
Specific Reviewer comments for “Copula-based synthetic data generation for machine
learning emulators in weather and climate: application to a simple radiation model”

Major comments

Section 2.1 defines a general methodology for training ML models using either Observation-based 
training (OBT) or Emulation-based training (EBT).  However, it appears that these definitions are 
inconsistent with the methods used in the paper. From what I can work out, the different methods are:

A.   OBT (as defined): Train ML model on inputs X and outputs Y. The source of X and Y is not 
defined, but is presumably observations, pseudo-observations or the like.
A.   OBT (as implemented): Inconsistent with A (as defined), since Y comes from a physical model 
fed with X like in method C (EBT). In other words, A is not implemented, only C. 

B.  OBT with data generation (as defined): Train ML model on inputs X’ and outputs Y’, where X’ and 
Y’ is synthetic data created using a data generation model (copula) fitted to X, Y. The source of X and Y
is not defined, but is presumably observations, pseudo-observations or the like.
B.   OBT with data generation (as implemented): Inconsistent with B (as defined), since Y comes from
a physical model fed with X like in EBT.

C.   EBT (as defined): Train ML model on inputs X and outputs Y, where Y has been generated by 
feeding inputs X to a physical model. 
C.   EBT (as implemented): Consistent with C (as defined), X comes from satellite data and Y comes 
from a toy physical model fed with X.

D.  EBT with data generation (as defined): Train ML model on inputs X’ and outputs Y’, where inputs 
X’ have been created using a data generation model (copula) fitted to X, and outputs Y’ come from a 
physical model fed with X’. 
D.  EBT with data generation (as implemented):  Otherwise consistent with D (as defined), but X 
and Y are included in training data.

Claims to study the use of synthetic data for OBT in this paper are weak in the absence of 
observationally sourced outputs. If such data is unavailable or obtaining it is outside the scope of this 
work then my suggestion then the methodology should be reframed. Alternatively, make it clear that B 
is implemented in such a way to only mimic the defined method, in the absence of suitable data, and 
argue why this is valid. 



Figure 1 is also inconsistent with the methods used. This figure should either be changed to describe 
the actual implementation, or a second figure with those could be made, something like this:
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Minor comments:

L25: Chevallier and Krasnopolsky laid out the initial work but newer studies should be mentioned, e.g.
Ukkonen et al. (2020) and Veerman et al. (2021). A lot of work has also been done recently to train 
NNs on data from cloud-resolving models (e.g. Brenowitz et al. 2018, Gentine et al. 2018, Rasp et al. 
2018), which I’m not sure if it fits the authors definition of EBT (since X and Y has the same source) 
but it’s important to place the present work in the context of the wider literature. 

L35-46; section 2.1: another approach for “EBT with data generation”, which is probably worth 
mentioning, is to simply sample the multidimensional input space rigorously using either random 
methods such as Latin hypercube sampling, or deterministic methods such as a Halton sequence. As 
demonstrated by Ukkonen et al. (2020), who sampled gas concentrations uniformly while keeping the 
dependencies of pressure and temperature intact, this can work well for difficult problems where 
generating outputs with physical models is cheap (EBT).   

Whether it’s better to train ML models on “realistic” datasets where the observed dependencies 
between inputs are respected, or on “dense and wide” data which sample the input space (N-
dimensional hypercube) more uniformly, is to me nontrivial. On one hand, the latter may result in more
generalizable models which also learn the underlying physics more effectively, assuming that the input-
output mapping given by the physical model remains to some extent rooted in physics throughout this 
expanded input space. On the other hand, it may come at a significant cost in model complexity and 
computational resources. It’s even possible that minimizing errors across the domain space comes at 
the expense of degraded performance on real datasets, regardless of model complexity, due to imperfect
information. This would certainly encourage the use of approaches presented here, e.g. copulas, which 
respect the observed statistical distributions. (If the authors are aware of any studies on this I would be 
interested to know.)



L69: Before seeing the results, is strategy B a legitimate approach? It may be useful but I have not seen
it being used. Fitting a simpler statistical model (copula) on observations and using it to create 
synthetic inputs and outputs to train a more complex statistical model (ML) seems a bit odd - does it 
actually extract any new information?

L85: The use of cloud optical depth instead of total optical depth for predicting longwave radiation 
only makes sense when the outputs come from a toy model and not observations, since clear-sky 
absorption is important for observed long-wave radiation. Again,  due to the confusing overview of 
methods (2.1) the unobservant reader might think a method where the outputs come from observations 
is included, in which case the chosen inputs appear strange. 

L90: “We then define case A (or C) as the baseline..” Here it first becomes apparent that both A and C 
are not used in this paper. The authors seem to redefine A to be equal to C, as they do not have 
observations to use as target outputs for Observation-based training (A), but then it should be made 
clear that strategy A is in fact not implemented.   

Sections 2.3.2 - 2.3.4: For someone who was unfamiliar with copulas, this served as a good and clear 
introduction for the most part, but I am left confused about what kind of assumptions/parameters the 
“Vine-parametric” copula uses to model the dependence of two variables? 

L230:  “using the source X or augmented X’ data depending on the strategy (i.e. OBT or EBT).” Again,
confusing - OBT is not actually implemented. Furthermore, in Figure 1, X and X’ are used in both 
strategy B (OBT-Augmented) and strategy D (EBT-Augmented), which is inconsistent with the 
highlighted sentence. 

Figure 3. Perhaps a diagonal 1:1 line would aid interpretation, but this is a matter of style.

Figure 5 d). These results are good and quite interesting. 
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