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Abstract. Global modelling of atmospheric chemistry is a grand computational challenge because of the cost of integrating 

the kinetic equations for chemical mechanisms with typically over 100 coupled species. Here we present an adaptive 

algorithm to ease this computational bottleneck with no significant loss in accuracy and apply it to the GEOS-Chem global 

3-D model for tropospheric and stratospheric chemistry (228 species, 724 reactions). Our approach is inspired by 

unsupervised machine learning clustering techniques and traditional asymptotic analysis ideas. We locally define species in 15 

the mechanism as fast or slow on the basis of their total production and loss rates, and we solve the coupled kinetic system 

only for the fast species assembled in a submechanism of the full mechanism. To avoid computational overhead, we first 

partition the species from the full mechanism into 13 blocks, using a machine learning approach that analyzes the chemical 

linkages between species and their correlated presence as fast or slow in the global model domain. Building on these blocks, 

we then pre-select 20 submechanisms, as defined by unique assemblages of the species blocks, and then pick locally and on 20 

the fly which submechanism to use in the model based on local chemical conditions.  In each submechanism, we isolate slow 

species and slow reactions from the coupled system of fast species to be solved. Because many species in the full mechanism 

are important only in source regions, we find that we can reduce the effective size of the mechanism by 70% globally 

without sacrificing complexity where/when it is needed. The computational cost of the chemical integration decreases by 

50% with relative biases smaller than 1% for important species over 8-year simulations. Changes to the full mechanism 25 

including addition of new species can be accommodated by adding these species to the relevant blocks without having to 

reconstruct the suite of submechanisms.   
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1 Introduction 30 

Global atmospheric chemistry models are computationally expensive because of the need to integrate the coupled kinetic 

equations describing the model chemical mechanism (Eastham et al., 2018). These mechanisms typically include over one 

hundred chemical species with lifetimes ranging over many orders of magnitude, requiring the use of high-order implicit 

solvers to integrate the chemical evolution over model time steps (Brasseur and Jacob, 2017). However, most regions of the 

atmosphere do not in fact require solving for the full chemical complexity of the mechanism. Here we present an adaptive, 35 

stable, and chemically coherent algorithm that reduces  the computational cost of the chemical integration by half, with 

losses in accuracy less than 1% and no error growth in multi-year simulations. Our algorithm is based on general chemical 

principles that can be easily applied to a wide range of mechanisms. 

Previous approaches of simplifying atmospheric chemistry mechanisms are reviewed by Brasseur and Jacob (2017). 

Reducing the dimension of the coupled system can be obtained by decreasing the number of species (Sportisse and Djouad, 40 

2000), isolating long-lived species (Young and Boris, 1977), and removing unimportant reactions (Brown-Steiner et al., 

2018). However, the importance of a species or a reaction varies in different atmospheric conditions, so these schemes are 

not well adapted to global models. Some studies (Jacobson 1995; Rastigeyev et al., 2007) use different subsets of the full 

chemical mechanism for different regions with specified or locally determined boundaries, but this has limited success 

because the atmosphere has a continuum of chemical regimes, and geographic boundaries between regimes should be 45 

dynamic rather than pre-defined. An adaptive method to define mechanism subsets locally and on the fly has been proposed 

by Santillana et al. (2010) but the computational overhead of customizing the mechanism on the fly offsets computational 

gains.  The overhead can be avoided by compiling a library of pre-defined mechanism subsets (Shen et al., 2020), but a 

challenge is to select these subsets in a manner that is chemically coherent and portable across mechanisms.  

In this work, we continue developing the adaptive method described by Shen et al. (2020). This method pre-assembles a 50 

small number of subsets of the full chemical mechanism representing the range of conditions in the troposphere and 

stratosphere, and selects the most appropriate submechanism to use in the model locally and on the fly. The submechanisms 

are constructed by first splitting the full mechanism’s atmospheric species into N different blocks based on similarity of 

chemical behaviors, using a machine learning clustering method. We then define the submechanisms as different 

assemblages of blocks, select M of these assemblages to encompass the majority of chemical conditions in the atmosphere, 55 

and build them into the model. The choice of submechanism in the model is then made locally by computing chemical 

production and loss rates of the mechanism species and deciding which need to be part of the coupled chemical computation 

(‘fast’ species) and which can be tracked independently (‘slow’ species). A major development here is to enforce that 

chemically connected species be grouped in the same blocks, so that the blocks are consistent with chemical 

intuition and can be logically modified and extended as the mechanism changes. We further improve the 60 

performance of the method by reducing the number of reactions as well as the number of species in the submechanisms.  
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2 Method description 

Here we describe the adaptive method as applied in the GEOS-Chem global model, although it is applicable to any model. 

We begin with a brief description of the model as relevant to the presentation. 65 

2.1 GEOS-Chem model 

We use the GEOS-Chem version 12.0.0 global 3-D model for tropospheric and stratospheric chemistry 

(https://doi.org/10.5281/zenodo.1343547) with 12 CPUs in a shared-memory Open Message Passing (Open-MP) parallel 

environment. For development and testing purposes, we choose a horizontal resolution of 4°×5° and 72 pressure levels 

extending from surface to 0.01 hPa and drive the model with NASA MERRA2 assimilated meteorological data. The full 70 

mechanism for oxidant-aerosol chemistry in the model has 228 species and 724 reactions, including coupled gas-phase and 

aerosol chemistry for the troposphere and stratosphere (Sherwen et al., 2016; Eastham et al., 2014). The chemical operator 

uses a 4th-order Rosenbrock implicit method, implemented through the Kinetic Pre-Processor (KPP) (Sander and Sandu, 

1996), to solve for the chemical evolution of species concentrations, involving iterative calculations and inversion of the 

Jacobian matrix that stores the sensitivity of species tendencies (production minus loss rates) to concentrations. In the 75 

simulations presented here, methane, N2O, and other long-lived halocarbons have fixed concentrations in surface air 

(Eastham et al., 2014; Murray, 2016) so that the longest resolved chemical modes are less than a year. 

As part of this study, we test the portability of our adaptive algorithm by moving it from GEOS-Chem version 12.0.0 to 

GEOS-Chem version 12.9.1 (https://doi.org/10.5281/zenodo.3950473). This new version of has a thoroughly updated 

mechanism of 262 species and 850 reactions, including improved organic nitrate chemistry (Fisher et al., 2018), isoprene 80 

chemistry (Bates and Jacob, 2019), and halogen chemistry (Wang et al., 2019). From version 12.0.0 to 12.9.1, we need to 

remove 49 old species and add 83 new species.  

2.2 Separation of fast and slow species and reactions 

Coupling between species in the Rosenbrock chemical solver is needed only for species with sufficiently fast production or 

loss rates (fast species), and similarly reactions need to be considered only if they are sufficiently fast.  We separate the 85 

atmospheric species as fast or slow based on their production and loss rates relative to a threshold δ: fast if either Pi(n) ≥ δ or 

Li(n) ≥ δ, slow if Pi(n) < δ and Li(n) < δ (Pi and Li refer to the production and loss rates of the ith species, δ is a threshold, and 

n is a vector of concentrations of all species). To get a sense of a relevant threshold, consider the hydroxyl radical (OH) 

which is central to driving oxidant-aerosol chemistry. OH has a daytime concentration of the order of 106 molecules cm-3 and 

a lifetime of 1s, so its production and loss rates are of the order of 106 molecules cm-3 s-1.  Species with production and loss 90 

rates smaller than 102-103 molecules cm-3 s-1 are unlikely to have fast influence on other species in the mechanism 
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(Santillana et al., 2010; Shen et al., 2020).  In this study, we use δ from 500 to 1500 molecules cm-3 s-1 to partition the fast 

and slow species. We also define species with chemical lifetime longer than 10 days as long-lived.  

We pre-select a limited number (M) of submechanisms for which we pre-code the Jacobian matrix needed by the 

Rosenbrock solver in KPP. In each submechanism, if a reaction is slower than 10 molecules cm-3 s-1 for all gridboxes that 95 

select this submechanism, then the reaction is considered negligible and removed from the submechanism. The logic is that 

such a slow reaction will not contribute significantly to the total species production/loss rate threshold δ =500-1500  

molecules cm-3 s-1 About 40-60% reactions can be removed using this strategy. For example, reactions of short-lived volatile 

organic compounds (VOCs) are removed in stratospheric gridboxes, and daytime photochemical reactions are removed in 

nightime gridboxes.  100 

We solve for the fast species in their submechanism using the standard Rosenbrock solver. For the slow or long-lived species, 

we use instead an explicit analytical solution that assumes first-order loss (Santillana et al., 2010), written as 

𝑑𝑛!
𝑑𝑡 = 𝑃! − 𝐿! = 𝑃! − 𝑘!𝑛!																																																																																																	(1) 

𝑛!(𝑡 + ∆𝑡) =
𝑃!(𝑡)
𝑘!(𝑡)

+ (𝑛!(𝑡) −
𝑃!(𝑡)
𝑘!(𝑡)

)𝑒"#!(%)∆%																																																																									(2) 

where ni is the concentration of species i, Pi and Li are the production and loss rates, ki is the rate coefficient of the first-order 105 

loss, and Δt is the time step. Solving for Eq.2 entails negligible computational cost.  

2.3 Defining the distance between species in the mechanism 

We construct coherent subsets (‘blocks’) of the species in the mechanism species based on their linkages through the 

mechanism reactions. This is done by defining the species distances in the mechanism using graph theory. In general, two 

species should have shorter distances if they appear together in multiple reactions (e.g. NO and NO2, HO and HO2) or have 110 

similar products in the mechanism. From the full mechanism of 228 species and 724 reactions, we find 3400 species pairs of 

reactants-products and map them to an undirected graph that has 228 vertices and 1422 edges. For example, in the reaction 

A+B-→C, there are 2 pairs (A-C and B-C) of reactants-products, 3 vertices (A, B, and C) and 2 edges (A-C and B-C).  If 

species i and j share the same edge, we define their distance as  

𝐷!,	* =
𝑇!,*
3𝑇!𝑇*

																																																																																																									(3) 115 

Where 𝑇!,	* 	is the number of reactions that include both species i and j (with one as reactant and the other as product, either i 

or j could be the reactant), and Ti (or Tj) is the number of species that appear in the same reactions with species i (or j). If 
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species i and j never appear in the same reaction so they do not share the same edge in the graph, their distance is calculated 

as the length of the shortest path from species i to j. For example, the distance of toluene (TOLU) and xylene (XYLE) can be 

defined as the length of path TOLU-GLYX-XYLE (Figure 1, GLYX is glyoxal). Similarly, we can also define the distance 120 

between two blocks using Eq.3, in which we define 𝑇!,	* 	as the number of reactions that include species in block i and j (one 

is the reactant and the other is the product) and Ti (or Tj) as the number of blocks that have reactions with block i (or j).  

This definition of distance between species does not take into account the rates of individual reactions connecting two 

species, and thus may overestimate weak links resulting from slow reactions. Accounting for relative reaction rates in a 

general definition of distances would introduce complication because the rates depend on the local chemical environment. 125 

We tried weighting species distances by the logarithms of global mean reactions rates but found no significant effects on 

results. 

 

Equation 3 can define the distance of species along reaction chains, but it may overestimate the distance of species that do 

not react with each other but have similar products (e.g. XYLE and TOLU). These species usually come from the same 130 

chemical family and should be close to each other in terms of distances. In our work, we address this shortcoming as follows.  

First, we denote each species i by a vector (Di) that contains its distance with all other species. The similarity of two species i 

and j can be thus defined as their Euclidean distance ||Di – Dj||. Second, for each species i, we decrease its distance with the 5 

species that have highest similarity with it by 50% and this scaling is applied only once for each species pair. We found in 

tests that using 10 highest-similarity species instead of 5 and decreasing distances by 30%-70% instead of 50% did not 135 

significantly change the results. The logic is that the number of species with similar chemical characteristics is usually 

around 5-10 and decreasing the distances among them by 30-70% can increase the probability of these species to be in the 

same chemical blocks after the optimization process. We store these modified distances of all species pairs in a 228x228 

matrix.  

2.4 Selection of species blocks and submechanisms 140 

We construct submechanisms by assemblage of chemically coherent blocks in order to minimize the number of fast species 

to be integrated with the Rosenbrock solver in the model. To partition the species into N blocks, we use a training dataset 

from a GEOS-Chem simulation for 2013 consisting of the first 10 days of February, May, August, and November sampled 

every 6 hours (160 time steps in total). 

For the 228-species mechanism in GEOS-Chem, there are in 2228-1 possible combinations of species and we need to pre-145 

select M of them to form submechanisms that can encompass the range of atmospheric conditions. To reduce the 

dimensionality of this problem, we start by splitting the 228 species into N different blocks. A block is considered as fast if at 
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least one species in that block is fast (P or L > δ). Building on the N blocks, we define each submechanism as an assemblage 

of fast blocks, which yields 2N - 1 possible submechanisms. Each gridbox in the model domain may correspond to one of 

these 2N - 1 submechanisms. More specifically, for each gridbox j, we diagnose species i as fast or slow following the 150 

definition of Section 2.2. We define yi,j = 1 if any species in the block is fast or yi,j = 0 if all species in the block are slow. 

Thus, the fraction Z1 of all species that needs to treated as fast can be written as 

𝑍+ =
1
Ω	77𝑦!,*

!*

																																																																																																				(4) 

where W is the number of species × gridboxes. 

We need to limit the number of submechanisms to a small number M in order to keep the compilation of the code 155 

manageable. Gridboxes that do not correspond to any of the M submechanisms need to be matched to one of the M 

submechanisms by moving some blocks from slow to fast, and we select the submechanism that has a minimum number of 

moves. As such, the values of some yi,j need to be changed from 0 to 1 and we refer to y*i,j  as the  indicators adjusted by 

these changes. The fraction of species f(M, N) that need to be treated as fast over the global domain is given by: 

𝑓(𝑀,𝑁) =
1
Ω	(77𝑦!,*

!,"

+77𝑦!,*∗
!,#

)																																																																								(5) 160 

where V1 are the gridboxes that can be represented directly by the M chemical submechanisms, and V2 are the gridboxes that 

must be matched to the M submechanisms.  

The cost function Z to be minimized in the selection of submechanisms can be written as 

𝑍 = 𝑓(𝑀,𝑁) + 𝛾𝐷𝑖𝑠𝑡																																																																																																			(6) 

Where Dist is the sum of distances for all pairs of species if they are in the same block, 𝛾 is a regularization factor; f is the 165 

fraction of species that needs to be treated as fast over the testing domain based on M and N (Eq. 5). We adjust 𝛾 so that the 

second term on the right part of Eq.6 contributes to 20% of the total cost function. We seek the partitioning of species into 

blocks that will minimize Z, and we use for that purpose the simulated annealing algorithm (Kirkpatrick et al., 1983).  We 

tested a range of values from 5 to 20 for N and from 10 to 40 for M. In the simulated annealing algorithm, we start from a 

randomly generated partition of the N blocks. In each iteration, we randomly move one species from one block to another. If 170 

the cost function decreases, this transition is accepted; otherwise, it is accepted with a probability controlled by a parameter 

named temperature. The temperature parameter decreases gradually as the optimization proceeds (Kirkpatrick, 1983). 
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The explicit solution by Eq. 3 does not strictly conserve mass (Shen et al., 2020), and Shen et al. (2020) previously found 

that this is a problem for halogen species in the stratosphere due to the long lifetime of the collective halogen families and 

the alternance of the component species as fast and slow over day and night. To avoid this problem, we treat all 37 reactive 175 

inorganic halogen species as fast in the stratosphere. Thus, among the N blocks, 2 are allocated to the reactive inorganic 

halogen species, and N-2 are allocated to the other species. The transitions of species between the 2 inorganic halogens 

blocks and the other N-2 blocks are not accepted in the optimization process.  

2.5 Error analysis 

We use the Relative Root Mean Square Error (RRMSE) metric as given by Sandu et al. (1997) to characterize the error in 180 

our reduced mechanism: 

𝑹𝑹𝑴𝑺𝑬𝒊 = G
𝟏
𝑸𝒊
7J

𝒏𝒊,𝒋𝐫𝐞𝐝𝐮𝐜𝐞𝐝 − 𝒏𝒊,𝒋𝐟𝐮𝐥𝐥

𝒏𝒊,𝒋𝐟𝐮𝐥𝐥
L
𝟐

		
𝑸𝒊

𝒋9𝟏

			(𝐰𝐡𝐞𝐫𝐞	 ≥ 𝒂)																																																																(𝟕) 

Absolute threshold a = 1×106 molecules cm-3                                                  

Relative threshold a = max (5th percentile, 1×104 molecules cm-3)   

 185 

where and are the concentrations for species i and gridbox j in the reduced and full chemical mechanisms, the 

sum is over the gridboxes where is greater than a threshold a, and Qi is the number of such gridboxes. Here we use an 

absolute threshold of a = 1×106 molecules cm-3 as in Eller et al. (2009) and Santillana et al. (2010), and will also show 

results with a = 1×105 molecules cm-3 and with a relative threshold of a as the 5th percentile of concentrations of the species 

over all gridboxes.  190 

A second metric to evaluate our adaptive chemical mechanism is the relative difference of global atmospheric masses for 

individual species compared to the standard simulation. This tests for accumulating bias over long simulation periods.  

3 The adaptive algorithm for the chemical operator 

3.1 Potential for local simplifications of atmospheric chemistry mechanisms 

Figure 2 displays the potential for local simplification of the full mechanism over the global domain, based on local chemical 195 

production and loss rates for the 228 species simulated by GEOS-Chem. Using a threshold δ of 500 molecules cm-3s-1 for 

production and loss rates to define the fast and slow species (see Section 2.2 for the selection of this threshold), a given 

ni, j
full

ni, j
reduced ni, j

full

ni, j
full
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percentage of species can be excluded from the coupled chemical mechanism. That percentage is 75% for surface grid cells 

and reaches 90% in the stratosphere. When compared with removing long-lived species (lifetime > 10 days), a strategy that 

is most commonly used in simplifying the chemical mechanism (e.g., Young and Boris, 1977), removing slow ones is more 200 

effective because it can exclude a large majority of unimportant species. As seen from Figure 2a, long-lived but fast species 

are only present in the lower troposphere and their percentage is below 1% when averaged globally. Figure 2b shows the 

percentage of slow reactions (<10 molecules cm-3s-1) in the atmosphere, which is found to be 75-85% in the troposphere and 

90% in the stratosphere (Figure 2b). A slow reaction does not necessarily mean that it is not important, but if it is slow in all 

gridboxes of a subdomain of the atmosphere then we can safely remove it in this subdomain. These results show that most of 205 

the atmosphere does not in fact require solving for the full complexity of the mechanism, so considerable simplification is 

possible if we can recognize the spatial and temporal patterns of chemical complexity in different atmospheric subdomains. 

As we will show later, we are able to exclude 50-80% species and 40-60% reactions at different altitudes of the atmosphere 

from the coupled system in our adaptive algorithm (Figure 2).  

3.2 Performance of our adaptive algorithm 210 

Our work addresses two problems in the original Shen et al. (2020) approach. First, the blocks identified by their machine 

learning approach based solely on minimizing computational time (Equation 6 with no regularization term) were not 

chemically coherent. Some species known to be chemically coupled by simple inspection of the mechanism were separated 

in different blocks. The regularization term addresses this shortcoming by penalizing the separation of species that are linked 

in the mechanism by direct and indirect reactant-product relationships. Second, Shen et al. (2020) only achieved 30-40% 215 

time-savings. Here we improve the performance of the algorithm by not only isolating slow species but also removing slow 

reactions from the submechanisms, thus speeding up the computation of the Jacobian. The slow reactions removed in each 

submechanism are pre-defined (see Section 2.2 for more details). 

Figure 3 shows the fraction of fast species that needs to be solved using the chemical solver in the global domain as a 

function of M (submechanisms) and N (blocks). If N is low so each block is large, the mixing of slow species with fast ones 220 

will increase the likelihood of treating all species in this block as fast. If N is too high relative to M, more gridboxes cannot 

be represented by the M submechanisms and hence have to use submechanisms of higher complexity than needed. For each 

N, there exists a threshold for M above which the cost function remains almost unchanged. In order to make the code 

manageable, we choose to use M = 20 resulting in an optimal value N = 13 at which only 30% of the species need to be 

treated as fast in the global tropospheric and stratospheric domain (Figure 3).  As shown in Figure 3, this performance is 225 

relatively insensitive to the choice of M. 

Figure 4a-b shows the method and the results of partitioning of species into the 13 (N=13) blocks (the detailed list of species 

is in Table 1). Oxidants and methane oxidation products are important everywhere so blocks 1 and 2 are part of the 
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submechanism in 50-80% of gridboxes (Figure 4b). Aside from the oxidants, bromine and chlorine radicals (block 3) also 

play a pervasive role in tropospheric and stratospheric chemistry, and are part of the submechanism in 39% of gridboxes 230 

(Figure 4b). Our algorithm can also largely separate anthropogenic VOCs from biogenic ones, although a few such species 

may overlap because they have similar products (e.g. block 7 contains both anthropogenic and biogenic precursors of 

glyoxal; see Table 1). Anthropogenic VOC species are important in 10-20% gridboxes, which are mainly found in the lower 

troposphere (Figure S1). Biogenic VOC species generally have shorter lifetimes, so they are found to be important only in 

0.5-4% gridboxes in the terrestrial lower troposphere near their sources (Figure S2). Most of the secondary organic aerosols 235 

can be found in Block 8 and 11, which are found to be fast in 0.5-3% gridboxes (Figure 4b). Halocarbons are relatively inert 

in the atmosphere and they are found to be important in <2 % of gridboxes (Figure 4b).  

Figure 4c shows the network of these 13 blocks in the full mechanism. A connection between two blocks means that species 

from these two blocks are reactants or products in the same reactions. If more species from two blocks are found in the same 

reactions and have similar products, the distance between these two blocks is shorter (Eq.3), as represented by the length of 240 

edges in the graph. As seen from the figure, atmospheric oxidants play a central role in the mechanism; thus they connect 

with all other blocks. Anthropogenic and biogenic VOCs have similar products (e.g. acetone and formaldehyde) and they are 

found to be interconnected with each other. Halogen species interact with the system mainly through the atmospheric 

oxidants. This network also shows that the optimized blocks by our algorithm are chemically coherent.  

Figure 5 shows the composition of the 20 submechanisms as defined by the 13 blocks. The first 11 submechanisms do not 245 

need to solve any biogenic VOC species and include <40% of the full mechanism’s species (Figure 5a). More than 70% of 

gridboxes select these non-biogenic submechanisms, which are mainly distributed in the stratosphere and free troposphere 

(Figure 5b and S3). The other 9 submechanisms have higher complexity and are mainly used in the lower troposphere over 

the continents (Figure 5b and S3). Only 0.05% of gridboxes need to use the full chemical mechanism.  

Based on different choices of the rate thresholds δ separating fast and slow species, we can adjust the complexity and 250 

accuracy in the adaptive mechanism. Increasing the threshold can speed up the computation but at the expense of accuracy. 

Figure 6 shows the median RRMSE (see the definition in Eq.7) of all species and the CPU time used by chemical integration 

for threshold rates of 500 and 1500 molecules cm-3 s-1, compared to the full chemical mechanism. This comparison is 

conducted by running the simulation for 3 years to examine the sensitivity to different δ. 3 years exceeds the longest 

chemical modes in our simulation (Section 2.1). For each δ, we test the effects of using two strategies, including 255 

isolating slow species (A1) and removing slow reactions (A2) (see Figure 6). By isolating slow species (A1), we can reduce 

the chemical integration time by 38-43% with errors of 0.4-0.9%. By further removing the slow reactions in each 

submechanism (A1+A2), we can reduce the CPU time by 44-49% and the median RRMSE remains at 0.53-1.0%. When 

using a higher threshold δ = 1500 molecules cm-3 s-1 to isolate slow species and removing the slow reactions, we can reduce 

the chemical integration time by 50%, and the median RRMSE maintains at the level of 1% for all gridboxes in the 260 
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atmosphere and less than 0.5% in the boundary layer. The distribution of errors shows that >97.5% species have an error 

lower than 10% (Figure S4). The relative error on concentrations compared to the standard simulation is below 0.5% 

everywhere for key species like O3, OH and sulfate, and is 1-6% for NO2 (Figure S5-S6). Using a higher threshold of δ (> 

1500) only leads to marginal improvement in computer time but the RRMSE quickly increases.   

Figure 7 shows the evolution of the relative biases over the 3-year period for all 228 individual species in the mechanism and 265 

different thresholds δ. There is no growth in bias over the 3-year period. The relative biases for key species including ozone 

OH, sulfate and NO2 are smaller than 5% and are within ±10% for >99% of the other species. Computing the RRMSE for all 

species with concentrations higher than a=1×105 molecules cm-3 (instead of 1×106 molecules cm-3 ) shows similar results 

except that the magnitude of the error is higher because the relative difference is expected to be higher at low species 

concentrations (Fig. S7, S8). 270 

Our algorithm also shows no sign of increasing errors over an 8-year simulation. Figure 8a-b displays the RRMSE over this 

period by taking account of all gridboxes with species concentrations above an absolute threshold of 1×106 molecules cm-3 

or a relative threshold of the 5th percentile of species concentrations across all gridboxes (see Section 2.5 for more details). In 

both cases, the median and the maximum RRMSE remain constant over this simulation period. The relative differences of 

global atmospheric masses are within 10% for >99% species (Figure 8c) and show no sign of increasing trends. The relative 275 

difference for NO2 increases slightly from 0% to 0.4% in the first 30 months and then stabilizes at 0.4%. Key species like 

OH, ozone and sulfate have a relative difference smaller than 0.01% throughout this simulation period.  

3.3 Adapting to mechanism updates 

Chemical mechanisms in models are frequently updated, including addition and removal of species. Because the species 

blocks are chemically coherent, our algorithm can accommodate mechanism updates without requiring reconstruction of the 280 

submechanisms. New species simply need to be added to the appropriate blocks. Figure S9 shows the diagram for adding 

new species into the mechanism. Attribution of a species to a given block can be easily determined by its chemical behavior 

and the percentage of gridboxes that treat this species as fast when averaged globally. In order not to compromise the 

computational efficiency, the basic rule is to not mix faster species with slower ones. For example, biogenic VOC species 

and their products could go to Block 8-9 if the percentage of gridboxes that treat them as fast is >1% or Block 10-11 if the 285 

percentage is <1%. Our algorithm is robust to misplacements of new species, which may affect computational performance 

but will not enlarge the error.  

To demonstrate this procedure, we ported our method originally developed with the GEOS-Chem 12.0.0 chemical 

mechanism (228 species and 724 reactions) to the more recent GEOS-Chem 12.9.1 version (262 species and 850 reactions). 

This involved major changes to the mechanism including for organic nitrate chemistry (Fisher et al., 2018), isoprene 290 



11 
 

chemistry (Bates and Jacob, 2019), and halogen chemistry (Wang et al., 2019), with removal of 49 species and addition of 

83 new ones. We add these new species following the diagram in Figure S9. After running the new version of the model for 

12 months, our reduced algorithm shows consistent improvement in performance, reducing the chemical integration time by 

53% and maintaining error of 0.8% in the atmosphere and <0.4% in the boundary layer (Figure 6c). 

4. Conclusions 295 

The high computational cost of chemical integration is a long-standing limitation in global atmospheric chemistry models. 

Typical chemical mechanisms include over 100 species coupled on short time scales. Previous research has proposed a 

variety of ways to speed up the chemical operator, all involving some loss of accuracy or generality. In this study, we have 

presented a machine learning-guided adaptive method that can reduce the chemical integration time by 50% when compared 

to the full chemical mechanism while maintaining error at the level of 1% and retaining full diagnostic capability.  300 

In our algorithm, we first partition the mechanism species in into chemically coherent blocks using a machine learning 

approach that analyzes production/loss rates and chemical linkages between species. We then assemble these blocks into an 

ensemble of submechanisms to encompass the range of chemical environments in the atmosphere. The model picks locally 

on the fly which submechanism to use based on species’ production and loss rates. The original mechanism can thus be 

greatly reduced in most environments while maintaining complexity where needed. Our method can reduce the chemical 305 

integration time by 50% while incurring errors of less than 1%, with no error growth over multi-year global simulations. 

Updates to the original mechanism can be accommodated by assigning new species to the existing chemically coherent 

blocks without having to reconstruct the suite of submechanisms.  

Our method has many advantages over previously proposed approaches to reduce chemical mechanism: (1) it is chemically 

coherent; (2) it can save 50% computer time in chemical integration with errors lower than 1%; (3) it is stable (no error 310 

growth over time) for multi-year simulations; (4) it retains full diagnostic information of concentration and rates; and (5) it is 

scale-independent. Our algorithm can significantly ease the computational bottleneck of chemical kinetics in global 

atmospheric chemistry models. 

Code availability. The standard GEOS-Chem code is available through https://doi.org/10.5281/zenodo.1343547 (version 

12.0.0) and https://doi.org/10.5281/zenodo.3950473 (version 12.9.1). The updates for the adaptive mechanism can be found 315 

at https://doi.org/10.7910/DVN/KASQOC. 

Data availability. All datasets used in this study are publically accessible at https://doi.org/10.7910/DVN/KASQOC. 
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Figures and Tables 380 
 
Table 1. Partitioning of GEOS-Chem chemical species into N = 13 blocksa.  

Categories Blocks Major components Species %gridboxb 

Oxidants 

and methane 

products 

1 Oxidants MPN, N2O5, HNO3, O3, NO2, MO2, H2O, NO3 74.3±14.5% 

2 Oxidants, methane HNO4, HNO2, H, CH4, H2O2, CH2O, HO2, NO, O, CO, O1D, OH 55.3±11.6% 

Inorganic 

halogens 

3 
Bromine and chlorine 

radicals 

BrNO2, IONO, OIO, ClOO, OClO, BrCl, HOI, Br2, IONO2, BrNO3, I, 

IO, HOBr, HOCl, ClNO3, BrO, HCl, HBr, Cl, Br, ClO 
39.4±18.1 

4 Iodine reservoirs 
AERI, ISALA, ISALC, I2O4, I2O2, I2O3, IBr, INO, HI, ICl, Cl2O2, 

ClNO2, BrSALC, BrSALA, I2, Cl2 
1.7±1.4% 

Anthropogen

ic VOCs and 

sulfate 

5 
Alkanes, alkenes, acetone, 

sulfur compounds 

MSA, MAP, ETP, DMS, PAN, SO4, ATOOH, MP, C2H6, ATO2, 

ACET, ETO2, ALD2, MCO3, SO2 
20.0+9.1% 

6 
Higher alkanes and 

oxidized organics 

PPN, RA3P, RB3P, RP, ALK4, R4P, C3H8, EOH, A3O2, B3O2, RCO3, 

KO2, ACTA, MGLY, R4O2, R4N2, RCHO, MEK 
9.5±4.1% 

7 
Aromatics, glyoxal, and 

related OVOCs 

SOAGX, IMAE, DHDC, BENZ, TOLU, TRO2, BRO2, XRO2, XYLE, 

HPALD, DHPCARP, HPC52O2, GLYX, HCOOH, GLYC, HAC 
3.9±1.7% 

Biogenic 

VOCs 

8 

Isoprene products (low 

NOx), secondary organic 

aerosols 

LVOCOA, LVOC, SOAIE, SOAME, IEPOXD, IEPOXA, IEPOXB, 

HC187, IAP, VRP, MOBA, DHMOB, RIPB, RIPA, RIPD, IEPOXOO, 

HC5OO 

2.5±1.4% 

9 Isoprene, isoprene nitrates 

IMAO3, PP, MRP, DIBOO, IPMN, INPN, ISOPNB, MVKOO, 

CH2OO, PO2, ISOPNDO2, MACROO, ISOP, LIMO2, ISOPNBO2, 

ISOPND, VRO2, ISN1, HC5, RIO2, INO2, MRO2, PRPE, MACR, 

MVK 

3.8±2.0% 

10 Terpenes 

INDIOL, MONITA, IONITA, PIP, HONIT, ISNP, MTPA, MTPO, 

MOBAOO, LIMO, ROH, MONITS, CH3CHOO, MVKN, MONITU, 

MGLOO, R4N1, OLND, OLNN, PIO2 

3.0±1.5% 

11 

Isoprene products (high 

NOx), secondary organic 

aerosols 

ISN1OA, ISN1OG, PYAC, SOAMG, DHDN, PMNN, PRPN, MAOP, 

ETHLN, ISNOHOO, NPMN, ISNOOB, MACRNO2, GAOO, 

MGLYOO, PRN1, PROPNN, MAN2, ISNOOA, MACRN, MAOPO2, 

NMAO3 

0.5±0.6% 

Organic 

halogens and 

other long-

lived species 

12 Halocarbons 
CH2I2, CH2ICl, CH2IBr, CH3CCl3, CH3I, CHBr3, CH2Cl2, CHCl3, 

CH2Br2, HCFC123, HCFC141b, HCFC142b, HCFC22, CH3Br, CH3Cl 
0.47±1.70% 

13 Chlorofluorocarbons 
H1301, H2402, CCl4, CFC11, CFC12, CFC113, CFC114, CFC115, 

H1211, N2O, N, OCS 
0.55±1.91% 
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aThe full GEOS-Chem mechanism has 228 species. The full names of these acronyms can be found at 

http://wiki.seas.harvard.edu/geos-chem/index.php/Species_in_GEOS-Chem.  
bPercentage of gridboxes in the global tropospheric+stratospheric domain that treat this species block as fast. We use a 385 

threshold δ of 500 molecules cm-3 s-1 to partition the fast and slow species.  

 

 
Figure 1. Definition of species distances for TOLU (toluene) and XYLE (xylene) using the analysis of family trees in graph 

theory. The number denotes the distance between species as calculated by Eq. 3. The shortest path from TOLU to XYLE is 390 

TOLU-GLYX-XYLE in this graph, where GLYX is glyoxal.  
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 395 
Figure 2. Potential for simplifying the full chemical mechanism in a global GEOS-Chem model simulation. Panel (a) 

shows the percentage of slow and long-lived species by altitude when averaged globally on Aug 1st 2013 at 0 GMT. We use 

a threshold of 500 molecules cm-3 s-1 to partition fast (P or L is > 500 molecules cm-3s-1) and slow species (P and L are both < 

500 molecules cm-3s-1), and a lifetime of 10 days to separate long-lived and short-lived species. The blue line denotes the 

percentage of slow and long-lived species that are actually removed in the reduced mechanism. Panel (b) shows the 400 

percentage of slow reactions (<10 molecules cm-3s-1) by altitude. The black line is the percentage of slow reactions actually 

removed in the reduced mechanism.  
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 405 
Figure 3. The fraction of species solved as fast as a function of M and N. We use M=20 and N=13 in our work, as shown by 

the triangle in the figure, with a threshold δ of 500 molecules cm-3 s-1 to partition the fast and slow species. The contour lines 

are spaced by 0.01 with the bold line for 0.30.  
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Figure 4. Optimized species blocks and their network in the full chemical mechanism. Panel (a) describes the machine 

learning method to solve for the species blocks. See more details in Section 2. Panel (b) shows the 13 species blocks and the 

percentage of gridboxes that treat the blocks in their submechanisms. The list of species in each block is given in Table 1. 

Block 7 includes both anthropogenic and biogenic VOCs. The left and right of each box are the 25th and 75th percentile, and 415 

the centerline is the 50th percentile. We use a threshold of 500 molecules cm-3 s-1 to partition fast and slow species. Panel (c) 

is the network of species blocks. A connection means that at least two species from these two blocks appear in the same 

reaction. The distance between the two blocks is proportional to the block distance as defined by Eq. 3. 
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 420 
Figure 5. Submechanisms and percentage of gridboxes using each mechanism. Panel (a) shows the composition of the 

20 submechanisms and full mechanism (the 21st one) as well as the percentage of species from the full mechanism that are 

treated as fast in each of them. Colors denote species block types as defined in Figure 4. Panel (b) shows the percentage of 

gridboxes using each submechanism in the marine boundary layer (BL), continental BL, free troposphere, and stratosphere.  
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Figure 6. Performance and accuracy of the adaptive chemical mechanism. We test the performance of the adaptive 

method by (A1) removing slow species (Pi or Li > δ) and (A2) removing slow reactions (reaction rate < 10 molecules cm-3s-

1). Results are shown on the last day of 3-year simulations. The unit of δ is molecules cm-3 s-1. The performance is measured 

by the computing processor unit (CPU) time used by the chemical operator, and the accuracy is measured by the median 430 

relative root mean square error (RRMSE) for species concentrations using the full chemical mechanism. For (a) and (b), we 

use e δ as 500 and 1500 molecules cm-3 s-1 in GEOS-Chem 12.0.0 that has 228 species and 724 reactions. For (c), we port the 

algorithm to GEOS-Chem 12.9.1 that has 262 species and 850 reactions. The number of blocks (N) is 13 and the number of 

chemical regimes is 21 (20 submechanisms (M=20) and one full mechanism).  
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Figure 7. Accuracy of the adaptive reduced chemistry mechanism algorithm over a three-year GEOS-Chem simulation (see 

text). The accuracy is measured by the Relative Root Mean Square Error (RRMSE, see Eq. 5) error on simulated 

concentrations relative to a simulation including the full chemical mechanism. Dashed lines show results for all 228 species 

in the full mechanism, and solid lines show the median RRMSE as well as the RRMSEs for ozone, OH, NO2, and sulfate.  440 

The three panels show the effect of using different thresholds δ ranging from 500 to 1500 molecules cm-3 s-1 to separate fast 

and slow species.  
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Figure 8. Accuracy of the adaptive reduced chemistry mechanism algorithm over an 8-year GEOS-Chem simulation using a 

threshold δ of 1500 molecules cm-3 s-1 to separate fast and slow species. (a) Same as Figure 7c but for the 8-year simulation. 445 

Here we use an absolute threshold of species concentration (a = 1×106 molecules cm-3 ) to define the RRMSE (See Section 

2.5). (b) Same as Figure 8a but using a relative threshold (a = max (5th percentile, 1×104 molecules cm-3)) to define the 

RRMSE (See Section 2.5). (c) Relative difference of global atmospheric masses for each species. Dashed lines show results 

for all 228 species in the mechanism. Results are also shown for the median RRMSE across all species in the mechanism and 

more specifically the RRMSE for ozone, OH, NO2, and sulfate. 450 
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