1 Non-Hydrostatic RegCM4 (RegCM4-NH): Model description

² and case studies over multiple domains.

	•	
3	Coppola Erika, (1), Stocchi Paolo, (2), Pichelli Emanuela, (1), Torres Alavez Jose Abraham,	Deleted: .
4	(1), Glazer Russel, (1), Giuliani Graziano, (1), Di Sante Fabio (1), Nogherotto Rita (1), Giorgi	Deleted: .
5	Filippo, (1)	Deleted: .
6		Deleted: .
7	Correspondence to: Erika Coppola (coppolae@ictp.it)	Deleted: .
		Deleted: .
8	1. International Centre for Theoretical Physics (ICTP), Trieste, Italy	Deleted: F.
9	2. Institute of Atmospheric Sciences and Climate. National Research Council of Italy, CNR-ISAC.	Deleted: R.
10	Bologne Itely	Deleted: .
10	Dologna, nary	
11	Abstract	
••		
12	We describe the development of a non-hydrostatic version of the regional climate model	
13	RegCM4, called RegCM4-NH, for use at convection-permitting resolutions. The non-	
14	hydrostatic dynamical core of the Mesoscale Model MM5 is introduced in the RegCM4,	
15	with some modifications to increase stability and applicability of the model to long-term	
16	climate simulations. Newly available explicit microphysics schemes are also described,	
17	and three case studies of intense convection events are carried out in order to illustrate	
18	the performance of the model. They are all run at convection-permitting grid spacing of 3	
19	km over domains in northern California, Texas and the Lake Victoria region, without the	
20	use of parameterized cumulus convection. A substantial improvement is found in <u>several</u>	
21	aspects of the simulations compared to corresponding coarser resolution (12 km) runs	
22	completed with the hydrostatic version of the model employing parameterized convection.	
23	RegCM4-NH is currently being used in different projects for regional climate simulations	
24	at convection-permitting resolutions, and is intended to be a resource for users of the	Deleted:
25	RegCM modeling system.	
26		
20	<i></i>	
27	Keywords:	
28	Regional climate models; RegCM4; km-scale resolution; climate change	

29 Introduction

- 30 Since the pioneering work of Dickinson et al. (1989) and Giorgi and Bates (1989),
- 31 documenting the first regional climate modeling system (RegCM, version 1) in literature,
- 32 the dynamical downscaling technique based on limited area Regional Climate Models

Formatted: Right: 0.63 cm

(RCMs) has been widely used worldwide, and a number of RCM systems have been 43 developed (Giorgi 2019). RegCM1 (Dickinson et al., 1989, Giorgi and Bates, 1989) was 44 45 originally developed at the National Center for Atmospheric Research (NCAR) based on 46 the Mesoscale Model version 4 (MM4) (Anthes et al, 1987), Then, further model versions 47 followed: RegCM2 (Giorgi et al. 1993a,b), RegCM2.5, (Giorgi and Mearns 1999), 48 RegCM3 (Pal et al. 2007), and lastly RegCM4 (Giorgi et al 2012). Except for the transition, from RegCM1 to RegCM2, in which the model dynamical core was updated from that of 49 the MM4 to that of the MM5 (Grell et al. 1995), these model evolutions were mostly based 50 51 on additions of new and more advanced physics packages. RegCM4 is today used by a 52 large community for numerous projects and applications, from process studies to paleo and future climate projections, including participation in the Coordinated Regional 53 54 Downscaling EXperiment (CORDEX, Giorgi et al. 2009; Gutowski et al. 2016). The model 55 can also be coupled with ocean, land and chemistry/aerosol modules in a fully interactive way (Sitz et al. 2017). 56 The dynamical core of the standard version of RegCM4 is hydrostatic, with sigma-p 57

vertical coordinates. As a result, the model can be effectively run for grid spacings of ~10 58 59 km or larger, for which the hydrostatic assumption is valid. However, the RCM community 60 is rapidly moving to higher resolutions of a few km, i.e. "convection-permitting" (Prein et al. 2015; Coppola et al. 2020) and therefore the dynamical core of RegCM4 has been 61 62 upgraded to include a non-hydrostatic dynamics representation usable for very high resolution applications. This upgrade, which we name RegCM4-NH, is essentially based 63 64 on the implementation of the MM5 non-hydrostatic dynamical core within the RegCM4 65 framework, which has an entirely different set of model physics compared to MM5. 66

67 RegCM4-NH is already being used in, some international, projects focusing on, climate

68 <u>simulations at convection-permitting km-scales</u> namely the European Climate Prediction

69 System (EUCP, Hewitt and Lowe 2018) and the CORDEX Flagship Pilot Study dedicated 70 to convection (CORDEX-FPSCONV, Coppola et al. 2020), and it is starting to be used

71 more broadly by the RegCM modeling community.

72 For example, the recent papers by Ban et al. (2021) and Pichelli et al. (2021) document

- 73 results of the first multi-model experiment of 10-year simulations at the convection-
- 74 permitting scales over the so-called greater Alpine region. Two different simulations with
- 75 RegCM4-NH for, present day conditions, have contributed to the evaluation analysis of,
- 76 Ban et al. (2021). They were carried out at the International Centre for Theoretical Physics
- 77 (ICTP) and the Croatian Meteorological and Hydrological Service (DHMZ) using, two
- different physics, configurations. The results show that RegCM4-NH, largely improves, the
- 79 precipitation simulation as compared to available fine scale observations when going from
- 80 coarse to high, resolution, in particular for higher order statistics, such as precipitation
- 81 extremes and hourly intensity, Pichelli et al. (2021) then analyse, multi-model ensemble
- simulations driven by selected CMIP5 GCM projections for the decades 1996–2005 and

Deleted: One of these systems, and in fact the first one to be developed, is the RegCM. The first version of RegCM, named ...egCM1 (Dickinson et al., 1989, and Bates, 1989)....was (produced by Dickinson et al., (1989), and Giorgi and Bates, (1989) as a ...riginally developeddevelopped...at the National Center for Atmospheric Research (NCAR)ment...based onof...the Mesoscale Model version 4 (MM4) (Anthes et al, 1987) of the National Center for Atmospheric Research (NCAR)... Then, is was...followed by ...urther model versions followed: RegCM2 (Giorgi et al. 1993a,b), RegCM2.5, (Giorgi and Mearns 1999), RegCM3 (Pal et al. 2007), and lastly[1]

Deleted: passage...from RegCM1 to RegCM2, in which the model dynamical core was updated from that of the MM4 to that of the MM5 (Grell et al. 1995), these model evolutions were mostly based on additions of new and more advanced sub-grid...physics packages. In particular, ...egCM4 is today used by a large community for numerous projects and applications, from process studies to paleo and future climate projections, including participation into [2]

Deleted: more

Deleted: Long term simulations carried out through the new generation ...egCM4-NH is already being used incontribute to...some internationalbroad...projects focusing ondedicated to the study of...climate at the...convection-permitting km-scales,...namely the European Climate Prediction System (EUCP, Hewitt and Lowe 2018) and the CORDEX Flagship Pilot Study dedicated to convection (CORDEX-FPSCONV, Coppola et al. 2020), and it is starting to be used more broadly by the RegCM modeling community. ¶ ...[3]

Deleted: EG

2

Deleted:	simulations.	largely improve	s reducethe	
precipita	tion simulatio	n asbias		[5]

Deleted: with...available fine scale observations when going from coarse to higher[6]

Deleted: contributing to adding value to the representation of rainfall... Pichelli et al. (2021) then analysepresent the...multi-model ensemble simulations driven by selected CMIP5 GCM projections for theover[7]

2090–2099 under the <u>RCP8.5</u> scenario. ICTP contributed to the experiment with
 simulations <u>using</u> RegCM<u>4</u>-NH, driven by the MOCH-HadGEM GCM (r1i1p1) in a two
 level nest configuration (respectively at 12 and 3 km grid). The paper shows new insights

into future changes, <u>for example an enhancement of</u> summer and autumn hourly rainfall
 intensification <u>compared to</u> coarser resolution model experiments, as well as an increase

192 of frequency and intensity of high-impact weather events,

In this paper we describe the structure of RegCM4-NH and provide some illustrative examples of its performance, so that model users can have a basic reference providing them with background information on the model. In the next section we first describe the new model dynamical core, while the illustrative applications are presented in section 4. Section 5 finally provides some discussion of future developments planned for the RegCM system.

200

208

225

201 Model description

In the development of RegCM4-NH, the RegCM4 as described by Giorgi et al. (2012) was modified to include, the non-hydrostatic dynamical core (*idynamic* = 2 namelist option as described in RegCM-4.7.1/Doc/README.namelist of the source code) of the mesoscale model MM5 (Grell et al. 1995), This dynamical core was selected because <u>RegCM4</u> already has, the same grid and variable structure as <u>MM5</u> in its hydrostatic core, which substantially facilitated its implementation (Elguindi et al. 2017).

209 The model equations with complete description of the Coriolis force and a top radiative 210 boundary condition, along with the finite differencing scheme, are given in Grell et al. 211 (1995). Pressure, p, temperature, T, and density, ϱ , are first decomposed into a 212 prescribed reference vertical profile plus a time varying perturbation. The prognostic 213 equations are then calculated using the pressure perturbation values. Compared to the 214 original MM5 dynamical core, the following modifications were implemented in order to 215 achieve increased stability for long term climate simulations (Elguindi et al. 2017 216 document any modifications which follow the choice of the non-hydrostatic dynamical 217 core through the namelist parameter idynamic = 2; further available user-dependant options, and the corresponding section in the namelist, are explicitly indicated): 218 219

i) The reference state, temperature profile is computed using a latitude dependent
climatological temperature distribution and thus is a function of the specific domain
coordinates (*base_state_pressure*, *logp_lrate* parameters in *&referenceatm*) (Elguindi et
al. 2017). These two parameters were hard_coded in the original MM5 while for the
RegCM are user configurable;

Deleted: rcp
Deleted: performed by the new
Deleted: core
Deleted: with, among the others,
Deleted: more than previously documented by
Deleted: frequency

switch,
Palatade which uses the equations described by Groll
et al. (1995)
Deleted: shares with it
Deleted: it
Deleted: follows
Deleted: for
Deleted: of the RegCM4
Deleted: standard

Deleted: as an additional option selectable through a

Deleted: surface

3

Commented [1]: added the configurability comment here-

243 244	ii) The lateral time dependent boundary conditions (<i>iboudy</i> in <i>&physicsparam</i>) for each prognostic variable use the same exponential relaxation technique (<i>iboudy</i> = 5) described	
245 246	in Giorgi et al. (1993). The linear MM5 relaxation scheme is <u>also</u> kept, as an option (<i>iboudy</i> = 1);	Deleted: only
247	····	
248	iii) The advection term in the model equations, which in the MM5 code is implemented	
249	using a centered finite difference approach, was changed to include a greater upstream	
250	weight factor as a function of the local Courant number (Elguindi et al. 2017). The	
251	maximum value of the weight factor is user configurable (<i>uoffc</i> in & <i>dynparam</i>). As detailed	
252	in the MM5 model description (Grell et al, 1995), the horizontal advection term for a scalar	
253	variable X contributes to the total tendency as:	
254		
255	$\Delta_{adv} \left(p^* X \right)_G = -m^2 _G \left[\frac{\left(p^* X _b \frac{u}{m} _b - p^* X _a \frac{u}{m} _a \right)}{dx} + \frac{\left(p^* X _d \frac{v}{m} _d - p^* X _c \frac{v}{m} _c \right)}{dy} \right]$	
256		
257	where the m is the projection mapping factor and, with respect to Figure 1, assuming that	
258	the computation is to be performed for the gold cross point G, the averages are performed	
259	in the points a, b, c, d . For the u/m and v/m terms, the average value is computed using	
260	respectively the values in points AC, BD, CD, AB	Commented [2]: Added the equation description-
261	In RegCM4 for the term p^*X , the model computes a weighted average value of the field	
262	using the value in gold+cyan and gold+green cross points with weights increasing the	
263	relative contribution of the upstream point up as a function of the local courant number:	
264		
265	$p^*X _a = 0.5((1 - f_1)p^*X _G + (1 + f_1)p^*X _{c_1})$	
266	$p^*X _b = 0.5((1 - f_1)p^*X _{c_2} + (1 + f_1)p^*X _G)$	
267	$p^*X _c = 0.5((1-f_2)p^*X _G + (1+f_2)p^*X _{g_1})$	
268	$p^*X _d = 0.5((1-f_2)p^*X _{g_2} + (1+f_2)p^*X _G)$	
269	where f_1, f_2 are defined as the local Courant number for the 1D advection equations	
270	multiplied for a control factor:	
271		
	$f_1 = \mu_{fa} dt \frac{(u _a + u _b)}{(u _a + u _b)}$	
272	$\frac{2dx}{2dx}$	
	$f_2 = \mu_{fc} dt \frac{(v_c + v_d)}{2 dv_c}$	Commented [3]: Added equation description
273	Zuy ;	
214		

Δ

309 viii) The dynamical control parameter β in the semi-implicit vertical differencing scheme 310 Deleted: is (nhbet in &nonhydroparam) used for acoustic wave damping (Elguindi et al. 2017) is user 311 configurable (Klemp and Dudhia, 2008), while it is hard-coded in the MM5; Deleted: and 312 Deleted: code 313 ix) A Rayleigh damping (*ifrayd* = 1 in *&nonhydroparam*) of the status variables towards 314 the input GCM boundary conditions can be activated in the top layers (rayndamp configuring the number of top levels to apply) with a configurable relaxation time 315 316 (rayalpha0, Klemp and Lilly, 1978, Durran and Klemp, 1983. This is consistent to what is 317 implemented in the WRF model); 318 319 x) The water species time filtering uses the Williams (2009) modified filter with $\alpha = 0.53$ 320 instead of the RA filter used by all the other variables. The v factor in the RA filter is user 321 configurable (gnu1 and gnu2 in & dynparam). This reduces the damping introduced by the 322 Robert-Asselin filter and the computational diffusion introduced by the horizontal 323 advection scheme. 324 325 With these modifications, the model basic equations, under leap-frog integration scheme, 326 are (Elguindi et al. 2017) : Deleted: the (same as in the MM5) and namely 327 Deleted: are 328 $\frac{\partial p^* u}{\partial t} = -m^2 \left[\frac{\partial p^* u u/m}{\partial x} + \frac{\partial p^* v u/m}{\partial y} \right] - \frac{\partial p^* u \dot{\sigma}}{\partial \sigma} + u DIV - \frac{\partial p^* u \dot{\sigma}}{\partial \sigma} + u DIV - \frac{\partial p^* u \dot{\sigma}}{\partial \sigma} + u DIV - \frac{\partial p^* u \dot{\sigma}}{\partial \sigma} + u DIV - \frac{\partial p^* u \dot{\sigma}}{\partial \sigma} + u DIV - \frac{\partial p^* u \dot{\sigma}}{\partial \sigma} + u DIV - \frac{\partial p^* u \dot{\sigma}}{\partial \sigma} + u DIV - \frac{\partial p^* u \dot{\sigma}}{\partial \sigma} + u DIV - \frac{\partial p^* u \dot{\sigma}}{\partial \sigma} + u DIV - \frac{\partial p^* u \dot{\sigma}}{\partial \sigma} + \frac{\partial p^* u \dot{\sigma$ $\frac{mp^*}{\rho} \left[\frac{\partial p'}{\partial x} - \frac{\sigma}{p^*} \frac{\partial p^*}{\partial x} \frac{\partial p'}{\partial \sigma} \right] + p^* fv - p^* ew \cos \theta + D_u$ (1)329 330 $\frac{\partial p^* v}{\partial t} = -m^2 \left[\frac{\partial p^* u v/m}{\partial x} + \frac{\partial p^* v v/m}{\partial y} \right] - \frac{\partial p^* v \dot{\sigma}}{\partial \sigma} + v DIV \frac{mp^*}{\rho} \left[\frac{\partial p'}{\partial y} - \frac{\sigma}{p^*} \frac{\partial p^*}{\partial y} \frac{\partial p'}{\partial \sigma} \right] - p^* f u + p^* e w \sin \theta + D_v$ (2)331 332 $\frac{\partial p^* w}{\partial t} = -m^2 \left[\frac{\partial p^* u w/m}{\partial x} + \frac{\partial p^* v w/m}{\partial y} \right] - \frac{\partial p^* w \dot{\sigma}}{\partial \sigma} + w DIV +$ $p^{*}g\frac{\rho_{0}}{\rho}\left[\frac{1}{p^{*}}\frac{\partial p'}{\partial\sigma} + \frac{T'_{v}}{T} - \frac{T_{0}p'}{Tp_{0}}\right] - p^{*}g\left[(q_{c}+q_{r})\right] + p^{*}e\left(u\cos\theta - v\sin\theta\right) + D_{w} \quad (3)$ 333 334 $\frac{\partial p^* p'}{\partial t} = -m^2 \left[\frac{\partial p^* u p'/m}{\partial x} + \frac{\partial p^* v p'/m}{\partial y} \right] - \frac{\partial p^* p' \dot{\sigma}}{\partial \sigma} + p' DIV$ $m^{2}p^{*}\gamma p \left[\frac{\partial u/m}{\partial x} - \frac{\sigma}{mp^{*}} \frac{\partial p^{*}}{\partial x} \frac{\partial u}{\partial \sigma} + \frac{\partial v/m}{\partial y} - \frac{\sigma}{mp^{*}} \frac{\partial p^{*}}{\partial y} \frac{\partial v}{\partial \sigma} \right] + \rho_{0}g\gamma p \frac{\partial w}{\partial \sigma} + p^{*}\rho_{0}g \quad (4)$ 335 Formatted: Right: 0.63 cm

$$\begin{array}{ll} 341 & \frac{\partial p^*T}{\partial t} = -m^2 \left[\frac{\partial p^*uT/m}{\partial x} + \frac{\partial p^*vT/m}{\partial y} \right] - \frac{\partial p^*T\dot{\sigma}}{\partial \sigma} + TDIV + \\ & \frac{1}{\rho_p} \left[p^* \frac{Dp'}{Dt} - \rho_{0}gp^*w - D_{p'} \right] + p^* \frac{\dot{Q}}{c_p} + D_T \qquad (5) \\ 34 & \text{Where:} \\ 345 & DIV = m^2 \left[\frac{\partial p^*u/m}{\partial x} + \frac{\partial p^*v/m}{\partial y} \right] + \frac{\partial p^*\dot{\sigma}}{\partial \sigma} \\ & \dot{\sigma} = -\frac{\rho_{0}g}{p^*}w - \frac{m\sigma}{p^*} \frac{\partial p^*}{\partial x}u - \frac{m\sigma}{p^*} \frac{\partial p^*}{\partial \sigma} \\ & \dot{\sigma} = -\frac{\rho_{0}g}{p^*}w - \frac{m\sigma}{p^*} \frac{\partial p^*u}{\partial y} + \frac{m\sigma}{p^*} \frac{\partial p^*\dot{\sigma}}{\partial \sigma} \\ & tan \theta = -\cos\phi\frac{\partial \lambda/\partial y}{\partial \phi/\partial x} \\ & tan \theta = -\cos\phi\frac{\partial \lambda/\partial y}{\partial \phi/\partial x} \\ & p(x,y,z,t) = p_0(z) + p'(x,y,z,t) \\ & T(x,y,z,t) = p_0(z) + p'(x,y,z,t) \\ & x(th, the vertical sigma coordinate, defined as: \\ & \phi(x,y,z,t) = \rho_0(z) + \rho'(x,y,z,t) \\ & \text{Metre P_* is the surface pressure and P_0 is the reference pressure profile. The total pressure \\ & at each grid point is thus given as: \\ & p(x,y,z,t) = p^*\sigma(k) + p_t + p'(x,y,z,t) \\ & \text{With P_t being the top model pressure assuming a fixed rigid lid. \\ & \text{With P_t being the top model pressure assuming a fixed rigid lid. \\ & \text{With P_t being the top model pressure assuming a fixed rigid lid. \\ & \text{With P_t being the top model pressure assuming a fixed rigid lid. \\ & \text{With P_t being the top model pressure assuming a fixed rigid lid. \\ & \text{With P_t being the top model pressure assuming a fixed rigid lid. \\ & \text{With P_t being the top model pressure assuming a fixed rigid lid. \\ & \text{With P_t being the top model pressure assuming a fixed rigid lid. \\ & \text{With P_t being the top model pressure assuming a fixed rigid lid. \\ & \text{With P_t being the top model pressure assuming a fixed rigid lid. \\ & \text{With P_t being the top model pressure assuming a fixed rigid lid. \\ & \text{With P_t being the top model pressure assuming a fixed rigid lid. \\ & \text{With P_t being the top model pressure assuming a fixed rigid lid. \\ & \text{With P_t being the top model pressure assuming a fixed rigid lid. \\ & \text{With P_t being the top model pressure assuming a fixed right as the stressure assuming a fixed rigid lid. \\$$

The model physics schemes for boundary layer, radiative transfer, land and ocean 363 surface processes, cloud and precipitation processes are extensively described in Giorgi 364 et al. (2012) and summarized in Table 1. For each physics component a number of 365 366 parameterization options are available (Table 1), and can be selected using a switch 367 selected by the user. As mentioned, the use of non-hydrostatic dynamics is especially 368 important when going to convection-permitting resolutions of a few km (Prein et al. 2015). 369 At these resolutions the scale separation assumption underlying the use of cumulus convection schemes is not valid any more, and explicit cloud microphysics 370 371 representations are necessary. The RegCM4 currently includes two newly implemented 372 microphysics schemes, the Nogherotto-Tompkins (Nogherotto et al. 2016) and the WSM5 373 scheme from the Weather Research Forecast (WRF, Skamarok et al. 2008) model, which

are briefly described in the next sections for information to model users.

Deleted: resumed
Deleted: references therein

Deleted: model

374 375

Model physics (Namelist flag)	Options	<u>n. option</u>	Reference
Dynamical core (idynamic)	<u>Hydrostatic</u>	<u>1</u>	<u>Giorgi et al. 1993a,b</u> <u>Giorgi et al. 2012</u>
	Non-Hydrostatic (*)	2	present paper
Radiation (irrtm)	CCSM	<u>0</u>	Kiehl et al. 1996
<u>(,</u>	<u>RRTM (*)</u>	1	Mlawer et al. 1997
Microphysics (ipptIs)	Subex	1	Pal et al 2000
	Nogherotto Thompkins	2	Nogherotto et al. 2016
	<u>WSM5 (*)</u>	<u>3</u>	Hong et al 2004
Cumulus (icup)	Kuo	1	Anthes et al. 1987
	Grell	2	Grell 1993
	Emanuel	<u>4</u>	Emanuel 1991
	<u>Tiedtke</u>	<u>5</u>	<u>Tiedtke 1989, 1993</u>

				Formatted: Normal
	elease ale starreu (").			Formatted: Font: 12 pt, Font colou
Table 1 Core and su	b-grid physics schem	e availabl	e in RegCM-NH. New scheme	<u>s</u>
Coupled ocean (iocncpl)	RegCM-ES	1	Sitz et al. 2017	
Tropical band (i band)	RegT-Band	<u>1</u>	Coppola et al. 2012	
Interactive lake (lakemod)	<u>1D</u> diffusion/convection	<u>1</u>	Hostetler et al. 1993	
	COARE	<u>3</u>	Fairall et al. 1996a,b	
(iocnflx)	Zeng	2	Zeng et al. 1998	
Ocean Fluxes	BATS	<u>1</u>	Dickinson et al. 1993	
option)	<u>CLM4.5</u>	Ĺ	Oleson et al. 2013	
Land Surface (code compiling	BATS	<u>/</u>	Dickinson et al. 1993; Giorgi et al. 2003	
(ibltyp)	<u>UW</u>	2	Bretherton et al. 2004	
<u>Planetary</u> Boundary Layer	Modified-Holtslag	<u>1</u>	Holtslag et al., 1990	
	MM5 Shallow cumulus (only mixing) (*)	<u>-1</u>	<u>Grell et al. 1994</u>	
		01	Kain 2004	

Formatted: Right: 0.63 cm

385 Nogherotto-Tompkins Scheme:

386 A new parameterization for explicit cloud microphysics and precipitation built upon the 387 European Centre for Medium Weather Forecast's Integrated Forecast System (IFS) 388 module (Tiedtke, 1993, Tompkins, 2007), was introduced in RegCM4 (ipptls = 2 in 389 µparam) by Nogherotto et al. (2016). In the present configuration, the scheme 390 implicitly solves,5 prognostic equations for water vapor, qv, cloud liquid water, ql, rain, qr, 391 cloud ice, gi, and snow, gs, but it is also easily extendable to a larger number of variables. 392 Water vapor, cloud liquid water, rain, cloud ice and snow are all expressed in terms of the 393 grid-mean mixing ratio.

394 Cloud liquid and ice water content are independent, allowing the existence of supercooled 395 liquid water and mixed-phase clouds. Rain and snow precipitate with a fixed terminal fall 396 speed and can then be advected by the three dimensional winds. A check for the 397 conservation of enthalpy and of total moisture is ensured at the end of each timestep. The 398 governing equation for each variable is: 399

$$\frac{\partial q_x}{\partial t} = S_x + \frac{1}{\rho} \frac{\partial}{\partial z} (\rho V_x q_x)$$

402 The local variation of the mixing ratio qx of the variable x is given by the sum of Sx, 403 containing the net sources and sinks of qx through microphysical processes (i.e. 404 condensation, evaporation, auto-conversion, melting, etc.), and the sedimentation term, 405 which is a function of the fall speed Vx . An upstream approach is employed to solve the 406 equations. The sources and sinks contributors are divided in two groups according to the 407 duration of the process they describe: processes that are considered to be fast relative to 408 the model time step are treated implicitly while slow processes are treated explicitly. The 409 processes taken into account (shown in Figure 2) are the microphysical pathways across 410 the 5 water variables: condensation, autoconversion, evaporation, cloud water collection 411 (accretion), and autoconversion for warm clouds, and freezing, melting, deposition, 412 sublimation for cold clouds.

	Deleted: solves implicitly
	Deleted: qv
	Deleted: ql
ì	Deleted: qr
Ì	Deleted: qi
	Deleted: gs

Deleted: 1

Formatted: Right: 0.63 cm

10

413

Figure 2: Depiction of the new scheme, showing the five prognostic variables and how they are related to each other through microphysical processes

For each microphysical pathway, phase changes are associated with the release or
absorption of latent heat, which then impacts the temperature budget. The impact is
calculated using the conservation of liquid water temperature TL defined as:

$$T_L = T - \frac{L_v}{C_p}(q_l + q_r) - \frac{L_s}{C_p}(q_i + q_s).$$

429 Given that dTL =0, the rate of change of the temperature is given by the following 430 equation:

431

428

$$\frac{\partial T}{\partial t} = \sum_{x=1}^{m} \frac{L(x)}{C_p} \left(\frac{dq_x}{dt} - D_{q_x} - \frac{1}{\rho} \frac{\partial}{\partial z} (\rho V_x q_x) \right)$$

432 433

434 where L(x) is the latent heat of fusion or evaporation, depending on the process 435 considered, Dqx is the convective detrainment and the third term in brackets is the 436 sedimentation term.

437 At the end of each time step a check is carried out of the conservation of total water and 438 moist static energy: $h = C_P T + gz + Lq_x$.

The scheme is tunable through parameters in the *µparam* section of the namelist
(RegCM-4.7.1/Doc/README.namelist; Elguindi et al. 2017).

Deleted: 1

Formatted: Right: 0.63 cm

442 WSM5 Scheme:

443 RegCM4-NH also employs the Single-Moment 5-class microphysics scheme of the WRF 444 model (Skamarock et al., 2008). This scheme (ipptIs = 3 in µparam) follows Hong 445 et al. (2004) and, similarly to Nogherotto et al. (2016), includes vapor, rain, snow, cloud 446 ice, and cloud water hydrometeors. The scheme separately treats ice and water saturation processes, assuming water hydrometeors for temperatures above freezing, 447 448 and cloud ice and snow below the freezing level (Dudhia, 1989, Hong et al., 1998). It 449 accounts for supercooled water and a gradual melting of snow below the melting layer 450 (Hong et al., 2004, and Hong and Lim, 2006). Therefore, the WSM5 and Nogherotto-451 Tompkins schemes have similar structures (Figure 2), but also important differences.

452 Differently from the Nogherotto-Tompkins scheme, the WSM5 (as well as the other WSM 453 schemes in WRF) prescribes an inverse exponential continuous distribution of particle 454 size (ex. Marshall and Palmer (1948) for rain, Gunn and Marshall (1958) for snow). It also 455 includes the size distribution of ice particles and, as a major novelty, the definition of the 456 number of ice crystals based on ice mass content rather than temperature. Both the 457 Nogherotto-Tompkins and WSM5 schemes include autoconversion, i.e. sub-time step 458 processes of conversion of cloud water to rain and cloud ice to snow. For rain, Hong et 459 al. (2004) use a Kessler (1969) type algorithm in WSM5, but with a stronger physical basis 460 following Tripoli and Cotton (1980). The Nogherotto-Tompkins scheme also includes the 461 original Kessler (1969) formula as an option, but it makes available other three 462 exponential approaches following Sundqvist et al. (1989), Beheng (1994), and 463 Khairoutdinov and Kogan (2000). For ice autoconversion the Nogherotto-Tompkins 464 scheme uses an exponential approach (Sundqvist, 1989) with a specific coefficient for ice 465 particles (following Lin et al., 1983) depending on temperature, while the WSM5 uses a 466 critical value of ice mixing ratio (depending on air density) and a maximum allowed ice 467 crystal mass (following Rutledge and Hobbs, 1983) that suppresses the process at low 468 temperatures because of the effect of air density. Finally, the WSM5 has no dependency 469 on cloud cover for condensation processes while the Nogherotto-Tompkins scheme uses 470 cloud cover to regulate the condensation rate in the formation of stratiform clouds.

471

472 Illustrative case studies

- 473
- 474 Three case studies (Table 2) of Heavy Precipitation Events (HPE) have been identified in
- 475 order to test and illustrate the behavior of the non-hydrostatic core of the RegCM4-NH,
- 476 with focus on the explicit simulation of convection over different regions of the world. In
- 477 two test cases, California and Lake Victoria, data from the ERA-Interim reanalysis (Dee

Deleted: 1

Deleted: 1

12

480	et al. 2011) are used to provide initial and lateral meteorological boundary conditions for	
481	an intermediate resolution run (grid spacing of 12 km, with use of convection	
482	parameterizations) (Figure 3), which then provides driving boundary conditions for the	Deleted: 2
483	convection-permitting experiments. In the Texas case study, however, we nested the	Deleted:
484	model directly in the ERA-Interim reanalysis with boundary conditions provided every 6	
485	hours, given that such configuration was able to reproduce accurately the HPE intensity.	
486	In this case the model uses a large LBC relaxation zone which allows the description of	
487	realistic fine-scale features driving this weather event (even if not fully consistent with the	
488	Matte et al. (2017) criteria), All simulations start 24-48 hours before the HPE. The analysis	Deleted: Ir
489	focuses on the total accumulated precipitation over the entire model domain, at 3 km,	Skm conv
490	resolution (Fig. 3) for, the periods defined in Table 2, In, the cases of California and Texas	accurately
491	the evaluation also includes the time series of 6 hourly accumulated precipitation	Deleted: d
492	averaged on the region of maximum precipitation (black rectangles in Figs. 3) against	Deleted: 0
493	available high temporal resolution observations (NCEP/CPC) (Table 3). The discussion	Deleted: 2
494	of the case studies is presented in the next sections; the configuration files (namelists)	Deleted: 1
495	with full settings for the three test cases are available at	Deleted: F
496	https://zenodo.org/record/5106399.	Deleted: 4
497	······································	Deicieu: a
-07		

498 A key issue concerning the use of CP-RCMs is the availability of very high resolution, 499 high quality observed datasets for the assessment and evaluation of the models, which 500 is not there for most of the world regions. Precipitation measurements come from 501 essentially three distinct sources: in-situ rain-gauges, ground radar and satellite. In the 502 present study we use 7 observational datasets depending on the case study and the area covered, as described in Table 2. We have used: Precipitation Estimation from Remotely 503 504 Sensed Information using Artificial Neural Networks - Climate Data Record (PERSIAN-505 CDR), Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), the 506 Climate Prediction Center morphing method (CMORPH), Tropical Rainfall Measuring 507 Mission (TRMM), NCEP/CPC-Four Kilometer Precipitation Set Gauge and Radar 508 (NCEP/CPC), CPC-Unified daily gauge based precipitation estimates (CPC) and 509 Parameter-elevation Regressions on Independent Slopes Model (PRISM) (Table 3). 510 NCEP/CPC is a precipitation analysis which merges a rain gauge dataset with radar 511 estimates. CMORPH and PERSIAN-CDR are based on satellite measurements, CHIRPS incorporates satellite imagery with in-situ station data. CPC is a gauge-based analysis of 512 513 daily precipitation and the PRISM dataset gathers climate observations from a wide range

-1	Deleted: In the Texas case study, we fed directly the
	fields from the ERA-Interim reanalysis to the RegCM
	found that the HPE intensity was already reproduced accurately with this procedure
1	Deleted: domains
Ì	Deleted: of

Deleted: of	
Deleted: 2	
Deleted: and	
Deleted: 1	
Deleted: For	
Deleted: 4	
Deleted: ab	

of monitoring networks, applies sophisticated quality control measures, and develops
 spatial climate datasets incorporating a variety of modeling techniques at multiple spatial
 and temporal resolutions.

532

533

<u>Case</u>	ACRONYM	Region of The event	Domains size lon x lat x vertical levels	Simulation Time Window
1	CAL	<u>California</u>	480 x 440 x 41	15 Feb 2004 00:00 19 Feb 2004 00:00
2	TEX	<u>Texas</u>	<u>480 x 440 x 41</u>	9 June 2010 00:00 12 June 2010 00:00
<u>3</u>	<u>LKV</u>	Lake Victoria	<u>550 x 530 x 41</u>	25 Nov 1999 00:00 1 Dec 1999 00:00

534 535

 Table 2: List of acronyms and description of the test cases with corresponding,3km

domain sizes and simulation period.

Deleted: and

536

<u>Dataset</u> <u>name</u>	<u>Region</u>	<u>Spatial</u> Resolution	<u>Temporal</u> <u>Resolution</u>	<u>Data</u> Source	<u>Reference</u>
TRMM	World	<u>0.5°</u>	<u>Daily</u>	<u>Satellite</u>	<u>Huffman et</u> al. (2007)
<u>CHIRPS</u>	World	<u>0.05°</u>	<u>Daily</u>	<u>Station</u> <u>data+Satellit</u> <u>e</u>	<u>Funk et al.</u> (2015)
<u>CMORPH</u>	World	<u>0.25°</u>	Daily	<u>Satellite</u>	Joyce et al.

					<u>(2004)</u>
NCEP/CPC	<u>USA</u>	<u>0.04°</u>	<u>Hourly</u>	<u>Gauge and</u> <u>Radar</u>	https://doi.c g/10.5065/E 69Z93M3. Accessed: 27/06/2018
<u>CPC</u>	World	<u>0.5°</u>	<u>Daily</u>	Station data	<u>Chen an</u> <u>Xie (2008)</u>
PRISM	<u>USA</u>	<u>0.04°</u>	Daily	Station data	PRISM Climate Group. 2016.
PERSIAN- CDR	World	<u>0.25°</u>	Daily	<u>Satellite</u>	<u>Ashouri e</u> <u>al. (2015)</u>

565 attention on the impact of narrow filament-shaped structures of strong horizontal water 566 vapor transport over the eastern Pacific Ocean and the western U.S. coast, called Atmospheric Rivers (ARs). ARs are typically associated with a low-level jet stream ahead 567 of the cold front of extratropical cyclones (Zhu and Newell 1998; Dacre et al. 2015; Ralph 568 et al. 2018), and can induce heavy precipitation where they make landfall and are forced 569 to rise over mountain chains (Gimeno et al. 2014). The CAL event consists of a slow 570 571 propagating surface front arching southeastward towards Oregon and then southwestward offshore of California (Fig.3a,c). Rain began over the coastal mountains 572 of the Russian River watershed at 0700 UTC, 16 February, as a warm front descended 573 southward, and also coincided with the development of orographically favoured low-level 574 upslope flow Ralph et al. (2006). 575

576

600	levels and a parameterization for deep convection based on the Kain-Fritsch scheme		
601	(Kain, 2004). The ERA-Interim driven simulation is initialized at 0000 UTC, 15 February		
602	2004 (Table, 2) and lasts until 0000 UTC 19 February 2004. This simulation drives a		Deleted: .
	-	·····	Deleted: 1
603	corresponding RegCM4-NH run using a smaller domain centered over northern California		
604	(Fig. 3a) at 3 km horizontal grid spacing and 41 vertical levels, with boundary conditions		Deleted: 2
605	updated at 6 hour intervals. In RegCM4-NH only the shallow convection component of	(Deleted: 1
606	the Tiedtke scheme (Tiedtke, 1996) is activated, Simulated precipitation is compared with	(Deleted: used
07	the CHIPPE CMORPHI TRMM PRISM NOED/CRC cheerications described in Table 2	······	Deleted:
007	THE CHIRPS, CIVIORPH, TRIVINI, PRISINI, NCEP/CPC Observations described in Table 3.	······	Deleted: () against rainfall data from the TRMM $(0.25^{\circ}x0.25^{\circ})$ (Huffman et al. 2007) dataset over the
		\setminus	sea, and the CHIRPS (0.05°x0.05°) (Funk et al, 2015)
608	First, we notice that the synoptic conditions characteristic of this case study, which are		dataset over the land
600	fed into the RegCM4 NH model, are well reproduced by RegCM4 at 12 km, as shown in	Ţ	Deleted: .
009			
610	Figure $\underline{4}$, where we compare the mean sea level pressure (mslp), surface temperature		Deleted: simulated
611	and wind direction on 14 Eab at 7:00 am as simulated by ReaCM at 12 km (Fig.2b) with		Delated
DII		\leq	Deleted:
612	corresponding fields from the ERA5 reanalysis (Fig.4a). The surface analysis of pressure	\sim	Deleted:
			Deleted: the same variables in by
613	and fronts derived from the operational weather maps prepared at the National Centers		Deleted: 3
614	for Environmental Dradiation Undermategralagical Dradiation Contar National Weather	$\langle \rangle \rangle$	Deleted: : finallyand t
014		$-\langle \rangle$	Deleted:
615	Service (https://www.wpc.ncep.noaa.gov/dailywxmap/index 20040216.html) is also	Y	Deleted: ,
616	reported in Figure 4c,	<	Deleted: given
		((Deleted: (
617	The observed precipitation datasets show similar patterns for the total accumulated	-// (Deleted: .
618	precipitation (Figure 5), in particular CHIRPS, PRISM and NCEP exhibit similar spatial	1	Deleted: 3
619	details and magnitudes of extremes. CHIRPS places a maximum around 42°N which is	(Deleted:)
620	not found in the other datasets. CMORPH and TRMM show lower precipitation maxima		
621	and lesser spatial details due to their lower resolution, indicating that the performance of		
622	satellite-based products may be insufficient as a stand alone product to validate the model		Deleted: ing
623	for this case.		

19

In general, the observed precipitation datasets place the highest maxima on the terrain
peaks, with extreme rainfall greater than 250 mm in 60 hours over the coastal mountains
and greater than 100 – 175 mm elsewhere, (Fig. <u>5</u> a). The <u>black</u> box in Fig. <u>5</u> , shows the
area of the Russian River watershed, highlighting the locations of the observing systems,
including Cazadero (CZD) and Bodega Bay (BBY) where the largest rainfall rates were
detected 269 mm and 124 mm in 60-h accumulated rainfall between 0000 LTC 16
Eebruary and 1200 LITC 18 Eebruary 2004, respectively (Balph et al. 2006)

The convection_permitting simulation captures the basic features of the observed precipitation as shown for example in Fig.5, both in terms of spatial distribution and temporal evolution of rainfall (Fig.6a). However, it shows higher precipitation rates than observed over the sea and over the mountain chains, with lower intensities than observed in the south-east part of the mountain chain (Fig.5). By contrast, the 12-km simulation severely underestimates the magnitude of the precipitation event (Fig.5).

Concerning the timing and intensity of the event in the CZD subregion, 6-hourly 664 665 accumulated precipitation (Fig.6a) averaged over the black box of Figure 5, shows that both the 3 km and 12 km simulations capture the onset of the event, but the peak intensity 666 667 is strongly underestimated by the 12 km run, while it is well simulated by the 3 km run, 668 although the secondary maximum is overestimated. Therefore, our results demonstrate, 669 that only the high resolution convection-permitting model captures this extreme event, 670 and that parameterized convection has severe limits in this regard (Done et al. 2004; Lean 671 et al. 2008; Weisman et al. 2008; Weusthoff et al. 2010; Schwartz 2014; Clark et al. 2016).

Deleted: The

Deleted: elevation	
Deleted: of	
Deleted: in the domain	
Deleted: 4	
Deleted: 4	
Deleted: .4a	

Deleted: respectively

Deleted:	
Deleted: (Fig.4a)	
Deleted: 4	
Deleted: g and 5a	
Deleted: 5	
Deleted: 4	
Deleted: g	
Deleted: 4	
Deleted: d	

(Deleted: 5
~~(Deleted: red
(Deleted: 4
)(Deleted: a

(Deleted: overall,
-(Deleted: show
(Deleted:
~(Deleted: ese
)(Deleted: S

Formatted: Right: 0.63 cm

20

711 Figure 6: Time series of the 6 hourly accumulated precipitation (in mm on the yaxis) during the CAL event (a) and during the TEX event (b). The blue lines show 712 RegCM4 12 Km and ERA interim 6 hourly accumulated precipitation averaged over 713 the areas indicated by the red square in Figure 3 (a,b) while the red line shows the 714 Deleted: . 6 hourly accumulated precipitation simulated by RegCM4-NH, The observations are Deleted: 3 km 715 shown with a black line. 716 Deleted: in

Deleted: 5

Deleted: 1

718 Texas

717

719	Case 2, hereafter referred to as TEX (Table 2), is a convective precipitation episode
720	exhibiting characteristics of the "Maya Express" flood events, linking tropical moisture
721	plumes from the Caribbean and Gulf of Mexico to midlatitude flooding over the central
722	United States (Higgins 2011). During the TEX event, an upper-level cutoff low over
723	northeastern Texas, embedded within a synoptic-scale ridge, moved slowly
724	northeastward. Strong low-level flow and moisture transport from the western Gulf of
725	Mexico progressed northward across eastern Texas. The event was characterized by
726	low-level moisture convergence, weak upper-level flow, weak vertical wind shear, and

Formatted: Right: 0.63 cm

relatively cold air (center of cutoff low), which favored the slow-moving convective storms
and nearly stationary thunderstorm outflow boundaries. The main flooding event in
eastern Texas occurred on June 10, 2010, with a daily maximum rainfall of 216.4 mm of

748		
749		
750		
751	As for the California case, the observed precipitation datasets show coherent patterns for /	
752	the total accumulated precipitation (Fig. 6), with the highest values related to the	
753	mesoscale convective system in eastern Texas (~ 200 mm), and another smaller area of $/$	
754	high precipitation more to the north, approximately over Oklahoma. PRISM and NCEP	
755	capture similar spatial details and magnitudes of extremes, CHIRPS has lower	
756	precipitation extremes in the north compared to the other datasets, while CMORPH and	
757	TRMM show the lowest precipitation extremes and reduced spatial details as already	
758	noted for the California case.	
759	The bottom panels in Figure 7 present precipitation as produced by the RegCM4-NH and	
760	the ERA-Interim reanalysis (driving data), respectively. ERA-Interim reproduces, some of	
761	the observed features of precipitation, but with a substantial underestimation over the	
762	areas of maximum precipitation because of its coarse resolution. By comparison, the	
763	RegCM4-NH simulation, (Fig. 7) shows an improvement in both pattern and intensity of	
764	precipitation, and is substantially closer to observations over eastern Texas. However	
765	the precipitation area is slightly overestimated and the model is not capable of	
766	reproducing the small region of maximum precipitation in the north.	
767		
768	The time series of precipitation over eastern Texas from 9 to 12 June 2010 for	
769	observations (black line), ERA-Interim (blue line) and RegCM4-NH (red line) are reported,	
770	in Figure 🔂. Precipitation increases over this region from 00:00, 10 June, until it reaches	

1	Deleted: similar
1	Deleted: . In general the precipitation observations show (Fig. 6)
'	Deleted: with
h	Deleted: maximum
h	Deleted: amounts
1	Deleted: detects
1	Deleted: S
1	Deleted: .
1	Deleted:
h	Deleted: dataset
1	Deleted: r
h	Deleted: less
/	Deleted: in general
/	Deleted: we
/	Deleted: In the daily precipitation observations for $10_{[11]}$
/	Deleted: Figures
/	Deleted: 6
/	Deleted: 4e and 4h
	Deleted: show
····	Deleted: S
1	Deleted: reproduced
	Deleted: the same information as in Figure 4b (bott \underline{m}_{121})
N	Deleted: Era
/	Deleted: and the RegCM4-NH
()	Deleted: The
(Deleted: shows
N	Deleted: n expected
	Deleted: it also shows a
	Deleted: pronounced
	Deleted: , given its coarser resolution,
11	Deleted: S
V	Deleted: 4h
/	Deleted: are
1	Deleted: in the non-hydrostatic simulation
	Deleted: (Figure 5b)
	Deleted: shown
/	Deleted: F
	Deleted: .
••••	Deleted: 5
7	Formatted: Right: 0.63 cm

the observed maximum at 12:00, 10 June (~35 mm), gradually decreasing afterwards until 6:00, 11 June. The RegCM4-NH simulation shows a more realistic temporal evolution than the ERA-Interim, which exhibits an overall underestimation <u>of precipitation</u>. In general, the non-hydrostatic model produces precipitation values close to the observations, however, the simulated maximum is reached 6 hours earlier than observed.

824 825

826 Lake Victoria

Case 3 focuses on Lake Victoria (LKV), with the purpose of testing RegCM4-NH on a 827 828 complex and challenging region in terms of convective rainfall. It is estimated that each 829 year 3,000-5,000 fishermen perish on the lake due to nightly storms (Red Cross, 2014). 830 In the Lake Victoria basin, the diurnal cycle of convection is strongly influenced by 831 lake/land breezes driven by the thermal gradient between the lake surface and the 832 surrounding land. As the land warms during the course of the day, a lake breeze is 833 generated which flows from the relatively cooler water towards the warmer land surface. The circulation is effectively reversed at night, when the land surface becomes cooler 834 835 than the lake surface, leading to convergence over the lake and associated thermal 836 instability.

In the LKV region, prevailing winds are generally easterly most of the year with some variability due to the movement of the ITCZ. The local diurnal circulation created by the presence of the lake within the larger scale easterly wind field creates two diurnal rainfall maxima. During daylight hours, when the lake breeze begins to advance inland, convergence is maximized on the eastern coast of the lake as the lake breeze interacts with the prevailing easterlies. Studies have also noted the importance of downslope

Formatted: Right: 0.63 cm

katabatic winds along the mountains to the east of the lake in facilitating convergence along the eastern coastal regions (Anyah et al. 2006). This creates a maximum in rainfall and convection on the eastern coast of LKV. Conversely, during nighttime hours, when the local lake circulation switches to flow from the land towards the lake, the prevailing easterlies create locally strong easterly flow across the lake and an associated maximum in convergence and rainfall on the western side of LKV.

849 The LKV simulation starts on 25 November 1999 and extends to the beginning of 850 December 1999 (Table 2), covering a 5-day period which falls within the short-rain season 851 of East Africa. The choice of 1999, an ENSO neutral year, was made in order to focus the 852 analysis on local effects, such as the diurnal convection cycle in response to the lake/land 853 breeze, with no influence of anomalous large scale conditions. A 1-dimensional lake 854 model (Hostetler et al. 1993; Bennington et al. 2014) interactively coupled to RegCM4-855 NH was utilized to calculate the lake surface temperature (LST), since lake-atmosphere 856 coupling has been shown to be important for the LKV (Sun et al. 2015; Song et al. 2004). 857 This coupled lake model has been already used for other lakes, including Lake Malawi in 858 southern Africa (Diallo et al. 2018). As with the other experiments, the boundary 859 conditions are provided by a corresponding 12 km RegCM4 simulation employing the 860 convection scheme of Tiedtke (1996).

At the beginning of the simulation, the LST over the lake is uniformly set to 26C, and is then allowed to evolve according to the lake-atmosphere coupling. <u>This initial LST value</u> is based on previous studies. For example, Talling (1969) finds Lake Victoria surface temperatures ranging from 24.5-26°C during the course of the year. Several studies have used RCMs to investigate the Lake Victoria climate (Anya et al., 2006; Anyah and Deleted: 1

867	Semazzi 2009, Sun et al. 2015), and found a significant relationship between lake
868	temperature and rainfall depending on season. The value of 26°C is typical of the winter
869	season and was chosen based on preliminary sensitivity tests using different values of
870	initial temperature ranging from 24°C to 26°C,
 871	The synoptic feature favorable for the production of precipitation over the LKV in this
872	period corresponds to a large area of southeasterly flow from the Indian Ocean (Fig. 8a),
873	which, brings low-level warm moist air, into the LKV region facilitating, the production of
874	convective instability and precipitation. This synoptic situation, with a low-level
875	southeasterly jet off the Indian Ocean, is a common feature associated with high
876	precipitation in the area (Anyah et al. 2006) is found in ERA5 (Figure 7a).
877	
	a)(b)

Deleted: is initial LST value was chosen based on preliminary simulations and was shown to produce the most realistic precipitation for the period compared with CMORPH (Joyce et al, 2004) Deleted: 7 Deleted: 6 Deleted: 6 Deleted: . This southeasterly flow Deleted: Deleted: es Deleted: es Deleted: etup Deleted: production Deleted: LKV region Deleted: 6

Deleted:	7
Deleted:	6
Deleted:	m
Deleted: shading	mean sea level pressure (mslp) (color)) and 100-m wind direction (black arro
Deleted: averaged over the period	
Deleted:	9
Deleted:	2
Deleted: the dom	The Victoria Lake and the others lakes in ain are highlighted in red line
Formatte	ed: Font: 12 pt
Deleted:	8
Deleted:	7
Deleted:	0
Deleted:	0
Deleted:	bottom
Deleted:	9
Deleted:	0
Deleted:	convection
Deleted:	8
Deleted:	7
Deleted:	a
Deleted:	4
Deleted:	during strong
Deleted:	8
Deleted:	7
Deleted:	b
Deleted:	3
Formatte	ed: Right: 0.63 cm

933	surface heating around the lake leads to a temperature differential between the land and
934	lake sufficient to generate a lake breeze, which causes divergence over the lake, while
935	over the surrounding highlands the environment is more cnducive to convection (9a,c).
936	Conversely, during the night, a land breeze circulation is generated, which induces
937	convergence and convection over the lake (Figure 9b.d).
938	Comparing the 3 km simulation to the 12 km forcing run, we find that the localized
939	circulations created by local forcings (i.e. convection) are much stronger in the high
940	resolution experiment. We also find stronger and more localized areas of convective
941	updrafts as seen in the vertical velocities (9a,b) compared to the 12 km simulation (8c,d;
942	omega is shown instead of vertical velocity here because of the difference in model
943	output). The stronger convection simulated in the 3 km experiment is also tied to the
944	stronger, temperature gradients between lake and Jand and between day and night (Figure
945	10).
946	This demonstrates that the 3km simulation is better equipped to simulate the localized
947	circulations associated with this complex land-lake system.
948	۲

Deleteu.					
Deleted:	. This lak	e breeze	promote	es	
Deleted:	8				
Deleted:	7				
Deleted: over the and con east of t	is in oppo region ar vection is he lake (F	osition to nd conse maximiz ig.	the large quently s ed in the	e scale ea strong con highlands	sterly flow vergence s to the
Deleted:	the lake	becomes	s the focu	us of	
Deleted:	and cons	equently	a focus	for	
Deleted:	as seen i	in			
Deleted:	8				
Deleted:	7				
Deleted:	а				
Deleted:	simulatio	n			
Deleted:	3km simi	ulation			
Deleted:	8				
Deleted:	7				
Deleted:	7				
Deleted:	st				
Deleted:	/				
Deleted:	/				
Deleted: than in t	represen he 12 km	ted in the one, as	3km sir shown in	nulation co	ompared to
Deleted:	f				
Deleted:	9				
Deleted:	8				
Deleted: diagram	by the Lo of LKV d	ongitude- omain su	time (ho Irface ter	urly) Hovr nperature	nöller
	100 a)				
	200		· ·		• • < <
	300	> < >		•••	•• • > >
	500 + +	• • • •	• • • •	. · · ·	< > > >
	400				, , , , , , , , , ,
	500	< < >	• • •	•••••	••••
	600	< • <			• • • •
	700			E E E :	· · · ·
	800	• • • • • •	• •		
	900		· · <u> </u>	<u> </u>	
	1000	215	225	225	245
Deleted	30E .	51E	32E	33E	34E [13
-		0.00			[1,

⁹⁹³ encompasses about 32E to 34E. The bottom 2 panels show the cross-section also

Deleted: 8

Formatted: Right: 0.63 cm

^{994 &}lt;u>through 1S and mean zonal-wind anomaly vectors as in a) and b) but from the 12km</u>

⁹⁵ simulation at c) 12Z 29 November and d) 6Z 30 November. Purple dashed contours

(Format	ted: Righ	t: 0.63 cn	n	

32•

1033	different climatology, especially in areas of low data availability. For example, Prein and	
1034	Gobiet (2017) analyzed two gauge-based European-wide datasets, and seven global low-	
1035	resolution datasets, and found large differences, across the observation products, often	//
1036	of similar magnitude as the difference between model simulations. In this case and for	
1037	this area the observation uncertainty plays a big role especially at high resolution, and	
1038	highlights the need for an adequate observational network for model validation.	$\mathbb{N}_{\mathbb{N}}$
1039	However, even taking into account the elevated uncertainty existing in the observations	
1040	datasets, we find, a significant underestimation of rain amounts in the 12 km run (Fig 11)	
1041	with a wide area of rainfall around 80mm over the whole of LKV. In contrast, the 3_km	
1042	simulation shows substantially greater detail, with rainfall patterns, more in agreement with	
1043	the CMORPH observations, In particular, the 3 km simulation reproduces well the local	\mathcal{N}
1044	rainfall maxima on the western side of the lake, although these appear more localized	$\left\langle \right\rangle$
1045	and with a multi-cell structure compared to CMORPH and TRMM, Additionally, the 12	
1046	km simulation underestimates the observed heavy rainfall totals in the highlands to the	
1047	west of the lake region, which are instead reproduced by the 3 km simulation.	
1048	This last test case <u>demonstrates</u> the <u>ability of RegCM4-NH in simulating realistic</u> ,	
1049	convective activity over a morphologically complex region, which is a significant	
1050	improvement compared to the hydrostatic-coarse resolution model configuration,	
1051		
1052	Conclusions and future outlook	
1053 1054	In this paper we have described the development of RegCM4-NH, a non hydrostatic	
1055	version of the regional model system RegCM ₄ , which was completed in response to the	

1	Deleted: demonstrating that the spread of observation datasets from different sources are often compar			
' /	Deleted: such			
h	Deleted: s			
4	Deleted: essential			
h	Formatted: Font:			
9	Formatted: Font: Highlight			
	Deleted: shows that the total observed rainfall for the period is characterized by diurnal rainfall maxima associated with the local lake circulation. In particular, the north-western side of the lake shows a rainfall maximum exceeding 250mm during the 5-day simulation, while most of the north-west portion of the lake shows over 150mm in total rainfall. In addition, a weaker but still significant rainfall maximum is seen on the inland south-eastern coast of LKV.			
~	Deleted: for this case			
$\langle \rangle$	Deleted: , cComparing the 12 km simulated rainfall (Fig.)			
V	Deleted: significantly			
/	Deleted: less			
1	Deleted: former			
/	Deleted: significantly more localization of the			
$\langle \rangle$	Deleted: whichand this is			
1	Deleted: ed amountt			
$\langle \rangle$	Deleted: otals			
	Deleted: (observed in most dataset with different [15]			
/	Deleted: , which show the highest observed peak.			
1	Deleted: In particular, the 3 km simulation reproduces 16			
Č	Deleted: is unable to produce			
Ń	Deleted: with a strong underestimation			
	Deleted: whereas these are well captured in			
	Deleted: In summary, overall also Tt			
$\langle \cdot \rangle$	Deleted: that			
/	Deleted: the			
/	Deleted: robust			
· · ·	Deleted: this			
	Deleted: and that			
$\langle \rangle$	Deleted: is found			
	Deleted: with respect			
11	Deleted: r			
	Deleted: and hydrostatic			
	Deleted: s			
1	Formatted: Right: 0.63 cm			

need of moving to simulations at convection-permitting resolutions of a few km. The 1106 1107 dynamical core of the non-hydrostatic version of MM5 has been thus incorporated into 1108 the RegCM4 system, an approach facilitated by the fact that the this last is essentially an 1109 evolution of the MM5. Some modifications to the MM5 dynamical core were also 1110 implemented to increase the model stability for long term runs, RegCM4-NH also includes 1111 two explicit cloud microphysics schemes needed to explicitly describe convection and 1112 cloud processes in the absence of the use of cumulus convection schemes. Finally, we 1113 presented a few case studies of explosive convection to illustrate how the model provides 1114 realistic results in different settings and general improvements compared to the coarser 1115 resolution hydrostatic version of RegCM4 for such types of events.

1116

1117 As already mentioned, RegCM4-NH is currently being used for different projects, and 1118 within these contests, is being run at grid spacings of a few km for continuous decadal 1119 simulations, driven by reanalyses of observations or GCM boundary conditions (with the 1120 use of an intermediate resolution domains) over different regions, such as the Alps, the 1121 Eastern Mediterranean, Central-Eastern Europe and the Caribbeans. These projects, 1122 involving multi-model intercomparisons, indicate that the performance of RegCM4-NH is 1123 generally in line with that of other convection permitting models, and exhibits similar improvements compared to coarser resolution models, such as a better simulation of the 1124 1125 precipitation diurnal cycle and of extremes at hourly to daily time scales. The results 1126 obtained within the multi-model context confirm previous results from single-model 1127 studies (Kendon et al. 2012, 2017, Ban et al. 2014, 2015; Prein et al. 2015, 2017), but 1128 also strengthen the robustness of the findings through reduced uncertainty compared to 1129 coarse resolution counterpart (Ban et al., 2021, Pichelli et al., 2021). The convection-1130 permitting scale can thus open the perspective of more robust projections of future 1131 changes of precipitation, especially over short time scales. 1132 1133

One of the problems of the RegCM4-NH dynamical core is that, especially for long runs
with varied meteorological conditions, a relatively short time step needs to be used for
stability reasons. This makes the model rather computationally demanding, although not

Deleted: Towards this goal we have incorporated into the RegCM4 framework Tt Deleted: from Deleted: RegCM system

Deleted: , as described in section 2

Deleted: RegCM4-NH is currently being used for different projects, such as the Flagship Pilot Study on convection permitting modeling (Coppola et al. 2020, Ban et al. 2021, Pichelli et al. 2021) and the EUCP EU project (Hewitt and Lowe 2018). In these contexts, the model is being run at grid spacings of a few km for continuous decadal simulations, both driven by reanalyses of observations and GCM fields (in both cases with the use of an intermediate resolution run to act as interface) over different regions, such as the Alps, the Eastern Mediterranean, Central-Eastern Europe and the Caribbeans. This will help better validate and understand the model behavior at these high resolutions....

Formatted: Right: 0.63 cm

1156	more than other convection_permitting modeling systems such as the Weather Research	Deleted:
1157	and Forecast model (WRF, Skamarok et al. 2008). For this reason, we are currently	
1158	incorporating within the RegCM system a very different and more computationally efficient	
1159	non-hydrostatic dynamical core, which will provide the basis for the next version of the	
1160	model, RegCM5, to be released in the future.	
1161		
1162	Following the philosophy of the RegCM modeling system, RegCM4-NH is intended to be	
1163	a public, free, open source community resource for external model users. The non-	
1164	hydrostatic dynamical core has been implemented in a way that it can be activated, in	Deleted: ,
1165	place of the hydrostatic dynamics, through a user-set switch, which makes the use of	Deleted: ,
1166	RegCM4-NH particularly simple and flexible. We therefore envision that the model will be	
1167	increasingly used by a broad community so that a better understanding can be achieved	
1168	of its behavior, advantages and limitations.	
1169		
1170	Code availability: https://zenodo.org/record/4603556	
1171	Cases study configuration files: https://zenodo.org/record/5106399	
1172		
1173		
1174	Author contribution: CE prepared the manuscript with contributions from all co-authors	
1175	investigated solutions to stabilize/adapt the model at the km-scale and performed	
1177	preliminary validation tests, GG developed/adapted the model code, FDS contributed to	
1178	develop the coupled version of the model, NR developed one of the microphysics	
1179	scheme, GF supervised and coordinated all activities.	
1181	Competing interests: The authors declare that they have no conflict of interest.	
1182		
1183		
1184	References	Formatted: Font: Bold
1185	Anyah, R., Semazzi, F. H. M., Xie, L., 2006: Simulated Physical Mechanisms Associated	
1186	with Climate Variability over Lake Victoria Basin in East Africa, Mon. Wea. Rev., 134	
1187	3588-3609.	
1188		
		Formatted: Right: 0.63 cm
	36~	

1192	Anthes, R. A., Hsie, EY., & Kuo, YH. (1987). Description of the Penn State/NCAR	
1193	Mesoscale Model: Version 4 (MM4) (No. NCAR/TN-282+STR). doi:10.5065/D64B2Z90	
1194		
1195	Anyah, R. O., F. H. M. Semazzi, L. Xie, 2006: Simulated Physical Mechanisms	
1196	Associated with Climate Variability over Lake Victoria Basin in East Africa. Mon. Wea.	
1197	Rev., 134, 3588-3609,.	
1198		
1199	Anyah RO, Semazzi F (2009) Idealized simulation of hydrodynamic characteristics of	
1200	Lake Victoria that potentially modulate regional climate. Int J Climatol 29(7):971-981.	
1201	<u>doi:10.1002/joc.1795</u>	
1202		
1203	Ashouri, Hamed, Kuo Lin Hsu, Soroosh Sorooshian, Dan K. Braithwaite, Kenneth R.	
1204	Knapp, L. Dewayne Cecil, Brian R. Nelson and Olivier P. Prat (2015). 'PERSIANN- CDR:	
1205	Daily precipitation climate data record from multisatellite observations for hydrological and	
1206	climate studies'. In: Bulletin of the American Meteorological Society. ISSN: 00030007.	
1207	DOI: 10.1175/BAMS-D-13-00068.1.	
1208		
1209	Ban, N., J. Schmidli, and C. Schär, 2014: Evaluation of the convection-resolving regional	
1210	climate modeling approach in decade-long simulations. J. Geophys. Res. Atmos., 119,	
1211	7889– 7907, https://doi.org/10.1002/2014JD021478.	
1212		
1213	Ban N, Schmidli J, Schär C (2015) Heavy precipitation in a changing climate: does short-	
1214	term summer precipitation increase faster? Geophys Res Lett 42:1165-1172.	
1215	https://doi.org/10.1002/2014G L062588	
1216	Ban, N., Caillaud, C., Coppola, E. et al. The first multi-model ensemble of regional climate	
1217	simulations at kilometer-scale resolution, part I: evaluation of precipitation. Clim Dyn	
1218	(2021). https://doi.org/10.1007/s00382-021-05708-w	
1219		
1220	Beheng, K.: A parameterization of warm cloud microphysical conversion processes,	
1221	Atmos. Res., 33, 193–206, 1994	(
		Form

1222		
1223	Bennington V, Notaro M, Holman KD, 2014: Improving Climate Sensitivity of Deep Lakes	
1224	within a Regional Climate Model and Its Impact on Simulated Climate, J. Climl, 27, 2886-	
1225	2911.	
1226		
1227	Bretherton CS, McCaa JR, Grenier H (2004) A new parame-terization for shallow cumulus	
1228	convection and its appli-cation to marine subtropical cloud-topped boundary lay-ers. I.	
1229	Description and 1D results. Mon Weather Rev 132: 864–882	Deleted: ¶
1230		
1231	Chan, S. C., E. J. Kendon, H. J. Fowler, S. Blenkinsop, N. M. Roberts, and C. A. T. Ferro,	
1232	2014: The value of high- resolution Met Office regional climate models in the simula- tion	
1233	of multi-hourly precipitation extremes. J. Climate, 27, 6155-6174,	
1234	https://doi.org/10.1175/JCLI-D-13-00723.1	Deleted: https://doi.org/10.1175/JCLI-D-13-00723.1
1235		
1236	Chen, Mingyue and Pingping Xie (2008). 'CPC Unified Gauge-based Analysis of Global	
1237	Daily Precipitation'. In: 2008 Western Pacific Geophysics Meeting. ISBN: 0026- 0576.	
1238	DOI: http://dx.doi.org/10.1016/S0026-0576(07)80022-5.	
1239		
1240		
1241	Clark, P., N. Roberts, H. Lean, S. P. Ballard, and C. Charlton- Perez, 2016: Convection-	
1242	permitting models: A step-change in rainfall forecasting. Meteor. Appl., 23, 165-181,	
1243	https://doi.org/ 10.1002/met.1538.	
1244		
1245	Coppola, E., Sobolowski, S., Pichelli, E. et al. A first-of-its-kind multi-model convection	
1246	permitting ensemble for investigating convective phenomena over Europe and the	
1247	Mediterranean. Clim Dyn 55, 3-34 (2020). https://doi.org/10.1007/s00382-018-4521-8	
1248		
1249	Coppola E, Giorgi F, Mariotti L, Bi X (2012) RegT-Band: a tropical band version of	
1250	RegCM4. Clim Res 52: 115–133	
і 1251		
		Formatted: Right: 0.63 cm

38•

1254	Dacre, H. F., P. A. Clark, O. Martinez-Alvarado, M. A. Stringer, and D. A. Lavers, 2015:	
1255	How do atmospheric rivers form? Bull. Amer. Meteor. Soc., 96, 1243-1255,	
1256	https://doi.org/10.1175/BAMS-D-14-00031.	
1257	Dale, M., A. Hosking, E. Gill, E. J. Kendon, H. J. Fowler, S. Blenkinsop, and S. C. Chan,	
1258	2018: Understanding how changing rainfall may impact on urban drainage systems; les-	
1259	sons from projects in the UK and USA. Water Pract. Technol., 13, 654-661,	
1260	https://doi.org/10.2166/wpt.2018.069.	
1261		
1262	Diallo, I., Giorgi, F. and Stordal, F. (2018) Influence of Lake Malawi on regional climate	
1263	from a double nested regional climate model experiment. Climate Dynamics, 50, 3397-	
1264	3411. https://doi.org/10.1007/s00382-017-3811-x	
1265		
1266	Dickinson, R.E., Errico, R.M., Giorgi, F. et al. A regional climate model for the western	
1267	United States. Climatic Change 15, 383–422 (1989). https://doi.org/10.1007/BF00240465	Deleted: https://doi.org/10.1007/BF00240465
1268		
1269	Dickinson RE, Henderson-Sellers A, Kennedy P (1993) Bio -sphere – atmosphere transfer	
1270	scheme (BATS) version 1eas coupled to the NCAR community climate model. TechRep,	
1271	National Center for Atmospheric Research TechNote NCAR.TN-387+ STR, NCAR,	
1272	Boulder, CO	
1273		
1274	Done, J., C. A. Davis, and M. L. Weisman, 2004: The next gener- ation of NWP: Explicit	
1275	forecasts of convection using the Weather Research and Forecasting (WRF) model.	
1276	Atmos. Sci. Lett., 5, 110–117, https://doi.org/10.1002/asl.72.	
1277		
1278	Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon	
1279	experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46, 3077-3107.	
1280		
1281	Durran D.R. and Klemp J.B.: A compressible model for the simulation of moist mountain	
1282	waves, Mon. Wea. Rev., 111, 2341–236, 1983.	
1283		

39•

1285	Elguindi N., Bi X., Giorgi F., Nagarajan, B. Pal J., Solmon F., Rauscher S., Zakey S.,	
1286	O'Brien T., Nogherotto R. and Giuliani G., 2017: Regional Climate Model	
1287	RegCMReference ManualVersion 4.7, 49 pp, <u>https://zenodo.org/record/4603616</u>	Deleted: https://zenodo.org/record/4603616
1288		
1289	Emanuel KA (1991) A scheme for representing cumulus convection in large-scale	
1290	models. J Atmos Sci 48:2313–2335	
1291		
1292	Fairall, C.W., E.F. Bradley, J.S. Godfrey, G.A. Wick, J.B. Edson, and G.S. Young, 1996a:	
1293	The cool skin and the warm layer in bulk flux calculations. J. Geophys. Res. 101, 1295-	
1294	<u>1308.</u>	
1295		
1296	Fairall, C.W., E.F. Bradley, D.P. Rogers, J.B. Edson, G.S. Young, 1996b: Bulk	
1297	parameterization of air-sea fluxes for TOGA COARE. J. Geophys. Res. 101, 3747-3764	Formatted: Font: (Default) Arial, 12 pt
1298		
1299	Funk, C., Peterson, P., Landsfeld, M. et al. The climate hazards infrared precipitation with	
1300	stations-a new environmental record for monitoring extremes. Sci Data 2, 150066	
1301	(2015). https://doi.org/10.1038/sdata.2015.66	
1302		
1303	Gimeno, L., R. Nieto, M. Vàsquez, and D. A. Lavers, 2014: Atmospheric rivers: A mini-	
1304	review. Front. Earth Sci., 2, https://doi.org/10.3389/feart.2014.00002.	
1305		
1306	Giorgi F (2019) Thirty years of regional climate modeling: where are we and where are	
1307	we going next? J Geophys Res Atmos 124:5696–5723	
1308		
1309	Giorgi F, Coppola E, Solmon F, Mariotti L and others (2012) RegCM4: model description	
1310	and preliminary tests over multiple CORDEX domains. Clim Res 52:7-29.	
1311	https://doi.org/10.3354/cr01018	
1312	Υ	Deleted: Giorgi F et al (2012) RegCM4: model
1313		domains. Clim Res 52:7–29
1314		
		Formatted: Right: 0.63 cm

40-

1319	Giorgi F, Francisco R, Pal JS (2003) Effects of a sub-gridscale topography and landuse
1320	scheme on surface climateand hydrology. I. Effects of temperature and water
1321	vapordisaggregation. J Hydrometeorol 4: 317-333
1322	
1323	Giorgi F, Jones C, Asrar G (2009) Addressing climate information needs at the regional
1324	level: the CORDEX framework. WMO Bull 175–183
1325	
1326	Giorgi F, Mearns LO (1999) Introduction to special section: regional climate modeling
1327	revisited. J Geophys Res 104:6335–6352
1328	
1329	Giorgi F, Marinucci MR, Bates G (1993a) Development of a second generation regional
1330	climate model (RegCM2). I. Boundary layer and radiative transfer processes.
1331	MonWeather Rev 121: 2794–2813
1332	
1333	Giorgi F, Marinucci MR, Bates G, DeCanio G (1993b) Development of a second
1334	generation regional climate model (RegCM2), part II: convective processes and
1335	assimilation of lateral boundary conditions. Mon Weather Rev 121:2814–2832
1336	
1337	Giorgi, F., and G. T. Bates, 1989: The Climatological Skill of a Regional Model over
1338	Complex Terrain. Mon. Wea. Rev., 117, 2325–2347, https://doi.org/10.1175/1520-
1339	0493(1989)117<2325:TCSOAR>2.0.CO;2.
1340	G. A. Grell, J. Dudhia and D. R. Stauffer, "A Description of the Fifth Generation Penn
1341	State/NCAR Mesoscale Model (MM5)," NCAR Tech. Note, NCAR/TN-398+ STR,
1342	Boulder, 1995, p. 122.
1343	
1344	Grell GA (1993) Prognostic evaluation of assumptions usedby cumulus
1345	parameterizations. Mon Weather Rev 121: 764–787
1346	
1347	Grell, G., A.J. Dudhia, and D.R. Stauffer, 1994, A description of the fifth-generation Penn
1348	State/NCAR mesoscale model (MM5). NCAR Technical Note, NCAR/TN- 398+STR.
1349	

1350	Gunn, K. L. S., and J. S. Marshall, 1958: The distribution with size of aggregate	
1351	snowflakes. J. Meteor., 15, 452–461, https://doi.org/10.1175/1520-	
1352	0469(1958)015<0452:TDWSOA>2.0.CO;2.	
54 Gutov 55 K., L 356 T., 357 a 1β58 1		
1354	Gutowski Jr., W. J., Giorgi, F., Timbal, B., Frigon, A., Jacob, D., Kang, HS., Raghavan,	
1355	K., Lee, B., Lennard, C., Nikulin, G., O'Rourke, E., Rixen, M., Solman, S., Stephenson,	
1356	T., and Tangang, F.: WCRP COordinated Regional Downscaling EXperiment (CORDEX):	
1357	a diagnostic MIP for CMIP6, Geosci. Model Dev., 9, 4087–4095,	
1358	https://doi.org/10.5194/gmd-9-4087-2016, 2016	
1359		
1360	Holtslag A, de Bruijn E, Pan HL (1990) A high resolution air mass transformation model	
1361	for short-range weather fore-casting. Mon Weather Rev 118: 1561–1575	
1362		
1363	Hostetler SW, Bates GT, Giorgi F (1993) Interactive nesting of a lake thermal model within	
1364	a regional climate model for climate change studies. J Geophys Res 98: 5045-5057	
1365		
1366	Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis	
1367	(TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales.	
1368	J. Hydrometeor., 8, 38–55, doi: <u>https://doi.org/10.1175/JHM560.1</u>	Deleted: https://doi.org/10.1175/JHM560.1
1369		
1370	Kiehl J, Hack J, Bonan G, Boville B, Breigleb B, WilliamsonD, Rasch P (1996)	
1371	Description of the NCAR Commun -ity Climate Model (CCM3). National Center for	
1372	Atmo spheric Research Tech Note NCAR/TN-420+ STR, NCAR, Boulder, CO	
1373		
1374	Lean, H. W., P. A. Clark, M. Dixon, N. M. Roberts, A. Fitch, R. Forbes, and C. Halliwell,	
1375	2008: Characteristics of high- resolution versions of the Met Office Unified Model for	
1376	forecasting convection over the United Kingdom. Mon. Wea. Rev., 136, 3408-3424,	
1377	https://doi.org/10.1175/2008MWR2332.1.	
1378		

1380	Lind, P., D. Lindstedt, E. Kjellstrom, and C. Jones, 2016: Spatial and temporal	
1381	characteristics of summer precipitation over central Europe in a suite of high-resolution	
1382	climate models. J. Climate, 29, 3501–3518, https://doi.org/10.1175/JCLI-D-15- 0463.1.	
1383		
1384	Hewitt, C. D., and J. A. Lowe, 2018: Toward a European climate prediction system. Bull.	
1385	Amer. Meteor. Soc., 99, 1997–2001, https://doi.org/10.1175/BAMS-D-18-0022.1.	
1386	Hong, SY., HM. H. Juang, and Q. Zhao, 1998: Implementation of prognostic cloud	
1387	scheme for a regional spectral model, Mon. Wea. Rev., 126, 2621–2639.	
1388		
1389	Hong, SY., J. Dudhia, and SH. Chen, 2004: A Revised Approach to Ice Microphysical	
1390	Processes for the Bulk Parameterization of Clouds and Precipitation, Mon. Wea. Rev.,	
1391	132, 103–120.	
1392		
1393	Hong, SY., and JO. J. Lim, 2006: The WRF Single-Moment 6-Class Microphysics	
1394	Scheme (WSM6), J. Korean Meteor. Soc., 42, 129–151	
1395		
1396	Hostetler SW, Bates GT, Giorgi F, 1993: Interactive Coupling of Lake Thermal Model with	
1397	a Regional climate Model, J. Geophys. Res., 98(D3), 5045-5057.	
1398		
1399	Huffman, George J., David T. Bolvin, Eric J. Nelkin, David B. Wolff, Robert F. Adler,	Formatted: Space Before: 12 pt, After: 12 pt
1400	Guojun Gu, Yang Hong, Kenneth P. Bowman and Erich F. Stocker (2007). The TRMM	
1401	Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor	
1402	Precipitation Estimates at Fine Scales. DOI: 10.1175/JHM560.1.	
1403		
1404	Jovce, Robert J., John E. Janowiak, Phillip A. Arkin, Pingping Xie, 2004; CMORPH: A	
1405	Method that Produces Global Precipitation Estimates from Passive Microwave and	
1406	Infrared Data at High Spatial and Temporal Resolution. J. Hydrometeor, 5, 487–503	
1407		
		Formatted: Right: 0.63 cm

43•

1408	Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl.	
1409	Meteor., 43, 170–181, <u>https://doi.org/10.1175/1520-</u>	Deleted: https://doi.org/10.1175/1520-0450(2004)043
1410	0450(2004)043<0170:TKCPAU>2.0.CO;2.	
1411		
1412	Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/ detraining plume model	
1413	and its application in convective parameterization, J. Atmos. Sci., 47, 2784–2802.	
1414		
1415	Kendon, E. J., N. M. Roberts, C. A. Senior, and M. J. Roberts, 2012: Realism of rainfall	
1416	in a very high-resolution regional climate model. J. Climate, 25, 5791–5806,	
1417	https://doi.org/ 10.1175/JCLI-D-11-00562.1.	
1418		
1419	Kendon, E. J., and Coauthors, 2017: Do convection-permitting regional climate models	
1420	improve projections of future precipitation change? Bull. Amer. Meteor. Soc., 98, 79–93,	
1421	https://doi.org/ 10.1175/BAMS-D-15-0004.1	
1422		
1423	Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric	
1424	Circulations. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.	
1425		
1426	Khairoutdinov, M. and Kogan, Y.: A new cloud physics parameterization in a large-eddy	
1427	simulation model of marine stratocumulus, B. Am. Meteorol. Soc., 128, 229–243, 2000	
1428		
1429	Klemp, J.B. and Dudhia, J.: An Upper Gravity-Wave Absorbing Layer for NWP	
1430	Applications, Monthly Weather Review, 176, 3987-4004, 2008.	
1431		
1432	Klemp, J. B. and D. K. Lilly: Numerical simulation of hydrostatic mountain waves, J.	
1433	Atmos. Sci., 35, 78–107, 1978.	
1434		
1435	Lin, Y., Farley, R., and Orville, H.: Bulk parameterization of the snow field in a cloud	
1436	model, J. Appl. Meteor. Clim., 22, 1065–1092, 1983.	
1437		

1439 1440	Marshall, J. S., and W. McK. Palmer, 1948: The distribution of raindrops with size. J.	
1440		
1441		
1442	Matte, Dominic; Laprise, René; Thériault, Julie M.; Lucas-Picher, Philippe (2017). Spatial	
1443	spin-up of fine scales in a regional climate model simulation driven by low-resolution	
1444	boundary conditions. Climate Dynamics, 49(1-2), 563–574. doi:10.1007/s00382-016-	
1445	<u>3330-2</u>	
1446		
1447	Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997:	
1448	Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k	
1449	model for the longwave. J. Geophys. Res., 102, 16,663-16,682	
1450		
1451	Nogherotto, R., Tompkins, A.M., Giuliani, G., Coppola, E. and Giorgi, F.: Numerical	
1452	framework and performance of the new multiple-phase cloud microphysics scheme in	
1453	RegCM4. 5: precipitation, cloud microphysics, and cloud radiative effects. Geoscientific	
1454	Model Development, 9(7), 2533-2547, 2016	
1455		
1456	Oleson, K. W., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M., Koven, C. D.,	
1457	Levis, S., Li, F., Riley, W. J., Subin, Z. M., Swenson, S. C., Thornton, P. E., Bozbiyik, A.,	
1458	Fisher, R., Kluzek, E., Lamarque, JF., Lawrence, P. J., Leung, L. R., Lipscomb, W.,	
1459	Muszala, S., Ricciuto, D. M., Sacks, W., Sun, Y., Tang, J., and Yang, ZL:Technical	
1460	Description of version 4.5 of the Community Land Model (CLM), Ncar Technical Note	
1461	NCAR/TN-503+STR, National Center for Atmospheric Research, Boulder, CO, 422 pp,	
1462	DOI: 10.5065/D6RR1W7M, 2013.	
1463		
1464	Pal JS, Small E, Eltahir E (2000) Simulation of regional-scale water and energy budgets:	
1465	representation of subgrid cloud and precipitation processes within RegCM. J Geo-phys	
1466	<u>Res 105: 29579–29594</u>	
l 1467		
1468	Pal JS et al (2007) The ICTP RegCM3 and RegCNET: regional climate modeling for the	
1469	developing world. Bull Am Meteorol Soc 88:1395–1409	
		Formatted: Right: 0.63 cm

1470	
1471	Pichelli, E., Coppola, E., Sobolowski, S. et al. The first multi-model ensemble of regional
1472	climate simulations at kilometer-scale resolution part 2: historical and future simulations
1473	of precipitation. Clim Dyn (2021). https://doi.org/10.1007/s00382-021-05657-4
1474	
1475	Prein, Andreas F. and Andreas Gobiet (2017). 'Impacts of uncertainties in European
1476	gridded precipitation observations on regional climate analysis'. In: International Journal
1477	of Climatology. ISSN: 10970088. DOI: 10.1002/joc.4706
1478	
1479	Prein, A. F. et al. A review on regional convection-permitting climate modeling:
1480	demonstrations, prospects, and challenges. Rev. Geophys. 53, 323-361 (2015).
1481	
1482	Ralph, F. M., P. J.Neiman, G. A.Wick, S. I.Gutman, M. D.Dettinger, D. R.Cayan, and A.
1483	B.White, 2006: Flooding on California's Russian River: Role of atmospheric rivers.
1484	Geophys. Res. Lett., 33, L13801, https://doi.org/10.1029/2006GL026689
1485	
1486	Ralph, F. M., M. D. Dettinger, M. M. Cairns, T. J. Galarneau, and J. Eylander, 2018:
1487	Defining "atmospheric river": How the Glossary of Meteorology helped resolve a debate.
1488	Bull. Amer. Meteor. Soc., 99, 837–839, https://doi.org/10.1175/BAMS-D-17-0157.1
1489	
1490	Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and
1491	organization of clouds and precipitation in midlatitude cyclones. Part VIII: A model for the
1492	"seeder-feeder" process in warm-frontal rainbands. J. Atmos. Sci., 40, 1185–1206.
1493	
1494	Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang XY, Wang
1495	W, Powers JG. 2008. 'A description of the advanced research WRF version 3', Technical
1496	Note NCAR/TN-475+STR. NCAR: Boulder, CO
1497	
1498	Schwartz, C. S., 2014: Reproducing the September 2013 record- breaking rainfall over
1499	the Colorado Front Range with high- resolution WRF forecasts. Wea. Forecasting, 29,
1500	393–402, https://doi.org/10.1175/WAF-D-13-00136.1

1501 1502 5 1503 a 1504 (1505 a 1506	Sitz, L. E., F. Sante, R. Farneti, R. Fuentes-Franco, E. Coppola, L. Mariotti, M. Reale, et al. 2017. "Description and Evaluation of the Earth System Regional Climate Model (RegCM–ES)." Journal of Advances in Modeling Earth Systems. doi:10.1002/2017MS000933	
1507	Song Y, Semazzi HMF, Xie L, Ogallo LJ, 2004: A coupled regional climate model for the	
1508 I	Lake Victoria Basin of East Africa. Int. J. Climatol. 24: 57-75.	
1505	Sun X, Xie L, Semazzi F, Liu B, 2015: Effect of Lake Surface Temperature on the Spatial	
1511 I	Distribution and Intensity of the Precipitation over the Lake Victoria Basin. Mon. Wea.	
Song Y 1508 Lake Vi 1509 1510 1510 Sun X, 1511 Distribu 1512 Rev. 1/ 1513 1514 1515 studie: 1516 1641- 1517 1518 1518 Talling 1521 10.10 1521 1522 1523 large- 1524 1525	Rev. 143: 1179-1192.	
1513		
1514 \$	Sundqvist, H., Berge, E., and Kristjansson, J.: Condensation and cloud parameterization	
Lake Vict 1509 1510 Sun X, Xi 1511 Distributi 1512 Rev. 143 1513 1514 Sundqvi: 1515 studies v 1516 1641–16 1517 1518 Talling, 1520 10.108C 1521 1522 Tiedtke 1523 <u>large-sc</u>	studies with a mesoscale numerical weather prediction model, Mon. Weather Rev., 117,	
Lake Vic 1509 1510 Sun X, 1511 Distribut 1512 Rev. 14 1513 1514 Sundqv 1515 studies 1516 1641–1 1517 1518 Talling 1519 consec 1520 10.108 1521 1522 Tiedtk 1523 large-: 1524	1641–1657,1989.	
1517 1518 [1519 <u>(</u> 1520 <u>[</u> 1521	Talling, J. F. (1969) The incidence of vertical mixing, and some biological and chemical consequences, in tropical African lakes, Verh. Int. Ver. Limnol. 17, 998-1012 DOI: 10.1080/03680770.1968.11895946	Formatted: Line spacing: Multiple 1.15 li Formatted: Font: (Default) Arial, 12 pt
1522	Tiedtke, M., 1989, A comprehensive mass flux scheme for cumulus parametrization in	
1523 <u> </u>	large-scale models. Mon. Weather Rev., 117, 1779–1800	
1524		
1525	Tiedtke, M., 1993: Representation of Clouds in Large-Scale Models. Mon. Wea. Rev.,	
1526	121, 3040–3061, <u>https://doi.org/10.1175/1520-0493(1993)121</u> <3040:ROCILS>2.0.CO;2	
1527	Tightke M 1006: An extension of cloud rediction perspectorization in the ECMWE	
1520	medice, M., 1990. All extension of coud-radiation parameterization in the ECMWF	
1530		
1531		
		Formatted: Right: 0.63 cm

47•

1532	Tompkins, A.: Ice supersaturation in the ECMWF integrated fore-cast system, Q. J. Roy.	
1533	Meteor. Soc., 133, 53–63, 2007	
1534		
1535	Tripoli, G. J., and W. R. Cotton, 1980: A numerical investigation of several factors	
1536	contributing to the observed variable intensity of deep convection over south Florida. J.	
1537	Appl. Meteor., 19, 1037–1063.	
1538		
1539	Williams PD. 2009. A proposed modification to the Robert-Asselin time filter. Mon.	
1540	Weather Rev. 137: 2538–2546	
1541		
1542	Weisman, M. L., C. Davis, W. Wang, K. W. Manning, and J. B. Klemp, 2008: Experiences	
1543	with 0-36-h explicit convective forecasts with the WRF-ARW model. Wea. Forecasting,	
1544	23, 407–437, https://doi.org/10.1175/2007WAF2007005.1	
1545		
1546	Weusthoff, T., F. Ament, M. Arpagaus, and M. W. Rotach, 2010: Assessing the benefits	
1547	of convection-permitting models by neigh- borhood vertification: Examples from MAP D-	
1548	PHASE. Mon. Wea. Rev., 138, 3418–3433, <u>https://doi.org/10.1175/2010MWR3380.1</u> .	Deleted: https://doi.org/10.1175/2010MWR3380.1
1549		
1550	Zeng X, Zhao M, Dickinson RE (1998) Intercomparison ofbulk aerodynamic algorithms	
1551	for the computation of seasurface fluxes using TOGA COARE and TAO data.J Clim 11:	
1552	<u>2628–2644</u>	
1553		
1554	Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from	
1555	atmospheric rivers. Mon. Wea. Rev., 126, 725-735, https://doi.org/10.1175/1520-	
1556	0493(1998)126<0725:APAFMF>2.0.CO;2.	
1557		
1558		

48•

Page 2: [1] Deleted	Emanuela Pichelli	29/06/2021 14:02:00
T		
Page 2: [1] Deleted	Emanuala Pichalli	29/06/2021 14:02:00
Tage 2. [1] Deleteu		27/00/2021 14.02.00
Page 2: [1] Deleted	Emanuela Pichelli	29/06/2021 14:02:00
۷		
Page 2: [1] Deleted	Emanuela Pichelli	29/06/2021 14:02:00
V		
A Page 2: [1] Deleted	Emanuela Pichelli	29/06/2021 14:02:00
Page 2: [1] Deleted	Emanuela Pichelli	29/06/2021 14:02:00
V		
Page 2: [1] Deleted	Emanuela Pichelli	29/06/2021 14:02:00
۲		
Page 2: [1] Deleted	Emanuela Pichelli	29/06/2021 14:02:00
A Dago 2: [1] Delated	Emonuolo Diobolli	20/06/2021 14:02:00
rage 2: [1] Deleted	Emanuela richem	29/00/2021 14:02:00
V		
Page 2: [1] Deleted	Emanuela Pichelli	29/06/2021 14:02:00
Υ		
Page 2: [2] Deleted	FILIPPO GIORGI	21/07/2021 07:20:00
▼		
Page 2: [2] Deleted	FILIPPO GIORGI	21/07/2021 07:20:00
-		
A Dago 2: [2] Deleted		21/07/2021 07-20-00
rage 2: [2] Deleted	FILIFFO GIORGI	21/07/2021 07:20:00
X		
Page 2: [2] Deleted	FILIPPO GIORGI	21/07/2021 07:20:00
V		
Page 2: [3] Deleted	FILIPPO GIORGI	21/07/2021 07:39:00
▼		
A Page 2: [3] Deleted	FILIPPO GIORGI	21/07/2021 07:39:00
-		
Page 2: [3] Deleted	FILIPPO GIORGI	21/07/2021 07:39:00
X		
Page 2: [3] Deleted	FILIPPO GIORGI	21/07/2021 07:39:00

A Page 2: [3] Deleted	FILIPPO GIORGI	21/07/2021 07:39:00
Υ		
A Page 2: [3] Deleted	FILIPPO GIORGI	21/07/2021 07:39:00
V		
A Page 2: [3] Deleted	FILIPPO GIORGI	21/07/2021 07:39:00
V		
Page 2: [4] Deleted	FILIPPO GIORGI	21/07/2021 08:10:00
v		
Page 2: [4] Deleted	FILIPPO GIORGI	21/07/2021 08:10:00
V		
Page 2: [4] Deleted	FILIPPO GIORGI	21/07/2021 08:10:00
V		
Page 2: [4] Deleted	FILIPPO GIORGI	21/07/2021 08:10:00
▼		
Page 2: [4] Deleted	FILIPPO GIORGI	21/07/2021 08:10:00
▼		
Page 2: [4] Deleted	FILIPPO GIORGI	21/07/2021 08:10:00
V		
Page 2: [4] Deleted	FILIPPO GIORGI	21/07/2021 08:10:00
Υ		
Page 2: [4] Deleted	FILIPPO GIORGI	21/07/2021 08:10:00
۲		
Page 2: [4] Deleted	FILIPPO GIORGI	21/07/2021 08:10:00
T		
Page 2: [4] Deleted	FILIPPO GIORGI	21/07/2021 08:10:00
V		
Page 2: [4] Deleted	FILIPPO GIORGI	21/07/2021 08:10:00
٧		
Page 2: [4] Deleted	FILIPPO GIORGI	21/07/2021 08:10:00
V		
Page 2: [5] Deleted	FILIPPO GIORGI	21/07/2021 07:47:00
V		
Page 2: [5] Deleted	FILIPPO GIORGI	21/07/2021 07:47:00

Page 2: [5] Deleted	FILIPPO GIORGI	21/07/2021 07:47:00	
V			
Page 2: [6] Deleted	Emanuela Pichelli	29/06/2021 15:39:00	
Page 2: [6] Deleted	Emanuela Pichelli	29/06/2021 15:39:00	
V			
Page 2: [7] Deleted	FILIPPO GIORGI	21/07/2021 07:48:00	
V			
Page 2: [7] Deleted	FILIPPO GIORGI	21/07/2021 07:48:00	
V			
Page 2: [7] Deleted	FILIPPO GIORGI	21/07/2021 07:48:00	
▼			
Page 17: [8] Deleted	Paolo Stocchi	05/07/2021 11:11:00	
¥			
Page 17: [9] Deleted	Paolo Stocchi	05/07/2021 11:11:00	
X			
Page 17: [10] Deleted	Paolo Stocchi	05/07/2021 11:11:00	
X			
Page 25: [11] Deleted	Paolo Stocchi	23/06/2021 12:47:00	
Υ			
		12/07/2021 17 47 00	
Page 25: [12] Deleted	Emanuela Pichelli	13/0//2021 1/:45:00	
X			
A	Dussell Clarae	24/06/2021 17.40.00	
Tage 50. [15] Deleted	Russen Giazei	24/00/2021 17:40:00	
V			
A Page 34: [14] Deleted	FILIPPO GIORGI	21/07/2021 11:50:00	
v			
A			
Page 34: [15] Deleted	FILIPPO GIORGI	21/07/2021 11:51:00	
		4	
τ			
<u>▲</u>			

I
