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Abstract

Can we improve machine learning (ML) emulators with synthetic data? The-use-efreallf data fortraining Mbmedelsisoften

relies—onthe useof real-data—datasets: and a physical model is available, statistically generated data may be useful for

augmenting training sets cheaply. Here we investigate—whetherexplore the use of copula-based models for generating
synthetically- augmented datasets improvestheprediction-ef-MLemulatorsforestimatingthe-in weather and climate by
testing the method on a toy physical model of downwelling longwave radiation- and corresponding neural network emulator.
Results show that bulk-errorsare-cutby-up-te75%for the-mean-bias-error{from-0-08to—-0-02-\W-m?}and-copula-augmented
datasets, predictions are improved by up to 62 % {frem—1-17to-0-44-\W-—m=)}-for the mean absolute error—thus-showing
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(from 1.17 t0 0.44 W m™).

1. Introduction

The use of machine learning (ML) in weather and climate is becoming increasingly popular (Huntingford et al., 2019;

Reichstein et al., 2019). ML approaches are being applied to an increasingly diverse range of problems such as improving the

modelling of radiation (e.g. Cheruy et al., 1996; Chevallier et al., 1998, 2000; Krasnopolsky et al., 2005; Meyer et al., 2021,

Ukkonen et al., 2020; Veerman et al., 2021), ocean (e.g. Bolton and Zanna, 2019; Krasnopolsky et al., 2005), chemistry (e.g.

Nowack et al., 2018), convection (e.g. Krasnopolsky et al., 2013), the representation of sub-grid processes (e.g. Brenowitz

and Bretherton, 2018; Gentine et al., 2018; O’Gorman and Dwyer, 2018; Rasp et al., 2018), and the post-processing of model

outputs (e.g. Krasnopolsky and Lin, 2012; Rasp and Lerch, 2018).

When it comes to training ML models for weather and climate applications two main categories may be identified: one where

input and output pairs are directly provided (e.g. where both come from observations), and a second where inputs are

provided but corresponding outputs are generated through a physical model (e.g. parameterization schemes or even a whole

weather and climate model). Although the former may be considered the most common training strategy in use today, when

the underlying physics is well understood (e.g. radiative transfer) and numerical codes are available, the latter may be of
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particular interest for developing one-to-one emulators (i.e. statistical surrogates of their physical counterparts) which can

be used to improve computational performance for a trade-off in accuracy (e.g. Chevallier et al., 1998; Meyer et al., 2021,

Ukkonen et al., 2020; Veerman et al., 2021). Here, for clarity, we will only be focusing on the latter case and refer to them as

emulators throughout the paper.

In ML, the best way to make a model more generalizable is to train it on more data (Goodfellow et al., 2016). However,

depending on the specific field and application, input data may be scarce, representative of only a subset of situations and

domains, or in the case of synthetically generated data, may require large computational resources and bespoke

infrastructures, or specific domain knowledge. For example, generating atmospheric profiles using a general circulation

model (GCM) may require in-depth knowledge of the GCM and large computational resources (e.g. NWP-SAF datasets used

for training emulators in Mevyer et al., 2021).

A possible solution to these issues may be found by augmenting the available input dataset with more samples. Although

this may be a straightforward task for classification problems (e.g. by translating or adding noise to an image), this may not

be the case for parameterizations of physical processes used in weather and climate models. In this context, it is common to

work with high dimensional and strongly dependent data (e.g. between physical quantities such as air temperature, humidity,

and pressure across grid points), and although this dependence may be well approximated by simple physical laws (e.g. the

ideal gas law for conditions found in the Earth’s atmosphere), this is often not the case, making the generation of

representative data across multiple dimensions challenging (e.g. the nonlinear relationship between cloud properties,

humidity and temperature).

To serve a similar purpose to that-efreal data, synthetically generated data thus need to preserve the statistical properties
of real data in terms of the-individual behaviour and (inter-)dependences. Several methods may be suitable for generating
synthetic data generation such as copulas (e.g. Patki et al., 2016), variational autoencoders (e.g. Wan et al., 2017) and, more
recently, generative adversarial networks (GANs; e.g. Xu and Veeramachaneni, 2018). Although the use of GANs for data
generation is becoming increasingly popular amongst the core ML community, these require multiple models to be trained,
leading to difficulties and computational burden (Tagasovska et al., 2019). Variational approaches, on the other hand, make
{strong} distributional assumptions, potentially detrimental to the-generative medelmodels (Tagasovska et al., 2019).
Compared to black-box deep learning models, the training of {vine} copulas is relatively easy and robust, while taking away
a lot of guesswork in specifying hyperparameters and network architecture. Furthermore, copula models give a direct

representation of the-statistical distribution,—which-makesdistributions, making them easier to interpret and tweak after

training. As such, the-use-ef-copula-based models have been shown to be effective infor generating synthetic data-thatare
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very-clese, comparable to the real data_in the context of privacy protection (Patki et al., 2016)-in-the-context-of privacy
sretestions,

The goal of this paper is to determine-whethertrainingimprove ML medels-with-syntheticallyaugmented-datasetsimproves

ac idantifiad o in Ml madalc in 3 mathad h "

be-—generalizablebeyondemulators by augmenting the seope—of-thispaper{section2)and-implementitusinga-simple
radiatien-physical-cepula-and-Mbmedel{ model’s inputs using copulas. We give a brief overview of methods in section 2.1
with specific implementation details in sections 2:22.2-2.6)\We then-evaluateresults using separate-errormetriesforcopula
ard-MEmedels{. Results are shown in section 3}andrepertthem{3, with a focus on evaluating synthetically generated data
in section 4)}-before-coneluding3.1 and ML predictions in section 3.2. We conclude with a discussion and prospects for future

research {in section 5}.4.

2. Material and methods
2.1 Overview

The general method for training a ML medelemulator involves the use of paired inputs X = {x;, ..., x,} and outputs Y =

{¥1, -, Y} to-preduce—weights w-that-correspendcorresponding to the best function approximation for a specific model
architecture and configuration. For inference, the trained ML medelusesthe previeushy-learned-weightswemulator is then
used to predict new outputs Y* from uhseen-inputs X*. ia-the-contextofweatherOutputs ¥ are generated through a physical

model from X, and elimatetwo-mainfed to the ML emulator for training strategiesmay-be-identifiedobservation(Figure 1
A). In this paper we introduce an additional step, that is, augmentation through copula-based trainirg{OBT:-synthetic data

generation (Figure 1-A
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B). The method is demonstrated with a toy model of downwelling radiation as the physical model (section 2.4) and a simple
125 feedforward neural network (FNN) as the ML emulator (section 2.5). To evaluate the impact of copula-generated synthetic data on
predictions we focus on predictingFigure slasiategiesidendficd-fortniningmachinalesming M -rredelsinvestherand-climate:

130

vertical profiles of longwave radiation

from those of dry-bulb air temperature, atmospheric pressure, and cloud optical depth-_(other parameters affecting

longwave radiative transfer, such as gas optical depth, are treated as constant in the simple model described in section 2.4).




135

140

145

150

This task is chosen at it allows us to: (i) evaluate copula-based models for generating correlated multidimensional data (e.g.
with dependence across several quantities and grid points), some of which (e.g. cloud optical depth) are highly non-Gaussian;
(ii) develop a simple and fast toy physical model that may be representative of other physical parameterizations such as
radiation, {urban)-land surface, urban, cloud, or convection schemes; and (iii) develop a fast and simple ML medelemulator
used to compute representative statistics. We-thenHere we define case A {erE}-as the baseline and generate six different
subcases fremfor case B-and-B;each using (i) three levels of data augmentation factors (i.e. either 1x, 5x or 10x the number

of profiles in the real dataset), and (ii) generated from three different copula elasses-

types. In the following sections we give background information and specific implementation details about the general
method used for setting up the source data (section 2.2), data generation (section 2.3), target generation (section 2.4), and

estimation training (section 2.5) as shown in Figure 1.

(A) Baseline (B) Augmentation

1. Source data

(

2. Data generation Generative Model

3. Target generation Physical Model Physical Model

4. Estimator training Prediction Model

\

Figure 1.

General strategies identified for training ML emulators. (A) inputs X are fed to the physical model to generate corresponding outputs
Y; X and Y used to train the ML emulator. (B) a data generation model (here copula) is fitted to inputs X to generate synthetic inputs
X'; inputs X and X’ are fed to the physical model to generate corresponding outputs Y and Y’; both X and X', and Y and Y’ are used to
train the ML emulator. After training, the model (m; e.g. architecture and weights) is saved and used for inference on new data.
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2.2 Source Data

Herewe-defineaseurcedatasetinputs are derived from the EUMETSAT Numerical Weather Prediction Satellite Application
Facility (NWP-SAF}—dataset;
variablesEresmaa and McNally, 2014) dataset. This contains a representative collection of 25 000 atmospheric profiles
previously used to evaluate the performance of radiation models (e.g. Hegan-and-Matricardi,2020}Hocking et al., 2021;
Hogan and Matricardi, 2020). H-eentairsarepresentativecolection-of25-000-Profiles were derived from 137-vertical-prefiles

ef-the—atmesphere—frem—level global operational short-range ECMWF {Eurepean—Centre—forMedivm-RangeWeather
Fereeasts)-forecasts-fer137vertical-levels, correlated in more than one dimension (between quantities and spatially across

levels), and extending from top of the atmosphere (TOA; 0.01 hPa; level 1;}) to the surface (bottom of the atmosphere; BOA;
level 137). Heretacorapaie OB ane ER T shmtoaios e crontodnsrisinpuis X aadariouis Lsartitions fable 1l ac folloyys:
X-contains-vertiealconsist of profiles of dry-bulb air temperature (T in K; Figure 2a), atmospheric pressure (p in hPa; Figure
2b), and derivedcloud layer eleud-optical depth (t.; Figure 2c) with 7. derived from other variables-inthe NWWP-SAF dataset
quantities to simplify the ereationdevelopment of models as described in thispaper{section 2.4} ¥-containsvertical. T, p,
and 7. are then used as inputs to the physical model (section 2.4) to compute outputs Y containing profiles of downwelling
longwave radiation (L' in W m2; Figure 2d}-computed-from the physical-model{section 2.4} We then-use-X-and-Y-in-OBT
strategies{Figure1-A-and-B}and-only-X-in-EBT {Figure 1 Cand-D}.). Prior to bebeing used, the-source datasetisdata are
shuffled at random and split into three batches of 10 000 profiles (40 %) for training (XirainYe=m), 5 000 (20 %) for validation

(Xvalidationm¥vanaansn ), and 10 000 (40 %) for testing (XiestingrYeesemg)ane—+eferred-to-assueh-througheut-the-paper:

Furthermere,as). As both copula and ML sedelsemulators work on two-dimensional data, datasets are eenvertedreshaped

to a matrix with samples as rows and flattenflattened profiles per guantitiesquantity as columns. To compute plots and

statistics, the-data are reconstructed to their original shape.
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Figure 2. Profiles of (a) dry-bulb air temperature, (b) atmospheric pressure, (c) cloud layer optical depth,{d)}-dewnwelling-longwave
radiation from the NWP-SAF dataset {25-000-profiles;-Eresmaa-and-MeNally,2014).(25 000 profiles; Eresmaa and McNally, 2014) and

corresponding profiles of longwave radiation computed using the toy physical model described in section 2.4. Profiles are ordered using
band depth statistics (Lopez-Pintado and Romo, 2009) and shown for their most central (median) profile and grouped for the central 0—
25 %, 25 -50 % and 50 — 100 %.
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Table 1. Profiles of input and output quantities used in this study. Input quantities are dry-bulb air temperature T, atmospheric
temperature p and cloud layer optical depth 7.. T and p are taken directly from the NWP-SAF dataset {Eresmaa—and-MeNally;
2014)(Eresmaa and McNally, 2014). T, is derived from other quantities as described in section 2.4. The output quantity iss<downwelling
longwave radiation L' and-is computed using the physical model described in section -2.4. The-rumberof-atmoesphericAtmospheric
model levels isare 137 for full levels (FL) and 138 for half levels (HL).

Symbol Name Unit Dimension
(a) Inputs

T Dry-bulb air temperature K FL

14 Atmospheric pressure Pa FL

T, Cloud optical depth 1 FL

(b) Output

L Downwelling longwave radiation W m? HL

2.3 Data generation

Data generation is used to generate additional input samples (here-the atmospheric profiles) to be fed to the physical (section
2.4) and ML (section 2.5) medelemulator. Optimally, these-synthetically generated data should resemble the observed data
as closely as possible with regardrespect to (i) the individual behaviour of variables (e.g. the dry-bulb air temperature at a
specific level), and (ii) the dependence across variables and dimensions (e.g. the dry-bulb air temperature across two levels).

Copulas are statistical models that allow te-disentangle-these two aims_to be disentangled (Trivedi and Zimmer, 2006; Joe,

2014) and to generate new samples that are statistically similar to the original data in terms of their individual behaviour and

dependence.

2.3.1 Background on copula models

Suppose we want to generate synthetic data from a probabilistic model for dn variables Zy, ...,%4zZ,,. To achieve the first
aim, we need to find appropriate marginal cumulative distributions F, ... ,¥zF,. A simple approach is to approximate them
by the corresponding empirical distribution functions. To achieve the second aim, however, we need to build a model for the
joint distribution function F(zy, ..., %47,). The key result, Sklar’s theorem (Sklar, 1959), states that any joint distribution

function can be written as

10
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F(zy,..,2,) = C(Fl(zl), . Fn(zn)). (D

The function C is called copula and encodes the dependence between variables.

Copulas are distribution functions themselves. More precisely, if all variables aare continuous, C is the joint distribution of
the variables U; = F,(Z,), ..., ¥5U,, =¥3F,(44Z,). This fact facilitates estimation and simulation from the model. To
estimate the copula function C, we (i) estimate marginal distributions ﬁl ) e ,ﬁ@ﬁn, (ii) construct pseudo-observations ﬁl =
Fi(Z)), .., 85U, =EF, (447,), and (iii) estimate C from the pseudo-observations. Then, given estimated models C,
ﬁl, ,ﬁ@ﬁn for the copula and marginal distributions, we can generate synthetic data as follows:

1. Simulate random variables Uy, ..., Uy, from the estimated copula C.

2. DefineZy = Fy (X)), v\ ZaZy =FEa B (Xur).

2.3.2 Parametric copula families

In practice, it is common to only consider sub-families of copulas that are conveniently parametrized. There is a variety of
such parametric copula families. Such families can be derived from existing models for multivariate distributions by inverting

the equation of Sklar's theorem:

C(uy, o, Up) = F(FT (uy), -, Fy (). (2)
For example, we can take F as the joint distribution function of a multivariate Gaussian and Fj, ...,#F,, as the corresponding
marginal distributions. Then the-display-abeveequation 2 yields a model for the copula called Gaussian copula, which is
parametrized by a correlation matrix. The Gaussian copula model subsumes all possible dependence structure in a
multivariate Gaussian distribution. The benefit comes from the fact that we can combine a given copula with any type of
marginal distributions, not just the ones the copula was derived from. That way, we can build flexible models with arbitrary
marginal distributions and Gaussian-like dependence. The same principle applies to other multivariate distributions and
many copula models have been derived, most prominently the StudentStudent’s t copula and Archimedean families. A

comprehensive list can be found in Joe (2014).

11
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2.3.3 Vine copula models

When there are more than two variables (dn > 2) the fypestype of dependence structures these models can generate is
rather limited. Gaussian and Student copulas only allow for symmetric dependencies between variables. Quite often,
dependence is asymmetric, however. For example, dependence between Z; and Z, may be stronger when both variables
take large values. Many Archimedean families allow for such asymmetries but require all pairs of variables to have the same

type and strength of dependence.

Vine copula models (Aas et al., 2009; Czado, 2019) are a popular solution to this issue. The idea is to build a large dependence
model from only two-dimensional building blocks. We can explain this with a simple example with just three variables
Zy,Z,,Z3. We can model the dependence between Z; and Z, by a two-dimensional copula C;, and the dependence
between Z, and Z3 by another, possibly different, copula C; 3. These two copulas already contain some information about
the dependence between Z; and Z3, the part of the dependence that is induced by Z,. The missing piece is the dependence
between Z; and Z; after the effect of Z, has been removed. Mathematically, this is the conditional dependence between Z;
and Z; given Z, and can be modeled by yet another two-dimensional copula C; 3/,. The principle is easily extended to an
arbitrary number of variables Z,, ...,ZzZ, . Algorithms for simulation and selecting the right conditioning order and

parametric families for each (conditional) pair are given in DiBman et al. (2013).

Because all two-dimensional copulas can be specified independently, such models are extremely flexible and allow for highly
heterogenous dependence structures. Using parametric models for pair-wise dependencies remain a limiting factor,
however. If necessary, it is also possible to use nonparametric models for the two-dimensional building blocks. Here, the

joint distribution of pseudo-observations ﬁl, UZ is estimated by a suitable kernel density estimator (see Nagler et al., 2017).

2.3.4 Implementation

Here we use the Synthia {Meyerand-Nagler,2620);software (Meyer and Nagler, 2021) to fit three different copula types:

Gaussian, Vine-parametric, Vine-nonparametric. Vine-parametric fits a parametric model for each pair in the model from the

catalogue of Gaussian, Student, Clayton, Gumbel, Frank, Joe, BB1, BB6, BB7, BB8 copula families and their rotations (see Joe,

2014, for details on these families) using the AIC criterion. Vine-nonparametric uses transformation local quadratic likelihood
fitting as explained in Nagler et al. (2017). Each copula model is fitted to the training set X 4in-ir-OBF—=and-to-beth Xy
ahe-Ymmsets+-EBT.. To evaluate the impact of copula-augmented datasets-en-the-Mtinference, we generate synthetic

profiles with augmentation factors of 1x, 5x, and 10x the number of profiles ireluded-in the source training dataset (i.e. 10

12
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000 profiles). These are then used to create augmented versions of training datasets, here-defined as X'qin2re-Yemms,

each containing the source plus the synthetically generated profiles (i.e. with 20 000, profiles, or double the amount of

training data, for 1x augmentation factor, and 60 000,—e+ and 110 000 profiles} for 5x and 10x augmentation factors

respectively). As the generation of new profiles with copula models is random, the generation is also repeated 10 times for

each case to allow for meaningful statistics to be computed.

2.4 Target generation

Target generation {Figure1-C-D}-is used in-EBTs-to generate outputs Y from corresponding inputs- X using a physical model.

target-generation-to-computeoutputsforthe source-dataset ¥-in-OBTstrategies—Hn-alleases, outputs ¥ are computed using

a simple toy model based on Schwarzschild’s equation (e.g. Petty, 2006) to estimate the downwelling longwave radiation

under the assumption that atmospheric absorption does not vary with wavelength; as:

e

(NP 1 JZRY
dz AP ol T A i 7
dL .
——=a@|[B(z) - '] 3)

where z is the geometric height, B is the Planck function at the-temperatureat-level z (i.e. B = aggT*, where ogg is the
Stefan-Boltzmann constant; giving the flux in W m2 emitted from a horizontal black body surface), and a is the rate at which
radiation is intercepted/emitted. A common approximation is to treat longwave radiation travelling at all angles as if it were
all travelling with a zenith angle of 53 degrees (Elsasser, 1942): in this case a = D3, where f3, is the extinction coefficient of
the medium, and D = 1:66-=1/cos{533(53) = 1.66 is the diffusivity factor, which accounts for the fact that the effective
path length of radiation passing through a layer of thickness Az is on average 1.66Az due to the multiple different angles of
propagation. In the context of ML, a(z) and B(z) are known and F(z) is to be predicted. Here we use the difference in two
atmospheric pressures expressed in sigma coordinates (Ag, where ¢ is the pressure p at a particular height divided by the
surface pressure p,) instead of z. The eleud-layer optical depth t = S,Az is calculated from the total--column gas optical
depth 7,4 and cloud layer eleuc-optical depth 7, as T = 7, + 74 Ag; as, since Ag is the fraction of mass of the full atmospheric
column in layer i. Then, as the downwelling flux at the top of the atmosphere is 0, the equation is discretized as follows

assuming B and a are constant within a layer:

L. = L (1 \ L D o (2
—3 AY 77 = =7

13
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L'io1jz = L'y (1 =€) + Biey, (4)
where B; is the Planck function of layer i, €; = 1 — e %% = 1 — eP% is the emissivity of layer i, F;_;glei+1/2 is the
downwelling flux at the top of layer i, and F‘{:lei—l/z is the downwelling flux at the bottom of layer i. We compute L in
W m=2from T in K, p in Pa, and 7, using the source X or augmented X’ data-dependingon-thestrategy{i-e-OBTerEBT). To
reduce, and thus simplify, the number of quantities used in the physical model and ML medelsemulator (section 2.5), 7. is

pre-computed and used instead of vertical profiles of liquid and ice mixing ratios (q; and q;-in-3}) and effective radius (r; and

. 34 i
rin m)as——p(i+L

), where p; is the density of liquid water (1 000 kg m3), p; is the density of ice (917 kg m3), g is the
2 g \piry piti

standard gravitational acceleration (9.81 m s2). For T, we use a constant value of 1.7 determined by minimizing the absolute
error between profiles computed with this simple model and the comprehensive atmospheric radiation scheme ecRad

(Hogan and Bozzo, 2018).

2.5 Estimator training

{Abadi-et-al-2045)As the goal of this paper is to determine whether the use of synthetic data improves the prediction of ML

emulators, here we implement a simple feedforward neural network (FNN). FNNs are one of the simplest and most common

neural networks used in ML (Goodfellow et al., 2016) and have been previously used for similar weather and climate

applications (e.g. Chevallier et al., 1998; Krasnopolsky et al., 2002). FNNs are composed of artificial neurons (conceptually

derived from biological neurons) connected with each other where information moves forward from the input nodes,

through hidden nodes. The multilayer perceptron (MLP) is a type of FNN composed of at least three layers of nodes: an input

layer, a hidden layer, and an output layer with all but the input nodes using a nonlinear activation function.

14
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Here we implement a simple an MLP consisting of 3 hidden layers with 512 neurons each. This is implemented in TensorFlow

(Abadi et al., 2015), and configured with elu activation function, Adam optimizer, Huber loss, 1 000 epochs limit, and early
stopping with patience of 25 epochs. The MLP is trained with profiles of dry-bulb air temperature (T in K; Figure 2a),
atmospheric pressure (p in hPa; Figure 2b), and layer cloud optical depth (z.; Figure 2c) as inputs, and profiles of longwave
downwelling longwave radiation (L' in W m?; Figure 2d) as outputs. Inputs are normalized and both inputs and outputs are
flattened into feature vectors. The baseline case (Figure 1 A-erE}-use) uses 10 000 input profiles without data augmentation
{re—usirg Xpgmane-Yome-for training and copula-based cases (Figure 1 B-and-B) use either 20 000, 60 000, or 110 000
profiles-fi-e—using X gmmane ¥ amm)- The validation dataset Y, )idation O 5 000 profiles is used as input for the early stopping
mechanism while the test dataset Y;os: of 10 000 profiles is used to compute the-error statistics using-evaluation-metries
described in section 3:2:3.2. Because of the stochastic nature of the-MLP-usedMLPs, training (and inference) is repeated 10
times for each case to allow for meaningful statistics to be computed. Given that the generation of random profiles in the
case of augmented datasets (¥ gomandY s s also repeated 10 times (see section 2.3.4}), all cases usingthat also use
data generation comprise of 100 iterations in total (i.e. for each data generation run, wethe estimator is run-the-MtFfitting

10 times).

Results

3

3.1 Copula

The quality of synthetic data is assessed in terms of summary statistics (e.g. Seitola et al., 2014) between the training X;;ain

and

15
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trainingstrategyscopula-simulated X' .., datasets. For each copula type we compute a vector of summary statistics §; =

f(P;) where f is the statistic function and P; = Dw;, with D a matrix of flattened source or simulated data and w a vector
of random numbers from the ith iteration. Summary statistics are then-computed for mean, variance, and quantiles, iterating
100 times to allow for meaningful statistics to be computed. As we consider random linear combinations of variables in
source and copula-generated data, we expect these summaries to coincide only if both marginal distributions and

dependence between variables are captured.

RBE MAE
N
-}E -}E
N ¢ N ¢
i=1 i=1

- Figure 3
shows scatterplots of summary statistics S; for-their (a) mean, (b) variance, (c) standard deviation, and (d) 10 %, (e) 50 % and
(f) 90 % quantiles. Summaries—of the-sourceReal NWP-SAF data are_shown on the x-axis while-summaries—efand copula-

generated data are-on the y-axis—Eaeh with each point esrrespendscorresponding to a random projection as described earlier

(100 points in total). For a perfect copula model, we expect all-the-simulated points to fall on the main diagonal where x =
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380 y. Figure 3 shows that for all the-copula models-and-configurations{with-eorwitheut-outputs)studied,—the, synthetically-

generated data are simitarclose to the real data, with larger errors in variance and standard deviation.
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Qualitatively, we can-alse evaluate copula-generated profiles in terms of their overall shape and smoothness across multiple

levels, and range and density at each level. To this end we plot a side-by-side comparison of source (Figure4Figure 4, left

390 panel) and Gaussian-copula generated-(Figure—4Figure 4, right panel) profiles showing the median profile and a-random

selection of 90 profiles grouped in batches of 3 (i.e. each having 30 profiles) for the central 0-25 % and outer 25-50 %, 50-
100 % quantiles, calculated with band depth statistics (Lopez-Pintado and Romo, 2009). Simulated profiles of dry-bulb air
temperature (Figure—4Figure 4b) appear less smooth than the real {Figure—4ajones across levels; (Figure 4a); however,
theirboth density and range are simulated well at each level. Simulated profiles of atmospheric pressure (Figure-4Figure 4d)
395 are simulated well;: they are smooth across all levels with a-similar range and density than-the-real{Figure-4e)(Figure 4c).
The highly non-Gaussian and spikey profiles of cloud optical depth (Figure—4Figure 4e) make a—qualitative

17



eemparisencomparisons difficult, but-thehowever simulated profiles (Figure-4Figure 4f) have a-similar range and density,
with high density for low values and most ef-the-range between levels 80 and 120—Finatly—~ceputa-simulated-prefilesof

100 a-similarrange-and-density.
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Figure 3. Summary statistics §; from 100 iterations for (a) mean, (b) variance, (c) standard deviation, and (d) 10 %, (e) 50 %

and (f) 90 % quantiles. Each point corresponds to a statistic for single iteration in arbitrary units. The x axis represents the

projection of the true data X,,in_While the vy axis that of the copula generated data X';,,in. Results reported for Gaussian,
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Figure 4. Profiles of (left) real and (right) Gaussian copula-generated data of (a-b) dry-bulb air temperature, (c-d) atmospheric pressure,

(e-f) cloud optical depth,—{g-h)}-downwellinglongwaveradiation.. Median profile shown in black and random selection of 90 profiles
grouped in batches of 3 (i.e. each having 30 profiles) for the central 0-25 % and outer 25-50 %, 50-100 % calculated with band depth

statistics (Lopez-Pintado and Romo, 2009).

4:23.2 Machine learning

defined-insection3-2againstTo evaluate whether ML emulators trained on augmented datasets have lower prediction errors

compared to the baseline, here we use the test dataset X,.; of 10 000 profiles defined in section 2.2. Statistics are computed

based on a vector of random variables representing differences d = (d;, ..., d;) between the physically predicted baseline
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420

425

430

435

440

445

Yiest and ML emulated V' os¢(i.e. d = Yiese — Y'test) for 1, ..., N_profiles. From this, the mean bias error (MBE =%Z§V=1 d;)

and mean absolute error (MAE :% N .ld;]) are computed.

Boxplots of but-MBE and MAE are shown in Figure 5-ferOBT{left}and-forEBT{right):. Summary butk-MBE and MAE for ML
medelsemulators with lowest MAE using an augmentation factor of 10x are reported in Table 2. A qualitative side-by-side

comparison of MLP-generatedbaseline and ML-predicted profiles using Gaussian copula-generated profiles with

augmentation factor of 10x and the-cerrespendingbaseline-are shown in Figure 6.

Gaussian copula model performs better than the Vine-parametric or Vine-nonparametric models. Fhis-medianMAE-with-1x
ionf . . W2 forG . 2 AW for\i . 2 6 W for Vi
MAEs in—EBT(Figure 5b) show a net

improvement from the baseline across all copula models and augmentation factors—{Figure—5¢}.. When using an

augmentation factor of 1x; (i.e. with double the amount of training data), the median MAE is reduced to approximately 1.1

W m? using-copula-models-from a baseline of approximately 1.4 W m™ and further reduced with increasing augmentation

factors. In the best case, corresponding to an augmentation factor of 10x (i.e. with an additional 100 000 synthetic profiles

added-to-the-trainingsource-dataset), the copula and ML medel-combinationproducing-theemulator combinations with
lowest values-of-MAE (Table 2) shewsshow that beth-MBE-and-MAEMBEs arereduced-from-the-baseline-case—TFhe-MBEis

reduced from a baseline of 0.08 W m™ to -0.02 and -0.05 W m? for Gaussian and Vine-nonparametric respectively but
increased to 0.10 W m for Vine-parametric. MAEs are reduced from a baseline of 1.17 W m™ to 0.45, 0.56 and 0.44 W m"

for Gaussian, Vine-parametric, Vine-nonparametric copula type respectively.

The ML training configuration te—achievewith the lowest overall MBE and MAE combination during inference
eorrespondcorresponds to a Gaussian copula and augmentation factor of 10x (Table 2). Bifferences{ererrersiErrors between

the physically predicted Yo and ML predicted Y’,.; are shown for the baseline (Figure 6a) and Gaussian copula (Figure 6b).
These are shown grouped by their central 0-25 % and outer 25-50 %, 50-100 %. Qualitatively most ML generated profiles

show improvements from to the baseline. For the most central 25 % profiles are within £20 W m2 for the Gaussian copula

21



case, and about +40 W m for the baseline case. Near surface errors (levels 130-BOA) are reduced to approximately 5 W m"

2 from approximately 10 W m2
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Figure 5. Training 2 Alrg z ¢ ainingErrors grouped by different copula
types (Gaussian: blue, Vme parametrlc yeIIow Vlne nonparametrlc red) and augmentatlon factors (1x, 5x, 10x) for the mean bias error
155 (MBE; a-b) and mean absolute error (MAE; e-db). The median for the baseline case is shown in black and the range shaded in grey.
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Table 2-Emulation-based-training-bulk-mean. Mean bias error (MBE) and mean absolute error (MAE) for baseline-ML-medel, and copula
and ML medelemulator combination preducing-thewith lowest values-of-MAE. Baseline case trained using 10 000 real profiles and
copula cases trainingtrained using augmented dataset containingof 110 000 profiles (10 000 real and 100 000 synthetic), i.e. with an

augmentation factor of 10x.

Case name MBE in W m™ MAE in W m?
Baseline 0.08 1.17
Gaussian -0.02 0.45
Vine-parametric 0.10 0.56
Vine-nonparametric -0.05 0.44

[a]

Predictions from baseline case with lowest MAE

[b]

Predictions from Gaussian copula case with lowest MAE
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[al Predictions from baseline case with lowest MAE [b] Predictions from Gaussian copula case with lowest MAE
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Figure 6. MLPrediction errors inpredicting-downwellinglongwaveradiation-for (a) baseline emulator and (b) emulation-based-training
strategydata augmentation emulator using 110 000 profiles (10x augmentation factor; Gaussian copula). The median (most central)
profile is shown in black and the most central 25 %, and outer 25 — 50 % and 50 — 100 % profiles are computed using band depth statistics
and shown in shades of blue.

54 Discussion and conclusion

Results from a qualitative comparison of synthetically generated profiles (Figure 4) shows that synthetic profiles tend to be

less smooth and noisier than the real ones. Nevertheless the machine learning evaluation shows that errors for emulators

trained with augmented datasets are cut by up to 75 % for the mean bias error (from 0.08 to -0.02 W m%,Table 2) and by up

to 62 % for the mean absolute error (from 1.17 to 0.44 W m%;Table 2).

Here we show how copula-based models may be used to improve the prediction of ML emulatorsResusfrom-the-machine
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This—is—dene by generating augmented datasets containing statistically similar profiles in terms of their individual

behavierbehaviour and dependence across variables (e.g. dry-bulb air temperature at a specific level and across tweseveral
levels). Although the focus of this paper is to evaluate copula-based data generation models thatto improve predictions_ of
ML emulators, we speculate that-the same or similar methods of data generation have the potential to be used in several
other ML-related applications such as to: (i) test Mtmedelarchitectures (e.g. instead of cross validation, one may generate
synthetic datasets of different sizessize to test the effect of-the sample size on different ML architectures); (ii) generate data
for un-encountered conditions (e.g. for climate change scenarios, by extending therange-efthe-data ranges, or relaxrelaxing
marginal distributions); (iii) data compression (e.g. by storing reduced parameterized versions of the data if the number of

samples is much larger than the number of features).

Although so far, we have only highlighted the main benefits of copula-based medelmodels, several limiting factors should
also be considered-based-en-the-specificproblem—and-application. A key factor for very high-dimensional data is that both
Gaussian and Vine copula models scale quadratically in the number of features —in terms of both memory and computational
complexity. This can be alleviated by imposing structural constraints on the model, for example using structured covariance
matrix or truncating the vine after a fixed number of trees. However, this limits their flexibility and adds some arbitrariness
to the modelling process. A second drawback compared to GANs is that the model architecture cannot be tailored to a
specific problem, like images. For such cases, a preliminary data compression step as in Tagasovska et al. (2019) may be

necessary.

As highlighted here, data generation—inEBT-strategiesaugmentation for ML emulators may be of particular interest to

scientists and practitioners looking to achieve a better generalization of their ML medelsemulators (i.e. synthetic data may
act as a regularizer to reduce overfitting; Shorten and Khoshgoftaar, 2019)-eréd-attheugh. Although a comprehensive analysis
of prediction errors using different ML-+redel architectures is out of scope, our work is a first step towards further research
in this area. Moreover, although we did not explore the generation of data for un-encountered conditions (e.g. by extending

the range of air temperature profiles while keeping a meaningful dependency across other quantities and levels), the use of
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520 copula-based synthetic data generation may prove useful to make emulators more resistant to outliers (e.g. in climate change

scenario settings) and should be investigated in future research.
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