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Abstract

We describe the development of a non-hydrostatic version of the regional climate model
RegCM4, called RegCM4-NH, for use at convection-permitting resolutions. The non-
hydrostatic dynamical core of the Mesoscale Model MM5 is introduced in the RegCM4,
with some modifications to increase stability and applicability of the model to long-term
climate simulations. Newly available explicit microphysics schemes are also described,
and three case studies of intense convection events are carried out in order to illustrate
the performance of the model. They are all run at convection-permitting grid spacing of 3
km over domains in northern California, Texas and the Lake Victoria region, without the
use of parameterized cumulus convection. A substantial improvement is found in several
aspects of the simulations compared to corresponding coarser resolution (12 km) runs
completed with the hydrostatic version of the model employing parameterized convection.
RegCM4-NH is currently being used in different projects for regional climate simulations
at convection-permitting resolutions, and is intended to be a resource for users of the

RegCM modeling system.
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Introduction

Since the pioneering work of Dickinson et al. (1989) and Giorgi and Bates (1989),
documenting the first regional climate modeling system (RegCM, version 1) in literature,
the dynamical downscaling technique based on limited area Regional Climate Models
(RCMs) has been widely used worldwide, and a number of RCM systems have been
developed (Giorgi 2019). RegCM1 (Dickinson et al., 1989, Giorgi and Bates, 1989) was
originally developed at the National Center for Atmospheric Research (NCAR) based on
the Mesoscale Model version 4 (MM4) (Anthes et al, 1987) . Then, further model versions
followed: RegCM2 (Giorgi et al. 1993a,b), RegCM2.5, (Giorgi and Mearns 1999),
RegCM3 (Pal et al. 2007), and lastly RegCM4 (Giorgi et al 2012). Except for the transition
from RegCM1 to RegCM2, in which the model dynamical core was updated from that of
the MM4 to that of the MM5 (Grell et al. 1995), these model evolutions were mostly based
on additions of new and more advanced physics packages. RegCM4 is today used by a
large community for numerous projects and applications, from process studies to paleo
and future climate projections, including participation in the Coordinated Regional
Downscaling EXperiment (CORDEX, Giorgi et al. 2009; Gutowski et al. 2016). The model
can also be coupled with ocean, land and chemistry/aerosol modules in a fully interactive
way (Sitz et al. 2017).

The dynamical core of the standard version of RegCM4 is hydrostatic, with sigma-p
vertical coordinates. As a result, the model can be effectively run for grid spacings of ~10
km or larger, for which the hydrostatic assumption is valid. However, the RCM community
is rapidly moving to higher resolutions of a few km, i.e. “convection-permitting” (Prein et
al. 2015; Coppola et al. 2020) and therefore the dynamical core of RegCM4 has been
upgraded to include a non-hydrostatic dynamics representation usable for very high
resolution applications. This upgrade, which we name RegCM4-NH, is essentially based
on the implementation of the MM5 non-hydrostatic dynamical core within the RegCM4
framework, which has an entirely different set of model physics compared to MM5.

RegCM4-NH is already being used in some international projects focusing on climate
simulations at convection-permitting km-scales, namely the European Climate Prediction
System (EUCP, Hewitt and Lowe 2018) and the CORDEX Flagship Pilot Study dedicated
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to convection (CORDEX-FPSCONYV, Coppola et al. 2020), and it is starting to be used
more broadly by the RegCM modeling community.

For example, the recent papers by Ban et al. (2021) and Pichelli et al. (2021) document
results of the first multi-model experiment of 10-year simulations at the convection-
permitting scales over the so-called greater Alpine region. Two different simulations with
RegCM4-NH for present day conditions have contributed to the evaluation analysis of
Ban et al. (2021). They were carried out at the International Centre for Theoretical Physics
(ICTP) and the Croatian Meteorological and Hydrological Service (DHMZ) using two
different physics configurations. The results show that RegCM4-NH largely improves the
precipitation simulation as compared to available fine scale observations when going from
coarse to high resolution, in particular for higher order statistics, such as precipitation
extremes and hourly intensity. Pichelli et al. (2021) then analyse multi-model ensemble
simulations driven by selected CMIPS GCM projections for the decades 1996-2005 and
2090-2099 under the RCP8.5 scenario. ICTP contributed to the experiment with
simulations using RegCM4-NH driven by the MOCH-HadGEM GCM (r1i1p1) in a two
level nest configuration (respectively at 12 and 3 km grid). The paper shows new insights
into future changes, for example an enhancement of summer and autumn hourly rainfall
intensification compared to coarser resolution model experiments, as well as an increase

of frequency and intensity of high-impact weather events.

In this paper we describe the structure of RegCM4-NH and provide some illustrative
examples of its performance, so that model users can have a basic reference providing
them with background information on the model. In the next section we first describe the
new model dynamical core, while the illustrative applications are presented in section 4.
Section 5 finally provides some discussion of future developments planned for the RegCM

system.

Model description

In the development of RegCM4-NH, the RegCM4 as described by Giorgi et al. (2012) was
modified to include, the non-hydrostatic dynamical core (idynamic = 2 namelist option as
described in RegCM-4.7.1/Doc/README.namelist of the source code) of the mesoscale



89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

model MM5 (Grell et al. 1995). This dynamical core was selected because RegCM4
already has the same grid and variable structure as MM5 in its hydrostatic core, which
substantially facilitated its implementation (Elguindi et al. 2017).

The model equations with complete description of the Coriolis force and a top radiative
boundary condition, along with the finite differencing scheme, are given in Grell et al.
(1995). Pressure, p, temperature, T, and density, o, are first decomposed into a
prescribed reference vertical profile plus a time varying perturbation. The prognostic
equations are then calculated using the pressure perturbation values. Compared to the
original MM5 dynamical core, the following modifications were implemented in order to
achieve increased stability for long term climate simulations (Elguindi et al. 2017
document any modifications which follow the choice of the non-hydrostatic dynamical
core through the namelist parameter idynamic = 2; further available user-dependant
options, and the corresponding section in the namelist, are explicitly indicated):

i) The reference state temperature profile is computed using a latitude dependent
climatological temperature distribution and thus is a function of the specific domain
coordinates (base_state _pressure, logp_Irate parameters in &referenceatm) (Elguindi et
al. 2017). These two parameters were hard-coded in the original MM5 while for the
RegCM are user configurable;

ii) The lateral time dependent boundary conditions (iboudy in &physicsparam) for each
prognostic variable use the same exponential relaxation technique (iboudy = 5) described
in Giorgi et al. (1993). The linear MMS relaxation scheme is also kept as an option (iboudy

iii) The advection term in the model equations, which in the MM5 code is implemented
using a centered finite difference approach, was changed to include a greater upstream
weight factor as a function of the local Courant number (Elguindi et al. 2017). The

maximum value of the weight factor is user configurable (uoffc in &dynparam). As detailed
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in the MM5 model description (Grell et al, 1995), the horizontal advection term for a scalar
variable X contributes to the total tendency as:

(p*X‘b%’b _p*X’a%Lz) (p*X|d%’d _p*X’c% c)
+
dx dy

Aadv (p*X>G = _m2|G

where the m is the projection mapping factor and, with respect to Figure 1, assuming that
the computation is to be performed for the gold cross point GG, the averages are performed
in the points @, b, ¢, d. For the 4/m and v/™ terms, the average value is computed using
respectively the values in points AC, BD,CD, AB,

In RegCM4 for the term P X the model computes a weighted average value of the field
using the value in gold+cyan and gold+green cross points with weights increasing the

relative contribution of the upstream point up as a function of the local courant number:

p*Xl|e=05((1—- fi)p*Xle+ 1+ fL)p*X|e)

p* X[y =0.5((1 = fi)p*Xle, + (1L + fi)p"X]c)

p*Xle=0.5((1 = fo)p*X|e + (1 + fo)p" X|4)

P Xla=0.5((1 = f2)p" X|g + (1 + f2)p" X]c)

where /1, f2 are defined as the local Courant number for the 1D advection equations
multiplied for a control factor:

_ (ula + uly)
fl - ,ufcdt 2dx

(v]e + vla)

= ppedt—————

Jo = py 2dy :
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Figure 1 Schematic representation showing the horizontal advection scheme
staggering. Circles are U,V points. X are scalar variable points.

iv) The water species (cloud, ice,rain, snow) term uses the same advection scheme as
the other variables (Elguindi et al. 2017) and not a complete upstream scheme as in the
MMS code (Grell et al. 1995);

v) A local flux limiter reduces the advection terms in order to remove unrealistic strong
gradients and its limits are user configurable (in the &dynparam section the maximum
gradient fraction for advection: temperature, t_extrema, specific humidity, q_rel_extrema,
liquid cloud content, c_rel_extrema and for tracers, t_rel_extrema). This was hardcoded

in the MMS code and the limits were not user configurable;

vi) The diffusion stencil of the Laplace equation uses a nine point approach as in LeVeque
(2006) and a topography dependent environmental diffusion coefficient is added to
reduce spurious diffusion along pressure coordinate slopes (Elguindi et al. 2017) as in
the hydrostatic version of the code (Giorgi et al. 1993b). The change in stencil does not
affect the overall fourth order precision of the model, but reduces the computational

stencil size, thus reducing the communication overhead,;

vii) The top boundary radiative condition (ifupr = 1 in &nonhydroparam) adopted in the
semi-implicit vertical differencing scheme to reduce the reflection of energy waves uses
coefficients on a 13x13 matrix which are re-computed every simulation day and not kept

constant throughout the whole simulation as in the MM5 code. This allows the model to
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be run for longer simulation times while not being strongly tied to the intial atmospheric

conditions;

viii) The dynamical control parameter {3 in the semi-implicit vertical differencing scheme
(nhbet in &nonhydroparam) used for acoustic wave damping (Elguindi et al. 2017) is user
configurable (Klemp and Dudhia, 2008), while it is hard-coded in the MM5;

ix) A Rayleigh damping (ifrayd = 1 in &nonhydroparam) of the status variables towards
the input GCM boundary conditions can be activated in the top layers (rayndamp
configuring the number of top levels to apply) with a configurable relaxation time
(rayalpha0, Klemp and Lilly, 1978, Durran and Klemp, 1983. This is consistent to what is
implemented in the WRF model);

x) The water species time filtering uses the Williams (2009) modified filter with a = 0.53
instead of the RA filter used by all the other variables. The v factor in the RA filter is user
configurable (gnu1 and gnuZ2 in &dynparam). This reduces the damping introduced by the
Robert-Asselin filter and the computational diffusion introduced by the horizontal

advection scheme.

With these modifications, the model basic equations, under leap-frog integration scheme,
are (Elguindi et al. 2017) :

dp*u > [Op*uu/m  Op*vu/m ap*uc
1 = —m? ! — + A — — 1__ +uDIV —
3.3 r oy (o
mp* | Iy’ T dp* Ay’ A .
! L - (—‘I—L +p fv—pewcost + D, (1)
p |dr p*dr do ’
dp*v > | Opfuv /m  Op*vv/m dp*ue
‘I = —m? ; — ! — — 1,, +vDIV —
9/ dx Jy o
mp* [ Op' 7 op* Op' , .
! —1 ! 1——1 —p fu+pewsinf + D, (2)
p |dy p*dy do '
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dp*w o [Op*uw /m  dp*vw/m dp*wo
. = —m — + . -
ot dx Ay o
o[l T T
p lprdec T  Tpo

+wDIV +

] —p'glge + g )] +p'elucost —vsin@)+ D, (3)

dp*p’ dp*tup’fm  dp*vp'/m dp*ple )
—— =-m ‘ : - — DIV —
Ot oz | oy oo P
. dufm o dptou  dv/m o dp* v ohw ,
m*p'yp |—— — " ‘p Aot —F— F +pog 1P —+P pog (4]
i mp* dr do dy mp* dy do o
Op* T op*uT{m  op*vT/m Ip*Té6
(1.) _ 2| %z fm  Op l fm] (P S o PDIV +
ot dr dy o
L[ .Dy LQ .
E [p Di — pogp w — Dp] +p’ e + Dr (5)
Where:
DIV — m? (?p“‘ u/m N (?pi v/m N (‘_).])“('7
dx dy o
5 — —pOF " 771:7 (?p B m.:f (?p ;
P P ()1 Pt dy
N[y
s 9 - -
tan cos OOO e
p(vl‘& Y, =, t) = pO(:;I + p’(l‘, Y. = t,:l
T(z,y,21) = To() + (2,9, 2,)
pla,y,z,t) = polz) + p'(2,y, 2,1)

with the vertical sigma coordinate defined as:

(po — pe)

7= (ps — pt)
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where Ps is the surface pressure and Po is the reference pressure profile. The total
pressure

at each grid point is thus given as:
ple,y. 2z, t) =p'oclk)+p + 1):[,1‘. y, =, t)

With Pt being the top model pressure assuming a fixed rigid lid.

The model physics schemes for boundary layer, radiative transfer, land and ocean
surface processes, cloud and precipitation processes are extensively described in Giorgi
et al. (2012) and summarized in Table 1. For each physics component a number of
parameterization options are available (Table 1), and can be selected using a switch
selected by the user. As mentioned, the use of non-hydrostatic dynamics is especially
important when going to convection-permitting resolutions of a few km (Prein et al. 2015).
At these resolutions the scale separation assumption underlying the use of cumulus
convection schemes is not valid any more, and explicit cloud microphysics
representations are necessary. The RegCM4 currently includes two newly implemented
microphysics schemes, the Nogherotto-Tompkins (Nogherotto et al. 2016) and the WSM5
scheme from the Weather Research Forecast (WRF, Skamarok et al. 2008) model, which

are briefly described in the next sections for information to model users.

Model physics Options n. option | Reference
(Namelist flag)
Dynamical core Hydrostatic 1 Giorgi et al. 1993a,b
(idynamic) Giorgi et al. 2012
Non-Hydrostatic (*) 2 present paper
Radiation CCSM 0 Kiehl et al. 1996
(irrtm)
RRTM (*) 1 Mlawer et al. 1997




Microphysics Subex 1 Pal et al 2000
(ipptis)
Nogherotto 2 Nogherotto et al. 2016
Thompkins
WSMS5 (%) 3 Hong et al 2004
Cumulus Kuo 1 Anthes et al. 1987
icup
( ) Grell 2 Grell 1993
Emanuel 4 Emanuel 1991
Tiedtke 5 Tiedtke 1989, 1993
Kain-Fritsch 6 Kain and Fritsch, 1990;
Kain 2004
MMS Shallow | -1 Grell et al. 1994
cumulus (only mixing)
(*)
Planetary Modified-Holtslag 1 Holtslag et al., 1990
Boundary Layer
(ibltyp) uw 2 Bretherton et al. 2004
Land Surface BATS / Dickinson et al. 1993; Giorgi
(code compiling et al. 2003
option)
CLMA4.5 / Oleson et al. 2013
Ocean Fluxes BATS 1 Dickinson et al. 1993
(iocnflx)
Zeng 2 Zeng et al. 1998
COARE 3 Fairall et al. 1996a,b

10
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Interactive lake 1D 1 Hostetler et al. 1993
(lakemod) diffusion/convection

Tropical band RegT-Band 1 Coppola et al. 2012
(i_band)

Coupled ocean RegCM-ES 1 Sitz et al. 2017
(iocncpl)

Table 1 Core and sub-grid physics scheme available in RegCM-NH. New schemes
available with this release are starred (*).

Explicit microphysics schemes:

Nogherotto-Tompkins Scheme:

A new parameterization for explicit cloud microphysics and precipitation built upon the
European Centre for Medium Weather Forecast’'s Integrated Forecast System (IFS)
module (Tiedtke, 1993, Tompkins, 2007), was introduced in RegCM4 (ipptls = 2 in
&microparam) by Nogherotto et al. (2016). In the present configuration, the scheme
implicitly solves 5 prognostic equations for water vapor, qgr, cloud liquid water, ql, rain, qr,
cloud ice, qgi, and snow, gs, but it is also easily extendable to a larger number of variables.
Water vapor, cloud liquid water, rain, cloud ice and snow are all expressed in terms of the

grid-mean mixing ratio.

Cloud liquid and ice water content are independent, allowing the existence of supercooled
liquid water and mixed-phase clouds. Rain and snow precipitate with a fixed terminal fall
speed and can then be advected by the three dimensional winds. A check for the
conservation of enthalpy and of total moisture is ensured at the end of each timestep. The
governing equation for each variable is:

11
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The local variation of the mixing ratio gx of the variable x is given by the sum of Sx,
containing the net sources and sinks of qgx through microphysical processes (i.e.
condensation, evaporation, auto-conversion, melting, etc.), and the sedimentation term,
which is a function of the fall speed Vx . An upstream approach is employed to solve the
equations. The sources and sinks contributors are divided in two groups according to the
duration of the process they describe: processes that are considered to be fast relative to
the model time step are treated implicitly while slow processes are treated explicitly. The
processes taken into account (shown in Figure 2) are the microphysical pathways across
the 5 water variables: condensation, autoconversion, evaporation, cloud water collection
(accretion), and autoconversion for warm clouds, and freezing, melting, deposition,

sublimation for cold clouds.

o %
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Figure 2: Depiction of the new scheme, showing the five prognostic variables and

Sedimentation

how they are related to each other through microphysical processes

For each microphysical pathway, phase changes are associated with the release or

absorption of latent heat, which then impacts the temperature budget. The impact is

12
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calculated using the conservation of liquid water temperature TL defined as:

L, L
To=T-—(q+4q)- ~

C, C, (gi +4s)-

Given that dTL =0, the rate of change of the temperature is given by the following

equation:
T & L(x) rdgy 10
g _X=1 Cp ( dt _Dq.r - Baiz(pvxq)«))

where L(x) is the latent heat of fusion or evaporation, depending on the process
considered, Dgx is the convective detrainment and the third term in brackets is the

sedimentation term.

At the end of each time step a check is carried out of the conservation of total water and
moist static energy:

h=CpT +gz+ Lgy.

The scheme is tunable through parameters in the &microparam section of the namelist
(RegCM-4.7.1/Doc/README.namelist; Elguindi et al. 2017).

13
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WSM5 Scheme:

RegCM4-NH also employs the Single-Moment 5-class microphysics scheme of the WRF
model (Skamarock et al., 2008). This scheme (ipptls = 3 in &microparam) follows Hong
et al. (2004) and, similarly to Nogherotto et al. (2016), includes vapor, rain, snow, cloud
ice, and cloud water hydrometeors. The scheme separately treats ice and water
saturation processes, assuming water hydrometeors for temperatures above freezing,
and cloud ice and snow below the freezing level (Dudhia, 1989, Hong et al., 1998). It
accounts for supercooled water and a gradual melting of snow below the melting layer
(Hong et al., 2004, and Hong and Lim, 2006). Therefore, the WSM5 and Nogherotto-
Tompkins schemes have similar structures (Figure 2), but also important differences.

Differently from the Nogherotto-Tompkins scheme, the WSM5 (as well as the other WSM
schemes in WRF) prescribes an inverse exponential continuous distribution of particle
size (ex. Marshall and Palmer (1948) for rain, Gunn and Marshall (1958) for snow). It also
includes the size distribution of ice particles and, as a major novelty, the definition of the
number of ice crystals based on ice mass content rather than temperature. Both the
Nogherotto-Tompkins and WSM5 schemes include autoconversion, i.e. sub-time step
processes of conversion of cloud water to rain and cloud ice to snow. For rain, Hong et
al. (2004 ) use a Kessler (1969) type algorithm in WSM5, but with a stronger physical basis
following Tripoli and Cotton (1980). The Nogherotto-Tompkins scheme also includes the
original Kessler (1969) formula as an option, but it makes available other three
exponential approaches following Sundqvist et al. (1989), Beheng (1994), and
Khairoutdinov and Kogan (2000). For ice autoconversion the Nogherotto-Tompkins
scheme uses an exponential approach (Sundqvist, 1989) with a specific coefficient for ice
particles (following Lin et al., 1983) depending on temperature, while the WSM5 uses a
critical value of ice mixing ratio (depending on air density) and a maximum allowed ice
crystal mass (following Rutledge and Hobbs, 1983) that suppresses the process at low
temperatures because of the effect of air density. Finally, the WSM5 has no dependency
on cloud cover for condensation processes while the Nogherotto-Tompkins scheme uses
cloud cover to regulate the condensation rate in the formation of stratiform clouds.

14
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lllustrative case studies

Three case studies (Table 2) of Heavy Precipitation Events (HPE) have been identified in
order to test and illustrate the behavior of the non-hydrostatic core of the RegCM4-NH,
with focus on the explicit simulation of convection over different regions of the world. In
two test cases, California and Lake Victoria, data from the ERA-Interim reanalysis (Dee
et al. 2011) are used to provide initial and lateral meteorological boundary conditions for
an intermediate resolution run (grid spacing of 12 km, with use of convection
parameterizations) (Figure 3), which then provides driving boundary conditions for the
convection-permitting experiments. In the Texas case study, however, we nested the
model directly in the ERA-Interim reanalysis with boundary conditions provided every 6
hours, given that such configuration was able to reproduce accurately the HPE intensity.
In this case the model uses a large LBC relaxation zone which allows the description of
realistic fine-scale features driving this weather event (even if not fully consistent with the
Matte et al. (2017) criteria). All simulations start 24-48 hours before the HPE. The analysis
focuses on the total accumulated precipitation over the entire model domain at 3 km
resolution (Fig. 3) for the periods defined in Table 2. In the cases of California and Texas
the evaluation also includes the time series of 6 hourly accumulated precipitation
averaged on the region of maximum precipitation (black rectangles in Figs. 3) against
available high temporal resolution observations (NCEP/CPC) (Table 3). The discussion
of the case studies is presented in the next sections; the configuration files (namelists)
with  full  settings for the three test <cases are available at
https://zenodo.org/record/5106399.

A key issue concerning the use of CP-RCMs is the availability of very high resolution,
high quality observed datasets for the assessment and evaluation of the models, which
is not there for most of the world regions. Precipitation measurements come from
essentially three distinct sources: in-situ rain-gauges, ground radar and satellite. In the
present study we use 7 observational datasets depending on the case study and the area

15
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covered, as described in Table 2. We have used: Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks - Climate Data Record (PERSIAN-
CDR), Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), the
Climate Prediction Center morphing method (CMORPH), Tropical Rainfall Measuring
Mission (TRMM), NCEP/CPC-Four Kilometer Precipitation Set Gauge and Radar
(NCEP/CPC), CPC-Unified daily gauge based precipitation estimates (CPC) and
Parameter-elevation Regressions on Independent Slopes Model (PRISM) (Table 3).
NCEP/CPC is a precipitation analysis which merges a rain gauge dataset with radar
estimates. CMORPH and PERSIAN-CDR are based on satellite measurements, CHIRPS
incorporates satellite imagery with in-situ station data. CPC is a gauge-based analysis of
daily precipitation and the PRISM dataset gathers climate observations from a wide range
of monitoring networks, applies sophisticated quality control measures, and develops
spatial climate datasets incorporating a variety of modeling techniques at multiple spatial

and temporal resolutions.

Case ACRONYM Region of The | Domains size [Simulation Time
event lon x lat x[Window
vertical levels

1 CAL California 480 x440x 41 |15 Feb 2004
00:00
19 Feb 2004
00:00

2 TEX Texas 480 x440x41 |19 June 2010
00:00
12 June 2010
00:00

3 LKV Lake Victoria 550 x530x41 25 Nov 1999
00:00

16
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1

Dec 1999

00:00

Table 2: List of acronyms and description of the test cases with corresponding 3km

domain sizes and simulation period.

Dataset Region Spatial Temporal Data Reference
name Resolution | Resolution | Source
TRMM World 0.5° Daily Satellite Huffman et
al. (2007)
CHIRPS World 0.05° Daily Station Funk et al.
data+Satellit | (2015)
e
CMORPH World 0.25° Daily Satellite Joyce et al.
(2004)
NCEP/CPC [ USA 0.04° Hourly Gauge and | https://doi.or
Radar g/10.5065/D
69Z93M3.
Accessed:
27/06/2018
CPC World 0.5° Daily Station data | Chen  and
Xie (2008)
PRISM USA 0.04° Daily Station data | PRISM
Climate
Group.
2016.
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PERSIAN- | World 0.25° Daily Satellite Ashouri et
CDR al. (2015)

363 Table 3: List of observed precipitation datasets used for comparison.
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366 Figure 3: Simulation domains tested, a) California (CAL), b) Texas (TEX), c) Lake
367 Victoria (LKV). For CAL (a) and LKV (b) the black square shows the 3 km simulation
368 domains nested in the 12 km domain in figure. For TEX the 3 km domain simulation
369 (c)is fed directly with the ERA-Interim reanalysis fields.
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The first case, referred to as CAL (California) in Table 2, is a HPE which occurred on 16—
18 February 2004, producing flooding conditions for the Russian River, a southward-
flowing river in the Sonoma and Mendocino counties of northern California (red-dot)
(Figure 3). The event is documented in detail by Ralph et al. (2006), who focused their
attention on the impact of narrow filament-shaped structures of strong horizontal water
vapor transport over the eastern Pacific Ocean and the western U.S. coast, called
Atmospheric Rivers (ARs). ARs are typically associated with a low-level jet stream ahead
of the cold front of extratropical cyclones (Zhu and Newell 1998; Dacre et al. 2015; Ralph
et al. 2018), and can induce heavy precipitation where they make landfall and are forced
to rise over mountain chains (Gimeno et al. 2014). The CAL event consists of a slow
propagating surface front arching southeastward towards Oregon and then
southwestward offshore of California (Fig.3a,c). Rain began over the coastal mountains
of the Russian River watershed at 0700 UTC, 16 February, as a warm front descended
southward, and also coincided with the development of orographically favoured low-level
upslope flow Ralph et al. (2006).
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Figure 4: Mean sea level pressure (mslp) (white contour lines), surface temperature
(color shading) and 100-m wind direction (black arrows) at 7:00 UTC, 16 Feb. 2004
of ERA5 reanalysis (a) and RegCM 12km (b) respectively. (c) NCEP-NOA Surface
Analysis of pressure and fronts . The black box in (c) bounded the area represented
in (a) and (b)

The intermediate resolution (12 km) domain (Figure 3a) covers a wide area
encompassing California and a large portion of the coastal Pacific Ocean, with 23 vertical
levels and a parameterization for deep convection based on the Kain—Fritsch scheme
(Kain, 2004). The ERA-Interim driven simulation is initialized at 0000 UTC, 15 February
2004 (Table 2) and lasts until 0000 UTC 19 February 2004. This simulation drives a
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corresponding RegCM4-NH run using a smaller domain centered over northern California
(Fig. 3a) at 3 km horizontal grid spacing and 41 vertical levels, with boundary conditions
updated at 6 hour intervals. In RegCM4-NH only the shallow convection component of
the Tiedtke scheme (Tiedtke, 1996) is activated. Simulated precipitation is compared with
the CHIRPS, CMORPH, TRMM, PRISM, NCEP/CPC observations described in Table 3.

First, we notice that the synoptic conditions characteristic of this case study, which are
fed into the RegCM4-NH model, are well reproduced by RegCM4 at 12 km, as shown in
Figure 4, where we compare the mean sea level pressure (mslp), surface temperature
and wind direction on 14 Feb at 7:00 am, as simulated by RegCM at 12 km (Fig.3b) with
corresponding fields from the ERAS reanalysis (Fig.4a).The surface analysis of pressure
and fronts derived from the operational weather maps prepared at the National Centers
for Environmental Prediction, Hydrometeorological Prediction Center, National Weather
Service (https://www.wpc.ncep.noaa.gov/dailywxmap/index_20040216.html) is also
reported in Figure 4c.

The observed precipitation datasets show similar patterns for the total accumulated
precipitation (Figure 5), in particular CHIRPS, PRISM and NCEP exhibit similar spatial
details and magnitudes of extremes. CHIRPS places a maximum around 42°N which is
not found in the other datasets. CMORPH and TRMM show lower precipitation maxima
and lesser spatial details due to their lower resolution, indicating that the performance of
satellite-based products may be insufficient as a stand alone product to validate the model

for this case.

In general, the observed precipitation datasets place the highest maxima on the terrain
peaks, with extreme rainfall greater than 250 mm in 60 hours over the coastal mountains
and greater than 100 — 175 mm elsewhere (Fig. 5a). The black box in Fig 5 shows the
area of the Russian River watershed, highlighting the locations of the observing systems,
including Cazadero (CZD) and Bodega Bay (BBY) where the largest rainfall rates were
detected, 269 mm and 124 mm in 60-h accumulated rainfall between 0000 UTC 16
February and 1200 UTC 18 February 2004, respectively (Ralph et al., 2006).
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The convection-permitting simulation captures the basic features of the observed
precipitation , as shown for example in Fig.5, both in terms of spatial distribution and
temporal evolution of rainfall (Fig.6a). However, it shows higher precipitation rates than
observed over the sea and over the mountain chains, with lower intensities than observed
in the south-east part of the mountain chain (Fig.5). By contrast, the 12-km simulation

severely underestimates the magnitude of the precipitation event (Fig.5).

Concerning the timing and intensity of the event in the CZD subregion, 6-hourly
accumulated precipitation (Fig.6a) averaged over the black box of Figure 5, shows that
both the 3 km and 12 km simulations capture the onset of the event, but the peak intensity
is strongly underestimated by the 12 km run, while it is well simulated by the 3 km run,
although the secondary maximum is overestimated. Therefore, our results demonstrate
that only the high resolution convection-permitting model captures this extreme event,
and that parameterized convection has severe limits in this regard (Done et al. 2004; Lean
et al. 2008; Weisman et al. 2008; Weusthoff et al. 2010; Schwartz 2014, Clark et al. 2016).

22



443

444
445
446
447
448

«n| CHIRPS

/N

6N

N

2N

Figure 5 :

10W  128°W  126°W 124°W 12°W 1,

500
400
300
200
100
90
80
70
60
50
40
30
20
10

Total accumulated precipitation (mm) during the California case:

CHIRPS, CMORPH, TRMM observations (top line), PRISM and NCEP Reanalysis

(middle line) and convection-permitting simulation with RegCM4-NH at 3km and

RegCM4 at 12km (bottom line) .The black box denotes the area where the spatial

average of 6-hourly accumulated precipitation is calculated and reported in Fig. 6.
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Figure 6: Time series of the 6 hourly accumulated precipitation (in mm on the y-
axis) during the CAL event (a) and during the TEX event (b). The blue lines show
RegCM4 12 Km and ERA interim 6 hourly accumulated precipitation averaged over
the areas indicated by the red square in Figure 3 (a,b) while the red line shows the
6 hourly accumulated precipitation simulated by RegCM4-NH. The observations are

shown with a black line.

Texas

Case 2, hereafter referred to as TEX (Table 2), is a convective precipitation episode
exhibiting characteristics of the “Maya Express” flood events, linking tropical moisture
plumes from the Caribbean and Gulf of Mexico to midlatitude flooding over the central
United States (Higgins 2011). During the TEX event, an upper-level cutoff low over
northeastern Texas, embedded within a synoptic-scale ridge, moved slowly
northeastward. Strong low-level flow and moisture transport from the western Gulf of
Mexico progressed northward across eastern Texas. The event was characterized by
low-level moisture convergence, weak upper-level flow, weak vertical wind shear, and
relatively cold air (center of cutoff low), which favored the slow-moving convective storms

and nearly stationary thunderstorm outflow boundaries. The main flooding event in
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467  eastern Texas occurred on June 10, 2010, with a daily maximum rainfall of 216.4 mm of
468 the region in the black box of Figure 7 (Higgins 2011).
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470 Figure 7: Total accumulated precipitation (mm) during the Texas case: CHIRPS,
471 CMORPH, TRMM observations (top line), PRISM and NCEP Reanalysis (central line)
472  and convection-permitting simulation with RegCM4-NH at 3 km grid spacing and
473  Era-Int (bottom line).The black box shows the area where the spatial average of 6-

474  hourly accumulated precipitation was calculated and reported in Figure 6.

475

476  As for the California case, the observed precipitation datasets show coherent patterns for
477 the total accumulated precipitation (Fig. 6), with the highest values related to the
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mesoscale convective system in eastern Texas (~ 200 mm), and another smaller area of
high precipitation more to the north, approximately over Oklahoma. PRISM and NCEP
capture similar spatial details and magnitudes of extremes, CHIRPS has lower
precipitation extremes in the north compared to the other datasets, while CMORPH and
TRMM show the lowest precipitation extremes and reduced spatial details as already
noted for the California case.

The bottom panels in Figure 7 present precipitation as produced by the RegCM4-NH and
the ERA-Interim reanalysis (driving data) , respectively. ERA-Interim reproduces some of
the observed features of precipitation, but with a substantial underestimation over the
areas of maximum precipitation because of its coarse resolution. By comparison, the
RegCM4-NH simulation (Fig. 7) shows an improvement in both pattern and intensity of
precipitation, and is substantially closer to observations over eastern Texas. However,
the precipitation area is slightly overestimated and the model is not capable of

reproducing the small region of maximum precipitation in the north.

The time series of precipitation over eastern Texas from 9 to 12 June 2010 for
observations (black line), ERA-Interim (blue line) and RegCM4-NH (red line) are reported
in Figure 6b. Precipitation increases over this region from 00:00, 10 June, until it reaches
the observed maximum at 12:00, 10 June (~35 mm), gradually decreasing afterwards
until 6:00, 11 June. The RegCM4-NH simulation shows a more realistic temporal
evolution than the ERA-Interim, which exhibits an overall underestimation of precipitation.
In general, the non-hydrostatic model produces precipitation values close to the

observations, however, the simulated maximum is reached 6 hours earlier than observed.

Lake Victoria

Case 3 focuses on Lake Victoria (LKV), with the purpose of testing RegCM4-NH on a
complex and challenging region in terms of convective rainfall. It is estimated that each
year 3,000-5,000 fishermen perish on the lake due to nightly storms (Red Cross, 2014).
In the Lake Victoria basin, the diurnal cycle of convection is strongly influenced by
lake/land breezes driven by the thermal gradient between the lake surface and the
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surrounding land. As the land warms during the course of the day, a lake breeze is
generated which flows from the relatively cooler water towards the warmer land surface.
The circulation is effectively reversed at night, when the land surface becomes cooler
than the lake surface, leading to convergence over the lake and associated thermal
instability.

In the LKV region, prevailing winds are generally easterly most of the year with some
variability due to the movement of the ITCZ. The local diurnal circulation created by the
presence of the lake within the larger scale easterly wind field creates two diurnal rainfall
maxima. During daylight hours, when the lake breeze begins to advance inland,
convergence is maximized on the eastern coast of the lake as the lake breeze interacts
with the prevailing easterlies. Studies have also noted the importance of downslope
katabatic winds along the mountains to the east of the lake in facilitating convergence
along the eastern coastal regions (Anyah et al. 2006). This creates a maximum in rainfall
and convection on the eastern coast of LKV. Conversely, during nighttime hours, when
the local lake circulation switches to flow from the land towards the lake, the prevailing
easterlies create locally strong easterly flow across the lake and an associated maximum

in convergence and rainfall on the western side of LKV.

The LKV simulation starts on 25 November 1999 and extends to the beginning of
December 1999 (Table 2), covering a 5-day period which falls within the short-rain season
of East Africa. The choice of 1999, an ENSO neutral year, was made in order to focus the
analysis on local effects, such as the diurnal convection cycle in response to the lake/land
breeze, with no influence of anomalous large scale conditions. A 1-dimensional lake
model (Hostetler et al. 1993; Bennington et al. 2014) interactively coupled to RegCM4-
NH was utilized to calculate the lake surface temperature (LST), since lake-atmosphere
coupling has been shown to be important for the LKV (Sun et al. 2015; Song et al. 2004).
This coupled lake model has been already used for other lakes, including Lake Malawi in
southern Africa (Diallo et al. 2018). As with the other experiments, the boundary
conditions are provided by a corresponding 12 km RegCM4 simulation employing the
convection scheme of Tiedtke (1996).
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At the beginning of the simulation, the LST over the lake is uniformly set to 26C, and is
then allowed to evolve according to the lake-atmosphere coupling. This initial LST value
is based on previous studies. For example, Talling (1969) finds Lake Victoria surface
temperatures ranging from 24.5-26°C during the course of the year. Several studies have
used RCMs to investigate the Lake Victoria climate (Anya et al., 2006; Anyah and
Semazzi 2009, Sun et al. 2015), and found a significant relationship between lake
temperature and rainfall depending on season. The value of 26°C is typical of the winter
season and was chosen based on preliminary sensitivity tests using different values of
initial temperature ranging from 24°C to 26°C.

The synoptic feature favorable for the production of precipitation over the LKV in this
period corresponds to a large area of southeasterly flow from the Indian Ocean (Fig. 8a),
which brings low-level warm moist air into the LKV region facilitating the production of
convective instability and precipitation. This synoptic situation, with a low-level
southeasterly jet off the Indian Ocean, is a common feature associated with high
precipitation in the area (Anyah et al. 2006) is found in ERAS (Figure 7a).
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Figure 8: Mean sea level pressure (mslp) (white black contour lines), surface
temperature (color shading) and 100-m wind direction (black arrows) averaged over
the period 25 November 00:00 - 1 December 00:00, of ERAS5 reanalysis (a) and
RegCM 12km (b). The black line (b) shows the cross-section position represented

in Fig. 9

The LKV region dynamics are quite distinct between nighttime and daytime and the
rainfall in and around the lake has a pronounced diurnal cycle. To understand this strong
diurnal cycle, Figure 9 shows a cross-section through the lake (32E to 34E, black line in
right panel of Fig. 8) along 1S latitude at a period during strong nighttime (Fig. 9b,d; 6Z
30 November) and daytime convection (Fig. 9a,c; 12Z 29 November). During the day,
surface heating around the lake leads to a temperature differential between the land and
lake sufficient to generate a lake breeze, which causes divergence over the lake, while
over the surrounding highlands the environment is more conducive to convection (9a,c).
Conversely, during the night, a land breeze circulation is generated, which induces
convergence and convection over the lake (Figure 9b,d).

Comparing the 3 km simulation to the 12 km forcing run, we find that the localized
circulations created by local forcings (i.e. convection) are much stronger in the high
resolution experiment. We also find stronger and more localized areas of convective
updrafts as seen in the vertical velocities (9a,b) compared to the 12 km simulation (8c,d;
omega is shown instead of vertical velocity here because of the difference in model
output). The stronger convection simulated in the 3 km experiment is also tied to the
stronger temperature gradients between lake and land and between day and night (Figure
10).

This demonstrates that the 3km simulation is better equipped to simulate the localized

circulations associated with this complex land-lake system.
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Figure 9. Cross-section through 1S (red line in bottom right panel of Fig. 9) of the
mean (0-2N) zonal-wind anomaly (30E-36E) vectors and contoured vertical velocity
(m/s) at a) 12Z 29 November and b) 6Z 30 November from the 3km simulation.
Purple dashed contours indicate -0.1 m/s, light blue contours indicate 0.1 m/s,
yellow contours indicate 0.3 m/s, and red contours indicate 0.5 m/s. Lake Victoria
encompasses about 32E to 34E. The bottom 2 panels show the cross-section also
through 1S and mean zonal-wind anomaly vectors as in a) and b) but from the 12km
simulation at c) 12Z 29 November and d) 6Z 30 November. Purple dashed contours
indicate -0.01 hPa/s, light blue dashed contours indicate -0.005 hPa/s, and yellow

dashed contours indicate 0.005 hPal/s.
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Figure 11: Total accumulated precipitation during the LKV case measured by
CHIRPS (top left), CMORPH (top center), CPC (top right) TRMM (bottom left) and
calculated by RegCM4 at 3 km (bottom center) and 12 km (bottom right) .

Figure 11 finally reports the total accumulated precipitation observed and simulated for
the LKV case. TRMM and CPC show a similar pattern, with two-rainfall maxima of
different intensities over the southeastern and northwestern lake areas. CMORPH shows
a western rainfall maximum similar to TRMM and one large rainfall area almost entirely
centered over the highlands to the west of the lake. Conversely in CHIRPS a maximum
is found to the east of the lake while several localized maxima occur over the lake. The
differences between the observed datasets highlight the issue of observational
uncertainty and the need to take into consideration shortcomings associated with the
types of observational datasets considered. Different datasets can have significantly
different climatology, especially in areas of low data availability. For example, Prein and
Gobiet (2017) analyzed two gauge-based European-wide datasets, and seven global low-
resolution datasets, and found large differences across the observation products, often
of similar magnitude as the difference between model simulations. In this case and for
this area the observation uncertainty plays a big role especially at high resolution, and
highlights the need for an adequate observational network for model validation.

However, even taking into account the elevated uncertainty existing in the observations
datasets, we find a significant underestimation of rain amounts in the 12 km run (Fig 11),
with a wide area of rainfall around 80mm over the whole of LKV. In contrast, the 3 km
simulation shows substantially greater detail, with rainfall patterns more in agreement with
the CMORPH observations. In particular, the 3 km simulation reproduces well the local
rainfall maxima on the western side of the lake, although these appear more localized
and with a multi-cell structure compared to CMORPH and TRMM. Additionally, the 12 km
simulation underestimates the observed heavy rainfall totals in the highlands to the west
of the lake region, which are instead reproduced by the 3 km simulation.
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This last test case demonstrates the ability of RegCM4-NH in simulating realistic
convective activity over a morphologically complex region, which is a significant
improvement compared to the hydrostatic-coarse resolution model configuration.

Conclusions and future outlook

In this paper we have described the development of RegCM4-NH, a non hydrostatic
version of the regional model system RegCM4, which was completed in response to the
need of moving to simulations at convection-permitting resolutions of a few km. The
dynamical core of the non-hydrostatic version of MM5 has been thus incorporated into
the RegCM4 system, an approach facilitated by the fact that the this last is essentially an
evolution of the MM5. Some modifications to the MM5 dynamical core were also
implemented to increase the model stability for long term runs. RegCM4-NH also includes
two explicit cloud microphysics schemes needed to explicitly describe convection and
cloud processes in the absence of the use of cumulus convection schemes. Finally, we
presented a few case studies of explosive convection to illustrate how the model provides
realistic results in different settings and general improvements compared to the coarser
resolution hydrostatic version of RegCM4 for such types of events.

As already mentioned, RegCM4-NH is currently being used for different projects, and
within these contests, is being run at grid spacings of a few km for continuous decadal
simulations, driven by reanalyses of observations or GCM boundary conditions (with the
use of an intermediate resolution domains) over different regions, such as the Alps, the
Eastern Mediterranean, Central-Eastern Europe and the Caribbeans. These projects,
involving multi-model intercomparisons, indicate that the performance of RegCM4-NH is
generally in line with that of other convection permitting models, and exhibits similar
improvements compared to coarser resolution models, such as a better simulation of the
precipitation diurnal cycle and of extremes at hourly to daily time scales. The results
obtained within the multi-model context confirm previous results from single-model
studies (Kendon et al. 2012, 2017, Ban et al. 2014, 2015; Prein et al. 2015, 2017), but
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also strengthen the robustness of the findings through reduced uncertainty compared to
coarse resolution counterpart (Ban et al., 2021, Pichelli et al., 2021). The convection-
permitting scale can thus open the perspective of more robust projections of future

changes of precipitation, especially over short time scales.

One of the problems of the RegCM4-NH dynamical core is that, especially for long runs
with varied meteorological conditions, a relatively short time step needs to be used for
stability reasons. This makes the model rather computationally demanding, although not
more than other convection-permitting modeling systems such as the Weather Research
and Forecast model (WRF, Skamarok et al. 2008). For this reason, we are currently
incorporating within the RegCM system a very different and more computationally efficient
non-hydrostatic dynamical core, which will provide the basis for the next version of the
model, RegCMS5, to be released in the future.

Following the philosophy of the RegCM modeling system, RegCM4-NH is intended to be
a public, free, open source community resource for external model users. The non-
hydrostatic dynamical core has been implemented in a way that it can be activated in
place of the hydrostatic dynamics through a user-set switch, which makes the use of
RegCM4-NH particularly simple and flexible. We therefore envision that the model will be
increasingly used by a broad community so that a better understanding can be achieved
of its behavior, advantages and limitations.

Code availability: https://zenodo.org/record/4603556
Cases study configuration files: https://zenodo.org/record/5106399
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