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Abstract. We introduce the first toolbox that allows exploring the benefit of air pollution mitigation scenarios in 

the every-day air quality forecasts through a web interface. Chemistry-transport models (CTMs) are required to 10 

forecast air pollution episodes and assess the benefit that shall be expected from mitigation strategies. However, 

their complexity prohibits offering a high level of flexibility in the tested emission reductions. The Air Control 

Toolbox (ACT) introduces an innovative automated calibration method to cope with this limitation. It consists of 

a surrogate model trained on a limited set of sensitivity scenarios to allow exploring any combination of mitigation 

measures. As such we take the best of the physical and chemical complexity of CTMs, operated on high 15 

performance computers for the everyday forecast, but we approximate a simplified response function that can be 

operated through a website to emulate the sensitivity of the atmospheric system to anthropogenic emission changes 

for a given day and location. 

The numerical experimental plan to design the structure of the surrogate model is detailed by increasing level of 

complexity. The structure of the surrogate model ultimately selected is a quadrivariate polynomial of first order 20 

for residential heating emissions, and second order for agriculture, industry and traffic emissions with three 

interaction terms. It is calibrated against 12 sensitivity CTM simulations, at each grid point and every day for 

PM10, PM2.5, O3 (both as daily mean and daily maximum) and NO2. The validation study demonstrates that we can 

keep relative errors below 2% at 95% of the grid points and days for all pollutants.  

The selected approach makes ACT the first air quality surrogate model capable to capture non-linearities in 25 

atmospheric chemistry response. Existing air quality surrogate models generally rely on a linearity assumption 

over a given range of emission reductions, which often limits their applicability to annual indicators. Such a 
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structure makes ACT especially relevant to understand the main drivers of air pollution episode analysis. This 

feature is a strong asset of this innovative tool which makes it also relevant for source apportionment and chemical 

regime analysis. This breakthrough was only possible by assuming uniform and constant emission reductions for 

the four targeted activity sectors. This version of the tool is therefore not suited to investigate short term mitigation 

measures or spatially varying emission reductions.  5 

 

1 Introduction 

The two most widespread applications of atmospheric chemistry modelling are (i) short term air quality 

forecasting, and (ii) long term analysis of mitigation strategies. We introduce here the first toolbox able to address 

both issues at once, so that the user can explore the benefit of a long term emission reduction control strategy for 10 

the current-day air quality forecast. Such a flexibility is provided by making the toolbox available through a web 

interface. The quality is ensured by relying on an emulator, or surrogate model, of the response of comprehensive 

air quality models to incremental emission reductions. 

The development of atmospheric chemistry transport models is motivated by the need to account for the dispersion 

and chemical evolution of pollutants in the atmosphere. A given influx of air pollutant emissions shall result in 15 

very different air concentrations depending on the meteorological conditions because of the dynamical and 

physical conditions (including advection, deposition, scavenging, turbulent mixing, …) and because of the 

chemical production and loss of secondary pollutants. As a result of this complexity of atmospheric chemistry and 

physics, there is no direct relationship between an incremental change of the emissions flux and resulting 

atmospheric concentrations. 20 

Various approaches to air quality forecasting were developed since the 1970s (Zhang et al., 2012). The first 

approaches relied on statistical regressions between observed air pollutant concentrations and various precursors 

(mainly meteorological variables). But such approaches faced structural limitations, chiefly in accounting for non-

local air pollution brought about by long range transport. So that 3D chemistry transport models are now 

widespread, for instance in the European Air quality forecasts operated by the Copernicus Atmosphere Monitoring 25 

Services (Marécal et al., 2015;Engelen and Peuch, 2017). 
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Three-dimensional chemistry transport models are also generally used to assess the benefit expected from a given 

air pollution control strategy (e.g. (Colette et al., 2012)). In that case, the computational burden increases because 

annual or multi-annual simulations are required. Such a burden constitutes a substantial limitation for the 

assessment of air pollution control strategies, where the end user is generally interested to compare the relative 

benefit of a series on individual mitigation measures. The replication of long-term chemistry transport simulation 5 

for each mitigation strategy becomes then prohibitive.  

That is why alternate techniques were developed for decision support applications by means of surrogate models 

that consist in simplified regressions fitted to the response of a comprehensive air quality model (Cohan and 

Napelenok, 2011;Amann et al., 2011;Pisoni et al., 2017). Such surrogate models generally rely on the assumption 

that the response to an incremental emission change can be approximated with a linear fit over a limited range of 10 

emission reduction magnitude. Such an approximation is required to limit the degrees of freedom of the sur rogate 

model, especially when some geographical variability is accounted for in the surrogate model (i.e. when the 

emission reduction may vary in space, when exploring different magnitude of emission reduction by country for 

instance). The linearity assumption is also supported by limiting the scope of surrogate models to long term 

indicators, such as annual mean exposure, which have a more linear response than short term responses (Thunis et 15 

al., 2015). 

In the present paper, we introduce a first surrogate response model (denoted the Air Control Toolbox, ACT 

https://policy.atmosphere.copernicus.eu/CAMS_ACT.php) able to capture the non-linear response of any 

magnitude of emission reduction for every-day air quality forecast. The model is designed to capture the daily 

means of both the PM10 and PM2.5 fractions of particulate pollution and nitrogen dioxide (NO2) as well as the daily 20 

mean and daily maximum of ozone (O3avg, O3max). The spatial coverage is the greater European continent. 

The overall objective is to offer the users a high degree of flexibility to explore any mitigation scenario through a 

web interface. We are targeting four activity sectors and for each of them the available emission reduction should 

cover the whole 0 to 100% range, for instance by 5% increments. Using an explicit approach,  this would imply 

214 or 194,481 chemistry transport simulations which is obviously not feasible for computational reasons. The 25 

whole point of the present paper is therefore to design a methodology to reduce this number down to a reasonable 

number of simulations which can be performed on a daily basis and used as a training set to calibrate a simple 

response model.  
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The selected architecture of the response model is a polynomial function whose coefficients can be explicitly 

estimated from a limited number of simulations. Fitting more complex regression models could achieve better 

accuracy, but only at the cost of a larger training set. We will see that a quadrivariate (four activity sector) second 

order polynomial can be well constrained with only a dozen of chemistry transport simulations, which is quite 

acceptable with regards to the operational constrains of every-day production in an air quality forecasting system.  5 

With this approach, all the complexity of the atmospheric chemistry response to incremental emission changes is 

embedded in a polynomial surrogate which is derived every day from on a subset of chemistry-transport 

simulations.  

The use of a complete chemistry-transport model to build the training simulations allows accounting for all the 

important processes bearing upon the forecasted air quality, including long-range transport and chemistry. And 10 

the surrogate model is able capture some of the non-linearities existing between concentration and emission 

changes while remaining simple enough, in the sense that only a few coefficients need to be resolved. 

The only two simplifications limiting the range of application of ACT are that emission reductions are assumed to 

apply (i) over the long term  and (ii) over the whole modelling domain uniformly. ACT is therefore not suited to 

assess the benefit of emergency measures to mitigate air pollution episodes. It also not designed to assess the 15 

impact on long term exposure to air pollution. The purpose of the tool is rather to assess the main activity sectors 

driving the day to day air pollution variability. Several diagnostics are proposed to achieve this by providing the 

source allocation and chemical regimes at various receptor locations, as well as mapping the benefit of reducing 

emissions over the whole modelling domain. If we take the analogy with climate change, the scope of ACT is 

analogous to attribution studies where one intends to quantify the role of climate change in the current 20 

meteorological situation. Which is different than assessing the benefit of greenhouse gas strategies to mitigate long 

term climate change. 

Once the polynomial structure of the model is decided, an important part of the work consist in identifying the 

optimal set of those 10 to 15 chemistry-transport simulations that allow fitting a surrogate with adequate 

performances over any air quality situation. Most of the present paper is devoted to the description on how this 25 

numerical experiment plan is developed. The various methods (including overall surrogate structure, input data 

and the underlying air quality forecast system) are presented in Section 2, the step-by-step development and 

validation of the surrogate ACT model is introduced in Section 3, in Section 4 we present the web interface as well 
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as a few case studies, and the use of the model in source allocation and chemical regime analysis is discussed in 

Section 5 and 6, respectively.  

2 Methods 

2.1 Testing periods  

The ambition of the ACT surrogate model is to apply to the every-day air quality forecast. The surrogate model 5 

should therefore present satisfactory performances in any situation, but especially during high air pollution 

episodes. For the development and validation purposes of the present article we identified three case studies that 

are selected for their variety in terms of air pollution situation: 

• a case of intense cold spell with typical wintertime particulate matter pollution (December 2016 - January 

2017, (Forêt et al., 2017)) 10 

• a springtime PM episode dominated by ammonium nitrate formation (March 2015, (Petit et al., 2017)) 

• a summertime ozone episode (June 2017, (Tarrason et al., 2017)). 

Note however that those periods do not constitute a specific training period for the surrogate model which is 

intended to be re-fitted to new CTM simulations every forecasted day in an automated calibration approach. Those 

episodes are only selected to identify the best design for the surrogate and assess its performances in reproducing 15 

the full CTM. We will see in Section 2.4 that in total 46 simulations were required to identify the optimum 

surrogate model structure and demonstrate its performances. All these 46 simulations covered the 4 months 

selected in the years 2015 to 2017 to capture a variety of air pollution episodes. But once the structure of the 

surrogate model is identified, the model itself is intended to be calibrated automatically on the basis of the day to 

day forecast. 20 

2.2 Chemistry-Transport Model 

The air quality simulations used for both the design of the numerical experiment and the every-day training of the 

ACT tool are performed with the CHIMERE Chemistry-Transport Model (Mailler et al., 2017;Menut et al., 2013). 

The model is widely used for air quality research and application ranging from short term forecasting (Marécal et 

al., 2015) to projection at climate scale (Colette et al., 2015).  25 
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We use a simulation setup similar to the operational regional forecast performed under the Copernicus Atmosphere 

Monitoring Service1, albeit with a lower spatial resolution: 0.25 degree instead of 0.1 degree. The chimere model 

version is chimere2016a using Melchior gas phase chemistry, a two-product organic aerosol scheme and 

ISORROPIA thermodynamics. 

The anthropogenic emissions in the reference simulations are TNO-MACCIII (Kuenen et al., 2011). 5 

Meteorological data are operational analyses of the IFS (integrated forecasting system) model of the European 

Centre for Medium Range Weather Forecasts. The chemical boundary conditions are also obtained from ECMWF, 

also with the IFS model. 

2.3 Surrogate model structure 

The structure of the surrogate model is chosen to be a polynomial calibrated to 10 to 15 individual CHIMERE 10 

simulations performed every day for the air quality forecast extending between D+0 and D+2. The choice of a 

polynomial is for clarity and simplicity, and alternative parametric or non-parametric structures could be explored. 

The number of training scenarios (10 to 15) is constrained by the operational feasibility to perform multiple 

chemistry-transport simulations. 

Four main activity sectors are desired to be captured by ACT, which correspond in terms of SNAP sectors (Selected 15 

Nomenclature for sources of Air Pollution) to the following: 

• AGR: Agriculture (SNAP sector 10: including both crops and livestock) 

• IND: Industry (SNAP sectors 1, 3, 4: Combustion in energy and transformation industries, combustion 

in manufacturing industry, Extraction and distribution of fossil fuels and geothermal energy) 

• RH: Residential heating (SNAP sector 2: non-industrial combustion plants) 20 

• TRA: Road transport (SNAP sector 7: urban and non-urban roads and motorways) 

At present, the following sectors are therefore excluded from the tool, although they could be included in future 

versions: SNAP5 (extraction and distribution of fossil fuels and geothermal energy), SNAP6 (Solvent and other 

product use), SNAP8 (off-road sources and machineries such as railways, shipping and air transport), SNAP9: 

waste treatment and disposal. 25 

 

1 http://regional.atmosphere.copernicus.eu 
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Considering the goal to cover four activity sectors, and the operational constrain to compute only about 10 to 15 

training scenarios every day, we can derive a limit in the number of coefficients which we can estimate. We 

conclude that the surrogate model can be at most a third order polynomial, or even less if interaction terms are 

accounted for.  

It should be noted that the structure of the surrogate model ultimately developed is expected to deliver satisfactory 5 

performances for all pollutants (PM10, PM2.5, O3avg, O3max and NO2). The final objective is to implement the 

surrogate model in an operational forecasting system with a continuous production, no matter whether the focus 

in on ozone or particulate matter episodes. Therefore, the selected structure required to deliver sat isfactory 

performances for a given pollutant (e.g. a higher degree polynomial, including interaction terms), can also yield 

indirect benefits for the other pollutants. 10 

2.4 Emission reduction scenario available for development purposes 

For development purposes, we performed an extensive set of CHIMERE simulations over the three air pollution 

episode selected in 2.1 with various levels of emission reduction (10%, 30%, 60%, 90% and 100%) for each of the 

four activity sectors (AGR, IND, RH, TRA). In all cases, emissions reductions are applied uniformly over Europe. 

It is also important to stress that all chemical species for a given activity sector are reduced by the same amount. 15 

This is different and complementary with the approach chosen for instance in the EMEP source receptor matrices 

(Amann et al., 2008) or the SHERPA tool (Pisoni et al., 2017). In the remainder of the paper, those scenarios will 

be referred by collating the sector and corresponding emission reduction magnitude, e.g. AGR60 for a 60% 

reduction of agricultural emissions. 

In addition to those emission reduction scenarios for individual sectors, we also explored interactions with 20 

scenarios where two sectors are reduced simultaneously. We included emission reductions of 30%/60% and 

60%/30% for all pairs as well as 100%/100% reduction. Last, 20%/50% reduction level was also included, so that 

in total we included 45 emission reduction scenarios in this design phase: 

• Reference 

• AGR10,TRA10,RH10,IND10 25 

• AGR30,TRA30,RH30,IND30 

• AGR60,TRA60,RH60,IND60 

• AGR90,TRA90,RH90,IND90 
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• AGR100,TRA100,RH100,IND100 

• TRA20AGR50,TRA30AGR60,TRA60AGR30,TRA100AGR100 

• TRA20IND50,TRA30IND60,TRA60IND30,TRA100IND100 

• AGR20IND50,AGR30IND60,AGR60IND30,AGR100IND100 

• AGR20RH50,AGR30RH60,AGR60RH30,AGR100RH100 5 

• IND20RH50,IND30RH60,IND60RH30,IND100RH100 

• TRA20RH50,TRA30RH60,TRA60RH30,TRA100RH100 

3 Design of the optimal surrogate model 

Here we present the various steps towards building the polynomial surrogate model calibrated on an optimal set 

of training scenarios. The complexity of the model increases gradually from a univariate form to a multivariable 10 

non-linear polynomial including interactions. But to start with, the response of air quality to a given emission 

reduction for various locations and episodes are illustrated. 

3.1 Univariate sensitivity to emission reductions 

3.1.1 Univariate air quality response at individual location 

In this section, we present the sensitivity to emission changes for either PM10 or O3 in three target cities (Brussels, 15 

Paris and Milano) and for the three types of episodes. We aim to illustrate to what extent the air quality response 

is linear for each activity sector and species. At this stage, we only present the response in the complete air quality 

model (CHIMERE), the ability of a surrogate to reproduce this sensibility will be the focus of the following 

sections.  

In Figure 1, we show the difference, at a given point, between the PM10 concentration when reducing emission of 20 

a single activity sector and the concentrations in the reference simulation. Those differences can be computed from 

various levels of reductions: 0% (reference), 10%, 30%, 60%, 90% and 100%.  

The PM10 concentration response to incremental emission reductions depends on the date, location, and activity 

sector. The temporal and spatial sensitivity yield substantial complexity in air quality modelling. But we note here 

that the relationship to incremental emission changes can be relatively simple, and well fitted by low-order 25 

polynomial or even linear relationships.  
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The residential heating (RH) sector contributes mainly with primary PM10 emissions or organic aerosol precursors, 

and its response is the closest to linearity for 20th March 2015 and 1st December 2016 and the three selected cities. 

It is also the case for the traffic (TRA) sector. But for industry (IND), and even more so for agriculture (AGR), 

there is a clear non-linear response. In most cases, such responses follow a second order polynomial. It is for 

Milano that the steepness of the quadratic term is largest. And for the first episode (March 2015)  which is the 5 

episode the most influenced by ammonium nitrate pollution, the shape is closer to a third order polynomial for 

Brussel and Paris. Very similar behaviours are found for PM2.5, displayed in Supplementary Materials (Figure 

S.1). 

The ozone sensitivity to emission changes is illustrated in Figure 2 for both ozone peaks and ozone daily average. 

As far as ozone peaks are concerned, a quadratic sensitivity is found for traffic and industrial sources, the main 10 

providers of NOx and VOC emissions. For the selected day (which is the peak of the episode), traffic is the main 

factor, although industry is sensitive also for Brussels. Note the negative contribution of agriculture which, by 

providing NH3, sequestrates a fraction of nitrogen oxides to form ammonium nitrate, leading indirectly to decrease 

ozone levels. 

The sensitivity to the traffic sector is very different for ozone daily average because that sector is the main 15 

contributor to NOx emissions. The switch from high-NOx to low-NOx regimes can be clearly seen in all three 

cities in the sensitivity of daily average O3 when the emission reduction exceeds 60% for the traffic sector. This 

very distinct sensitivity of O3 daily maximum and daily averages is due to the titration process, which affects more 

strongly night-time, low, ozone concentrations and is therefore less visible on the daily maximum. In Figure 2, it 

is a specific feature of the traffic sector, which is not seen for instance for industrial emissions. It should be noted 20 

that the NO2/NOx ratio is very different for both sectors. In the CHIMERE modelling setup used here, 20% of 

NOx emissions are allocated to NO2 for the traffic sector, while for other sources including industry it is only 4.5% 

of NOx emissions that are constituted of NO2. But this larger share of NOx emissions as NO in the industry sector 

would rather imply a lower titration of O3 by NO in traffic emissions compared to industrial sources. And in 

summer, NO and NO2 will even out very fast at the spatial scales of a regional chemistry transport model. The 25 

stronger impact of titration when reducing traffic emissions in Figure 2 is therefore rather a consequence of the 

overall larger share of total NOx emissions compared to other activity sectors. The corresponding figures for NO2 

for both a wintertime (December 2016) and summertime (June 2017) episode are provided in Supplementary 

Material (Figure S.2) although the response is mostly linear. 
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3.1.2 Univariate model performances over Europe 

Here we investigate the selection of the optimal model independently for each activity sector, so that we introduce 

four univariate models for the activity sectors: AGR, IND, RH, and TRA. The calibration is also performed for 

the four pollutants of interest: PM10, PM2.5, O3max, O3avg, NO2. 

For each day, and each pollutant, a polynomial model is calibrated at each grid point of the modelling domain. We 5 

introduce the following notations for a third order polynomial, with 𝛼𝑖,𝑗 , 𝛽𝑖,𝑗 , 𝛾𝑖,𝑗   the coefficients (the later two 

being nullified for linear or quadratic forms): 

𝐶𝑖,𝑗 − 𝐶𝑖,𝑗
𝑟𝑒𝑓

= 𝛼𝑖,𝑗 ∙ (𝛿𝑖,𝑗
𝑠𝑒𝑐) + 𝛽𝑖,𝑗 ∙ (𝛿𝑖,𝑗

𝑠𝑒𝑐 )
2

+ 𝛾𝑖,𝑗 ∙ (𝛿𝑖,𝑗
𝑠𝑒𝑐)

3
 

Where:  

𝛿𝑖,𝑗
𝑠𝑒𝑐 = (

휀𝑠𝑒𝑐

휀
𝑟𝑒𝑓

휀𝑖,𝑗
𝑠𝑒𝑐 − 휀𝑖,𝑗

𝑟𝑒𝑓
) 10 

• 𝐶𝑖,𝑗
𝑟𝑒𝑓

is the air pollutant concentration (for either PM10, PM2.5, O3max, O3avg, or NO2) modelled with the 

CTM for the reference simulation with emissions 휀𝑖,𝑗
𝑟𝑒𝑓

  

• 𝐶𝑖,𝑗 is the air pollutant concentration modelled with the CTM for the sensitivity simulation with reduced 

emissions for sector “sec”: 휀𝑖,𝑗
𝑠𝑒𝑐 reduced by a uniform factor 𝛿𝑠𝑒𝑐 over the domain. In addition to being 

uniform in space, the reduction factor is also identical for all emitted precursor species since it is applied 15 

to the whole activity sector. 

• throughout the paper, the coefficients α, β, and γ of such polynomials will be computed for each i,j pair 

of latitude, longitudes indices in the geographical modelling domain, so that the indices will be dropped 

in the following notations. 

Depending on the model complexity (linear, quadratic or cubic), the model is calibrated with one, two or three 20 

sensitivity simulations (in addition to the reference). The pairs involving the 0% reduction and any of the other 

amount of reduction allow computing a linear polynomial. Triplets involving the 0% reduction and any 

combination of two other reductions are used to compute a quadratic polynomial. And an analogous quadruplet is 

used for cubic polynomials. Then the model is tested by computing the error of its prediction with respect to the 

remaining available sensitivity simulations that were not used in the calibration. For the purpose of model 25 
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development, we performed sensitivity simulations over the three selected case studies with uniform reductions of 

the emissions for AGR, IND, TRA, and RH by 10%, 30%, 60%, 90% and 100%. The corresponding list of 

scenarios available for training and testing are summarized in Table 1, there are 5, 10, and 10 combinations for the 

linear, quadratic and cubic forms, respectively. 

The error that we discuss here is the absolute difference between the concentration change predicted with the 5 

surrogate model for a given emission reduction (�̂� −  𝐶𝑟𝑒𝑓) and the corresponding validation Chimere simulation 

(𝐶 − 𝐶𝑟𝑒𝑓) for the same emission reduction (𝛿𝑠𝑒𝑐). Each polynomial model can be tested against several 

independent Chimere validation simulations (4, 3, and 2, for linear, quadratic and cubic forms, respectively), so 

that an average of absolute errors is taken (�̂� −  𝐶). We also include a relative error, where a normalization by the 

corresponding pollutant concentration is used ((�̂� −  𝐶)/𝐶).  10 

The errors of the models are computed for each day and grid point, allowing a discussion of the surrogate 

performances both in terms of spatial and temporal variability.  

Figure 3 shows the day-to-day variation of the absolute and relative errors of the various univariate PM10 models 

for Agriculture sector, averaged for all grid points in the region 40N to 55N and 10W to 30E. The time period 

displayed here spans from 20161130 to 20161229 and includes two important air pollution episodes around 15 

20161208 and 20161220. The models are listed in the same order as in Table 1 with first the 5 linear models, then 

the 10 quadratic and 10 cubic forms. 

The first 5 surrogate models with solid lines and blue colours have a linear structure. They have larger errors than 

the following more complex models, with relative errors ranging from 1.4 to 4%. The worst linear model is 

computed with the 10% emission reduction scenario (and the reference), whereas the linear model computed with 20 

the 90% emission reduction scenario is performing better than several more complex models. 

Moving to a second order polynomial improves notably the performance. Ten combinations of training scenarios 

(and the reference) are available to compute a quadratic polynomial. For each of them, three validation scenarios 

are available to assess the performances. The best quadratic model for that time period relies on the 60% and 100% 

emission reductions, its relative error is lower than 0.1µg/m3 or 0.65%. Note that the quadratic models using 25 

training scenarios confined within a narrow range of emission reductions (e.g. 10% and 30%, or 90% and 100%) 

do not perform well, even when compared to the simple linear polynomial. 



12 

 

The third order polynomial performs best, except the last model which uses only the largest emission reduction 

and is therefore too weakly constrained for the lower range of reductions. The smallest error for a cubic model is 

0.05µg/m3 or 0.37%. 

At this stage, it becomes clear that a tradeoff must be sought between model performance and complexity 

considering that moving from a second to third order polynomial requires computing one more training scenario, 5 

whereas the error of the quadratic polynomial is already below 1%.  

The errors presented in Figure 3 are an average over a large fraction of Europe. To check if they do not hide some 

compensations between different regions, we also show in the map of relative errors, averaged over the whole 

month of December 2016 (Figure 4). The quadratic model performing best according to Figure 3 is calibrated to 

60% and 100% emission reductions. The map of error show that the largest errors are found over the Po-Valley, 10 

but it is also the case of all the other quadratic models represented in the Figure. Therefore, we conclude that the 

selection of the best performing model done on the basis of average performances in Figure 3 do not include 

compensation between different regions.  

A similar analysis is performed for the other activity sectors, the analogous of Figure 3 for Traffic, Residential 

Heating, and Industry are provided in Supplementary Material (Figures S.3 to S.8).  15 

The performances of the univariate model are presented in Figure 5 for PM10. The four activity sectors are still 

treated independently at this stage, the interactions and performances of multivariate models will be discussed in 

Sections 3.2 and 3.3, respectively. Instead of showing the average error in space or time as in Figure 3 and Figure 

4, respectively, we show here the whole distribution of error for any grid point in Western Europe, and any day 

over three one-month particulate matter air pollution episodes (201503, 201612 and 201701). The main features 20 

of those distributions are given as boxplots with the boxes providing the first quartile, median, and third quartile. 

Whiskers extend to 1.5 times the interquartile range from the borders of the box, and the extreme points lying  

outside of that range are also provided. As in Figure 3 and Table 1, we show (from left to right) first the 5 linear 

surrogate models, and then the 10 quadratic and 10 cubic forms. The numerical values of the median of those 

distributions are given in Supplementary Material (Table S.1). 25 

For each activity sector, we find in general that the linear models do not perform as well as the quadratic or cubic 

polynomials. But for some activity sectors, the linear model can be considered satisfactory.  
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It is the case for the Residential Heating sector, where a linear model relying on the scenario with 90% reduction 

(index 4 in the x-axis of Figure 5) is already very good: the upper 95% confidence interval is lower than 0.1%. 

The median of relative errors is then 0.03% (Table S.1) and the gain when moving to a quadratic form is only a 

factor two. 

On the contrary, for Industry and Traffic, we opt for a quadratic model (using 60% and 100% reductions, index 14 5 

in the x-axis of Figure 5) which yields median errors below 0.1% (0.099 and 0.028%, for IND and TRA, 

respectively) and the gain in term of median error is a factor 3-4 compared to the linear forms. For the selected 

quadratic form and 60% and 100% reduction training scenarios, we can ensure that the relative error of the 

surrogate model is below 10% for any day and any grid point and even below 0.1% for 75% of the points in the 

distribution. 10 

For the impact of the agricultural sector on PM10, the non-linearity is such that we have to lower slightly the 

ambition on the performance of the surrogate. Nevertheless, by selecting a quadratic form trained on the scenario 

with 60% and 100% reduction (index 14 in the x-axis of Figure 5), we can still ensure that the relative error does 

not exceed 10% for any day and grid point, and even remains below than 1% for 75% of the points in the 

distribution.  15 

The choice to select a quadratic model for Industry and Traffic is further supported by the analysis for ozone 

(Figure 6, and corresponding numerical values in Supplementary Material Table S.2), where a clear improvement 

is found compared to linear forms. Selecting a quadratic model trained on 60% and 100% emission reduction 

scenarios allows reaching relative errors lower than 10% for any day and any grid point, and 95% confidence 

interval lower than 0.1%. 20 

A linear model could be fit-for-purpose with regards to ozone sensitivity to agriculture emissions, but since a 

quadratic form was selected for PM10, it will also benefit the ozone models. For Residential Heating, most errors 

are below 0.001% so that the ozone result only confirms the satisfactory behaviour of the linear model. 

3.2 Bivariate models and interactions 

After having introduced quadratic terms, we investigate cross-sector interactions. First, we assess the need to 25 

account or not for interaction terms. In the case where the added value of interaction terms is demonstrated , we 

identify the optimal training scenarios. 
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The surrogate models that we use here are bi-variate, second order polynomial, plus an interaction term, 

quadrivariate models will be discussed in 3.3. For instance, for the bivariate model of agriculture and industry, we 

have the following structure: 

𝐶𝑎𝑔𝑟,𝑖𝑛𝑑 − 𝐶𝑟𝑒𝑓 = 𝛼𝑎𝑔𝑟 ∙  𝛿𝑎𝑔𝑟 + 𝛽𝑎𝑔𝑟 ∙ (𝛿𝑎𝑔𝑟)2+ 𝛼𝑖𝑛𝑑 ∙ (𝛿𝑖𝑛𝑑) + 𝛽𝑖𝑛𝑑 ∙ (𝛿𝑖𝑛𝑑)2 +  𝛾 ∙ (𝛿𝑎𝑔𝑟)  ∙ (𝛿𝑖𝑛𝑑) 

 5 

In order to assess the need to account for interactions, we only use training scenarios with 30% and 60% reduction 

levels.  

First a bivariate quadratic model without interactions is trained with the 30% and 60% reduction levels and tested 

against corresponding interaction scenarios. Taking the example of agriculture & industry, we would have the two 

training and testing configurations in lines 3 and 4 of Table 2. 10 

The boxplots of Figure 7 display the performances when including (first two boxplots of each panel) or excluding 

(last two boxplots) interaction terms. The numeric values of the median of these distributions are available in Table 

S.3 and S.4 of the Supplementary Material. As could be expected given the relatively linear behaviour of the 

response to Residential Heating emission changes, interactions do not bring substantial added value for those 

terms: (AGR,RH), (IND,RH), (TRA,RH). On the contrary, keeping 75% of the points and days with a relative 15 

error lower than 1% require to account for interactions for the pairs: (AGR,IND) and (TRA,AGR). 

For ozone (Figure 8 and Table S.4 of the Supplementary Material), the only important interaction terms are for the 

(TRA,IND) pair of sectors, which was expected since those bring the largest share of ozone precursor emissions. 

When ignoring their interactions, the upper 95th confidence interval of relative error distribution can reach 1%, 

whereas it remains below 0.1% when interactions are taken into account. 20 

For the pairs where interactions must be taken into account: (AGR,IND) (TRA,IND) and (TRA,AGR), we remain 

to identify the optimal level of reduction in the training scenario. We set the range of reduction identified in Section 

3.1.2 for the quadratic terms (60/100%) and seek to identify the optimal reduction for the scenario designed to 

capture interaction terms. The list of available combinations to train and test each interaction term is given in Table 

3. 25 

The 30/60% reductions are optimal for the (AGR,IND) and (TRA,IND) pairs, but for the (TRA,AGR) pair, better 

performances are found with a 100/100 interaction term. The same feature is found for both PM10 and O3max, as 
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seen in Figure 9 and Figure 10, and corresponding numerical values in Table S.5 and Table S.6 of the 

Supplementary Material. 

3.3 Quadrivariate models and interactions 

The methodology followed in Sections 3.1 and 3.2 consists in selecting first the optimal structure for univariate 

models, before investigating bivariate models including interactions terms. Such a step-by-step approach allows a 5 

clear introduction of the methodology. This presentation has a clear pedagogical advantage. It is also relevant for 

a potential development of a similar approach in a different context. One could consider developing an ACT tool 

over a different region, or at higher spatial resolution. But, in that case, nothing guarantees that the same model 

structure would be selected, in particular if non-linearities affect different activity sectors.  

However, such a sequential approach carries a risk of not selecting the optimal structure, as pointed out for stepwise 10 

regression approaches. Indeed, with a sequential method, we assume that the optimal structure and training 

scenario remains valid when including interactions whereas there is a possibility that the addition of an interaction 

term could change the selection of univariate terms. 

Therefore, we investigated directly a 4-dimensional model with the following structure:  

𝐶𝑎𝑔𝑟,𝑖𝑛𝑑,𝑟ℎ,𝑡𝑟𝑎 − 𝐶𝑟𝑒𝑓15 

= 𝛼𝑎𝑔𝑟 ∙ (𝛿𝑎𝑔𝑟) + 𝛽𝑎𝑔𝑟 ∙ (𝛿𝑎𝑔𝑟)2+ 𝛼𝑖𝑛𝑑 ∙ (𝛿𝑖𝑛𝑑) + 𝛽𝑖𝑛𝑑 ∙ (𝛿𝑖𝑛𝑑)2+ 𝛼𝑟ℎ ∙ (𝛿𝑟ℎ) + 𝛼𝑡𝑟𝑎

∙ (𝛿𝑡𝑟𝑎) + 𝛽𝑡𝑟𝑎 ∙ (𝛿𝑡𝑟𝑎)2 + 𝛾𝑎𝑔𝑟,𝑖𝑛𝑑 ∙ (𝛿𝑎𝑔𝑟)  ∙ (𝛿𝑖𝑛𝑑) + 𝛾𝑡𝑟𝑎,𝑎𝑔𝑟 ∙ (𝛿𝑡𝑟𝑎)  ∙ (𝛿𝑎𝑔𝑟) + 𝛾𝑡𝑟𝑎,𝑖𝑛𝑑

∙ (𝛿𝑡𝑟𝑎)  ∙ (𝛿𝑖𝑛𝑑) 

 

Such a model requires two training scenarios for AGR, IND, TRA, one for RH and one for each of the three 20 

interaction terms. With this approach all possible 2-term interactions are indeed taken into account as only those 

involving RH are excluded because we have demonstrated earlier that this factor could be well approximated with 

a linear relationship (and therefore irrelevant for second order interactions).  

We did not investigate all possible of the 46 available testing scenarios but a subset applying the same range of 

reduction for each of the univariate component (i.e. for instance only AGR30, AGR60, IND30, IND60, RH30, 25 

TRA30, TRA60) and complementary reduction for the interaction terms (not using 30/60% reductions for our 

example). With these constrains, we are still left with an impressive number of 285 combinations. The performance 
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(as median relative error) of the optimal set of training scenarios identified in Sections 3.1 and 3.2 is confirmed 

here as it ranks respectively 21st, 4th  and 7th for the PM10 episodes of 201503, 201612, 201701. Other combinations 

of training scenarios can indeed be identified for given episodes, but the choice we propose is also robust across 

various episodes, and always within 5% of the errors of the optimal model. For ozone daily maximum, the model 

with the step-by-step methodology beats any of the 285 other configurations. 5 

3.4 Final structure and performances 

To summarize, the model that we selected is a quadrivariate polynomial, first order for RH emissions, and 

quadratic for AGR, IND, TRA, with interaction terms for the pairs: (AGR,IND), (TRA,IND) and (TRA,AGR). 

The optimal set of training scenarios include the 10 sensitivity simulations selected above, to which a Reference 

is added as well as a simulation where the emissions of sectors are reduced by 100% to ensure that the model 10 

remains bounded: 

• Reference 

• AGR60, AGR100,  

• IND60, IND100 

• RH90 15 

• TRA60, TRA100 

• AGR30IND60 

• TRA30IND60 

• TRA100AGR100 

• AGR100IND100RH100TRA100 20 

This final model is tested against the 34 available scenarios not used in the training. We conclude that with such a 

model structure and training scenarios, it is possible to reach the surrogate model performances summarized in 

Figure 11 that shows that relative errors are below 1% at 75% of the grid points and days, below 2% at 95% of the 

grid points and days, and below 10% for any grid points and days. More specifically, the single highest error over 

the 864 248 grid points and days considered is 7.5%, 7.9%, 4.8%, 2.8% and 2.9% for PM10, PM2.5, NO2, O3max, 25 

O3avg.  

This structure is selected because of is good performances for all relevant ambient air pollutant as demonstrated 

here over a range of air pollution episodes. In the operational model, the overall structure of the model is frozen, 
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while only the coefficients of the surrogate are recomputed every day on the basis of the current air quality forecast. 

It should be noted however that any evolution of the model such as increasing the spatial resolution, 

implementation over a different geographic area, or including other activity sector would require revising this 

structure. 

Further increasing the degree of the polynomial would certainly improve the quality of the surrogate model. The 5 

only two reasons not to engage in that direction are: (i) avoid increasing the computation burden with more training 

scenario and (ii) considering that the performance achieved at order 2 are already very satisfactory. The only higher 

order interaction scenario removing emissions from all 4 sectors is designed as a closure to avoid any potential 

negative concentrations. 

4 Scenario analysis in air quality forecasts 10 

4.1 Description of ACT interface 

The routine production of ACT relies on two main steps. First the 12 training scenarios corresponding to the current 

air quality forecast are simulated on a high-performance computer with the CHIMERE model with a setup inspired 

from the French Air Quality Platform Prev’Air (Rouïl et al., 2009) and the European CAMS Regional Production 

(Marécal et al., 2015). Then the surrogate model is automatically calibrated and exported to a web interface using 15 

the shiny package of the R language. 

An annotated screenshot of the ACT web interface is given in Figure S.9 of the Supplementary Material. First the 

pollutant of interest is selected in the list of compounds for which the surrogate has been validated: PM10, PM2.5, 

NO2, O3max, O3avg, all of which being daily mean values, except for O3max which is the daily maximum level. 

The base time of the forecast can also be changed up with access to a long history as well as its valid time.  20 

A series of slide bars allow the user to define its tailored scenario, reducing by any percentage the emission 

originating from Road transportation, Industry, Residential heating, and Agriculture. Considering that there are 

also other sources of pollutions than those included in ACT (i.e. AGR, IND, RH and TRA), a possibility to include 

or remove those other contributions is offered in order to visualize a reference simulation including only the 

sources upon which the user can interact through the slide bars. Such “other contributions” include mainly natural 25 

emissions (e.g. dust and sea salt for particulate matter, or biogenic VOCs) but also some activity sectors not 

included at present in the tool (e.g. international shipping). It is computed by withdrawing from the Chimere 

Reference simulation a scenario emulated with ACT with all four activity sectors set to zero. As a consequence, 
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the tropospheric ozone burden is also withdrawn, that is why the corresponding menu refers to “natural and 

background concentrations”. 

The results are then displayed as a map for either the selected scenario or the difference compared to the reference 

simulation. 

4.2 Case studies of Scenario analysis  5 

The use of the ACT interface is illustrated here taking as example the training episodes introduced in Section 2.1. 

4.2.1 March 2015 

In March 2015, a remarkable PM10 episode spread throughout a large part of Western Europe for almost a week. 

The daily mean for 20150318 displayed in Figure 12 is given either with all sources included (left), or only for the 

sources included in ACT: AGR, IND, RH, TRA (so that in that panel natural and background concentrations are 10 

excluded). As explained in Section 4.1, the other sources are mainly natural (desert dust and sea salt), but they also 

include some activity sectors not available in ACT (such as international shipping). 

During that episode, the PM10 composition was dominated by inorganic aerosols (Petit et al., 2017), and more 

specifically ammonium nitrate which is formed by chemical reactions between ammonia and nitrogen oxides 

emitted by any combustion sources (traffic or other). In Europe, 93% of annual NH3 emissions were due to 15 

agriculture in 2015 (according to EMEP emissions for EU28 available at www.ceip.at), about half of which were 

due to livestock and the other half to fertilizer. Fertilizer spreading is a very seasonal activity, that dominates in 

March. Because NH3 resulting from fertilizer spreading is emitted over very large areas, and because of the lifetime 

of fine PM in the atmosphere, the resulting air pollution plume can reach a substantial geographical extent as we 

can see here with high PM10 levels modelled far out over the Atlantic Ocean. This type of air pollution event is a 20 

textbook example of the regional character of atmospheric air pollution. 

In order to illustrate the capacities of the ACT tool, four scenarios are emulated by removing independently 100% 

of the emission of each of the four main activity sectors (Figure 12). These scenarios are all emulated on the basis 

of the simulation excluding natural sources, i.e. to be compare to the top right panel of Figure 12. 

The reduction of agricultural emissions has the largest effect on PM10 concentrations and only a couple of hotspots 25 

remain, for instance in the Pô Valley. On the contrary, none of the scenario where only one of the other sectors is 

reduced manages to reach low PM10 levels. This is because NH3 remains in excess and removing all the NOx from 
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Traffic has little effect if the NOx from industry and residential heating remains available. We can note however 

that the punctual sources in Turkey or Ukraine disappear in the scenario where Industrial emissions are set to zero. 

Last, industrial emissions have a larger effect on regional pollution than traffic, which seems contradictory to the 

high attention given to road transportation during major air pollution episodes.  

Last, we also display an emulated scenario where both traffic and industrial emissions are set to zero, whereas 5 

agriculture emission are unchanged. Here we obtain low PM10 levels similar to the no-agriculture scenario because 

most sulfur and nitrogen oxides are removed. 

4.2.2 December 2016 

In December 2016, a large particulate matter episode developed in Western Europe under the influence of cold 

and stable meteorological conditions that kept air pollutants near the ground in the inversion layer (Forêt et al., 10 

2017). In addition, cold temperatures induced an increase in residential heating emission. The reference simulation 

for daily mean PM10 on 20161201 is presented in Figure 13. It only includes the sources of the main activity sectors 

(e.g. excluding natural and background concentrations). 

High PM10 concentrations are modelled over Northern Italy, but also a large part of Northern France as well as 

south-western UK. There are also some scattered areas of Pollution in Eastern Ukraine. The removal of emission 15 

from each of the four main activity sectors is emulated with ACT in Figure 13, using as reference the simulation 

excluding natural sources. All sectors have an influence on PM10 concentrations, but the largest contribution is 

attributed to agriculture, which is really the only source that has an impact on background PM10, although some 

hotspots remain. According to the scenario where a 100% reduction of industrial emission in emulated, it seems 

that the PM10 peak in Eastern Ukraine is due to industrial activities. The hotspot in Paris and Milano remain to 20 

some extent in all for the four scenarios, demonstrating that air pollution in those areas can only be mitigated by 

acting on all activity sectors. 

The large role of agriculture is due to the high sensitivity of atmospheric chemistry to ammonia (NH3) emissions 

which reacts with nitrogen oxides emitted from any combustion source (traffic or other) to form ammonium nitrate. 

Given the strong seasonality of fertilizer spreading, ammonia emissions in December are likely due mainly to 25 

livestock emissions. The ACT results illustrate clearly the importance of Agriculture for PM air pollution by 

allowing to emulate a scenario by removing all NH3 emissions. One should however keep in mind the challenge 

in mitigating NH3, where the emission reduction between 2005 and 2020 is only 1 to 24% in the Gothenburg 

protocol depending on the country (Bessagnet et al., 2014). 
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4.2.3 June 2017 

For ozone, we selected the intense episode of June 2017 (Figure 14), (Tarrason et al., 2017). An ozone anomaly 

above 60 to 70µg/m3 was due to European emissions of the four main activity sectors, but Figure 15 also highlights 

the importance of tropospheric burden for ozone air pollution where a large fraction cannot be mitigated by 

reducing European emissions alone.  5 

The analysis of emission reduction responses (Figure 14) is much more predictable than the impact on PM. 

Reducing emissions from residential and agriculture sectors has almost no impact on ozone concentrations. Ozone 

is driven by emissions from traffic (nitrogen oxides) and from industry (nitrogen oxides and volatile organic 

compounds). For the case studied, removing traffic emissions decreases ozone concentrations by 20 to 60 g/m3 

in most of the places, and the impact is not as strong with a 100% reduction in industry emissions.  10 

5 Source allocation mode 

The surrogate ACT model can also be used in source allocation mode. By reducing successively each activity 

sector by 100%, it is possible to compute its contribution to the burden of air pollution for a given day and location. 

Here the contribution would be the gain in concentration reduction induced by removing emissions from a given 

activity sector. It may differ substantially from a source apportionment approach where the objective is to assess 15 

the contribution - in mass – of a sector to the overall PM burden. A good illustration of such differences, is the 

underestimation of the influence of a sector such as agriculture that only contributes with relatively light 

compounds in terms of molecular weight (NH3) but are very sensitive in the formation of secondary PM. The 

methodological difference and purposes are explained for instance in (Clappier et al., 2017) that also emphasize 

the role of interaction terms further illustrated below. 20 

Unlike source apportionment, the allocation we introduce here indeed shows the reduction of concentration that 

can be achieved by removing totally the emissions of an activity sectors. Such results are generally obtained by 

zeroing out anthropogenic emissions in a full CTM simulation. It can also be extrapolated from sensitivity 

simulation based only on 15 to 30% emission reductions. But then the uncertainties become substantial in the case 

of non-linear response. The structure of ACT, by being calibrated and tested for emission reductions ranging from 25 

0 to 100% offers a more reliable response in that context. 
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For the two PM10 episodes and the O3 episode introduced in Section 2.1 and for the city of Paris, we isolate in 

Figure 15 the impact of each of the four activity sectors as well as natural and background concentrations. A 

specific focus is also given on how interaction terms are handled in this decomposition. On the left column, the 

gap between individual sectors and the overall reduction is explicitly provided as an interaction term. Here, the 

contribution of each activity sector is assessed by setting its emissions to zero (referred to as top-down brute force 5 

method in (Clappier et al., 2017)). Interactions are computed by difference between the sum of individual 

contribution and a scenario emulated with all four activity sector removed simultaneously (which is constrained 

by the scenario “AGR100IND100RH100TRA100”, Section 3.4). And the remaining fraction corresponds to 

natural sources or any other pollutant precursor not included in ACT (natural and background concentration). 

From this decomposition, the large influence of Agriculture appears clearly for the March 2015 PM 10 episode in 10 

Paris (Figure 15). Traffic and Industry are also important contributors, but residential heating has a smaller 

contribution. For the December 2016 PM10 episode, the agriculture contribution is only second behind traffic. 

Residential heating is more important than for the March 2015 episode, but it could also be underestimated by the 

model, which used emission inventory that do not capture very well residential heating, in particular in relation 

with wood burning. This underestimation of residential emission has been widely documented as it has a very 15 

strong impact on model performances to capture wintertime peaks (Denier van der Gon et al., 2015). The expected 

future improvements in the consistency of reported condensable PM in emission inventories should improve 

notably model performances. Until then, this feature provides us an opportunity to highlight that the diagnostics 

derived with the surrogate model remains highly sensitive to underlying hypotheses in emission inventories and 

chemistry transport modelling. 20 

For ozone, the picture is very different, a large fraction of ozone is actually attributed to the tropospheric burden. 

But during the ozone air pollution event (14th and 19-22 June), a larger contribution of traffic is found, whereas 

the impact of industry is very small (a different conclusion will hold for other cities as presented in Section 6). 

This presentation for ozone highlights very well the challenge of mitigating background levels on the basis of 

European emission mitigation. Conversely, it also shows precisely the need to act on European emission during 25 

the main ozone peak.  

When interactions are negative, the sum of individual contribution of each activity sector exceed the total (“Net”) 

in the reference simulation. It is clearly the case for the strong PM10 episode of March 2015, but conversely the 

interactions can also be positive as illustrated for the O3 episode of June 2017. The importance of interactions was 
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expected considering the complexity of atmospheric chemistry. But it constitutes an artefact that must be dealt 

with when performing a source allocation by treating each sector independently.  

There is no fully satisfactory approach to handle interaction terms in such a decomposition. The simplest 

alternative is to distribute one-fourth of those interactions into each of the four contributions which leads to re-

scaling the reference simulation (Table 4). The contribution of individual sector can change substantially, which 5 

is also a reminder for the overall uncertainty of the approach. For instance, the share of Agriculture is reduced 

from 32% to 23% in the case of the 201503 PM episode. But at least the ranking of each sector is not changed and 

their qualitative evolution displayed in the right column of Figure 15 is similar.  

6 Chemical regimes 

The surrogate ACT model trained on CHIMERE sensitivity simulations also allows exploring the chemical 10 

sensitivity (or regimes) within the parameter space of sectoral emission reductions. ACT is a quadrivariate second 

order polynomial with interactions using as predictors the four sectors considered. By plotting the surface response 

to two of these four sectors in a 2D parameter space, it is possible to assess chemical regimes for a given day, 

location and pollutant. In doing so, we perform an analogy with the classical ozone production isopleths of 

(Sillman, 1999), by substituting the NOx and VOC emissions in the x and y axes by different activity sectors. 15 

Figure 16 compares two particulate pollution days, over Paris areas, in March 2015 and December 2016, 

respectively.  In March 2015, reducing agriculture emissions has a strong positive impact on the reduction of PM10 

concentrations that decrease sharply while the impact of traffic emissions reduction is much less effective with 

isopleth close to vertical lines. The inverse conclusions can be drawn for the December 2016 episode, where a 

linear decrease of PM10 is induced by traffic emission reductions, whereas the isopleths are closer to horizontal 20 

lines, depicting a low sensitivity to agricultural emission changes.  

Ozone chemical regimes can also be investigated for a high ozone episode (20170621) , for various locations and 

for both ozone daily maxima and daily means (Figure 17).  

Chemical regimes leading to the formation of high ozone values (as the slope of isopleths for daily maximum 

ozone) are quite similar over Paris and Milano. But in Brussel a stronger sensitivity to Industrial emissions is 25 

found. The isopleths for daily average ozone on the same day are very different. For all levels of industrial 
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emissions, we find that a decrease of traffic emissions leads first to an increase of ozone before becoming efficient 

for the largest levels of emission reduction. 

7 Conclusion 

We presented the first surrogate air quality model designed to explore custom air pollution mitigation scenarios in 

the every-day air quality forecast. This tool applies for PM10, PM2.5, O3 (both as daily mean and daily maximum) 5 

and NO2 and covers the following activity sectors: agriculture, industry, road transportation and residential heating. 

It can be implemented within an operational air quality forecasting system and operated interactively by any user 

through a web interface2.  

Because of the complexity of atmospheric chemistry and physics, chemistry-transport models are required to 

account for the fate of air pollutants in the atmosphere. Simplified models have been developed over the past for 10 

assessment purposes, for instance to identify optimal long-term mitigation strategies. However, such simplified 

models rely on assumptions which are not valid over short time periods, such as the linearity of the response of air 

concentrations to incremental emission changes.  

We introduce a new surrogate modelling approach, whose main strength is to apply for short time scales, so that 

it can be embedded in an air quality forecast system. This challenge is achieved by calibrating every day a new 15 

surrogate model on the basis of the forecast of the corresponding day. Most of the complexity of atmospheric 

processes remain therefore represented within the full chemistry-transport model, and the only purpose of the 

surrogate is to offer flexibility.  

First, we investigated the non-linearity of the response of atmospheric pollutant concentrations to incremental 

emission changes for various pollutants, areas and different episode typologies. We concluded that whereas the 20 

response was mainly linear for residential heating, non-linearities were important, especially for agriculture 

emissions and their impact on PM10 formation, and traffic and industrial emissions for ozone pollution. 

The numerical experiment plan to identify the best model structure and the corresponding optimal set of training 

scenarios is presented by increasing level of complexity. We ultimately select a quadrivariate polynomial of first 

order for residential heating emissions, and second order for agriculture, industry and traffic emissions with three 25 

 

2 https://policy.atmosphere.copernicus.eu/CAMS_ACT.php 
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interaction terms. The surrogate is trained on 10 sensitivity simulations, to which a reference and a closure 

simulation must be added. With such a structure, we can ensure that relative errors remain below 2% at 95% of 

the grid points and days for PM10, PM2.5, NO2, O3max and O3avg. 

The user interface is available online and a few case studies are presented. The emulation of custom scenarios is 

introduced for two PM10 and one ozone episode. It highlights the important role of agricultural emission in the 5 

formation of regional scale PM episodes, although several hotspots can only be mitigated by acting on all sectors. 

For ozone, the tropospheric burden is important but during a strong air pollution episode, action on European 

sources of traffic and industry can reduce peak levels.  

The surrogate model can also be used for source allocation, although it requires additional assumptions on the way 

interaction terms are handled. We also present an innovative application for chemical regime analysis for both 10 

ozone and particulate air pollution provides new insight in the identification of the most efficient activity sector to 

be targeted for air pollution episode mitigation.  

At present the main limitation of ACT is that it relies on emission reductions uniform over Europe. Adding 

geographical flexibility is one of the priorities for further development. 

To our knowledge, this model is the first surrogate, or emulator, able to cover short time scale for air pollution 15 

studies. This development was only made possible by assuming uniform and constant emission reductions for the 

four targeted activity sectors. The fact that emission reductions are assumed to be applied over the long term makes 

ACT not suited to assess the benefit of emergency measures to mitigate air pollution episodes. The purpose of the 

tool is rather to assess the main activity sectors driving the day to day air pollution variability. 

Although the structure of the model is determined once by the outcome of the present study, the surrogate is 20 

calibrated every day to a new air quality forecast therefore paving the way to further develop machine learning in 

the field of air quality forecasting. 

8 Code Availability 

The script used for the operational daily training of the ACT surrogate is available at 

https://github.com/acolette/ACT_v1.0. The underlying CHIMERE Chemistry Transport Model is available at 25 

https://www.lmd.polytechnique.fr/chimere/chimere.php. 

https://github.com/acolette/ACT_v1.0
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Figure 1 : Modelled PM10 reduction (y-axis : positive for a decrease with respect to the reference, µg/m3) for a given 

reduction in Agriculture (green), Industrial (red), Residential Heating (blue), and Traffic (black) emissions (x -axis: in 

%) in Brussels, Paris and Milano (top to bottom) and for 20150320 (left) and 20161201 (right). 
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Figure 2 : Same as Figure 1 for ozone daily maximum (O3max) and daily average (O3avg) on 20170620. 
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Model   training testing 

Linear 1 Ref, 10% 30%, 60%, 90%, 100% 

 2 Ref, 30% 10%, 60%, 90%, 100% 

 3 Ref, 60% 10%, 30%, 90%, 100% 

 4 Ref, 90% 10%, 30%, 60%, 100% 

 5 Ref, 100% 10%, 30%, 60%, 90% 

Quadratic 6 Ref, 10%, 30% 60%, 90%, 100% 

 7 Ref, 10%, 60% 30%, 90%, 100% 

 8 Ref, 10%, 90% 30%, 60%, 100% 

 9 Ref, 10%, 100% 30%, 60%, 90% 

 10 Ref, 30%, 60% 10%, 90%, 100% 

 11 Ref, 30%, 90% 10%, 60%, 100% 

 12 Ref, 30%, 100% 10%, 60%, 90% 

 13 Ref, 60%, 90% 10%, 30%, 100% 

 14 Ref, 60%, 100% 10%, 30%, 90% 

 15 Ref, 90%, 100% 10%, 30%, 60% 

Cubic 16 Ref, 10%, 30%, 60% 90%, 100% 

 17 Ref, 10%, 30%, 90% 60%, 100% 

 18 Ref, 10%, 30%, 100% 60%, 90% 

 19 Ref, 10%, 60%, 90% 30%, 100% 

 20 Ref, 10%, 60%, 100% 30%, 90% 

 21 Ref, 10%, 90%, 100% 30%, 60% 

 22 Ref, 30%, 60%, 90% 10%, 100% 

 23 Ref, 30%, 60%, 100% 10%, 90% 

 24 Ref, 30%, 90%, 100% 10%, 60% 

 25 Ref, 60%, 90%, 100% 10%, 30% 

Table 1 : list of CTM sensitivity simulations used to train and test the various linear, quadratic and cubic forms of the 

surrogate model 
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Figure 3 : Absolute (top, µg/m3) and relative (bottom, %) error over Western Europe of the univariate surrogate model 

for the Agriculture activity sector in December 2016. The coloured lines are for individual polynomial surrogate models 

and training scenarios (x-axis: 5 linear, 10 quadratic and 10 cubic forms with indices of the x-axis matching the rows of 

Table 1). The grey curve gives the day-to-day variation of PM10 (µg/m3) averaged over the region (displayed on the 

right-hand-side y-axis). 5 

Commenté [CA1]: Color scheme changed to improve 

readability 
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Figure 4 : Relative error (%) averaged over the month of December 2016 for the quadratic univariate PM 10 models 

with respect to the Agriculture activity sector. The sensitivity scenarios used to train the individual models are indicated 

in the title of each panel, as well as the average error. 
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Figure 5 : Relative error (%) of the PM10 univariate surrogate models for either AGR, IND, RH, TRA (from top to 

bottom) and for various polynomial forms and training scenarios (x-axis: 5 linear, 10 quadratic and 10 cubic forms with 

indices of the x-axis matching the rows of Table 1). The boxplots indicate the minimum, first quartile, median, third 

quartile, and maximum in the distribution of relative errors at each grid points in Western Europe and each day over 

three air pollution events (201503, 201612, 201701). The dotted horizontal lines are for 0.1%, 1%, and 10% errors. 5 
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Figure 6 : Same as Figure 5 for O3max during the 201706 episode. 

Model   training testing 

Interaction 1 Ref, AGR30, AGR60, IND30, IND60, 

AGR60IND30 

AGR30IND60  

 2 Ref, AGR30, AGR60, IND30, IND60, 

AGR30IND60 

AGR60IND30 

No Interaction 3 Ref, AGR30, AGR60, IND30, IND60 AGR30IND60  

 4 Ref, AGR30, AGR60, IND30, IND60 AGR60IND30 

Table 2 : list of CTM sensitivity simulations used to train and test the need to account for interactions in the quadratic 

forms of the surrogate model. 
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Figure 7: Relative error (%) of the PM10 bivariate surrogate models (from left to right and top to bottom: AI: 

AGR&IND, AR: AGR&RH, IR: IND&RH, TA: TRA&AGR, TI: TRA&IND, TR: TRA&RH). For each panel, the 

boxplots of the distribution of errors are given for 2 models with interactions (left) and 2 models without interactions 

(right), where indices in the x-axis match the row of Table 2. The distributions of relative errors include each grid points 

in Western Europe and each day over three air pollution events (201503, 201612, 201701). The dotted horizontal lines 5 
are for 0.1%, 1%, and 10% errors. 
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Figure 8: Same as Figure 7 for O3max and 201706. 
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Model   training testing 

Interaction 1 Ref, AGR60, AGR100, IND60, IND100, AGR20IND50 AGR30IND60, 

AGR60IND30, 

AGR100IND100 

 2 Ref, AGR60, AGR100, IND60, IND100, AGR30IND60 AGR20IND50, 

AGR60IND30, 

AGR100IND100 

 3 Ref, AGR60, AGR100, IND60, IND100, AGR60IND30 AGR20IND50, 

AGR30IND60,  

AGR100IND100 

 4 Ref, AGR60, AGR100, IND60, IND100, AGR100IND100 AGR20IND50, 

AGR30IND60, AGR60IND30 

Table 3 : list of CTM sensitivity simulations used to select the optimal scenario by training and testing the various 

combinations to account for interactions in the quadratic forms of the surrogate model. 

   

Figure 9: Relative error (%) of the PM10 bivariate surrogate models (from left to right and top to bottom: AI: 

AGR&IND, TA: TRA&AGR, TI: TRA&IND). For each panel, the boxplots of the distribution of errors are given for 5 
4 models with interactions trained on different scenarios where indices in the x-axis match the raw of Table 3Table 2. 

The distributions of relative errors include each grid points in Western Europe and each day over three air pollution 

events (201503, 201612, 201701). The dotted horizontal lines are for 0.1%, 1%, and 10% errors. 
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Figure 10: Same as Figure 9 for O3max and 201706. 

 

Figure 11: Relative error of the final selected surrogate model for all pollutants. The boxplots represent the distribution 

of relative errors over each grid points in Western Europe and each day during the relevant air pollution events: 

wintertime (201503, 201612, 201701) for PM10, PM2.5 and NO2, summertime (201706) for O3max (i.e. daily maximum 5 
ozone) and O3avg (daily average). 
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Figure 12: First row: PM10 concentrations on 20150318 including (left) or excluding (right) natural and background 

concentrations. Following rows: PM10 daily average concentrations emulated with ACT for 20150318 for a 100% 

reduction of traffic emissions (2nd row, left), residential emissions (2nd row, right), industry emissions (3rd row, left), 

agriculture emissions (3rd row, right), and both traffic and industry (4thr row, right). 
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Figure 13: First row: PM10 concentrations on 20161201 including (left) or excluding (right) natural and background 

concentrations. Following rows: PM10 daily average concentrations emulated with ACT for 20161201 for a 100% 

reduction of traffic emissions (2nd row, left), residential emissions (2nd row, right), industry emissions (3rd row, left), 

agriculture emissions (3rd row, right). 
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Figure 14: First row: O3max concentrations on 20170621 including (left) or excluding (right) natural and background 

concentrations. Following rows: O3max concentrations emulated with ACT for 20170621 for a 100% reduction of traffic 
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emissions (2nd row, left), residential emissions (2nd row, right), industry emissions (3rd row, left), agriculture emissions 

(3rd row, right). 
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 PM10, 201503 PM10, 201612 O3max, 201706 

Explicit 

interaction 

Redistributed 

interactions 

Explicit 

interaction 

Redistributed 

interactions 

Explicit 

interaction 

Redistributed 

interactions 

AGR 32 23 24 21 -1 0 

IND 17 11 11 10 1 4 

RH 9 15 16 17 0 1 

TRA 18 23 24 23 7 10 

Other 24 28 24 28 92 85 

Table 4: Relative contributions (%) of the four main activity sectors as well as natural and background concentrations 

(“other”) averaged over the three selected air pollution episodes, either with explicit interaction terms, or with 

interactions redistributed within individual contributions. 
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Figure 15 : Source allocation using the ACT surrogate model for PM10 in 201503 (top) and 201612 (middle) and for 

O3max in 201706 as in absolute levels (µg/m3) with explicit (left) or redistributed (right) interaction terms. 

  

Figure 16: PM10 concentration reduction (positive for a decrease in blue) corresponding to a given reduction in Traffic 

and Agriculture emissions over Paris area – daily average for 20th March 2015 (left) and 1st December 2016 (right) 
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Figure 17: Same as Figure 16 for ozone daily maximum (left) and ozone daily mean (right) and Brussels, Paris and 

Milano for a high ozone day (20170621). 


