the RCP8.5 scenario. ICTP contributed to the experiment with 72 

simulations using RegCM4-NH driven by the MOCH-HadGEM GCM (r1i1p1) in a two 73 

level nest configuration (respectively at 12 and 3 km grid). The paper shows new insights 74 

into future changes, for example an enhancement of summer and autumn hourly rainfall 75 

intensification compared to coarser resolution model experiments, as well as an increase 76 

of frequency and intensity of high-impact weather events. 77 

 78 

In this paper we describe the structure of RegCM4-NH and provide some illustrative 79 

examples of its performance, so that model users can have a basic reference providing 80 

them with background information on the model. In the next section we first describe the 81 

new model dynamical core, while the illustrative applications are presented in section 4. 82 

Section 5 finally provides some discussion of future developments planned for the RegCM 83 

system. 84 

Model description 85 

In the development of RegCM4-NH, the RegCM4 as described by Giorgi et al. (2012) was 86 

modified to include, the non-hydrostatic dynamical core (idynamic = 2 namelist option as 87 

described in RegCM-4.7.1/Doc/README.namelist of the source code) of the mesoscale 88 
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model MM5 (Grell et al. 1995). This dynamical core was selected because RegCM4 89 

already has the same grid and variable structure as MM5 in its hydrostatic core, which 90 

substantially facilitated its implementation (Elguindi et al. 2017). 91 

 92 

The model equations with complete description of the Coriolis force and a top radiative 93 

boundary condition, along with the finite differencing scheme, are given in Grell et al. 94 

(1995). Pressure, p, temperature, T, and density, 𝜚, are first decomposed into a 95 

prescribed reference vertical profile plus a time varying perturbation. The prognostic 96 

equations are then calculated using the pressure perturbation values. Compared to the 97 

original MM5 dynamical core, the following modifications were implemented in order to 98 

achieve increased stability for long term climate simulations (Elguindi et al. 2017 99 

document any modifications which follow the choice of the non-hydrostatic dynamical 100 

core through the namelist parameter idynamic = 2; further available user-dependant 101 

options, and the corresponding section in the namelist, are explicitly indicated): 102 

 103 

i) The reference state temperature profile is computed using a latitude dependent 104 

climatological temperature distribution and thus is a function of the specific domain 105 

coordinates (base_state_pressure, logp_lrate parameters in &referenceatm) (Elguindi et 106 

al. 2017). These two parameters were hard-coded in the original MM5 while for the 107 

RegCM are user configurable; 108 

 109 

ii) The lateral time dependent boundary conditions (iboudy in &physicsparam) for each 110 

prognostic variable use the same exponential relaxation technique (iboudy = 5) described 111 

in Giorgi et al. (1993). The linear MM5 relaxation scheme is also kept as an option (iboudy 112 

= 1); 113 

 114 

iii) The advection term in the model equations, which in the MM5 code is implemented 115 

using a centered finite difference approach, was changed to include a greater upstream 116 

weight factor as a function of the local Courant number (Elguindi et al. 2017). The 117 

maximum value of the weight factor is user configurable (uoffc in &dynparam). As detailed 118 
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in the MM5 model description (Grell et al, 1995), the horizontal advection term for a scalar 119 

variable X contributes to the total tendency as: 120 

 121 

 122 
 123 

where the  is the projection mapping factor and, with respect to Figure 1, assuming that 124 

the computation is to be performed for the gold cross point , the averages are performed 125 

in the points . For the  and  terms, the average value is computed using 126 

respectively the values in points . 127 

In RegCM4 for the term , the model computes a weighted average value of the field 128 

using the value in gold+cyan and gold+green cross points with weights increasing the 129 

relative contribution of the upstream point up as a function of the local courant number: 130 

 131 

 132 

 133 

 134 

 135 
where  are defined as the local Courant number for the 1D advection equations 136 

multiplied for a control factor: 137 

 138 

 139 

; 140 

 141 
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 142 
Figure 1 Schematic representation showing the horizontal advection scheme 143 

staggering. Circles are U,V points. X are scalar variable points. 144 

 145 

iv) The water species (cloud, ice,rain, snow) term uses the same advection scheme as 146 

the other variables (Elguindi et al. 2017) and not a complete upstream scheme as in the 147 

MM5 code (Grell et al. 1995); 148 

 149 

v) A local flux limiter reduces the advection terms in order to remove unrealistic strong 150 

gradients and its limits are user configurable (in the &dynparam section the maximum 151 

gradient fraction for advection: temperature, t_extrema, specific humidity, q_rel_extrema, 152 

liquid cloud content, c_rel_extrema and for tracers, t_rel_extrema). This was hardcoded 153 

in the MM5 code and the limits were not user configurable; 154 

 155 

vi) The diffusion stencil of the Laplace equation uses a nine point approach as in LeVeque 156 

(2006) and a topography dependent environmental diffusion coefficient is added to 157 

reduce spurious diffusion along pressure coordinate slopes (Elguindi et al. 2017) as in 158 

the hydrostatic version of the code (Giorgi et al. 1993b). The change in stencil does not 159 

affect the overall fourth order precision of the model, but reduces the computational 160 

stencil size, thus reducing the communication overhead; 161 

 162 

vii) The top boundary radiative condition (ifupr = 1 in &nonhydroparam) adopted in the 163 

semi-implicit vertical differencing scheme to reduce the reflection of energy waves uses 164 

coefficients on a 13x13 matrix which are re-computed every simulation day and not kept 165 

constant throughout the whole simulation as in the MM5 code. This allows the model to 166 
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be run for longer simulation times while not being strongly tied to the intial atmospheric 167 

conditions; 168 

 169 

viii) The dynamical control parameter β in the semi-implicit vertical differencing scheme 170 

(nhbet in &nonhydroparam) used for acoustic wave damping (Elguindi et al. 2017) is user 171 

configurable (Klemp and Dudhia, 2008), while it is hard-coded in the MM5; 172 

 173 

ix) A Rayleigh damping (ifrayd = 1 in &nonhydroparam) of the status variables towards 174 

the input GCM boundary conditions can be activated in the top layers (rayndamp 175 

configuring the number of top levels to apply) with a configurable relaxation time 176 

(rayalpha0, Klemp and Lilly, 1978, Durran and Klemp, 1983. This is consistent to what is 177 

implemented in the WRF model); 178 

 179 

x) The water species time filtering uses the Williams (2009) modified filter with α = 0.53 180 

instead of the RA filter used by all the other variables. The ν factor in the RA filter is user 181 

configurable (gnu1 and gnu2 in &dynparam). This reduces the damping introduced by the 182 

Robert-Asselin filter and the computational diffusion introduced by the horizontal 183 

advection scheme. 184 

 185 

With these modifications, the model basic equations, under leap-frog integration scheme, 186 

are (Elguindi et al. 2017) : 187 

 188 

 189 

 190 
 191 

 192 
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 193 

 194 
 195 

 196 
 197 

 198 
 199 

Where: 200 

 201 

 202 

 203 

 204 
 205 

with the vertical sigma coordinate defined as: 206 

 207 

 208 
 209 
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where  is the surface pressure and  is the reference pressure profile. The total 210 

pressure 211 

at each grid point is thus given as: 212 

 213 

 214 
 215 

With  being the top model pressure assuming a fixed rigid lid. 216 

The model physics schemes for boundary layer, radiative transfer, land and ocean 217 

surface processes, cloud and precipitation processes are extensively described in Giorgi 218 

et al. (2012) and summarized in Table 1. For each physics component a number of 219 

parameterization options are available (Table 1), and can be selected using a switch 220 

selected by the user. As mentioned, the use of non-hydrostatic dynamics is especially 221 

important when going to convection-permitting resolutions of a few km (Prein et al. 2015). 222 

At these resolutions the scale separation assumption underlying the use of cumulus 223 

convection schemes is not valid any more, and explicit cloud microphysics 224 

representations are necessary. The RegCM4 currently includes two newly implemented 225 

microphysics schemes, the Nogherotto-Tompkins (Nogherotto et al. 2016) and the WSM5 226 

scheme from the Weather Research Forecast (WRF, Skamarok et al. 2008) model, which 227 

are briefly described in the next sections for information to model users. 228 

 229 

Model physics 
(Namelist flag) 

Options n. option Reference 

Dynamical core 
(idynamic) 

Hydrostatic 1 Giorgi et al. 1993a,b 

Giorgi et al. 2012 

Non-Hydrostatic (*) 2 present paper 

Radiation 
(irrtm) 

CCSM 0 Kiehl et al. 1996 

RRTM (*) 1 Mlawer et al. 1997 
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Microphysics 
(ipptls) 

Subex 1 Pal et al 2000 

Nogherotto 

Thompkins 

2 Nogherotto et al. 2016 

WSM5 (*) 3 Hong et al 2004 

Cumulus 
(icup) 

Kuo 1 Anthes et al. 1987 

Grell 2 Grell 1993 

Emanuel 4 Emanuel 1991 

Tiedtke 5 Tiedtke 1989, 1993 

Kain-Fritsch 6 Kain and Fritsch, 1990; 

Kain 2004 

MM5 Shallow 

cumulus (only mixing) 

(*) 

-1 Grell et al. 1994 

Planetary 
Boundary Layer 
(ibltyp) 

Modified-Holtslag 1 Holtslag et al., 1990 

UW 2 Bretherton et al. 2004 

Land Surface 
(code compiling 
option) 

BATS / Dickinson et al. 1993; Giorgi 

et al. 2003 

CLM4.5 / Oleson et al. 2013 

Ocean Fluxes 
(iocnflx) 
  

BATS 1 Dickinson et al. 1993 

Zeng 2 Zeng et al. 1998 

COARE 3 Fairall et al. 1996a,b 
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Interactive lake 
(lakemod) 

1D 

diffusion/convection 

1 Hostetler et al. 1993 

Tropical band 
(i_band) 

RegT-Band 1 Coppola et al. 2012 

Coupled ocean 
(iocncpl) 
  

RegCM-ES 

  

1 Sitz et al. 2017 

Table 1 Core and sub-grid physics scheme available in RegCM-NH. New schemes 230 

available with this release are starred (*). 231 

 232 

 233 

Explicit microphysics schemes: 234 

 235 

Nogherotto-Tompkins Scheme: 236 

A new parameterization for explicit cloud microphysics and precipitation built upon the 237 

European Centre for Medium Weather Forecast’s Integrated Forecast System (IFS) 238 

module (Tiedtke, 1993, Tompkins, 2007), was introduced in RegCM4 (ipptls = 2 in 239 

&microparam) by Nogherotto et al. (2016). In the present configuration, the scheme 240 

implicitly solves 5 prognostic equations for water vapor, qr, cloud liquid water, ql, rain, qr, 241 

cloud ice, qi, and snow, qs, but it is also easily extendable to a larger number of variables. 242 

Water vapor, cloud liquid water, rain, cloud ice and snow are all expressed in terms of the 243 

grid-mean mixing ratio. 244 

Cloud liquid and ice water content are independent, allowing the existence of supercooled 245 

liquid water and mixed-phase clouds. Rain and snow precipitate with a fixed terminal fall 246 

speed and can then be advected by the three dimensional winds. A check for the 247 

conservation of enthalpy and of total moisture is ensured at the end of each timestep. The 248 

governing equation for each variable is: 249 

         250 
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 251 
               252 

The local variation of the mixing ratio qx of the variable x is given by the sum of Sx, 253 

containing the net sources and sinks of qx through microphysical processes (i.e. 254 

condensation, evaporation, auto-conversion, melting, etc.), and the sedimentation term, 255 

which is a function of the fall speed Vx . An upstream approach is employed to solve the 256 

equations. The sources and sinks contributors are divided in two groups according to the 257 

duration of the process they describe: processes that are considered to be fast relative to 258 

the model time step are treated implicitly while slow processes are treated explicitly. The 259 

processes taken into account (shown in Figure 2) are the microphysical pathways across 260 

the 5 water variables: condensation, autoconversion, evaporation, cloud water collection 261 

(accretion), and autoconversion for warm clouds, and freezing, melting, deposition, 262 

sublimation for cold clouds. 263 

 264 

 265 

Figure 2: Depiction of the new scheme, showing the five prognostic variables and 266 

how they are related to each other through microphysical processes 267 

For each microphysical pathway, phase changes are associated with the release or 268 

absorption of latent heat, which then impacts the temperature budget. The impact is 269 
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calculated using the conservation of liquid water temperature TL defined as:   270 

              271 

     272 

Given that dTL =0, the rate of change of the temperature is given by the following 273 

equation:  274 

 275 

 276 
        277 

where L(x) is the latent heat of fusion or evaporation, depending on the process 278 

considered, Dqx is the convective detrainment and the third term in brackets is the 279 

sedimentation term. 280 

At the end of each time step a check is carried out of the conservation of total water and 281 

moist static energy: 282 

     283 

The scheme is tunable through parameters in the &microparam section of the namelist 284 

(RegCM-4.7.1/Doc/README.namelist; Elguindi et al. 2017).  285 
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WSM5 Scheme:  286 

RegCM4-NH also employs the Single-Moment 5-class microphysics scheme of the WRF 287 

model (Skamarock et al., 2008). This scheme (ipptls = 3 in &microparam) follows Hong 288 

et al. (2004) and, similarly to Nogherotto et al. (2016), includes vapor, rain, snow, cloud 289 

ice, and cloud water hydrometeors. The scheme separately treats ice and water 290 

saturation processes, assuming water hydrometeors for temperatures above freezing, 291 

and cloud ice and snow below the freezing level (Dudhia, 1989, Hong et al., 1998). It 292 

accounts for supercooled water and a gradual melting of snow below the melting layer 293 

(Hong et al., 2004, and Hong and Lim, 2006). Therefore, the WSM5 and Nogherotto-294 

Tompkins schemes have similar structures (Figure 2), but also important differences.  295 

Differently from the Nogherotto-Tompkins scheme, the WSM5 (as well as the other WSM 296 

schemes in WRF) prescribes an inverse exponential continuous distribution of particle 297 

size (ex. Marshall and Palmer (1948) for rain, Gunn and Marshall (1958) for snow). It also 298 

includes the size distribution of ice particles and, as a major novelty, the definition of the 299 

number of ice crystals based on ice mass content rather than temperature. Both the 300 

Nogherotto-Tompkins and WSM5 schemes include autoconversion, i.e. sub-time step 301 

processes of conversion of cloud water to rain and cloud ice to snow. For rain, Hong et 302 

al. (2004) use a Kessler (1969) type algorithm in WSM5, but with a stronger physical basis 303 

following Tripoli and Cotton (1980). The Nogherotto-Tompkins scheme also includes the 304 

original Kessler (1969) formula as an option, but it makes available other three 305 

exponential approaches following Sundqvist et al. (1989), Beheng (1994), and 306 

Khairoutdinov and Kogan (2000). For ice autoconversion the Nogherotto-Tompkins 307 

scheme uses an exponential approach (Sundqvist, 1989) with a specific coefficient for ice 308 

particles (following Lin et al., 1983) depending on temperature, while the WSM5 uses a 309 

critical value of ice mixing ratio (depending on air density) and a maximum allowed ice 310 

crystal mass (following Rutledge and Hobbs, 1983) that suppresses the process at low 311 

temperatures because of the effect of air density. Finally, the WSM5 has no dependency 312 

on cloud cover for condensation processes while the Nogherotto-Tompkins scheme uses 313 

cloud cover to regulate the condensation rate in the formation of stratiform clouds.  314 
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 315 

Illustrative case studies 316 

 317 

Three case studies (Table 2) of Heavy Precipitation Events (HPE) have been identified in 318 

order to test and illustrate the behavior of the non-hydrostatic core of the RegCM4-NH, 319 

with focus on the explicit simulation of convection over different regions of the world. In 320 

two test cases, California and Lake Victoria, data from the ERA-Interim reanalysis (Dee 321 

et al. 2011) are used to provide initial and lateral meteorological boundary conditions for 322 

an intermediate resolution run (grid spacing of 12 km, with use of convection 323 

parameterizations) (Figure 3), which then provides driving boundary conditions for the 324 

convection-permitting experiments. In the Texas case study, however, we nested the 325 

model directly in the ERA-Interim reanalysis with boundary conditions provided every 6 326 

hours, given that such configuration was able to reproduce accurately the HPE intensity. 327 

In this case the model uses a large LBC relaxation zone which allows the description of 328 

realistic fine-scale features driving this weather event (even if not fully consistent with the 329 

Matte et al. (2017) criteria). All simulations start 24-48 hours before the HPE. The analysis 330 

focuses on the total accumulated precipitation over the entire model domain at 3 km 331 

resolution (Fig. 3) for the periods defined in Table 2. In the cases of California and Texas 332 

the evaluation also includes the time series of 6 hourly accumulated precipitation 333 

averaged on the region of maximum precipitation (black rectangles in Figs. 3) against 334 

available high temporal resolution observations (NCEP/CPC) (Table 3). The discussion 335 

of the case studies is presented in the next sections; the configuration files (namelists) 336 

with full settings for the three test cases are available at 337 

https://zenodo.org/record/5106399.  338 

 339 

A key issue concerning the use of CP-RCMs is the availability of very high resolution, 340 

high quality observed datasets for the assessment and evaluation of the models, which 341 

is not there for most of the world regions. Precipitation measurements come from 342 

essentially three distinct sources: in-situ rain-gauges, ground radar and satellite. In the 343 

present study we use 7 observational datasets depending on the case study and the area 344 
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covered, as described in Table 2. We have used: Precipitation Estimation from Remotely 345 

Sensed Information using Artificial Neural Networks - Climate Data Record (PERSIAN-346 

CDR), Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), the 347 

Climate Prediction Center morphing method (CMORPH), Tropical Rainfall Measuring 348 

Mission (TRMM), NCEP/CPC-Four Kilometer Precipitation Set Gauge and Radar 349 

(NCEP/CPC), CPC-Unified daily gauge based precipitation estimates (CPC) and 350 

Parameter-elevation Regressions on Independent Slopes Model (PRISM) (Table 3). 351 

NCEP/CPC is a precipitation analysis which merges a rain gauge dataset with radar 352 

estimates. CMORPH and PERSIAN-CDR are based on satellite measurements, CHIRPS 353 

incorporates satellite imagery with in-situ station data. CPC is a gauge-based analysis of 354 

daily precipitation and the PRISM dataset gathers climate observations from a wide range 355 

of monitoring networks, applies sophisticated quality control measures, and develops 356 

spatial climate datasets incorporating a variety of modeling techniques at multiple spatial 357 

and temporal resolutions.  358 

 359 

Case ACRONYM Region of The 

event 

Domains size 

lon x lat x 

vertical levels  

Simulation Time 

Window 

1 CAL California 480 x 440 x 41 15 Feb 2004 

00:00 

19 Feb 2004 

00:00 

2 TEX Texas 480 x 440 x 41 9 June 2010 

00:00 

12 June 2010 

00:00 

3 LKV Lake Victoria 550 x 530 x 41 25 Nov 1999 

00:00 
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1 Dec 1999 

00:00 

Table 2: List of acronyms and description of the test cases with corresponding 3km 360 

domain sizes and simulation period. 361 

 362 

Dataset 
name 

Region Spatial 
Resolution 

Temporal 
Resolution 

Data 
Source 

Reference 

TRMM World 0.5° Daily Satellite Huffman et 

al. (2007) 

CHIRPS World 0.05° Daily Station 

data+Satellit

e 

Funk et al. 

(2015) 

CMORPH World 0.25° Daily Satellite Joyce et al. 

(2004) 

NCEP/CPC  USA 0.04° Hourly  Gauge and 

Radar 

 

https://doi.or

g/10.5065/D

69Z93M3. 

Accessed: 

27/06/2018 

CPC World 0.5° Daily Station data Chen and 

Xie (2008) 

PRISM USA  0.04° Daily  Station data PRISM 

Climate 

Group. 

2016. 
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PERSIAN-

CDR 

World 0.25° Daily Satellite Ashouri et 

al. (2015) 

Table 3: List of observed precipitation datasets used for comparison.  363 

 364 

 365 

Figure 3: Simulation domains tested, a) California (CAL), b) Texas (TEX), c) Lake 366 

Victoria (LKV). For CAL (a) and LKV (b) the black square shows the 3 km simulation 367 

domains nested in the 12 km domain in figure. For TEX the 3 km domain simulation 368 

(c) is fed directly with the ERA-Interim reanalysis fields.  369 

 370 

  371 

California 372 
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The first case, referred to as CAL (California) in Table 2, is a HPE which occurred on 16–373 

18 February 2004, producing flooding conditions for the Russian River, a southward-374 

flowing river in the Sonoma and Mendocino counties of northern California (red-dot) 375 

(Figure 3). The event is documented in detail by Ralph et al. (2006), who focused their 376 

attention on the impact of narrow filament-shaped structures of strong horizontal water 377 

vapor transport over the eastern Pacific Ocean and the western U.S. coast, called 378 

Atmospheric Rivers (ARs). ARs are typically associated with a low-level jet stream ahead 379 

of the cold front of extratropical cyclones (Zhu and Newell 1998; Dacre et al. 2015; Ralph 380 

et al. 2018), and can induce heavy precipitation where they make landfall and are forced 381 

to rise over mountain chains (Gimeno et al. 2014). The CAL event consists of a slow 382 

propagating surface front arching southeastward towards Oregon and then 383 

southwestward offshore of California (Fig.3a,c). Rain began over the coastal mountains 384 

of the Russian River watershed at 0700 UTC, 16 February, as a warm front descended 385 

southward, and also coincided with the development of orographically favoured low-level 386 

upslope flow Ralph et al. (2006). 387 
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 388 

Figure 4: Mean sea level pressure (mslp) (white contour lines), surface temperature 389 

(color shading) and 100-m wind direction (black arrows) at 7:00 UTC, 16 Feb. 2004 390 

of ERA5 reanalysis (a) and RegCM 12km (b) respectively. (c) NCEP-NOA Surface 391 

Analysis of pressure and fronts . The black box in (c) bounded the area represented 392 

in (a) and (b) 393 

 The intermediate resolution (12 km) domain (Figure 3a) covers a wide area 394 

encompassing California and a large portion of the coastal Pacific Ocean, with 23 vertical 395 

levels and a parameterization for deep convection based on the Kain–Fritsch scheme 396 

(Kain, 2004). The ERA-Interim driven simulation is initialized at 0000 UTC, 15 February 397 

2004 (Table 2) and lasts until 0000 UTC 19 February 2004. This simulation drives a 398 
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corresponding RegCM4-NH run using a smaller domain centered over northern California 399 

(Fig. 3a) at 3 km horizontal grid spacing and 41 vertical levels, with boundary conditions 400 

updated at 6 hour intervals. In RegCM4-NH only the shallow convection component of 401 

the Tiedtke scheme (Tiedtke, 1996) is activated. Simulated precipitation is compared with 402 

the CHIRPS, CMORPH, TRMM, PRISM, NCEP/CPC observations described in Table 3.  403 

First, we notice that the synoptic conditions characteristic of this case study, which are 404 

fed into the RegCM4-NH model, are well reproduced by RegCM4 at 12 km, as shown in 405 

Figure 4, where we compare the mean sea level pressure (mslp), surface temperature 406 

and wind direction on 14 Feb at 7:00 am, as simulated by RegCM at 12 km (Fig.3b) with 407 

corresponding fields from the ERA5 reanalysis (Fig.4a).The surface analysis of pressure 408 

and fronts derived from the operational weather maps prepared at the National Centers 409 

for Environmental Prediction, Hydrometeorological Prediction Center, National Weather 410 

Service (https://www.wpc.ncep.noaa.gov/dailywxmap/index_20040216.html) is also 411 

reported in Figure 4c. 412 

The observed precipitation datasets show similar patterns for the total accumulated 413 

precipitation (Figure 5), in particular CHIRPS, PRISM and NCEP exhibit similar spatial 414 

details and magnitudes of extremes. CHIRPS places a maximum around 42°N which is 415 

not found in the other datasets. CMORPH and TRMM show lower precipitation maxima 416 

and lesser spatial details due to their lower resolution, indicating that the performance of 417 

satellite-based products may be insufficient as a stand alone product to validate the model 418 

for this case. 419 

 420 

In general, the observed precipitation datasets place the highest maxima on the terrain 421 

peaks, with extreme rainfall greater than 250 mm in 60 hours over the coastal mountains 422 

and greater than 100 – 175 mm elsewhere (Fig. 5a). The black box in Fig 5 shows the 423 

area of the Russian River watershed, highlighting the locations of the observing systems, 424 

including Cazadero (CZD) and Bodega Bay (BBY) where the largest rainfall rates were 425 

detected, 269 mm and 124 mm in 60-h accumulated rainfall between 0000 UTC 16 426 

February and 1200 UTC 18 February 2004, respectively (Ralph et al., 2006). 427 
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The convection-permitting simulation captures the basic features of the observed 428 

precipitation , as shown for example in Fig.5, both in terms of spatial distribution and 429 

temporal evolution of rainfall (Fig.6a). However, it shows higher precipitation rates than 430 

observed over the sea and over the mountain chains, with lower intensities than observed 431 

in the south-east part of the mountain chain (Fig.5). By contrast, the 12-km simulation 432 

severely underestimates the magnitude of the precipitation event (Fig.5). 433 

Concerning the timing and intensity of the event in the CZD subregion, 6-hourly 434 

accumulated precipitation (Fig.6a) averaged over the black box of Figure 5, shows that 435 

both the 3 km and 12 km simulations capture the onset of the event, but the peak intensity 436 

is strongly underestimated by the 12 km run, while it is well simulated by the 3 km run, 437 

although the secondary maximum is overestimated. Therefore, our results demonstrate 438 

that only the high resolution convection-permitting model captures this extreme event, 439 

and that parameterized convection has severe limits in this regard (Done et al. 2004; Lean 440 

et al. 2008; Weisman et al. 2008; Weusthoff et al. 2010; Schwartz 2014; Clark et al. 2016). 441 

  442 
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 443 

Figure 5 : Total accumulated precipitation (mm) during the California case: 444 

CHIRPS, CMORPH, TRMM observations (top line), PRISM and NCEP Reanalysis 445 

(middle line) and convection-permitting simulation with RegCM4-NH at 3km and 446 

RegCM4 at 12km (bottom line) .The black box denotes the area where the spatial 447 

average of 6-hourly accumulated precipitation is calculated and reported in Fig. 6. 448 

CAL (a) TEX (b) 
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Figure 6: Time series of the 6 hourly accumulated precipitation (in mm on the y-449 

axis) during the CAL event (a) and during the TEX event (b). The blue lines show 450 

RegCM4 12 Km and ERA interim 6 hourly accumulated precipitation averaged over 451 

the areas indicated by the red square in Figure 3 (a,b) while the red line shows the 452 

6 hourly accumulated precipitation simulated by RegCM4-NH. The observations are 453 

shown with a black line. 454 

 455 

Texas 456 

Case 2, hereafter referred to as TEX (Table 2), is a convective precipitation episode 457 

exhibiting characteristics of the “Maya Express” flood events, linking tropical moisture 458 

plumes from the Caribbean and Gulf of Mexico to midlatitude flooding over the central 459 

United States (Higgins 2011). During the TEX event, an upper-level cutoff low over 460 

northeastern Texas, embedded within a synoptic-scale ridge, moved slowly 461 

northeastward. Strong low-level flow and moisture transport from the western Gulf of 462 

Mexico progressed northward across eastern Texas. The event was characterized by 463 

low-level moisture convergence, weak upper-level flow, weak vertical wind shear, and 464 

relatively cold air (center of cutoff low), which favored the slow-moving convective storms 465 

and nearly stationary thunderstorm outflow boundaries. The main flooding event in 466 
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eastern Texas occurred on June 10, 2010, with a daily maximum rainfall of 216.4 mm of 467 

the region in the black box of Figure 7 (Higgins 2011). 468 

 469 

Figure 7: Total accumulated precipitation (mm) during the Texas case: CHIRPS, 470 

CMORPH, TRMM observations (top line), PRISM and NCEP Reanalysis (central line) 471 

and convection-permitting simulation with RegCM4-NH at 3 km grid spacing and 472 

Era-Int (bottom line).The black box shows the area where the spatial average of 6-473 

hourly accumulated precipitation was calculated and reported in Figure 6. 474 

 475 

As for the California case, the observed precipitation datasets show coherent patterns for 476 

the total accumulated precipitation (Fig. 6), with the highest values related to the 477 
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mesoscale convective system in eastern Texas (~ 200 mm), and another smaller area of 478 

high precipitation more to the north, approximately over Oklahoma. PRISM and NCEP 479 

capture similar spatial details and magnitudes of extremes, CHIRPS has lower 480 

precipitation extremes in the north compared to the other datasets, while CMORPH and 481 

TRMM show the lowest precipitation extremes and reduced spatial details as already 482 

noted for the California case.  483 

The bottom panels in Figure 7 present precipitation as produced by the RegCM4-NH and 484 

the ERA-Interim reanalysis (driving data) , respectively. ERA-Interim reproduces some of 485 

the observed features of precipitation, but with a substantial underestimation over the 486 

areas of maximum precipitation because of its coarse resolution. By comparison, the 487 

RegCM4-NH simulation (Fig. 7) shows an improvement in both pattern and intensity of 488 

precipitation, and is substantially closer to observations over eastern Texas. However, 489 

the precipitation area is slightly overestimated and the model is not capable of 490 

reproducing the small region of maximum precipitation in the north. 491 

 492 

The time series of precipitation over eastern Texas from 9 to 12 June 2010 for 493 

observations (black line), ERA-Interim (blue line) and RegCM4-NH (red line) are reported 494 

in Figure 6b. Precipitation increases over this region from 00:00, 10 June, until it reaches 495 

the observed maximum at 12:00, 10 June (~35 mm), gradually decreasing afterwards 496 

until 6:00, 11 June. The RegCM4-NH simulation shows a more realistic temporal 497 

evolution than the ERA-Interim, which exhibits an overall underestimation of precipitation. 498 

In general, the non-hydrostatic model produces precipitation values close to the 499 

observations, however, the simulated maximum is reached 6 hours earlier than observed. 500 

 501 

 502 

Lake Victoria 503 

Case 3 focuses on Lake Victoria (LKV), with the purpose of testing RegCM4-NH on a 504 

complex and challenging region in terms of convective rainfall. It is estimated that each 505 

year 3,000-5,000 fishermen perish on the lake due to nightly storms (Red Cross, 2014). 506 

In the Lake Victoria basin, the diurnal cycle of convection is strongly influenced by 507 

lake/land breezes driven by the thermal gradient between the lake surface and the 508 
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surrounding land. As the land warms during the course of the day, a lake breeze is 509 

generated which flows from the relatively cooler water towards the warmer land surface. 510 

The circulation is effectively reversed at night, when the land surface becomes cooler 511 

than the lake surface, leading to convergence over the lake and associated thermal 512 

instability. 513 

In the LKV region, prevailing winds are generally easterly most of the year with some 514 

variability due to the movement of the ITCZ. The local diurnal circulation created by the 515 

presence of the lake within the larger scale easterly wind field creates two diurnal rainfall 516 

maxima. During daylight hours, when the lake breeze begins to advance inland, 517 

convergence is maximized on the eastern coast of the lake as the lake breeze interacts 518 

with the prevailing easterlies. Studies have also noted the importance of downslope 519 

katabatic winds along the mountains to the east of the lake in facilitating convergence 520 

along the eastern coastal regions (Anyah et al. 2006). This creates a maximum in rainfall 521 

and convection on the eastern coast of LKV. Conversely, during nighttime hours, when 522 

the local lake circulation switches to flow from the land towards the lake, the prevailing 523 

easterlies create locally strong easterly flow across the lake and an associated maximum 524 

in convergence and rainfall on the western side of LKV. 525 

The LKV simulation starts on 25 November 1999 and extends to the beginning of 526 

December 1999 (Table 2), covering a 5-day period which falls within the short-rain season 527 

of East Africa. The choice of 1999, an ENSO neutral year, was made in order to focus the 528 

analysis on local effects, such as the diurnal convection cycle in response to the lake/land 529 

breeze, with no influence of anomalous large scale conditions. A 1-dimensional lake 530 

model (Hostetler et al. 1993; Bennington et al. 2014) interactively coupled to RegCM4-531 

NH was utilized to calculate the lake surface temperature (LST), since lake-atmosphere 532 

coupling has been shown to be important for the LKV (Sun et al. 2015; Song et al. 2004). 533 

This coupled lake model has been already used for other lakes, including Lake Malawi in 534 

southern Africa (Diallo et al. 2018). As with the other experiments, the boundary 535 

conditions are provided by a corresponding 12 km RegCM4 simulation employing the 536 

convection scheme of Tiedtke (1996). 537 
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At the beginning of the simulation, the LST over the lake is uniformly set to 26C, and is 538 

then allowed to evolve according to the lake-atmosphere coupling. This initial LST value 539 

is based on previous studies. For example, Talling (1969) finds Lake Victoria surface 540 

temperatures ranging from 24.5-26°C during the course of the year. Several studies have 541 

used RCMs to investigate the Lake Victoria climate (Anya et al., 2006; Anyah and 542 

Semazzi 2009, Sun et al. 2015), and found a significant relationship between lake 543 

temperature and rainfall depending on season. The value of 26°C is typical of the winter 544 

season and was chosen based on preliminary sensitivity tests using different values of 545 

initial temperature ranging from 24°C to 26°C. 546 

The synoptic feature favorable for the production of precipitation over the LKV in this 547 

period corresponds to a large area of southeasterly flow from the Indian Ocean (Fig. 8a), 548 

which brings low-level warm moist air into the LKV region facilitating the production of 549 

convective instability and precipitation. This synoptic situation, with a low-level 550 

southeasterly jet off the Indian Ocean, is a common feature associated with high 551 

precipitation in the area (Anyah et al. 2006) is found in ERA5 (Figure 7a). 552 

 553 

 554 
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Figure 8: Mean sea level pressure (mslp) (white black contour lines), surface 555 

temperature (color shading) and 100-m wind direction (black arrows) averaged over 556 

the period 25 November 00:00 - 1 December 00:00, of ERA5 reanalysis (a) and 557 

RegCM 12km (b). The black line (b) shows the cross-section position represented 558 

in Fig. 9 559 

 560 

The LKV region dynamics are quite distinct between nighttime and daytime and the 561 

rainfall in and around the lake has a pronounced diurnal cycle. To understand this strong 562 

diurnal cycle, Figure 9 shows a cross-section through the lake (32E to 34E, black line in 563 

right panel of Fig. 8) along 1S latitude at a period during strong nighttime (Fig. 9b,d; 6Z 564 

30 November) and daytime convection (Fig. 9a,c; 12Z 29 November). During the day, 565 

surface heating around the lake leads to a temperature differential between the land and 566 

lake sufficient to generate a lake breeze, which causes divergence over the lake, while 567 

over the surrounding highlands the environment is more conducive to convection (9a,c). 568 

Conversely, during the night, a land breeze circulation is generated, which induces 569 

convergence and convection over the lake (Figure 9b,d).  570 

Comparing the 3 km simulation to the 12 km forcing run, we find that the localized 571 

circulations created by local forcings (i.e. convection) are much stronger in the high 572 

resolution experiment. We also find stronger and more localized areas of convective 573 

updrafts as seen in the vertical velocities (9a,b) compared to the 12 km simulation (8c,d; 574 

omega is shown instead of vertical velocity here because of the difference in model 575 

output). The stronger convection simulated in the 3 km experiment is also tied to the 576 

stronger temperature gradients between lake and land and between day and night (Figure 577 

10). 578 

This demonstrates that the 3km simulation is better equipped to simulate the localized 579 

circulations associated with this complex land-lake system. 580 

 581 
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 582 

Figure 9. Cross-section through 1S (red line in bottom right panel of Fig. 9) of the 583 

mean (0-2N) zonal-wind anomaly (30E-36E) vectors and contoured vertical velocity 584 

(m/s) at a) 12Z 29 November and b) 6Z 30 November from the 3km simulation. 585 

Purple dashed contours indicate -0.1 m/s, light blue contours indicate 0.1 m/s, 586 

yellow contours indicate 0.3 m/s, and red contours indicate 0.5 m/s. Lake Victoria 587 

encompasses about 32E to 34E. The bottom 2 panels show the cross-section also 588 

through 1S and mean zonal-wind anomaly vectors as in a) and b) but from the 12km 589 

simulation at c) 12Z 29 November and d) 6Z 30 November. Purple dashed contours 590 

indicate -0.01 hPa/s, light blue dashed contours indicate -0.005 hPa/s, and yellow 591 

dashed contours indicate 0.005 hPa/s. 592 
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 593 

Figure 10 : Longitude-time (hourly) Hovmöller diagram of LKV domain surface 594 

temperature (shading, in °C). Panels correspond to the 3km simulation (left) and 595 

12km simulation (right). The lake Victoria is between 32E and 34E longitude  596 

 597 
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Figure 11: Total accumulated precipitation during the LKV case measured by 598 

CHIRPS (top left), CMORPH (top center), CPC (top right) TRMM (bottom left) and 599 

calculated by RegCM4 at 3 km (bottom center) and 12 km (bottom right) .  600 

 601 

Figure 11 finally reports the total accumulated precipitation observed and simulated for 602 

the LKV case. TRMM and CPC show a similar pattern, with two-rainfall maxima of 603 

different intensities over the southeastern and northwestern lake areas. CMORPH shows 604 

a western rainfall maximum similar to TRMM and one large rainfall area almost entirely 605 

centered over the highlands to the west of the lake. Conversely in CHIRPS a maximum 606 

is found to the east of the lake while several localized maxima occur over the lake. The 607 

differences between the observed datasets highlight the issue of observational 608 

uncertainty and the need to take into consideration shortcomings associated with the 609 

types of observational datasets considered. Different datasets can have significantly 610 

different climatology, especially in areas of low data availability. For example, Prein and 611 

Gobiet (2017) analyzed two gauge-based European-wide datasets, and seven global low-612 

resolution datasets, and found large differences across the observation products, often 613 

of similar magnitude as the difference between model simulations. In this case and for 614 

this area the observation uncertainty plays a big role especially at high resolution, and 615 

highlights the need for an adequate observational network for model validation. 616 

 However, even taking into account the elevated uncertainty existing in the observations 617 

datasets, we find a significant underestimation of rain amounts in the 12 km run (Fig 11), 618 

with a wide area of rainfall around 80mm over the whole of LKV. In contrast, the 3 km 619 

simulation shows substantially greater detail, with rainfall patterns more in agreement with 620 

the CMORPH observations. In particular, the 3 km simulation reproduces well the local 621 

rainfall maxima on the western side of the lake, although these appear more localized 622 

and with a multi-cell structure compared to CMORPH and TRMM. Additionally, the 12 km 623 

simulation underestimates the observed heavy rainfall totals in the highlands to the west 624 

of the lake region, which are instead reproduced by the 3 km simulation. 625 
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This last test case demonstrates the ability of RegCM4-NH in simulating realistic 626 

convective activity over a morphologically complex region, which is a significant 627 

improvement compared to the hydrostatic-coarse resolution model configuration. 628 

 629 

Conclusions and future outlook 630 

 631 

In this paper we have described the development of RegCM4-NH, a non hydrostatic 632 

version of the regional model system RegCM4, which was completed in response to the 633 

need of moving to simulations at convection-permitting resolutions of a few km. The 634 

dynamical core of the non-hydrostatic version of MM5 has been thus incorporated into 635 

the RegCM4 system, an approach facilitated by the fact that the this last is essentially an 636 

evolution of the MM5. Some modifications to the MM5 dynamical core were also 637 

implemented to increase the model stability for long term runs. RegCM4-NH also includes 638 

two explicit cloud microphysics schemes needed to explicitly describe convection and 639 

cloud processes in the absence of the use of cumulus convection schemes. Finally, we 640 

presented a few case studies of explosive convection to illustrate how the model provides 641 

realistic results in different settings and general improvements compared to the coarser 642 

resolution hydrostatic version of RegCM4 for such types of events. 643 

  644 

As already mentioned, RegCM4-NH is currently being used for different projects, and 645 

within these contests, is being run at grid spacings of a few km for continuous decadal 646 

simulations, driven by reanalyses of observations or GCM boundary conditions (with the 647 

use of an intermediate resolution domains) over different regions, such as the Alps, the 648 

Eastern Mediterranean, Central-Eastern Europe and the Caribbeans. These projects, 649 

involving multi-model intercomparisons, indicate that the performance of RegCM4-NH is 650 

generally in line with that of other convection permitting models, and exhibits similar 651 

improvements compared to coarser resolution models, such as a better simulation of the 652 

precipitation diurnal cycle and of extremes at hourly to daily time scales. The results 653 

obtained within the multi-model context confirm previous results from single-model 654 

studies (Kendon et al. 2012, 2017, Ban et al. 2014, 2015; Prein et al. 2015, 2017), but 655 
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also strengthen the robustness of the findings through reduced uncertainty compared to 656 

coarse resolution counterpart (Ban et al., 2021, Pichelli et al., 2021). The convection-657 

permitting scale can thus open the perspective of more robust projections of future 658 

changes of precipitation, especially over short time scales. 659 

  660 

One of the problems of the RegCM4-NH dynamical core is that, especially for long runs 661 

with varied meteorological conditions, a relatively short time step needs to be used for 662 

stability reasons. This makes the model rather computationally demanding, although not 663 

more than other convection-permitting modeling systems such as the Weather Research 664 

and Forecast model (WRF, Skamarok et al. 2008). For this reason, we are currently 665 

incorporating within the RegCM system a very different and more computationally efficient 666 

non-hydrostatic dynamical core, which will provide the basis for the next version of the 667 

model, RegCM5, to be released in the future. 668 

  669 

Following the philosophy of the RegCM modeling system, RegCM4-NH is intended to be 670 

a public, free, open source community resource for external model users. The non-671 

hydrostatic dynamical core has been implemented in a way that it can be activated in 672 

place of the hydrostatic dynamics through a user-set switch, which makes the use of 673 

RegCM4-NH particularly simple and flexible. We therefore envision that the model will be 674 

increasingly used by a broad community so that a better understanding can be achieved 675 

of its behavior, advantages and limitations. 676 
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