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Abstract 

Can we improve machine learning (ML) emulators with synthetic data? The use of realIf data for training ML models is often 

the cause of major limitations. For example, real data may be (a) only representative of a subset of situations and domains, 

(b)are scarce or expensive to source, (c) limited to specific individuals due to licensing restrictions. Although the use of 

synthetic data is becoming increasingly popular in computer vision, the training of ML emulators in weather and climate still 15 

relies on the use of real data datasets. and a physical model is available, statistically generated data may be useful for 

augmenting training sets cheaply. Here we investigate whetherexplore the use of copula-based models for generating 

synthetically- augmented datasets improves the prediction of ML emulators for estimating the in weather and climate by 

testing the method on a toy physical model of downwelling longwave radiation. and corresponding neural network emulator. 

Results show that bulk errors are cut by up to 75 % for the mean bias error (from 0.08 to -0.02 W m-2) and copula-augmented 20 

datasets, predictions are improved by up to 62 % (from 1.17 to 0.44 W m-2) for the mean absolute error, thus showing 

potential for improving the generalization of future ML emulators.
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 (from 1.17 to 0.44 W m-2). 

1. Introduction 

The use of machine learning (ML) in weather and climate is becoming increasingly relevant (Huntingford et al., 2019; 25 

Reichstein et al., 2019). Two main strategies are currently identified for training ML models: one where input and output 

pairs are provided, and a second where inputs are provided, and outputs are generated using a physical model; here we 

define the former as observation-based training (OBT) and the latter as emulation-based training (EBT). Although OBTs are 

the most common training strategy currently used in ML, EBTs allow the creation of fast surrogate ML models (or emulators) 

to replace complex physical parameterisation schemes (e.g. Chevallier et al., 1998; Krasnopolsky et al., 2002; Nowack et al., 30 

2018). 

 

In ML, the best way to make a model more generalizable is to train it on more data (Goodfellow et al., 2016). Although this 

is fairly easy to do for classification tasks (e.g. by translating or adding noise to an image), this may not be the case for most 

regression tasks found in weather and climate. In this context, it is common to work with high dimensional and strongly 35 

dependent data (e.g. between physical quantities such as air temperature, humidity, and pressure across grid points), and 

although this dependence may be well approximated by physical laws (e.g. the ideal gas law for conditions found in the 

Earth’s atmosphere), the generation of representative data across multiple dimensions is challenging. 

 

The use of machine learning (ML) in weather and climate is becoming increasingly popular (Huntingford et al., 2019; 40 

Reichstein et al., 2019). ML approaches are being applied to an increasingly diverse range of problems such as improving the 

modelling of radiation (e.g. Cheruy et al., 1996; Chevallier et al., 1998, 2000; Krasnopolsky et al., 2005; Meyer et al., 2021; 

Ukkonen et al., 2020; Veerman et al., 2021), ocean (e.g. Bolton and Zanna, 2019; Krasnopolsky et al., 2005), chemistry (e.g. 

Nowack et al., 2018), convection (e.g. Krasnopolsky et al., 2013), the representation of sub-grid processes (e.g. Brenowitz 

and Bretherton, 2018; Gentine et al., 2018; O’Gorman and Dwyer, 2018; Rasp et al., 2018), and the post-processing of model 45 

outputs (e.g. Krasnopolsky and Lin, 2012; Rasp and Lerch, 2018). 

 

When it comes to training ML models for weather and climate applications two main categories may be identified: one where 

input and output pairs are directly provided (e.g. where both come from observations), and a second where inputs are 

provided but corresponding outputs are generated through a physical model (e.g. parameterization schemes or even a whole 50 

weather and climate model). Although the former may be considered the most common training strategy in use today, when 

the underlying physics is well understood (e.g. radiative transfer) and numerical codes are available, the latter may be of 
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particular interest for developing one-to-one emulators (i.e. statistical surrogates of their physical counterparts) which can 

be used to improve computational performance for a trade-off in accuracy (e.g. Chevallier et al., 1998; Meyer et al., 2021; 

Ukkonen et al., 2020; Veerman et al., 2021). Here, for clarity, we will only be focusing on the latter case and refer to them as 55 

emulators throughout the paper. 

 

In ML, the best way to make a model more generalizable is to train it on more data (Goodfellow et al., 2016). However, 

depending on the specific field and application, input data may be scarce, representative of only a subset of situations and 

domains, or in the case of synthetically generated data, may require large computational resources and bespoke 60 

infrastructures, or specific domain knowledge. For example, generating atmospheric profiles using a general circulation 

model (GCM) may require in-depth knowledge of the GCM and large computational resources (e.g. NWP-SAF datasets used 

for training emulators in Meyer et al., 2021). 

 

A possible solution to these issues may be found by augmenting the available input dataset with more samples. Although 65 

this may be a straightforward task for classification problems (e.g. by translating or adding noise to an image), this may not 

be the case for parameterizations of physical processes used in weather and climate models. In this context, it is common to 

work with high dimensional and strongly dependent data (e.g. between physical quantities such as air temperature, humidity, 

and pressure across grid points), and although this dependence may be well approximated by simple physical laws (e.g. the 

ideal gas law for conditions found in the Earth’s atmosphere), this is often not the case, making the generation of 70 

representative data across multiple dimensions challenging (e.g. the nonlinear relationship between cloud properties, 

humidity and temperature). 

 

To serve a similar purpose to that of real data, synthetically generated data thus need to preserve the statistical properties 

of real data in terms of the individual behaviour and (inter-)dependences. Several methods may be suitable for generating 75 

synthetic data generation such as copulas (e.g. Patki et al., 2016), variational autoencoders (e.g. Wan et al., 2017) and, more 

recently, generative adversarial networks (GANs; e.g. Xu and Veeramachaneni, 2018). Although the use of GANs for data 

generation is becoming increasingly popular amongst the core ML community, these require multiple models to be trained, 

leading to difficulties and computational burden (Tagasovska et al., 2019). Variational approaches, on the other hand, make 

(strong) distributional assumptions, potentially detrimental to the generative modelmodels (Tagasovska et al., 2019). 80 

Compared to black-box deep learning models, the training of (vine) copulas is relatively easy and robust, while taking away 

a lot of guesswork in specifying hyperparameters and network architecture.  Furthermore, copula models give a direct 

representation of the statistical distribution, which makesdistributions, making them easier to interpret and tweak after 

training. As such, the use of copula-based models have been shown to be effective infor generating synthetic data that are 
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very close, comparable to the real data in the context of privacy protection (Patki et al., 2016) in the context of privacy 85 

protection.. 

 

The goal of this paper is to determine whether trainingimprove ML models with synthetically augmented datasets improves 

predictions. Here, we first summarize and formalize four main strategies identified to train ML models in a method that may 

be generalizable beyondemulators by augmenting the scope of this paper (section 2) and implement it using a simple 90 

radiation physical, copula and ML model ( model’s inputs using copulas. We give a brief overview of methods in section 2.1 

with specific implementation details in sections 2.22.2-2.6). We then evaluate results using separate error metrics for copula 

and ML models (. Results are shown in section 3) and report them (3, with a focus on evaluating synthetically generated data 

in section 4) before concluding3.1 and ML predictions in section 3.2. We conclude with a discussion and prospects for future 

research (in section 5).4. 95 

 

2. Material and methods 

2.1 Overview 

The general method for training a ML modelemulator involves the use of paired inputs 𝑋 = {𝒙ଵ, … , 𝒙} and outputs 𝑌 =

{𝒚ଵ, … , 𝒚} to produce weights 𝒘 that correspondcorresponding to the best function approximation for a specific model 100 

architecture and configuration. For inference, the trained ML model uses the previously learned weights 𝒘emulator is then 

used to predict new outputs 𝑌∗ from unseen inputs 𝑋∗. In the context of weatherOutputs 𝑌 are generated through a physical 

model from 𝑋, and climate, two main fed to the ML emulator for training strategies may be identified: observation(Figure 1 

A). In this paper we introduce an additional step, that is, augmentation through copula-based training (OBT; synthetic data 

generation (Figure 1 A and B) and emulation-based training (EBT; Figure 1 C and D). In the former, both 𝑋 and 𝑌 are used to 105 

train the ML model. In the latter, 𝑌 is first generated with a physical model from 𝑋, and fed to the ML model for training. 

Although OBT strategies are more common, EBT may be useful to create surrogate ML models (i.e. emulators) that are faster, 

but only slightly less accurate, than their physical counterparts (e.g. Chevallier et al., 1998). In this paper we introduce an 

additional step, that is, the generation of synthetic data (Figure 1 B and D), with the goal of improving the prediction of ML 

models. We define a general methodology (Figure 1) for training ML models using OBT and EBT strategies, and with (Figure 110 

1 B and D) or without (Figure 1 A and D) data generation, as follows: 

 

A. OBT: Standard method for training ML models. Inputs 𝑋 and outputs 𝑌 are used to train the ML model (Figure 1 A). 
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B. OBT with data generation: Generation of synthetic samples for training ML models. A data generation model (here 

copula) is fitted to both inputs 𝑋 and outputs 𝑌 to generate synthetic inputs 𝑋ᇱ and outputs 𝑌′. 𝑋ᇱ and 𝑌′ are used to 115 

train the ML model (Figure 1 B). 

C. EBT: Standard method for training ML emulators. Inputs 𝑋 are fed to the physical model to generate corresponding 

outputs 𝑌. 𝑋 and 𝑌 used to train the ML model (Figure 1 C). 

D. EBT with data generation: Generation of synthetic samples for training ML emulators. A data generation model (here 

copula) is fitted to inputs 𝑋 only to generate synthetic inputs 𝑋′. Inputs 𝑋ᇱ are fed to the physical model to generate 120 

corresponding outputs 𝑌′. 𝑋ᇱ and 𝑌′ are used to train the ML model (Figure 1 D). 

 

 
 B). The method is demonstrated with a toy model of downwelling radiation as the physical model (section 2.4) and a simple 
feedforward neural network (FNN) as the ML emulator (section 2.5). To evaluate the impact of copula-generated synthetic data on 125 
predictions we focus on predictingFigure 1. Main strategies identified for training machine learning (ML) models in weather and climate: 
(A) traditional method for training using input and output pairs and (C) if a physical model is available (model emulation) the 
corresponding output targets are generated by a physical model. B and D are the same as A and C respectively with the addition of data 
generation (this paper). 

 130 

To evaluate whether ML models trained with both real and synthetic data (i.e. B and D) have a lower prediction error than 

those trained with only the real data (i.e. A or C), here we focus on the prediction of vertical profiles of longwave radiation 

from those of dry-bulb air temperature, atmospheric pressure, and cloud optical depth. (other parameters affecting 

longwave radiative transfer, such as gas optical depth, are treated as constant in the simple model described in section 2.4). 
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This task is chosen at it allows us to: (i) evaluate copula-based models for generating correlated multidimensional data (e.g. 135 

with dependence across several quantities and grid points), some of which (e.g. cloud optical depth) are highly non-Gaussian; 

(ii) develop a simple and fast toy physical model that may be representative of other physical parameterizations such as 

radiation, (urban) land surface, urban, cloud, or convection schemes; and (iii) develop a fast and simple ML modelemulator 

used to compute representative statistics. We thenHere we define case A (or C) as the baseline and generate six different 

subcases fromfor case B and D, each using (i) three levels of data augmentation factors (i.e. either 1x, 5x or 10x the number 140 

of profiles in the real dataset), and (ii) generated from three different copula classes. 

 

types. In the following sections we give background information and specific implementation details about the general 

method used for setting up the source data (section 2.2), data generation (section 2.3), target generation (section 2.4), and 

estimation training (section 2.5) as shown in Figure 1. 145 

 

Figure 1.  

General strategies identified for training ML emulators. (A) inputs 𝑿 are fed to the physical model to generate corresponding outputs 
𝒀; 𝑿 and 𝒀 used to train the ML emulator. (B) a data generation model (here copula) is fitted to inputs 𝑿 to generate synthetic inputs 
𝑿′; inputs 𝑿 and 𝑿ᇱ are fed to the physical model to generate corresponding outputs 𝒀 and 𝒀′; both 𝑿 and 𝑿ᇱ, and 𝒀 and 𝒀′ are used to 150 
train the ML emulator. After training, the model (𝒎; e.g. architecture and weights) is saved and used for inference on new data. 
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2.2 Source Data 

Depending on the strategy used, source data may (i) be used as input to the prediction, generative, or physical model, (ii) 

contain input and output pairs or inputs only, (iii) consist of real or synthetically generated data (Figure 1). Furthermore, 

depending on whether source data are used for training or for inference, different subsets may be used at different times. 155 

 

Here, we define a source datasetInputs are derived from the EUMETSAT Numerical Weather Prediction Satellite Application 

Facility (NWP-SAF) dataset; (Eresmaa and McNally, 2014). The NWP-SAF is a dataset of common meteorological 

variablesEresmaa and McNally, 2014) dataset. This contains a representative collection of 25 000 atmospheric profiles 

previously used to evaluate the performance of radiation models (e.g. Hogan and Matricardi, 2020)Hocking et al., 2021; 160 

Hogan and Matricardi, 2020). It contains a representative collection of 25 000 Profiles were derived from 137-vertical profiles 

of the atmosphere from -level global operational short-range ECMWF (European Centre for Medium-Range Weather 

Forecasts) forecasts for 137 vertical levels, correlated in more than one dimension (between quantities and spatially across 

levels), and extending from top of the atmosphere (TOA; 0.01 hPa; level 1;)) to the surface (bottom of the atmosphere; BOA; 

level 137). Here, to compare OBT and EBT strategies, we create inputsInputs 𝑋 and outputs 𝑌 partitions (Table 1) as follows: 165 

𝑋 contains verticalconsist of profiles of dry-bulb air temperature (𝑇 in K; Figure 2a), atmospheric pressure (𝑝 in hPa; Figure 

2b), and derivedcloud layer cloud optical depth (𝜏; Figure 2c) with 𝜏  derived from other variables in the NWP-SAF dataset 

quantities to simplify the creationdevelopment of models as described in this paper (section 2.4); 𝑌 contains vertical. 𝑇, 𝑝, 

and 𝜏  are then used as inputs to the physical model (section 2.4) to compute outputs 𝑌 containing profiles of downwelling 

longwave radiation (𝐿↓ in W m-2; Figure 2d) computed from the physical model (section 2.4). We then use 𝑋 and 𝑌 in OBT 170 

strategies (Figure 1 A and B) and only 𝑋 in EBT (Figure 1 C and D).). Prior to bebeing used, the source dataset isdata are 

shuffled at random and split into three batches of 10 000 profiles (40 %) for training (𝑋୲୰ୟ୧୬, 𝑌୲୰ୟ୧୬), 5 000 (20 %) for validation 

(𝑋୴ୟ୪୧ୢୟ୲୧୭୬ , 𝑌୴ୟ୪୧ୢୟ୲୧୭୬ ), and 10 000 (40 %) for testing (𝑋୲ୣୱ୲୧୬ , 𝑌୲ୣୱ୲୧୬ ) and referred to as such throughout the paper. 

Furthermore, as). As both copula and ML modelsemulators work on two-dimensional data, datasets are convertedreshaped 

to a matrix with samples as rows and flattenflattened profiles per quantitiesquantity as columns. To compute plots and 175 

statistics, the data are reconstructed to their original shape. 

 

 

 

 180 
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Figure 2. Profiles of (a) dry-bulb air temperature, (b) atmospheric pressure, (c) cloud layer optical depth, (d) downwelling longwave 
radiation from the NWP-SAF dataset (25 000 profiles; Eresmaa and McNally, 2014).(25 000 profiles; Eresmaa and McNally, 2014) and 
corresponding profiles of longwave radiation computed using the toy physical model described in section 2.4. Profiles are ordered using 185 
band depth statistics (López-Pintado and Romo, 2009) and shown for their most central (median) profile and grouped for the central 0–
25 %, 25 – 50 % and 50 – 100 %.  
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Table 1. Profiles of input and output quantities used in this study. Input quantities are dry-bulb air temperature 𝑻, atmospheric 
temperature 𝒑  and cloud layer optical depth 𝝉𝒄 . 𝑻  and 𝒑  are taken directly from the NWP-SAF dataset (Eresmaa and McNally, 190 
2014)(Eresmaa and McNally, 2014). 𝝉𝒄 is derived from other quantities as described in section  2.4. The output quantity is downwelling 
longwave radiation 𝑳↓ and is computed using the physical model described in section  2.4. The number of atmosphericAtmospheric 
model levels isare 137 for full levels (FL) and 138 for half levels (HL). 

Symbol Name Unit Dimension 

(a) Inputs 

𝑇 Dry-bulb air temperature K FL 

𝑝 Atmospheric pressure Pa FL 

𝜏  Cloud optical depth 1 FL 

(b) Output 

𝐿↓ Downwelling longwave radiation W m-2 HL 

 

2.3 Data generation 195 

Data generation is used to generate additional input samples (here the atmospheric profiles) to be fed to the physical (section 

2.4) and ML (section 2.5) modelemulator. Optimally, these synthetically generated data should resemble the observed data 

as closely as possible with regardrespect to (i) the individual behaviour of variables (e.g. the dry-bulb air temperature at a 

specific level), and (ii) the dependence across variables and dimensions (e.g. the dry-bulb air temperature across two levels). 

Copulas are statistical models that allow to disentangle these two aims to be disentangled (Trivedi and Zimmer, 2006; Joe, 200 

2014) and to generate new samples that are statistically similar to the original data in terms of their individual behaviour and 

dependence. 

 

2.3.1 Background on copula models 

Suppose we want to generate synthetic data from a probabilistic model for 𝑑𝑛 variables 𝑍ଵ, … , 𝑍ௗ𝑍. To achieve the first 205 

aim, we need to find appropriate marginal cumulative distributions 𝐹, … , 𝐹ௗ𝐹. A simple approach is to approximate them 

by the corresponding empirical distribution functions. To achieve the second aim, however, we need to build a model for the 

joint distribution function 𝐹(𝑧ଵ, … , 𝑧ௗ𝑧). The key result, Sklar’s theorem (Sklar, 1959), states that any joint distribution 

function can be written as 

𝐹(𝑧ଵ, … , 𝑧ௗ) = 𝐶(𝐹ଵ(𝑧ଵ), … , 𝐹ௗ(𝑧ௗ)). 210 
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𝐹(𝑧ଵ, … , 𝑧) = 𝐶൫𝐹ଵ(𝑧ଵ), … , 𝐹(𝑧)൯. (1) 

The function 𝐶 is called copula and encodes the dependence between variables.  

 

Copulas are distribution functions themselves. More precisely, if all variables aare continuous, 𝐶 is the joint distribution of 

the variables 𝑈ଵ = 𝐹ଵ(𝑍ଵ), … , 𝑈ௗ𝑈 = 𝐹ௗ𝐹(𝑍ௗ𝑍) . This fact facilitates estimation and simulation from the model. To 215 

estimate the copula function 𝐶, we (i) estimate marginal distributions 𝐹ෝଵ , … , 𝐹ෝௗ 𝐹ෝ, (ii) construct pseudo-observations 𝑈ෝଵ =

𝐹ෝଵ (𝑍ଵ), … , 𝑈ෝௗ 𝑈ෝ = 𝐹ෝௗ 𝐹ෝ (𝑍ௗ𝑍), and (iii) estimate 𝐶  from the pseudo-observations. Then, given estimated models 𝐶ෝ, 

𝐹ෝଵ , … , 𝐹ෝௗ 𝐹ෝ for the copula and marginal distributions, we can generate synthetic data as follows: 

1. Simulate random variables 𝑈ଵ, … , 𝑈ௗ from the estimated copula  𝐶ෝ. 

2. Define 𝑍ଵ = 𝐹ෝଵ

ିଵ
(𝑋ଵ), … , 𝑍ௗ𝑍 = 𝐹ෝௗ

ିଵ
𝐹ෝ

ିଵ
(𝑋ௗ). 220 

 

2.3.2 Parametric copula families 

In practice, it is common to only consider sub-families of copulas that are conveniently parametrized.  There is a variety of 

such parametric copula families. Such families can be derived from existing models for multivariate distributions by inverting 

the equation of Sklar's theorem: 225 

𝐶(𝑢ଵ, … , 𝑢ௗ) = 𝐹(𝐹ଵ
ିଵ(𝑢ଵ), … , 𝐹ௗ

ିଵ(𝑢ௗ)). 

𝐶(𝑢ଵ, … , 𝑢) = 𝐹൫𝐹ଵ
ିଵ(𝑢ଵ), … , 𝐹

ିଵ(𝑢)൯. (2) 

For example, we can take 𝐹 as the joint distribution function of a multivariate Gaussian and 𝐹ଵ, … , 𝐹ௗ𝐹 as the corresponding 

marginal distributions. Then the display aboveequation 2 yields a model for the copula called Gaussian copula, which is 

parametrized by a correlation matrix. The Gaussian copula model subsumes all possible dependence structure in a 230 

multivariate Gaussian distribution. The benefit comes from the fact that we can combine a given copula with any type of 

marginal distributions, not just the ones the copula was derived from. That way, we can build flexible models with arbitrary 

marginal distributions and Gaussian-like dependence. The same principle applies to other multivariate distributions and 

many copula models have been derived, most prominently the StudentStudent’s t copula and Archimedean families. A 

comprehensive list can be found in Joe (2014). 235 
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2.3.3 Vine copula models 

When there are more than two variables (𝑑𝑛 > 2) the typestype of dependence structures these models can generate is 

rather limited. Gaussian and Student copulas only allow for symmetric dependencies between variables. Quite often, 

dependence is asymmetric, however. For example, dependence between 𝑍ଵ and 𝑍ଶ may be stronger when both variables 240 

take large values. Many Archimedean families allow for such asymmetries but require all pairs of variables to have the same 

type and strength of dependence. 

 

Vine copula models (Aas et al., 2009; Czado, 2019) are a popular solution to this issue. The idea is to build a large dependence 

model from only two-dimensional building blocks. We can explain this with a simple example with just three variables 245 

𝑍ଵ, 𝑍ଶ, 𝑍ଷ . We can model the dependence between 𝑍ଵ  and 𝑍ଶ  by a two-dimensional copula 𝐶ଵ,ଶ  and the dependence 

between 𝑍ଶ and 𝑍ଷ by another, possibly different, copula 𝐶ଶ,ଷ. These two copulas already contain some information about 

the dependence between 𝑍ଵ and 𝑍ଷ, the part of the dependence that is induced by 𝑍ଶ. The missing piece is the dependence 

between 𝑍ଵ and 𝑍ଷ after the effect of 𝑍ଶ has been removed. Mathematically, this is the conditional dependence between 𝑍ଵ 

and 𝑍ଷ given 𝑍ଶ and can be modeled by yet another two-dimensional copula 𝐶ଵ,ଷ|ଶ. The principle is easily extended to an 250 

arbitrary number of variables 𝑍ଵ, … , 𝑍ௗ𝑍 . Algorithms for simulation and selecting the right conditioning order and 

parametric families for each (conditional) pair are given in Dißman et al. (2013). 

 

Because all two-dimensional copulas can be specified independently, such models are extremely flexible and allow for highly 

heterogenous dependence structures. Using parametric models for pair-wise dependencies remain a limiting factor, 255 

however. If necessary, it is also possible to use nonparametric models for the two-dimensional building blocks. Here, the 

joint distribution of pseudo-observations 𝑈ෝଵ, 𝑈ෝଶ is estimated by a suitable kernel density estimator (see Nagler et al., 2017). 

 

2.3.4 Implementation 

Here we use the Synthia (Meyer and Nagler, 2020),software (Meyer and Nagler, 2021) to fit three different copula types: 260 

Gaussian, Vine-parametric, Vine-nonparametric. Vine-parametric fits a parametric model for each pair in the model from the 

catalogue of Gaussian, Student, Clayton, Gumbel, Frank, Joe, BB1, BB6, BB7, BB8 copula families and their rotations (see Joe, 

2014, for details on these families) using the AIC criterion. Vine-nonparametric uses transformation local quadratic likelihood 

fitting as explained in Nagler et al. (2017). Each copula model is fitted to the training set 𝑋୲୰ୟ୧୬ in OBT, and to both, 𝑋୲୰ୟ୧୬ 

and 𝑌୲୰ୟ୧୬ sets, in EBT.. To evaluate the impact of copula-augmented datasets on the ML inference, we generate synthetic 265 

profiles with augmentation factors of 1x, 5x, and 10x the number of profiles included in the source training dataset (i.e. 10 
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000 profiles). These are then used to create augmented versions of training datasets, here defined as 𝑋′୲୰ୟ୧୬ and 𝑌′୲୰ୟ୧୬,, 

each containing the source plus the synthetically generated profiles (i.e. with 20 000,  profiles, or double the amount of 

training data, for 1x augmentation factor, and 60 000, or and 110 000 profiles). for 5x and 10x augmentation factors 

respectively). As the generation of new profiles with copula models is random, the generation is also repeated 10 times for 270 

each case to allow for meaningful statistics to be computed. 

 

2.4 Target generation 

Target generation (Figure 1 C-D) is used in EBTs to generate outputs 𝑌 from corresponding inputs. 𝑋 using a physical model. 

Here, however, to compare results from the two different strategies described in this paper (i.e. OBT vs EBT), we also use 275 

target generation to compute outputs for the source dataset 𝑌 in OBT strategies. In all cases, outputs 𝑌 are computed using 

a simple toy model based on Schwarzschild’s equation (e.g. Petty, 2006) to estimate the downwelling longwave radiation 

under the assumption that atmospheric absorption does not vary with wavelength, as: 

 

𝑑𝐹

𝑑𝑧
= 𝑎(𝑧)[𝐵(𝑧 ) − 𝐹] (1) 

 280 

𝑑𝐿↓

𝑑𝑧
= 𝑎(𝑧)ൣ𝐵(𝑧 ) − 𝐿↓൧ (3) 

where 𝑧 is the geometric height, 𝐵 is the Planck function at the temperature at level 𝑧 (i.e. 𝐵 = 𝜎ୗ𝑇ସ, where 𝜎ୗ is the 

Stefan-Boltzmann constant; giving the flux in W m-2 emitted from a horizontal black body surface), and 𝑎 is the rate at which 

radiation is intercepted/emitted.  A common approximation is to treat longwave radiation travelling at all angles as if it were 285 

all travelling with a zenith angle of 53 degrees (Elsasser, 1942): in this case 𝑎 = 𝐷𝛽 where 𝛽 is the extinction coefficient of 

the medium, and 𝐷 = 1.66 = 1/cos(53)(53) = 1.66 is the diffusivity factor, which accounts for the fact that the effective 

path length of radiation passing through a layer of thickness ∆𝑧 is on average 1.66∆𝑧  due to the multiple different angles of 

propagation. In the context of ML, 𝑎(𝑧) and 𝐵(𝑧) are known and 𝐹(𝑧) is to be predicted. Here we use the difference in two 

atmospheric pressures expressed in sigma coordinates (Δ𝜎, where 𝜎 is the pressure 𝑝 at a particular height divided by the 290 

surface pressure 𝑝) instead of 𝑧. The cloud layer optical depth 𝜏 =  𝛽Δ𝑧 is calculated from the total -column gas optical 

depth 𝜏 and cloud layer cloud optical depth 𝜏  as 𝜏 = 𝜏 +  𝜏 Δ𝜎  as, since Δ𝜎 is the fraction of mass of the full atmospheric 

column in layer 𝑖. Then, as the downwelling flux at the top of the atmosphere is 0, the equation is discretized as follows 

assuming 𝐵 and 𝑎 are constant within a layer: 

 295 

𝐹ିଵ/ଶ =  𝐹ାଵ/ଶ (1 − 𝜖) + 𝐵𝜖, (2) 



 

14 

 

𝐿↓
ିଵ/ଶ =  𝐿↓

ାଵ/ଶ (1 − 𝜖) +  𝐵𝜖 , (4) 

where 𝐵  is the Planck function of layer 𝑖 , 𝜖 = 1 − 𝑒ି௭ = 1 − 𝑒ఛ  is the emissivity of layer 𝑖 , 𝐹ାଵ/ଶ𝐿↓
ାଵ/ଶ  is the 

downwelling flux at the top of layer 𝑖, and 𝐹ିଵ/ଶ𝐿↓
ିଵ/ଶ is the downwelling flux at the bottom of layer 𝑖. We compute 𝐿↓ in 

W m-2 from 𝑇 in K, 𝑝 in Pa, and 𝜏  using the source 𝑋 or augmented 𝑋’ data depending on the strategy (i.e. OBT or EBT).. To 300 

reduce, and thus simplify, the number of quantities used in the physical model and ML modelsemulator (section 2.5), 𝜏  is 

pre-computed and used instead of vertical profiles of liquid and ice mixing ratios (𝑞 and 𝑞 in 1)) and effective radius (𝑟 and 

𝑟 in m) as ଷ
ଶ




ቀ



ఘ
+



ఘ
ቁ, where 𝜌 is the density of liquid water (1 000 kg m-3), 𝜌  is the density of ice (917 kg m-3), 𝑔 is the 

standard gravitational acceleration (9.81 m s-2). For 𝜏 we use a constant value of 1.7 determined by minimizing the absolute 

error between profiles computed with this simple model and the comprehensive atmospheric radiation scheme ecRad 305 

(Hogan and Bozzo, 2018). 

 

2.5 Estimator training 

As the goal of this paper is to determine whether the use of synthetic data improves the prediction of ML models, here we 310 

implement a simple feedforward neural network (FNN). FNNs are one of the simplest and most common neural networks 

used in ML (Goodfellow et al., 2016) and have been previously used for similar weather and climate applications (e.g. 

Chevallier et al., 1998; Krasnopolsky et al., 2002). FNNs are composed of artificial neurons (conceptually derived from 

biological neurons) connected with each other where information moves forward from the input nodes, through hidden 

nodes.  The multilayer perceptron (MLP) is a type of FNN composed of at least three layers of nodes: an input layer, a hidden 315 

layer, and an output layer with all but the input nodes using a nonlinear activation function. 

 

Here we implement a simple an MLP consisting of 3 hidden layers with 512 neurons each. This is implemented in TensorFlow 

(Abadi et al., 2015)As the goal of this paper is to determine whether the use of synthetic data improves the prediction of ML 

emulators, here we implement a simple feedforward neural network (FNN). FNNs are one of the simplest and most common 320 

neural networks used in ML (Goodfellow et al., 2016) and have been previously used for similar weather and climate 

applications (e.g. Chevallier et al., 1998; Krasnopolsky et al., 2002). FNNs are composed of artificial neurons (conceptually 

derived from biological neurons) connected with each other where information moves forward from the input nodes, 

through hidden nodes.  The multilayer perceptron (MLP) is a type of FNN composed of at least three layers of nodes: an input 

layer, a hidden layer, and an output layer with all but the input nodes using a nonlinear activation function. 325 
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Here we implement a simple an MLP consisting of 3 hidden layers with 512 neurons each. This is implemented in TensorFlow 

(Abadi et al., 2015), and configured with elu activation function, Adam optimizer, Huber loss, 1 000 epochs limit, and early 

stopping with patience of 25 epochs. The MLP is trained with profiles of dry-bulb air temperature (𝑇  in K; Figure 2a), 

atmospheric pressure (𝑝 in hPa; Figure 2b), and layer cloud optical depth (𝜏; Figure 2c) as inputs, and profiles of longwave 330 

downwelling longwave radiation (𝐿↓ in W m-2; Figure 2d) as outputs. Inputs are normalized and both inputs and outputs are 

flattened into feature vectors. The baseline case (Figure 1 A or C) use) uses 10 000 input profiles without data augmentation 

(i.e. using 𝑋୲୰ୟ୧୬ and 𝑌୲୰ୟ୧୬) for training and copula-based cases (Figure 1 B and D) use either 20 000, 60 000, or 110 000 

profiles (i.e. using 𝑋′୲୰ୟ୧୬ and 𝑌′୲୰ୟ୧୬).. The validation dataset 𝑌୴ୟ୪୧ୢୟ୲୧୭୬ of 5 000 profiles is used as input for the early stopping 

mechanism while the test dataset 𝑌୲ୣୱ୲ of 10 000 profiles is used to compute the error statistics using evaluation metrics 335 

described in section 3.2.3.2.  Because of the stochastic nature of the MLP usedMLPs, training (and inference) is repeated 10 

times for each case to allow for meaningful statistics to be computed. Given that the generation of random profiles in the 

case of augmented datasets (𝑋′୲୰ୟ୧୬ and 𝑌′୲୰ୟ୧୬) is also repeated 10 times (see section 2.3.4)), all cases usingthat also use 

data generation comprise of 100 iterations in total (i.e. for each data generation run, wethe estimator is run the ML fitting 

10 times). 340 

Results 

3. Evaluation metrics 

We conduct a twofold evaluation: first we assess the quality of synthetic data produced by different copula classes (section 

3.1), then we assess the prediction error of ML model (section 3.2) trained using different augmentation factors. Although 

the former may be of interest to determine how well copula models may be used to generate profiles of different 345 

atmospheric quantities and to evaluate whether dependencies between variables have been captured, the latter is the main 

focus here, used to evaluate whether ML models trained with augmented datasets of real and synthetic data have a lower 

prediction error than those trained with only the real data. 

 

3  350 

3.1 Copula 

The quality of synthetic data is assessed in terms of summary statistics (e.g. Seitola et al., 2014) between the training 𝑋୲୰ୟ୧୬ 

and 𝑌୲୰ୟ୧୬ and copula-simulated 𝑋′୲୰ୟ୧୬ and 𝑌′୲୰ୟ୧୬dataset. As the quality of the fitting may be different between the two 

strategies used, we compute separate statistics for OBT (𝑋୲୰ୟ୧୬ and 𝑌୲୰ୟ୧୬ vs 𝑋′୲୰ୟ୧୬ and 𝑌′୲୰ୟ୧୬) and EBT (𝑋୲୰ୟ୧୬ vs 𝑋′୲୰ୟ୧୬), i.e. 
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the former having been fitted to both inputs and output pairs and the latter to only the inputs. For each copula type and 355 

training strategy,copula-simulated 𝑋′୲୰ୟ୧୬ datasets. For each copula type we compute a vector of summary statistics 𝑆 =

𝑓(𝐏) where 𝑓 is the statistic function and 𝐏 = 𝐃𝒘 , with 𝐃 a matrix of flattened source or simulated data and 𝒘 a vector 

of random numbers from the 𝑖th iteration. Summary statistics are then computed for mean, variance, and quantiles, iterating 

100 times to allow for meaningful statistics to be computed. As we consider random linear combinations of variables in 

source and copula-generated data, we expect these summaries to coincide only if both marginal distributions and 360 

dependence between variables are captured. 

3.2 Machine learning 

The prediction error of the ML model is investigated by comparing outputs computed by the physical model with those 

computed at inference by the ML model fed with test dataset 𝑋୲ୣୱ୲ described in section 2.2. Here we use two common bulk 

error metrics to summarize errors across multiple profiles and atmospheric levels: mean bias error (MBE) and mean-absolute 365 

error (MAE). These are computed from a vector of random variables representing the differences, or error, 𝒅 = (𝑑ଵ, … , 𝑑) 

between the physically predicted 𝑌୲ୣୱ୲  and ML predicted 𝑌′୲ୣୱ୲ (i.e. 𝒅 =  𝑌୲ୣୱ୲  −  𝑌′୲ୣୱ୲ ). Bulk error statistics are computed 

for the vector of outputs 1, … , 𝑁 for the MBE and MAE (Table 2). 

 

Table 2. Bulk error statistical metrics used in the machine learning evaluation. Mean bias error (MBE), mean-absolute error (MAE). 370 

MBE MAE 

1

𝑁
 𝑑

ே

ୀଵ

 
1

𝑁
|𝑑|

ே

ୀଵ

 

 

4 Results 

4.1 Copula 

We first check whether copula models can generate data that are statistically alike those in the source dataset. To this end, 

we compare summary statistics of random projections of generated and source data as described in section 3.1. Figure 3 375 

shows scatterplots of summary statistics 𝑆  for their (a) mean, (b) variance, (c) standard deviation, and (d) 10 %, (e) 50 % and 

(f) 90 % quantiles. Summaries of the sourceReal NWP-SAF data are shown on the x-axis while summaries ofand copula-

generated data are on the y-axis. Each with each point correspondscorresponding to a random projection as described earlier 

(100 points in total). For a perfect copula model, we expect all the simulated points to fall on the main diagonal where 𝑥 =
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𝑦. Figure 3 shows that for all the copula models and configurations (with or without outputs) studied, the, synthetically-380 

generated data are similarclose to the real data, with larger errors in variance and standard deviation. 

 
Figure 3. Summary statistics 𝑺𝒊 from 100 copula iterations for (a) mean, (b) variance, (c) standard deviation, and (d) 10 %, (e) 50 %, and 
(f) 90 % quantiles. Each point corresponds to a single iteration. Units are arbitrary. The x axis represents the projection of the true data 
𝑿𝐭𝐫𝐚𝐢𝐧 while the y axis that of the copula generated data 𝑿′𝐭𝐫𝐚𝐢𝐧. Results reported for Gaussian, Vine-parametric, Vine-nonparametric 385 
copulas fitting to inputs or input and output pairs (i.e. 𝑿𝐭𝐫𝐚𝐢𝐧 vs 𝑿′𝐭𝐫𝐚𝐢𝐧 or 𝑿𝐭𝐫𝐚𝐢𝐧 and 𝒀𝐭𝐫𝐚𝐢𝐧 vs 𝑿′𝐭𝐫𝐚𝐢𝐧 and 𝒀′𝐭𝐫𝐚𝐢𝐧) – see legend. 

 

Qualitatively, we can also evaluate copula-generated profiles in terms of their overall shape and smoothness across multiple 

levels, and range and density at each level. To this end we plot a side-by-side comparison of source  (Figure 4Figure 4, left 

panel) and Gaussian-copula generated (Figure 4Figure 4, right panel) profiles showing the median profile and a random 390 

selection of 90 profiles grouped in batches of 3 (i.e. each having 30 profiles) for the central 0-25 % and outer 25-50 %, 50-

100 % quantiles, calculated with band depth statistics (López-Pintado and Romo, 2009). Simulated profiles of dry-bulb air 

temperature (Figure 4Figure 4b) appear less smooth than the real (Figure 4a)ones across levels; (Figure 4a); however, 

theirboth density and range are simulated well at each level. Simulated profiles of atmospheric pressure (Figure 4Figure 4d) 

are simulated well;: they are smooth across all levels with a similar range and density than the real (Figure 4c).(Figure 4c). 395 

The highly non-Gaussian and spikey profiles of cloud optical depth (Figure 4Figure 4e) make a qualitative 
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comparisoncomparisons difficult, but thehowever simulated profiles (Figure 4Figure 4f) have a similar range and density, 

with high density for low values and most of the range between levels 80 and 120. Finally, copula-simulated profiles of 

downwelling longwave radiation (Figure 4h; only computed for OBT strategies) are noisier that the real (Figure 4g) but with 

a similar range and density. 400 

  

Figure 3. Summary statistics 𝑺𝒊 from 100 iterations for (a) mean, (b) variance, (c) standard deviation, and (d) 10 %, (e) 50 %, 

and (f) 90 % quantiles. Each point corresponds to a statistic for single iteration in arbitrary units. The x axis represents the 

projection of the true data 𝑿𝐭𝐫𝐚𝐢𝐧 while the y axis that of the copula generated data 𝑿′𝐭𝐫𝐚𝐢𝐧. Results reported for Gaussian, 
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Vine-parametric, Vine-nonparametric copulas 405 

 

(see legend for keys). 
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Figure 4. Profiles of (left) real and (right) Gaussian copula-generated data of (a-b) dry-bulb air temperature, (c-d) atmospheric pressure, 
(e-f) cloud optical depth, (g-h) downwelling longwave radiation.. Median profile shown in black and random selection of 90 profiles 410 
grouped in batches of 3 (i.e. each having 30 profiles) for the central 0-25 % and outer 25-50 %, 50-100 % calculated with band depth 
statistics (López-Pintado and Romo, 2009). 

4.23.2 Machine learning 

We report results for OBT and EBT strategies with or without data generation. Errors statistics are computed with metrics 

defined in section 3.2 againstTo evaluate whether ML emulators trained on augmented datasets have lower prediction errors 415 

compared to the baseline, here we use the test dataset 𝑋୲ୣୱ୲ of 10 000 profiles defined in section 2.2. Statistics are computed 

based on a vector of random variables representing differences 𝒅 = (𝑑ଵ, … , 𝑑) between the physically predicted baseline 
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𝑌୲ୣୱ୲  and ML emulated 𝑌′୲ୣୱ୲ (i.e. 𝒅 =  𝑌୲ୣୱ୲  −  𝑌′୲ୣୱ୲ ) for 1, … , 𝑁 profiles. From this, the mean bias error (MBE =ଵ

ே
∑ 𝑑

ே
ୀଵ ) 

and mean absolute error (MAE = ଵ

ே
∑ |𝑑|

ே
ୀଵ ) are computed. 

Boxplots of bulk MBE and MAE are shown in Figure 5 for OBT (left) and for EBT (right).. Summary bulk MBE and MAE for ML 420 

modelsemulators with lowest MAE using an augmentation factor of 10x are reported in Table 2. A qualitative side-by-side 

comparison of MLP-generatedbaseline and ML-predicted profiles using Gaussian copula-generated profiles with 

augmentation factor of 10x and the corresponding baseline are shown in Figure 6. 

 

MBEs in OBT (Figure 5a) are higher than the baseline across all copula models and augmentation factors, with median MBE 425 

and spread generally increasing with larger values of augmentation factors. Conversely, MBEs in EBT (Figure 5b) are generally 

lower than the baseline across all copula types and augmentation factors are generally improved, with median MBEMBEs 

and spreadrespective spreads decreasing with larger values of augmentation factors. MAEs in OBT (Figure 5c) do not improve 

from the baseline when additional synthetic data or different copula types are used.augmentation factors. Overall, the 

Gaussian copula model performs better than the Vine-parametric or Vine-nonparametric models. This median MAE with 1x 430 

augmentation factor is approximately 2 W m-2 for Gaussian,                     2.4 W m-2 for Vine-parametric and 2.6 W m-2 for Vine-

nonparametric, increasing with larger augmentation factors. Conversely to OBT, MAEs in EBT(Figure 5b) show a net 

improvement from the baseline across all copula models and augmentation factors (Figure 5d).. When using an 

augmentation factor of 1x, (i.e. with double the amount of training data), the median MAE is reduced to approximately 1.1 

W m-2 using copula models from a baseline of approximately 1.4 W m-2 and further reduced with increasing augmentation 435 

factors. In the best case, corresponding to an augmentation factor of 10x (i.e. with an additional 100 000 synthetic profiles 

added to the training source dataset), the copula and ML model combination producing theemulator combinations with 

lowest values of MAE (Table 2) showsshow that both MBE and MAEMBEs are reduced from the baseline case. The MBE is 

reduced from a baseline of 0.08 W m-2 to -0.02 and -0.05 W m-2 for Gaussian and Vine-nonparametric respectively but 

increased to 0.10 W m-2 for Vine-parametric. MAEs are reduced from a baseline of 1.17 W m-2 to 0.45, 0.56 and 0.44 W m-2 440 

for Gaussian, Vine-parametric, Vine-nonparametric copula type respectively. 

 

The ML training configuration to achievewith the lowest overall MBE and MAE combination during inference 

correspondcorresponds to a Gaussian copula and augmentation factor of 10x (Table 2). Differences (or errors)Errors between 

the physically predicted 𝑌୲ୣୱ୲  and ML predicted 𝑌′୲ୣୱ୲ are shown for the baseline (Figure 6a) and Gaussian copula (Figure 6b). 445 

These are shown grouped by their central 0-25 % and outer 25-50 %, 50-100 %. Qualitatively most ML generated profiles 

show improvements from to the baseline. For the most central 25 % profiles are within ±20 W m-2 for the Gaussian copula 
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case, and about ±40 W m-2 for the baseline case. Near surface errors (levels 130-BOA) are reduced to approximately ±5 W m-

2 from approximately ±10 W m-2. 

 450 

 

 

Figure 5. Training errors for (left) observation-based training and (right) emulation-based trainingErrors grouped by different copula 
types (Gaussian: blue, Vine-parametric: yellow, Vine-nonparametric: red) and augmentation factors (1x, 5x, 10x) for the mean bias error 
(MBE; a-b) and mean absolute error (MAE; c-db). The median for the baseline case is shown in black and the range shaded in grey. 455 
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Table 2. Emulation-based training bulk mean. Mean bias error (MBE) and mean absolute error (MAE) for baseline ML model, and copula 
and ML modelemulator combination producing thewith lowest values of MAE. Baseline case trained using 10 000 real profiles and 
copula cases trainingtrained using augmented dataset containingof 110 000 profiles (10 000 real and 100 000 synthetic), i.e. with an 460 
augmentation factor of 10x. 

Case name MBE in W m-2 MAE in W m-2 

Baseline  0.08 1.17 

Gaussian -0.02 0.45 

Vine-parametric  0.10 0.56 

Vine-nonparametric -0.05 0.44 

  

 

 

 465 
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Figure 6. MLPrediction errors in predicting downwelling longwave radiation for (a) baseline emulator and (b) emulation-based training 
strategydata augmentation emulator using 110 000 profiles (10x augmentation factor; Gaussian copula). The median (most central) 
profile is shown in black and the most central 25 %, and outer 25 – 50 % and 50 – 100 % profiles are computed using band depth statistics 470 
and shown in shades of blue. 

54 Discussion and conclusion 

Results from a qualitative comparison of synthetically generated profiles (Figure 4) shows that synthetic profiles tend to be 

less smooth and noisier than the real ones. Nevertheless the machine learning evaluation shows that errors for emulators 

trained with augmented datasets are cut by up to 75 % for the mean bias error (from 0.08 to -0.02 W m-2;Table 2) and by up 475 

to 62 % for the mean absolute error (from 1.17 to 0.44 W m-2;Table 2). 

 

Here we show how copula-based models may be used to improve the prediction of ML emulatorsResults from the machine 

learning evaluation show that bulk errors are cut by up to 75 % for the mean bias error (from 0.08 to -0.02 W m-2;Table 3) 

and by up to 62 % (from 1.17 to 0.44 W m-2;Table 3) for the mean absolute error in emulation-based training (EBT). This is 480 

not the case in observation-based training (OBT) where the use of synthetic data negatively affect the error (Figure 5). This 

finding is not surprising as model fits are merely an approximation of the real data and it is therefore unlikely to see 

improvements in predictions from OBT strategies from this or other type data generation methods (for type or model and 

configuration used). A qualitative comparison of synthetically generated profiles (Figure 4) shows that, although the main 

structure is captured, synthetic profiles tend to be less smooth and noisier than the real ones. This, together with the added 485 

complexity of having to capture the dependence between input and output pairs, may lead copula model to generate training 

samples that are too unrepresentative of the test data in the case of OBT strategies. On the other hand, when a physical 
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model is available and an EBT strategy is used, (copula-based) data generation has the potential to improve error statistics 

by enriching the training dataset. In such cases, the dependence between inputs and outputs does not need to be captured 

as it is already modelled by the physical model. Instead, the data generation model needs to generate approximate inputs 490 

that are representative and valid for the physical model in use. In the simplest case, this may be, as simple as respecting the 

inverse relationship of pressure and temperature of ideal gasses or the positivity of absolute temperature. 

Previous studies (e.g. Patki et al., 2016) have shown how copula-based models may be used to overcome data licensing 

restriction. Here we show how copula-based models may be used to improve the prediction of ML models in EBT strategies. 

This is done by generating augmented datasets containing statistically similar profiles in terms of their individual 495 

behaviorbehaviour and dependence across variables (e.g. dry-bulb air temperature at a specific level and across twoseveral 

levels). Although the focus of this paper is to evaluate copula-based data generation models thatto improve predictions of 

ML emulators, we speculate that the same or similar methods of data generation have the potential to be used in several 

other ML-related applications such as to: (i) test ML model architectures (e.g. instead of cross validation, one may generate 

synthetic datasets of different sizessize to test the effect of the sample size on different ML architectures); (ii) generate data 500 

for un-encountered conditions (e.g. for climate change scenarios, by extending the range of the data ranges, or relaxrelaxing 

marginal distributions); (iii) data compression (e.g. by storing reduced parameterized versions of the data if the number of 

samples is much larger than the number of features).  

 

Although so far, we have only highlighted the main benefits of copula-based modelmodels, several limiting factors should 505 

also be considered based on the specific problem and application. A key factor for very high-dimensional data is that both 

Gaussian and Vine copula models scale quadratically in the number of features – in terms of both memory and computational 

complexity. This can be alleviated by imposing structural constraints on the model, for example using structured covariance 

matrix or truncating the vine after a fixed number of trees. However, this limits their flexibility and adds some arbitrariness 

to the modelling process. A second drawback compared to GANs is that the model architecture cannot be tailored to a 510 

specific problem, like images. For such cases, a preliminary data compression step as in Tagasovska et al. (2019) may be 

necessary. 

 

As highlighted here, data generation in EBT strategiesaugmentation for ML emulators may be of particular interest to 

scientists and practitioners looking to achieve a better generalization of their ML modelsemulators (i.e. synthetic data may 515 

act as a regularizer to reduce overfitting; Shorten and Khoshgoftaar, 2019) and although. Although a comprehensive analysis 

of prediction errors using different ML model architectures is out of scope, our work is a first step towards further research 

in this area. Moreover, although we did not explore the generation of data for un-encountered conditions (e.g. by extending 

the range of air temperature profiles while keeping a meaningful dependency across other quantities and levels), the use of 
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copula-based synthetic data generation may prove useful to make emulators more resistant to outliers (e.g. in climate change 520 

scenario settings) and should be investigated in future research. 
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