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Abstract 11 

We describe the development of a non-hydrostatic version of the regional climate model 12 
RegCM4, called RegCM4-NH, for use at convection-permitting resolutions. The non-13 
hydrostatic dynamical core of the Mesoscale Model MM5 is introduced in the RegCM4, 14 
with some modifications to increase stability and applicability of the model to long-term 15 
climate simulations. Newly available explicit microphysics schemes are also described, 16 
and three case studies of intense convection events are carried out in order to illustrate 17 
the performance of the model. They are all run at convection-permitting grid spacing of 3 18 
km over domains in northern California, Texas and the Lake Victoria region, without the 19 
use of parameterized cumulus convection. A substantial improvement is found in several 20 
aspects of the simulations compared to corresponding coarser resolution (12 km) runs 21 
completed with the hydrostatic version of the model employing parameterized convection. 22 
RegCM4-NH is currently being used in different projects for regional climate simulations 23 
at convection-permitting resolutions, and is intended to be a resource for users of the 24 
RegCM modeling system. 25 
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Introduction 29 

Since the pioneering work of Dickinson et al. (1989) and Giorgi and Bates (1989), 30 
documenting the first regional climate modeling system (RegCM, version 1) in literature, 31 
the dynamical downscaling technique based on limited area Regional Climate Models 32 
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(RCMs) has been widely used worldwide, and a number of RCM systems have been 43 
developed (Giorgi 2019). RegCM1 (Dickinson et al., 1989, Giorgi and Bates, 1989) was 44 
originally developed at the National Center for Atmospheric Research (NCAR) based on 45 
the Mesoscale Model version 4 (MM4) (Anthes et al, 1987) . Then,  further model versions 46 
followed: RegCM2 (Giorgi et al. 1993a,b), RegCM2.5, (Giorgi and Mearns 1999), 47 
RegCM3  (Pal et al. 2007), and lastly RegCM4 (Giorgi et al 2012). Except for the transition 48 
from RegCM1 to RegCM2, in which the model dynamical core was updated from that of 49 
the MM4 to that of the MM5 (Grell et al. 1995), these model evolutions were mostly based 50 
on additions of new and more advanced physics packages. RegCM4 is today used by a 51 
large community for numerous projects and applications, from process studies to paleo 52 
and future climate projections, including participation in the Coordinated Regional 53 
Downscaling EXperiment (CORDEX, Giorgi et al. 2009; Gutowski et al. 2016). The model 54 
can also be coupled with ocean, land and chemistry/aerosol modules in a fully interactive 55 
way (Sitz et al. 2017). 56 
The dynamical core of the standard version of RegCM4 is hydrostatic, with sigma-p 57 
vertical coordinates. As a result, the model can be effectively run for grid spacings of ~10 58 
km or larger, for which the hydrostatic assumption is valid. However, the RCM community 59 
is rapidly moving to higher resolutions of a few km, i.e. “convection-permitting” (Prein et 60 
al. 2015; Coppola et al. 2020) and therefore the dynamical core of RegCM4 has been 61 
upgraded to include a non-hydrostatic dynamics representation usable for very high 62 
resolution applications. This upgrade, which we name RegCM4-NH, is essentially based 63 
on the implementation of the MM5 non-hydrostatic dynamical core within the RegCM4 64 
framework, which has an entirely different set of model physics compared to MM5. 65 
 66 
RegCM4-NH is already being used in some international projects focusing on climate 67 
simulations at convection-permitting km-scales, namely the European Climate Prediction 68 
System (EUCP, Hewitt and Lowe 2018) and the CORDEX Flagship Pilot Study dedicated 69 
to convection (CORDEX-FPSCONV, Coppola et al. 2020), and it is starting to be used 70 
more broadly by the RegCM modeling community.  71 
For example, the recent papers by Ban et al. (2021) and Pichelli et al. (2021) document 72 
results of the first multi-model experiment of 10-year simulations at the convection-73 
permitting scales over the so-called greater Alpine region. Two different simulations with 74 
RegCM4-NH for present day conditions have contributed to the evaluation analysis of 75 
Ban et al. (2021). They were carried out at the International Centre for Theoretical Physics 76 
(ICTP) and the Croatian Meteorological and Hydrological Service (DHMZ) using two 77 
different physics configurations. The results show that RegCM4-NH largely improves the 78 
precipitation simulation as compared to available fine scale observations when going from 79 
coarse to high resolution, in particular for higher order statistics, such as precipitation 80 
extremes and hourly intensity. Pichelli et al. (2021) then  analyse multi-model ensemble 81 
simulations driven by selected CMIP5 GCM projections for the decades 1996–2005 and 82 
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2090–2099 under the RCP8.5 scenario. ICTP contributed to the experiment with 187 
simulations using RegCM4-NH driven by the MOCH-HadGEM GCM (r1i1p1) in a two 188 
level nest configuration (respectively at 12 and 3 km grid). The paper shows new insights 189 
into future changes, for example an enhancement of summer and autumn hourly rainfall 190 
intensification compared to coarser resolution model experiments, as well as an increase 191 
of frequency and intensity of high-impact weather events. 192 
 193 
In this paper we describe the structure of RegCM4-NH and provide some illustrative 194 
examples of its performance, so that model users can have a basic reference providing 195 
them with background information on the model. In the next section we first describe the 196 
new model dynamical core, while the illustrative applications are presented in section 4. 197 
Section 5 finally provides some discussion of future developments planned for the RegCM 198 
system. 199 
   200 

Model description 201 

In the development of RegCM4-NH, the RegCM4 as described by Giorgi et al. (2012) was 202 
modified to include, the non-hydrostatic dynamical core (idynamic = 2 namelist option as 203 
described in RegCM-4.7.1/Doc/README.namelist of the source code) of the mesoscale 204 
model MM5 (Grell et al. 1995). This dynamical core was selected because RegCM4 205 
already has  the same grid and variable structure as MM5 in its hydrostatic core, which 206 
substantially facilitated its implementation (Elguindi et al. 2017). 207 
 208 
The model equations with complete description of the Coriolis force and a top radiative 209 
boundary condition, along with the finite differencing scheme, are given in Grell et al. 210 
(1995). Pressure, p, temperature, T, and density, 𝜚, are first decomposed into a 211 
prescribed reference vertical profile plus a time varying perturbation. The prognostic 212 
equations are then calculated using the pressure perturbation values. Compared to the 213 
original MM5 dynamical core, the following modifications were implemented in order to 214 
achieve increased stability for long term climate simulations (Elguindi et al. 2017 215 
document any modifications which follow the choice of the non-hydrostatic dynamical 216 
core through the namelist parameter idynamic = 2; further available user-dependant 217 
options, and the corresponding section in the namelist, are explicitly indicated): 218 
 219 
i) The reference state temperature profile is computed using a latitude dependent 220 
climatological temperature distribution and thus is a function of the specific domain 221 
coordinates (base_state_pressure, logp_lrate parameters in &referenceatm) (Elguindi et 222 
al. 2017). These two parameters were hard-coded in the original MM5 while for the 223 
RegCM are user configurable; 224 
 225 
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ii) The lateral time dependent boundary conditions (iboudy in &physicsparam) for each 243 
prognostic variable use the same exponential relaxation technique (iboudy = 5) described 244 
in Giorgi et al. (1993). The linear MM5 relaxation scheme is also kept as an option (iboudy 245 
= 1); 246 
 247 
iii) The advection term in the model equations, which in the MM5 code is implemented 248 
using a centered finite difference approach, was changed to include a greater upstream 249 
weight factor as a function of the local Courant number (Elguindi et al. 2017). The 250 
maximum value of the weight factor is user configurable (uoffc in &dynparam). As detailed 251 
in the MM5 model description (Grell et al, 1995), the horizontal advection term for a scalar 252 
variable X contributes to the total tendency as: 253 
 254 

 255 
 256 
where the  is the projection mapping factor and, with respect to Figure 1, assuming that 257 
the computation is to be performed for the gold cross point , the averages are performed 258 
in the points . For the  and  terms, the average value is computed using 259 
respectively the values in points . 260 
In RegCM4 for the term , the model computes a weighted average value of the field 261 
using the value in gold+cyan and gold+green cross points with weights increasing the 262 
relative contribution of the upstream point up as a function  of the local courant number: 263 
 264 

 265 
 266 
 267 
 268 

where  are defined as the local Courant number for the 1D advection equations 269 
multiplied for a control factor: 270 
 271 

 272 

; 273 
 274 
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 276 
Figure 1 Schematic representation showing the horizontal advection scheme 277 
staggering. Circles are U,V points. X are scalar variable points. 278 
 279 
 280 
 281 
iv) The water species (cloud, ice,rain, snow) term uses the same advection scheme as 282 
the other variables (Elguindi et al. 2017) and not a complete upstream scheme as in the 283 
MM5 code (Grell et al. 1995); 284 
 285 
v) A local flux limiter reduces the advection terms in order to remove unrealistic strong 286 
gradients and its limits are user configurable (in the &dynparam section the maximum 287 
gradient fraction for advection: temperature, t_extrema, specific humidity, q_rel_extrema, 288 
liquid cloud content, c_rel_extrema and for tracers, t_rel_extrema). This was hardcoded 289 
in the MM5 code and the limits were not user configurable; 290 
 291 
vi) The diffusion stencil of the Laplace equation uses a nine point approach as in LeVeque 292 
(2006) and a topography dependent environmental diffusion coefficient is added to 293 
reduce spurious diffusion along pressure coordinate slopes (Elguindi et al. 2017) as in 294 
the hydrostatic version of the code (Giorgi et al. 1993b). The change in stencil does not 295 
affect the overall fourth order precision of the model, but reduces the computational 296 
stencil size, thus reducing the communication overhead; 297 
 298 
vii) The top boundary radiative condition (ifupr = 1 in &nonhydroparam) adopted in the 299 
semi-implicit vertical differencing scheme to reduce the reflection of energy waves uses 300 
coefficients on a 13x13 matrix which are re-computed every simulation day and not kept 301 
constant throughout the whole simulation as in the MM5 code. This allows the model to 302 
be run for longer simulation times while not being strongly tied to the intial atmospheric 303 
conditions; 304 
 305 
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viii) The dynamical control parameter β in the semi-implicit vertical differencing scheme 309 
(nhbet in &nonhydroparam) used for acoustic wave damping (Elguindi et al. 2017) is user 310 
configurable (Klemp and Dudhia, 2008), while it is hard-coded in the MM5; 311 
 312 
ix) A Rayleigh damping (ifrayd = 1 in &nonhydroparam) of the status variables towards 313 
the input GCM boundary conditions can be activated in the top layers (rayndamp 314 
configuring the number of top levels to apply) with a configurable relaxation time 315 
(rayalpha0, Klemp and Lilly, 1978, Durran and Klemp, 1983. This is consistent to what is 316 
implemented in the WRF model); 317 
 318 
x) The water species time filtering uses the Williams (2009) modified filter with α = 0.53 319 
instead of the RA filter used by all the other variables. The ν factor in the RA filter is user 320 
configurable (gnu1 and gnu2 in &dynparam). This reduces the damping introduced by the 321 
Robert-Asselin filter and the computational diffusion introduced by the horizontal 322 
advection scheme. 323 
 324 
With these modifications, the model basic equations, under leap-frog integration scheme, 325 
are (Elguindi et al. 2017) : 326 
 327 
 328 

 329 
 330 

 331 
 332 

 333 
 334 

 335 

Deleted: is 336 
Deleted: and 337 
Deleted:  code338 

Deleted:  the (same as in the MM5) and namely339 
Deleted: are340 



 

 7 

Formatted: Right:  0.63 cm

 341 

 342 
 343 
Where: 344 

 345 

 346 

 347 

 348 
 349 
with the vertical sigma coordinate defined as: 350 
 351 

 352 
 353 
where  is the surface pressure and  is the reference pressure profile. The total 354 
pressure 355 
at each grid point is thus given as: 356 
 357 

 358 
 359 
With  being the top model pressure assuming a fixed rigid lid. 360 
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The model physics schemes for boundary layer, radiative transfer, land and ocean 363 
surface processes, cloud and precipitation processes are extensively described in Giorgi 364 
et al. (2012) and summarized in Table 1. For each physics component a number of 365 
parameterization options are available (Table 1), and can be selected using a switch 366 
selected by the user. As mentioned, the use of non-hydrostatic dynamics is especially 367 
important when going to convection-permitting resolutions of a few km (Prein et al. 2015). 368 
At these resolutions the scale separation assumption underlying the use of cumulus 369 
convection schemes is not valid any more, and explicit cloud microphysics 370 
representations are necessary. The RegCM4 currently includes two newly implemented 371 
microphysics schemes, the Nogherotto-Tompkins (Nogherotto et al. 2016) and the WSM5 372 
scheme from the Weather Research Forecast (WRF, Skamarok et al. 2008) model, which 373 
are briefly described in the next sections for information to model users. 374 

 375 

Model physics 
(Namelist flag) 

Options n. option Reference 

Dynamical core 
(idynamic) 

Hydrostatic 1 Giorgi et al. 1993a,b 

Giorgi et al. 2012 

Non-Hydrostatic (*) 2 present paper 

Radiation 
(irrtm) 

CCSM 0 Kiehl et al. 1996 

RRTM (*) 1 Mlawer et al. 1997 

Microphysics 
(ipptls) 

Subex 1 Pal et al 2000 

Nogherotto 
Thompkins 

2 Nogherotto et al. 2016 

WSM5 (*) 3 Hong et al 2004 

Cumulus 
(icup) 

Kuo 1 Anthes et al. 1987 

Grell 2 Grell 1993 

Emanuel 4 Emanuel 1991 

Tiedtke 5 Tiedtke 1989, 1993 
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Kain-Fritsch 6 Kain and Fritsch, 1990; 
Kain 2004 

MM5 Shallow 
cumulus (only mixing) 
(*) 

-1 Grell et al. 1994 

Planetary 
Boundary Layer 
(ibltyp) 

Modified-Holtslag 1 Holtslag et al., 1990 

UW 2 Bretherton et al. 2004 

Land Surface 
(code compiling 
option) 

BATS / Dickinson et al. 1993; Giorgi 
et al. 2003 

CLM4.5 / Oleson et al. 2013 

Ocean Fluxes 
(iocnflx) 
  

BATS 1 Dickinson et al. 1993 

Zeng 2 Zeng et al. 1998 

COARE 3 Fairall et al. 1996a,b 

Interactive lake 
(lakemod) 

1D 
diffusion/convection 

1 Hostetler et al. 1993 

Tropical band 
(i_band) 

RegT-Band 1 Coppola et al. 2012 

Coupled ocean 
(iocncpl) 
  

RegCM-ES 
  

1 Sitz et al. 2017 

Table 1 Core and sub-grid physics scheme available in RegCM-NH. New schemes 379 
available with this release are starred (*). 380 
 381 
 382 
Explicit microphysics schemes: 383 
 384 
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Nogherotto-Tompkins Scheme: 385 

A new parameterization for explicit cloud microphysics and precipitation built upon the 386 
European Centre for Medium Weather Forecast’s Integrated Forecast System (IFS) 387 
module (Tiedtke, 1993, Tompkins, 2007), was introduced in RegCM4 (ipptls  = 2 in 388 
&microparam) by Nogherotto et al. (2016). In the present configuration, the scheme 389 
implicitly solves 5 prognostic equations for water vapor, qv, cloud liquid water, ql, rain, qr, 390 
cloud ice, qi, and snow, qs, but it is also easily extendable to a larger number of variables. 391 
Water vapor, cloud liquid water, rain, cloud ice and snow are all expressed in terms of the 392 
grid-mean mixing ratio.   393 

Cloud liquid and ice water content are independent, allowing the existence of supercooled 394 
liquid water and mixed-phase clouds. Rain and snow precipitate with a fixed terminal fall 395 
speed and can then be advected by the three dimensional winds. A check for the 396 
conservation of enthalpy and of total moisture is ensured at the end of each timestep. The 397 
governing equation for each variable is: 398 
         399 

 400 
               401 

The local variation of the mixing ratio qx of the variable x is given by the sum of Sx, 402 
containing the net sources and sinks of qx through microphysical processes (i.e. 403 
condensation, evaporation, auto-conversion, melting, etc.), and the sedimentation term, 404 
which is a function of the fall speed Vx . An upstream approach is employed to solve the 405 
equations. The sources and sinks contributors are divided in two groups according to the 406 
duration of the process they describe: processes that are considered to be fast relative to 407 
the model time step are treated implicitly while slow processes are treated explicitly. The 408 
processes taken into account (shown in Figure 2) are the microphysical pathways across 409 
the 5 water variables: condensation, autoconversion, evaporation, cloud water collection 410 
(accretion), and autoconversion for warm clouds, and freezing, melting, deposition, 411 
sublimation for cold clouds. 412 

 413 
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 421 

Figure 2: Depiction of the new scheme, showing the five prognostic variables and 422 
how they are related to each other through microphysical processes 423 

For each microphysical pathway, phase changes are associated with the release or 424 
absorption of latent heat, which then impacts the temperature budget. The impact is 425 
calculated using the conservation of liquid water temperature TL defined as:   426 
              427 

     428 

Given that dTL =0, the rate of change of the temperature is given by the following 429 
equation:  430 
 431 

 432 
        433 

where L(x) is the latent heat of fusion or evaporation, depending on the process 434 
considered, Dqx is the convective detrainment and the third term in brackets is the 435 
sedimentation term. 436 

At the end of each time step a check is carried out of the conservation of total water and 437 

moist static energy:     438 

The scheme is tunable through parameters in the &microparam section of the namelist 439 
(RegCM-4.7.1/Doc/README.namelist; Elguindi et al. 2017).  440 
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WSM5 Scheme:  442 

RegCM4-NH also employs the Single-Moment 5-class microphysics scheme of the WRF 443 
model (Skamarock et al., 2008). This scheme (ipptls = 3 in &microparam) follows Hong 444 
et al. (2004) and, similarly to Nogherotto et al. (2016), includes vapor, rain, snow, cloud 445 
ice, and cloud water hydrometeors. The scheme separately treats ice and water 446 
saturation processes, assuming water hydrometeors for temperatures above freezing, 447 
and cloud ice and snow below the freezing level (Dudhia, 1989, Hong et al., 1998). It 448 
accounts for supercooled water and a gradual melting of snow below the melting layer 449 
(Hong et al., 2004, and Hong and Lim, 2006). Therefore, the WSM5 and Nogherotto-450 
Tompkins schemes have similar structures (Figure 2), but also important differences.  451 

Differently from the Nogherotto-Tompkins scheme, the WSM5 (as well as the other WSM 452 
schemes in WRF) prescribes an inverse exponential continuous distribution of particle 453 
size (ex. Marshall and Palmer (1948) for rain, Gunn and Marshall (1958) for snow). It also 454 
includes the size distribution of ice particles and, as a major novelty, the definition of the 455 
number of ice crystals based on ice mass content rather than temperature. Both the 456 
Nogherotto-Tompkins and WSM5 schemes include autoconversion, i.e. sub-time step 457 
processes of conversion of cloud water to rain and cloud ice to snow. For rain, Hong et 458 
al. (2004) use a Kessler (1969) type algorithm in WSM5, but with a stronger physical basis 459 
following Tripoli and Cotton (1980). The Nogherotto-Tompkins scheme also includes the 460 
original Kessler (1969) formula as an option, but it makes available other three 461 
exponential approaches following Sundqvist et al. (1989), Beheng (1994), and 462 
Khairoutdinov and Kogan (2000). For ice autoconversion the Nogherotto-Tompkins 463 
scheme uses an exponential approach (Sundqvist, 1989) with a specific coefficient for ice 464 
particles (following Lin et al., 1983) depending on temperature, while the WSM5 uses a 465 
critical value of ice mixing ratio (depending on air density) and a maximum allowed ice 466 
crystal mass (following Rutledge and Hobbs, 1983) that suppresses the process at low 467 
temperatures because of the effect of air density. Finally, the WSM5 has no dependency 468 
on cloud cover for condensation processes while the Nogherotto-Tompkins scheme uses 469 
cloud cover to regulate the condensation rate in the formation of stratiform clouds.  470 

 471 

Illustrative case studies 472 

 473 
Three case studies (Table 2) of Heavy Precipitation Events (HPE) have been identified in 474 

order to test and illustrate the behavior of the non-hydrostatic core of the RegCM4-NH, 475 

with focus on the explicit simulation of convection over different regions of the world. In 476 

two test cases, California and Lake Victoria, data from the ERA-Interim reanalysis (Dee 477 
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et al. 2011) are used to provide initial and lateral meteorological boundary conditions for 480 

an intermediate resolution run (grid spacing of 12 km, with use of convection 481 

parameterizations) (Figure 3), which then provides driving boundary conditions for the 482 

convection-permitting experiments. In the Texas case study, however, we nested the 483 

model directly in the ERA-Interim reanalysis with boundary conditions provided every 6 484 

hours, given that such configuration was able to reproduce accurately the HPE intensity. 485 

In this case the model uses a large LBC relaxation zone which allows the description of 486 

realistic fine-scale features driving this weather event (even if not fully consistent with the 487 

Matte et al. (2017) criteria). All simulations start 24-48 hours before the HPE. The analysis 488 

focuses on the total accumulated precipitation over the entire model domain at 3 km 489 

resolution (Fig. 3) for the periods defined in Table 2. In the cases of California and Texas 490 

the evaluation also includes the time series of 6 hourly accumulated precipitation 491 

averaged on the region of maximum precipitation (black rectangles in Figs. 3) against 492 

available high temporal resolution observations (NCEP/CPC) (Table 3). The discussion 493 

of the case studies is presented in the next sections; the configuration files (namelists) 494 

with full settings for the three test cases are available at 495 

https://zenodo.org/record/5106399.  496 

 497 

A key issue concerning the use of CP-RCMs is the availability of very high resolution, 498 
high quality observed datasets for the assessment and evaluation of the models, which 499 
is not there for most of the world regions. Precipitation measurements come from 500 
essentially three distinct sources: in-situ rain-gauges, ground radar and satellite. In the 501 
present study we use 7 observational datasets depending on the case study and the area 502 
covered, as described in Table 2. We have used: Precipitation Estimation from Remotely 503 
Sensed Information using Artificial Neural Networks - Climate Data Record (PERSIAN-504 
CDR), Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), the 505 
Climate Prediction Center morphing method (CMORPH), Tropical Rainfall Measuring 506 
Mission (TRMM), NCEP/CPC-Four Kilometer Precipitation Set Gauge and Radar 507 
(NCEP/CPC), CPC-Unified daily gauge based precipitation estimates (CPC) and 508 
Parameter-elevation Regressions on Independent Slopes Model (PRISM) (Table 3). 509 
NCEP/CPC is a precipitation analysis which merges a rain gauge dataset with radar 510 
estimates. CMORPH and PERSIAN-CDR are based on satellite measurements, CHIRPS 511 
incorporates satellite imagery with in-situ station data. CPC is a gauge-based analysis of 512 
daily precipitation and the PRISM dataset gathers climate observations from a wide range 513 
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of monitoring networks, applies sophisticated quality control measures, and develops 529 
spatial climate datasets incorporating a variety of modeling techniques at multiple spatial 530 
and temporal resolutions.  531 

 532 

 533 

Case ACRONYM Region of The 
event 

Domains size 
lon x lat x 
vertical levels  

Simulation Time 
Window 

1 CAL California 480 x 440 x 41 15 Feb 2004 
00:00 
19 Feb 2004 
00:00 

2 TEX Texas 480 x 440 x 41 9 June 2010 
00:00 
12 June 2010 
00:00 

3 LKV Lake Victoria 550 x 530 x 41 25 Nov 1999 
00:00 
1 Dec 1999 
00:00 

Table 2: List of acronyms and description of the test cases with corresponding 3km 534 

domain sizes and simulation period. 535 

 536 

Dataset 
name 

Region Spatial 
Resolution 

Temporal 
Resolution 

Data 
Source 

Reference 

TRMM World 0.5° Daily Satellite Huffman et 
al. (2007) 

CHIRPS World 0.05° Daily Station 
data+Satellit
e 

Funk et al. 
(2015) 

CMORPH World 0.25° Daily Satellite Joyce et al. 
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(2004) 

NCEP/CPC  USA 0.04° Hourly  Gauge and 
Radar 
 

https://doi.or
g/10.5065/D
69Z93M3. 
Accessed: 
27/06/2018 

CPC World 0.5° Daily Station data Chen and 
Xie (2008) 

PRISM USA  0.04° Daily  Station data PRISM 
Climate 
Group. 
2016. 

PERSIAN-
CDR 

World 0.25° Daily Satellite Ashouri et 
al. (2015) 

Table 3: List of observed precipitation datasets used for comparison.  538 

 539 
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 547 

Figure 3: Simulation domains tested , a) California (CAL) , b) Texas (TEX), c) Lake 548 

Victoria (LKV) . For CAL (a) and LKV (b) the black square shows the 3 km simulation 549 

domains nested in the 12 km domain in figure. For TEX the 3 km domain simulation 550 

(c) is fed directly with the ERA-Interim reanalysis fields.  551 

 552 

  553 

California 554 

The first case, referred to as CAL (California) in Table 2, is a HPE which occurred on 16–555 

18 February 2004, producing flooding conditions for the Russian River, a southward-556 

flowing river in the Sonoma and Mendocino counties of northern California (red-dot) 557 

(Figure 3). The event is documented in detail by Ralph et al. (2006), who focused their 558 
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attention on the impact of narrow filament-shaped structures of strong horizontal water 565 

vapor transport over the eastern Pacific Ocean and the western U.S. coast, called 566 

Atmospheric Rivers (ARs). ARs are typically associated with a low-level jet stream ahead 567 

of the cold front of extratropical cyclones (Zhu and Newell 1998; Dacre et al. 2015; Ralph 568 

et al. 2018), and can induce heavy precipitation where they make landfall and are forced 569 

to rise over mountain chains (Gimeno et al. 2014). The CAL event consists of a slow 570 

propagating surface front arching southeastward towards Oregon and then 571 

southwestward offshore of California (Fig.3a,c). Rain began over the coastal mountains 572 

of the Russian River watershed at 0700 UTC, 16 February, as a warm front descended 573 

southward, and also coincided with the development of orographically favoured low-level 574 

upslope flow Ralph et al. (2006).  575 

 576 
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 589 

Figure 4: Mean sea level pressure (mslp) (white contour lines), surface temperature 590 

(color shading) and 100-m wind direction (black arrows) at 7:00 UTC, 16 Feb. 2004 591 

of ERA5 reanalysis (a) and RegCM 12km (b) respectively. (c) NCEP-NOA Surface 592 

Analysis of pressure and fronts . The black box in (c) bounded the area represented 593 

in (a) and (b) 594 

The intermediate resolution (12 km) domain (Figure 3a) covers a wide area 595 

encompassing California and a large portion of the coastal Pacific Ocean, with 23 vertical 596 
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levels and a parameterization for deep convection based on the Kain–Fritsch scheme 600 

(Kain, 2004). The ERA-Interim driven simulation is initialized at 0000 UTC, 15 February 601 

2004 (Table 2) and lasts until 0000 UTC 19 February 2004. This simulation drives a 602 

corresponding RegCM4-NH run using a smaller domain centered over northern California 603 

(Fig. 3a) at 3 km horizontal grid spacing and 41 vertical levels, with boundary conditions 604 

updated at 6 hour intervals. In RegCM4-NH only the shallow convection component of 605 

the Tiedtke scheme (Tiedtke, 1996) is activated. Simulated precipitation is compared with 606 

the CHIRPS, CMORPH, TRMM, PRISM, NCEP/CPC observations described in Table 3.  607 

First, we notice that the synoptic conditions characteristic of this case study, which are 608 

fed into the RegCM4-NH model, are well reproduced by RegCM4 at 12 km, as shown in 609 

Figure 4, where we compare the mean sea level pressure (mslp), surface temperature 610 

and wind direction on 14 Feb at 7:00 am, as simulated by RegCM at 12 km (Fig.3b) with 611 

corresponding fields from the ERA5 reanalysis (Fig.4a).The surface analysis of pressure 612 

and fronts derived from the operational weather maps prepared at the National Centers 613 

for Environmental Prediction, Hydrometeorological Prediction Center, National Weather 614 

Service (https://www.wpc.ncep.noaa.gov/dailywxmap/index_20040216.html) is also 615 

reported in Figure 4c. 616 

The observed precipitation datasets show similar patterns for the total accumulated 617 
precipitation (Figure 5), in particular CHIRPS, PRISM and NCEP exhibit similar spatial 618 
details and magnitudes of extremes. CHIRPS places a maximum around 42°N which is 619 
not found in the other datasets. CMORPH and TRMM show lower precipitation maxima 620 
and lesser spatial details due to their lower resolution, indicating that the performance of 621 
satellite-based products may be insufficient as a stand alone product to validate the model 622 
for this case. 623 
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In general, the observed precipitation datasets place the highest maxima on the terrain 651 

peaks, with extreme rainfall greater than 250 mm in 60 hours over the coastal mountains 652 

and greater than 100 – 175 mm elsewhere (Fig. 5a). The black box in Fig 5 shows the 653 

area of the Russian River watershed, highlighting the locations of the observing systems, 654 

including Cazadero (CZD) and Bodega Bay (BBY) where the largest rainfall rates were 655 

detected, 269 mm and 124 mm in 60-h accumulated rainfall between 0000 UTC 16 656 

February and 1200 UTC 18 February 2004, respectively (Ralph et al., 2006). 657 

The convection-permitting simulation captures the basic features of the observed 658 

precipitation , as shown for example in Fig.5, both in terms of spatial distribution and 659 

temporal evolution of rainfall (Fig.6a). However, it shows higher precipitation rates than 660 

observed over the sea and over the mountain chains, with lower intensities than observed 661 

in the south-east part of the mountain chain (Fig.5). By contrast, the 12-km simulation 662 

severely underestimates the magnitude of the precipitation event (Fig.5). 663 

Concerning the timing and intensity of the event in the CZD subregion, 6-hourly 664 

accumulated precipitation (Fig.6a) averaged over the black box of Figure 5, shows that 665 

both the 3 km and 12 km simulations capture the onset of the event, but the peak intensity 666 

is strongly underestimated by the 12 km run, while it is well simulated by the 3 km run, 667 

although the secondary maximum is overestimated. Therefore, our results demonstrate 668 

that only the high resolution convection-permitting model captures this extreme event, 669 

and that parameterized convection has severe limits in this regard (Done et al. 2004; Lean 670 

et al. 2008; Weisman et al. 2008; Weusthoff et al. 2010; Schwartz 2014; Clark et al. 2016). 671 
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 702 

Figure 5 : Total accumulated precipitation (mm) during the California case: 703 
CHIRPS, CMORPH, TRMM observations (top line), PRISM and NCEP Reanalysis 704 
(middle line) and convection-permitting simulation with RegCM4-NH at 3km and 705 
RegCM4 at 12km (bottom line) .The black box denotes the area where the spatial 706 
average of 6-hourly accumulated precipitation is calculated and reported in Fig. 6. 707 

 708 

CAL (a) TEX (b) 
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Figure 6: Time series of the 6 hourly accumulated precipitation (in mm on the y-711 

axis) during the CAL event (a) and during the TEX event (b). The blue lines show 712 

RegCM4 12 Km and ERA interim 6 hourly accumulated precipitation averaged over 713 

the areas indicated by the red square in Figure 3 (a,b) while the red line shows the 714 

6 hourly accumulated precipitation simulated by RegCM4-NH. The observations are 715 

shown with a black line. 716 

 717 

Texas 718 

Case 2, hereafter referred to as TEX (Table 2), is a convective precipitation episode 719 

exhibiting characteristics of the “Maya Express” flood events, linking tropical moisture 720 

plumes from the Caribbean and Gulf of Mexico to midlatitude flooding over the central 721 

United States (Higgins 2011). During the TEX event, an upper-level cutoff low over 722 

northeastern Texas, embedded within a synoptic-scale ridge, moved slowly 723 

northeastward. Strong low-level flow and moisture transport from the western Gulf of 724 

Mexico progressed northward across eastern Texas. The event was characterized by 725 

low-level moisture convergence, weak upper-level flow, weak vertical wind shear, and 726 
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relatively cold air (center of cutoff low), which favored the slow-moving convective storms 732 

and nearly stationary thunderstorm outflow boundaries. The main flooding event in 733 

eastern Texas occurred on June 10, 2010, with a daily maximum rainfall of 216.4 mm of 734 

the region in the black box of Figure 7 (Higgins 2011). 735 

 736 

Figure 7: Total accumulated precipitation (mm) during the Texas case: CHIRPS, 737 
CMORPH, TRMM observations (top line), PRISM and NCEP Reanalysis (central 738 
line) and convection-permitting simulation with RegCM4-NH at 3 km grid spacing 739 
and Era-Int (bottom line).The black box shows the area where the spatial average 740 
of 6-hourly accumulated precipitation was calculated and reported in Figure 6. 741 
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 748 

 749 

 750 

As for the California case, the observed precipitation datasets show coherent patterns for 751 

the total accumulated precipitation (Fig. 6), with the highest values related to the 752 

mesoscale convective system in eastern Texas (~ 200 mm), and another smaller area of 753 

high precipitation more to the north, approximately over Oklahoma. PRISM and NCEP 754 

capture similar spatial details and magnitudes of extremes, CHIRPS has lower 755 

precipitation extremes in the north compared to the other datasets, while CMORPH and 756 

TRMM show the lowest precipitation extremes and reduced spatial details as already 757 

noted for the California case.  758 

The bottom panels in Figure 7 present precipitation as produced by the RegCM4-NH and 759 

the ERA-Interim reanalysis (driving data) , respectively. ERA-Interim reproduces some of 760 

the observed features of precipitation, but with a substantial underestimation over the 761 

areas of maximum precipitation because of its coarse resolution. By comparison, the 762 

RegCM4-NH simulation (Fig. 7) shows an improvement in both pattern and intensity of 763 

precipitation, and is substantially closer to observations over eastern Texas. However, 764 

the precipitation area is slightly overestimated and the model is not capable of 765 

reproducing the small region of maximum precipitation in the north. 766 

 767 

The time series of precipitation over eastern Texas from 9 to 12 June 2010 for 768 

observations (black line), ERA-Interim (blue line) and RegCM4-NH (red line) are reported 769 

in Figure 6b. Precipitation increases over this region from 00:00, 10 June, until it reaches 770 
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the observed maximum at 12:00, 10 June (~35 mm), gradually decreasing afterwards 819 

until 6:00, 11 June. The RegCM4-NH simulation shows a more realistic temporal 820 

evolution than the ERA-Interim, which exhibits an overall underestimation of precipitation. 821 

In general, the non-hydrostatic model produces precipitation values close to the 822 

observations, however, the simulated maximum is reached 6 hours earlier than observed. 823 

 824 

 825 

Lake Victoria 826 

Case 3 focuses on Lake Victoria (LKV), with the purpose of testing RegCM4-NH on a 827 

complex and challenging region in terms of convective rainfall. It is estimated that each 828 

year 3,000-5,000 fishermen perish on the lake due to nightly storms (Red Cross, 2014). 829 

In the Lake Victoria basin, the diurnal cycle of convection is strongly influenced by 830 

lake/land breezes driven by the thermal gradient between the lake surface and the 831 

surrounding land. As the land warms during the course of the day, a lake breeze is 832 

generated which flows from the relatively cooler water towards the warmer land surface. 833 

The circulation is effectively reversed at night, when the land surface becomes cooler 834 

than the lake surface, leading to convergence over the lake and associated thermal 835 

instability. 836 

In the LKV region, prevailing winds are generally easterly most of the year with some 837 

variability due to the movement of the ITCZ. The local diurnal circulation created by the 838 

presence of the lake within the larger scale easterly wind field creates two diurnal rainfall 839 

maxima. During daylight hours, when the lake breeze begins to advance inland, 840 

convergence is maximized on the eastern coast of the lake as the lake breeze interacts 841 

with the prevailing easterlies. Studies have also noted the importance of downslope 842 
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katabatic winds along the mountains to the east of the lake in facilitating convergence 843 

along the eastern coastal regions (Anyah et al. 2006). This creates a maximum in rainfall 844 

and convection on the eastern coast of LKV. Conversely, during nighttime hours, when 845 

the local lake circulation switches to flow from the land towards the lake, the prevailing 846 

easterlies create locally strong easterly flow across the lake and an associated maximum 847 

in convergence and rainfall on the western side of LKV. 848 

The LKV simulation starts on 25 November 1999 and extends to the beginning of 849 

December 1999 (Table 2), covering a 5-day period which falls within the short-rain season 850 

of East Africa. The choice of 1999, an ENSO neutral year, was made in order to focus the 851 

analysis on local effects, such as the diurnal convection cycle in response to the lake/land 852 

breeze, with no influence of anomalous large scale conditions. A 1-dimensional lake 853 

model (Hostetler et al. 1993; Bennington et al. 2014) interactively coupled to RegCM4-854 

NH was utilized to calculate the lake surface temperature (LST), since lake-atmosphere 855 

coupling has been shown to be important for the LKV (Sun et al. 2015; Song et al. 2004). 856 

This coupled lake model has been already used for other lakes, including Lake Malawi in 857 

southern Africa (Diallo et al. 2018). As with the other experiments, the boundary 858 

conditions are provided by a corresponding 12 km RegCM4 simulation employing the 859 

convection scheme of Tiedtke (1996). 860 

At the beginning of the simulation, the LST over the lake is uniformly set to 26C, and is 861 

then allowed to evolve according to the lake-atmosphere coupling. This initial LST value 862 

is based on previous studies. For example, Talling (1969) finds Lake Victoria surface 863 

temperatures ranging from 24.5-26°C during the course of the year. Several studies have 864 

used RCMs to investigate the Lake Victoria climate (Anya et al., 2006; Anyah and 865 
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Semazzi 2009, Sun et al. 2015), and found a significant relationship between lake 867 

temperature and rainfall depending on season. The value of 26°C is typical of the winter 868 

season and was chosen based on preliminary sensitivity tests using different values of 869 

initial temperature ranging from 24°C to 26°C. 870 

The synoptic feature favorable for the production of precipitation over the LKV in this 871 

period corresponds to a large area of southeasterly flow from the Indian Ocean (Fig. 8a), 872 

which brings low-level warm moist air into the LKV region facilitating the production of 873 

convective instability and precipitation. This synoptic situation, with a low-level 874 

southeasterly jet off the Indian Ocean, is a common feature associated with high 875 

precipitation in the area (Anyah et al. 2006) is found in ERA5 (Figure 7a).   876 
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 894 

Figure 8: Mean sea level pressure (mslp) (white black contour lines), surface 895 

temperature (color shading) and 100-m wind direction (black arrows) averaged over 896 

the period 25 November 00:00 - 1 December 00:00, of ERA5 reanalysis (a) and 897 

RegCM 12km (b). The black line (b) shows the cross-section position represented 898 

in Fig. 9 899 

 900 

The LKV region dynamics are quite distinct between nighttime and daytime and the 901 

rainfall in and around the lake has a pronounced diurnal cycle. To understand this strong 902 

diurnal cycle, Figure 9 shows a cross-section through the lake (32E to 34E, black line in 903 

right panel of Fig. 8) along 1S latitude at a period during strong nighttime (Fig. 9b,d; 6Z 904 

30 November) and daytime convection (Fig. 9a,c; 12Z 29 November). During the day, 905 
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surface heating around the lake leads to a temperature differential between the land and 933 

lake sufficient to generate a lake breeze, which causes divergence over the lake, while 934 

over the surrounding highlands the environment is more cnducive to convection (9a,c). 935 

Conversely, during the night, a land breeze circulation is generated, which induces 936 

convergence and convection over the lake (Figure 9b,d).  937 

Comparing the 3 km simulation to the 12 km forcing run, we find that the localized 938 

circulations created by local forcings (i.e. convection) are much stronger in the high 939 

resolution experiment. We also find stronger and more localized areas of convective 940 

updrafts as seen in the vertical velocities (9a,b) compared to the 12 km simulation (8c,d; 941 

omega is shown instead of vertical velocity here because of the difference in model 942 

output). The stronger convection simulated in the 3 km experiment is also tied to the 943 

stronger temperature gradients between lake and land and between day and night (Figure 944 

10). 945 

This demonstrates that the 3km simulation is better equipped to simulate the localized 946 

circulations associated with this complex land-lake system. 947 
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 987 

Figure 9. Cross-section through 1S (red line in bottom right panel of Fig. 9) of the 988 

mean (0-2N) zonal-wind anomaly (30E-36E) vectors and contoured vertical velocity 989 

(m/s) at a) 12Z 29 November and b) 6Z 30 November from the 3km simulation. 990 

Purple dashed contours indicate -0.1 m/s, light blue contours indicate 0.1 m/s, 991 

yellow contours indicate 0.3 m/s, and red contours indicate 0.5 m/s. Lake Victoria 992 

encompasses about 32E to 34E. The bottom 2 panels show the cross-section also 993 

through 1S and mean zonal-wind anomaly vectors as in a) and b) but from the 12km 994 

simulation at c) 12Z 29 November and d) 6Z 30 November. Purple dashed contours 995 
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indicate -0.01 hPa/s, light blue dashed contours indicate -0.005 hPa/s, and yellow 998 

dashed contours indicate 0.005 hPa/s. 999 

 1000 

Figure 10 : Longitude-time (hourly) Hovmöller diagram of LKV domain surface 1001 
temperature (shading, in °C). Panels correspond to the 3km simulation (left) and 1002 
12km simulation (right). The lake Victoria is between 32E and 34E longitude  1003 
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 1006 

Figure 11: Total accumulated precipitation during the LKV case measured by 1007 
CHIRPS (top left), CMORPH (top center), CPC (top right) TRMM (bottom left) and 1008 
calculated by RegCM4 at 3 km (bottom center) and 12 km (bottom right) .  1009 

 1010 

Figure 11 finally reports the total accumulated precipitation observed and simulated for 1011 

the LKV case. TRMM and CPC show a similar pattern, with two-rainfall maxima of 1012 

different intensities over the southeastern and northwestern lake areas. CMORPH shows 1013 

a western rainfall maximum similar to TRMM and one large rainfall area almost entirely 1014 

centered over the highlands to the west of the lake. Conversely in CHIRPS a maximum 1015 

is found to the east of the lake while several localized maxima occur over the lake. The 1016 

differences between the observed datasets highlight the issue of observational 1017 

uncertainty and the need to take into consideration shortcomings associated with the 1018 

types of observational datasets considered. Different datasets can have significantly 1019 
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different climatology, especially in areas of low data availability. For example, Prein and 1033 

Gobiet (2017) analyzed two gauge-based European-wide datasets, and seven global low-1034 

resolution datasets, and found large differences across the observation products, often 1035 

of similar magnitude as the difference between model simulations. In this case and for 1036 

this area the observation uncertainty plays a big role especially at high resolution, and 1037 

highlights the need for an adequate observational network for model validation. 1038 

 However, even taking into account the elevated uncertainty existing in the observations 1039 

datasets, we find a significant underestimation of rain amounts in the 12 km run (Fig 11), 1040 

with a wide area of rainfall around 80mm over the whole of LKV. In contrast, the 3 km 1041 

simulation shows substantially greater detail, with rainfall patterns more in agreement with 1042 

the CMORPH observations . In particular, the 3 km simulation reproduces well the local 1043 

rainfall maxima on the western side of the lake, although these appear more localized 1044 

and with a multi-cell structure compared to CMORPH and TRMM.. Additionally, the 12 1045 

km simulation underestimates the observed heavy rainfall totals in the highlands to the 1046 

west of the lake region, which are instead reproduced by the 3 km simulation. 1047 

This last test case demonstrates the ability of RegCM4-NH in simulating realistic 1048 

convective activity over a morphologically complex region, which is a significant 1049 

improvement compared to the hydrostatic-coarse resolution model configuration. 1050 

 1051 

Conclusions and future outlook 1052 

 1053 
In this paper we have described the development of RegCM4-NH, a non hydrostatic 1054 

version of the regional model system RegCM4, which was completed in response to the 1055 
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need of moving to simulations at convection-permitting resolutions of a few km. The 1106 

dynamical core of the non-hydrostatic version of MM5 has been thus incorporated into 1107 

the RegCM4 system, an approach facilitated by the fact that the this last is essentially an 1108 

evolution of the MM5. Some modifications to the MM5 dynamical core were also 1109 

implemented to increase the model stability for long term runs. RegCM4-NH also includes 1110 

two explicit cloud microphysics schemes needed to explicitly describe convection and 1111 

cloud processes in the absence of the use of cumulus convection schemes. Finally, we 1112 

presented a few case studies of explosive convection to illustrate how the model provides 1113 

realistic results in different settings and general improvements compared to the coarser 1114 

resolution hydrostatic version of RegCM4 for such types of events. 1115 

  1116 

As already mentioned, RegCM4-NH is currently being used for different projects, and 1117 

within these contests, is being run at grid spacings of a few km for continuous decadal 1118 

simulations, driven by reanalyses of observations or GCM boundary conditions (with the 1119 

use of an intermediate resolution domains) over different regions, such as the Alps, the 1120 

Eastern Mediterranean, Central-Eastern Europe and the Caribbeans. These projects, 1121 

involving multi-model intercomparisons, indicate that the performance of RegCM4-NH is 1122 

generally in line with that of other convection permitting models, and exhibits similar 1123 

improvements compared to coarser resolution models, such as a better simulation of the 1124 

precipitation diurnal cycle and of extremes at hourly to daily time scales. The results 1125 

obtained within the multi-model context confirm previous results from single-model 1126 

studies (Kendon et al. 2012, 2017, Ban et al. 2014, 2015; Prein et al. 2015, 2017), but 1127 

also strengthen the robustness of the findings through reduced uncertainty compared to 1128 

coarse resolution counterpart (Ban et al., 2021, Pichelli et al., 2021). The convection-1129 

permitting scale can thus open the perspective of more robust projections of future 1130 

changes of precipitation, especially over short time scales. 1131 

  1132 

  1133 

One of the problems of the RegCM4-NH dynamical core is that, especially for long runs 1134 

with varied meteorological conditions, a relatively short time step needs to be used for 1135 

stability reasons. This makes the model rather computationally demanding, although not 1136 
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more than other convection-permitting modeling systems such as the Weather Research 1156 

and Forecast model (WRF, Skamarok et al. 2008). For this reason, we are currently 1157 

incorporating within the RegCM system a very different and more computationally efficient 1158 

non-hydrostatic dynamical core, which will provide the basis for the next version of the 1159 

model, RegCM5, to be released in the future. 1160 

  1161 

Following the philosophy of the RegCM modeling system, RegCM4-NH is intended to be 1162 

a public, free, open source community resource for external model users. The non-1163 

hydrostatic dynamical core has been implemented in a way that it can be activated in 1164 

place of the hydrostatic dynamics through a user-set switch, which makes the use of 1165 

RegCM4-NH particularly simple and flexible. We therefore envision that the model will be 1166 

increasingly used by a broad community so that a better understanding can be achieved 1167 

of its behavior, advantages and limitations. 1168 

  1169 

Code availability: https://zenodo.org/record/4603556 1170 

Cases study configuration files: https://zenodo.org/record/5106399 1171 
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