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Abstract. Inclusion of comprehensive atmospheric chemistry in Earth system models has been limited by the computational 

cost of integrating chemical mechanisms with typically over 100 coupled species. Here we present an adaptive algorithm to 

ease this computational bottleneck with no significant loss in accuracy, and apply it to the GEOS-Chem global 3-D model 

for tropospheric and stratospheric chemistry (228 species, 724 reactions). Our approach is inspired by unsupervised machine 

learning clustering techniques and traditional asymptotic analysis ideas. We first partition the species from the full 15 

mechanism into 13 blocks, using a machine learning approach that analyzes the chemical linkages between species and the  

production and loss rates. Building on these blocks, we pre-select 20 submechanisms, as defined by unique assemblages of 

the species blocks, and then pick locally and on the fly which submechanism to use in the model based on local chemical 

conditions.  In each submechanism, we isolate slow species and slow reactions from the coupled system of fast species to be 

solved. Because many species in the full mechanism are important only in source regions, we find that we can reduce the 20 

effective size of the mechanism by 70% globally without sacrificing complexity where/when it is needed. The computational 

cost of the chemical integration decreases by 50% with accuracy losses smaller than 1% over multi-year simulations. The 

chemical coherence of the algorithm allows it to accommodate updates to the original chemical mechanism without having 

to reconstruct the suite of submechanisms.   
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1 Introduction 

There is a strong motivation to couple atmospheric chemistry with meteorology and surface processes in Earth system 

models (ESMs) because chemical and aerosol species exert strong forcing and feedbacks on the radiative budget of the Earth 

both directly and indirectly (CLIMA et al., 2016), but this is challenging because of the high computational cost (National 30 

Research Council, 2012). Global atmospheric chemistry mechanisms typically include over one hundred chemical species 

coupled through kinetics, and integrating the chemical evolution of that system requires solving a large and stiff system of 

differential equations (Brasseur and Jacob, 2017). However, characterizing the chemical composition in most regions of the 

atmosphere does not in fact require solving for the full chemical complexity of the mechanism. Here we present an adaptive, 

stable and chemically coherent algorithm for solving atmospheric chemistry in ESMs that reduces the computational cost in 35 

half, with losses in accuracy less than 1% that do not propagate forward in time. Our algorithm is based on general principles 

that can be easily applied to a wide range of mechanisms. 

Previous approaches of simplifying atmospheric chemistry mechanisms all involve some loss of accuracy or generality 

(Brasseur and Jacob, 2017). Reducing the dimension of the coupled system can be obtained by decreasing the number of 

species (Sportisse and Djouad, 2000), isolating long-lived species (Young and Boris, 1977), and removing unimportant 40 

reactions (Brown-Steiner et al., 2018). However, the importance of a species or a reaction varies in different atmospheric 

conditions, so these schemes are not well adapted to global models. Some studies (Jacobson 1995; Rastigeyev et al., 2007) 

use different subsets of the full chemical mechanism for different regions with specified or locally determined boundaries, 

but this has limited success because the atmosphere has a continuum of chemical regimes, and geographic boundaries 

between regimes should be dynamic rather than pre-defined. An adaptive method to define mechanism subsets locally and 45 

on the fly has been proposed by Santillana et al. (2010) but the computational overhead of customizing the mechanism on 

the fly offsets computational gains.  The overhead can be avoided by compiling a library of pre-defined mechanism subsets 

(Shen et al., 2020), but a challenge is to select these subsets in a manner that is chemically coherent and portable across 

mechanisms.  

In this work, we continue developing the adaptive method described by Shen et al. (2020). This method pre-assembles a 50 

small number of subsets of the full chemical mechanism representing the range of conditions in the troposphere and 

stratosphere, and selects the most appropriate submechanism to use in the model locally and on the fly. The submechanisms 

are constructed by first splitting the full mechanism’s atmospheric species into N different blocks based on similarity of 

chemical behaviors, using a machine learning clustering method. We then define the submechanisms as different 

assemblages of blocks, select M of these assemblages to encompass the majority of chemical conditions in the atmosphere, 55 

and build them into the model. The choice of submechanism in the model is then made locally by computing chemical 

production and loss rates of the mechanism species and deciding which need to be part of the coupled chemical computation 

(‘fast’ species) and which can be tracked independently (‘slow’ species). A major development here is to define chemically 
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coherent blocks that allow the method to easily accommodate changes in the chemical mechanism and to be readily applied 

to different mechanisms. We further improve the performance of the method by reducing the number of reactions as well as 60 

the number of species in the submechanisms.  

 

2 Method description 

Here we describe the adaptive method as applied in the GEOS-Chem global model, although it is applicable to any model. 

We begin with a brief description of the model as relevant to the presentation. 65 

2.1 GEOS-Chem model 

We use the GEOS-Chem version 12.0.0 global 3-D model for tropospheric and stratospheric chemistry 

(https://doi.org/10.5281/zenodo.1343547). For development and testing purposes, we choose a horizontal resolution of 4°×5° 

and 72 pressure levels extending from surface to 0.01 hPa, and drive the model with MERRA2 assimilated meteorological 

data. The full mechanism for oxidant-aerosol chemistry in the model has 228 species and 724 reactions, including coupled 70 

gas-phase and aerosol chemistry for the troposphere and stratosphere (Sherwen et al., 2016; Eastham et al., 2014). The 

chemical operator uses a 4th-order Rosenbrock implicit method, implemented through the Kinetic Pre-Processor (KPP) 

(Sander and Sandu, 1996), to solve for the chemical evolution of species concentrations, involving iterative calculations and 

inversion of the Jacobian matrix that stores the sensitivity of species reaction rates to concentrations.  

In part of this study, we test the performance robustness of our reduced algorithm by porting it to GEOS-Chem version 75 

12.9.1 (https://doi.org/10.5281/zenodo.3950473). This new version of has a thoroughly updated mechanism of 262 species 

and 850 reactions, including improved organic nitrate chemistry (Fisher et al., 2018), isoprene chemistry (Bates and Jacob, 

2019), and halogen chemistry (Wang et al., 2019). From version 12.0.0 to 12.9.1, we need to remove 49 old species and add 

83 new species. We use 12 CPUs in a shared-memory Open Message Passing (Open-MP) parallel environment to test the 

performance of our algorithm throughout this study. 80 

2.2 Separation of fast and slow species and reactions 

Coupling between species as represented in the chemical solver is needed only for species with sufficiently fast production 

or loss rates (fast species), and similarly reactions need to be considered only if they are sufficiently fast.  We separate the 

atmospheric species as fast or slow based on their production and loss rates relative to a threshold δ: fast if either Pi(n) ≥ δ or 

Li(n) ≥ δ, slow if Pi(n) < δ and Li(n) < δ (Pi and Li refer to the production and loss rates of the ith species, δ is a threshold, and 85 

n is a vector of concentrations of all species). To get a sense of a relevant threshold, consider the hydroxyl radical (OH) 

which is central to driving oxidant-aerosol chemistry. OH has a daytime concentration of the order of 106 molecules cm-3 and 

a lifetime of 1s, so its production and loss rates are of the order of 106 molecules cm-3 s-1.  Species with production and loss 
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rates smaller than 102-103 molecules cm-3 s-1 are unlikely to have fast influence other species in the mechanism (Santillana et 

al., 2010; Shen et al., 2020).  In this study, we use δ from 500 to 1500 molecules cm-3 s-1 to partition the fast and slow species. 90 

We also define species with a chemical lifetime longer than 10 days as long-lived.  

We pre-select a limited number (M) of submechanisms for which we pre-code the Jacobian matrix. In each submechanism, if 

a reaction is slower than 10 molecules cm-3 s-1 over all gridboxes that select this submechanism, this reaction is considered as 

unimportant in contributing to the threshold δ and is removed from the submechanism; but this reaction will be kept if it is 

faster than 10 molecules cm-3 s-1 in any of these gridboxes selecting this submechanism. The threshold we used to separate 95 

fast and slow reactions is slightly larger than 0 molecules cm-3 s-1 because of numerical precisions (unimportant reactions 

may still have a reaction rate > 0 molecules cm-3 s-1 in the numerical chemical solver in some timesteps). About 40-60% 

reactions can be removed using this strategy. For example, reactions of short-lived volatile organic compounds (VOCs) are 

removed in stratospheric gridboxes, and daytime photochemical reactions are removed in nightime gridboxes. Here we 

remove these slow reactions in each submechanism based on present-day atmospheric chemistry environment and it should 100 

be re-evaluated if this method is applied in other periods (e.g. pre-industrial times) when the atmospheric conditions could be 

very different from our present-day one. 

We solve the fast species in their submechanism using the standard Rosenbrock solver. For the slow or long-lived species, 

we approximate the evolution of concentrations using an explicit analytical solution that assumes first-order loss (Santillana 

et al., 2010), written as 105 

𝑑𝑛#
𝑑𝑡 = 𝑃# − 𝐿# = 𝑃# − 𝑘#𝑛#																																																																																																	(1) 

𝑛#(𝑡 + ∆𝑡) =
𝑃#(𝑡)
𝑘#(𝑡)

+ (𝑛#(𝑡) −
𝑃#(𝑡)
𝑘#(𝑡)

)𝑒123(4)∆4																																																																									(2) 

where ni is the concentration of species i, Pi and Li are the production and loss rates, ki is the rate coefficient of the first-order 

loss, and Δt is the time step. Solving for Eq.2 entails negligible  computational cost. As such, we still update the 

concentrations of all species but in a more efficient way. 110 

2.3 Defining the distance between species in the mechanism 

We construct coherent subsets (‘blocks’) of the species in the mechanism species based on their linkages through the 

mechanism reactions. This is done objectively by defining the species distances in the mechanism  using graph theory. In 

general, two species should have shorter distances if they appear in the same reaction more times and have similar products 

in the mechanism. From the full mechanism of 228 species and 724 reactions, we find 3400 species pairs of reactants-115 

products and map them to an undirected graph that has 228 vertices and 1422 edges. For example, in the reaction A+B-→C, 

there are 2 pairs (A-C and B-C) of reactants-products, 3 vertices (A, B, and C) and 2 edges (A-C and B-C).  If species i and j 
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share the same edge, we define their distance as  

𝐷#,	8 =
𝑇#,8
:𝑇#𝑇8

																																																																																																									(3) 

Where 𝑇#,	8 	is the number of reactions that include both species i and j (one is the reactant and the other is the product), and Ti 120 

(or Tj) is the number of species that appear in the same reactions with species i (or j). If species i and j never appear in the 

same reaction so they do not share the same edge in the graph, their distance is calculated as the length of the shortest path 

from species i to j. For example, the distance of toluene (TOLU) and xylene (XYLE) can be defined as the length of path 

TOLU-GLYX-XYLE (Figure 1, GLYX is glyoxal). Similarly, we can also define the distance between two blocks using 

Eq.3, in which we define 𝑇#,	8 	as the number of reactions that include species in block i and j (one is the reactant and the other 125 

is the product) and Ti (or Tj) as the number of blocks that have reactions with block i (or j).  

Equation 3 can define the distance of species along reaction chains, but it may overestimate the distance of species that do 

not react with each other but have similar products (e.g. XYLE and TOLU). These species usually come from the same 

chemical family and should be close to each other in terms of distances. In our work, we address this shortcoming as follows.  

First, we denote each species i by a vector (Di) that contains its distance with all other species. The similarity of two species i 130 

and j can be thus defined as their Euclidean distance ||Di – Dj||. Second, for each species i, we decrease its distance with the 5 

species that have highest similarity with it by 50% and this scaling is applied only once for each species pair. Using 10 

highest-similarity species instead of 5 and decreasing distances by 30% or 70% does not change the results. We store these 

modified distances of all species pairs in a 228x228 matrix. We also tried weighting the species distances using the 

logarithms of their global mean reactions rates but this does not have significant effects on our final results.  135 

2.4 Selection of species blocks and submechanisms 

We construct submechanisms by assemblage of chemically coherent blocks in order to minimize the fraction of fast species 

to be tracked in the model. To partition the species into N blocks, we use a training dataset from a GEOS-Chem simulation  

for 2013 consisting of the first 10 days of February, May, August, and November sampled every 6 hours (160 time steps in 

total). 140 

For the 228-species mechanism in GEOS-Chem, there are in 2228-1 possible combinations of species and we need to pre-

select M of them to form submechanisms that can encompass the range of atmospheric conditions. To reduce the 

dimensionality of this problem, we start by splitting the 228 species into N different blocks. A block is considered as fast if at 

least one species in that block is fast (P or L > δ). Building on the N blocks, we define the submechanism as different 

assemblages of fast blocks, which yields 2N - 1 possible submechanisms. Each gridbox in the model domain may correspond 145 



6 
 

to one of these 2N - 1 submechanisms. More specifically, for each gridbox j, we diagnose species i as fast or slow following 

the definition of Section 2.2. We define yi,j = 1 if any species in the block is fast or yi,j = 0 if all species in the block are slow. 

Thus, the fraction Z1 of all species that needs to treated as fast can be written as 

𝑍= =
1
Ω	
??𝑦#,8

#8

																																																																																																				(4) 

where W is the number of species × gridboxes. 150 

We need to limit the number of submechanisms to a small number M in order to keep the compilation of the code 

manageable. Gridboxes that do not correspond to any of the M submechanisms need to be matched to one of the M 

submechanisms by moving some blocks from slow to fast, and we select the submechanism has a minimum number of 

moves. As such, the values of some yi,j need to be changed from 0 to 1 and we refer to y*i,j  as the  indicators adjusted by 

these changes. The fraction of species f(M, N) that need to be treated as fast over the global domain is given by: 155 

𝑓(𝑀,𝑁) =
1
Ω	(

??𝑦#,8
#EF

+??𝑦#,8∗
#EH

)																																																																								(5) 

where V1 are the gridboxes that can be represented directly by the M chemical submechanisms, and V2 are the gridboxes that 

must be matched to the M submechanisms.  

The cost function Z to be minimized in the selection of submechanisms can be written as 

𝑍 = 𝑓(𝑀,𝑁) + 𝛾𝐷𝑖𝑠𝑡																																																																																																			(6) 160 

Where Dist is the sum of distances for all pairs of species if they are in the same block, 𝛾 is a regularization factor; f is the 

fraction of species that needs to be treated as fast over the testing domain based on M and N (Eq. 5). We adjust 𝛾 so that the 

second term on the right part of Eq.6 contributes to 20% of the total cost function. We seek the partitioning of species into 

blocks that will minimize Z, and we use for that purpose the simulated annealing algorithm (Kirkpatrick et al., 1983). We 

treat all 37 reactive inorganic halogen species as fast in the stratosphere to conserve the total mass of halogen species, same 165 

as Shen et al. (2020).  We tested a range of values from 5 to 20 for N and from 10 to 40 for M. In the simulated annealing 

algorithm, we  start from a randomly generated partition of the N blocks. In each iteration, we randomly move one species 

from one block to another. If the cost function decreases, this transition is accepted; otherwise, it is accepted with a 

probability controlled by a parameter named temperature. The temperature parameter decreases gradually as the optimization 

proceeds (Kirkpatrick, 1983). 170 
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The explicit solution by Eq. 3 does not strictly conserve mass (Shen et al., 2020), and we find that this is a problem for 

halogen species in the stratosphere due to the long lifetime of the collective halogen families and the alternance of the 

component species as fast and slow over day and night. To avoid this problem, we treat all 37 reactive inorganic halogen 

species as fast in the stratosphere. Thus, among the N blocks, 2 are allocated to the reactive inorganic halogen species, and 

N-2 are allocated to the other species. The transition of species between the 2 inorganic halogens blocks and other N-2 175 

blocks are not accepted in the optimization process.  

2.5 Error analysis 

We use the Relative Root Mean Square (RRMS) metric as given by Sandu et al. (1997) to characterize the error: 

𝑹𝑹𝑴𝑺𝒊 = R 𝟏
𝑸𝒊
?U

𝒏𝒊,𝒋𝐫𝐞𝐝𝐮𝐜𝐞𝐝 − 𝒏𝒊,𝒋𝐟𝐮𝐥𝐥

𝒏𝒊,𝒋𝐟𝐮𝐥𝐥
_
𝟐

		
𝑸𝒊

𝒋a𝟏

																																																																							(𝟕) 

Where and are the concentrations for species i and gridbox j in the reduced and full chemical mechanisms, the 180 

sum is over the gridboxes where is greater than a threshold a, and Qi is the number of such gridboxes. Here we use a = 

1×106 molecules cm-3 as in Eller et al. (2009) and Santillana et al. (2010), and will also show results with a = 1×105 

molecules cm-3    

A second metric to evaluate our adaptive chemical mechanism is the relative difference of atmospheric abundances for all 

species compared to the standard simulation. This tests for accumulating bias over long simulation periods.  185 

3 The adaptive algorithm for the chemical operator 

3.1 Potential for local simplifications of atmospheric chemistry mechanisms 

Figure 2 displays the potential for local simplification of the full mechanism over the global domain, based on local chemical 

production and loss rates for the 228 species simulated by GEOS-Chem. Using a threshold δ of 500 molecules cm-3s-1 for 

production and loss rates to define the fast and slow species (see Section 2.2 for the selection of this threshold), a given 190 

percentage of species can be excluded from the coupled chemical mechanism. That percentage is 75% for surface grid cells 

and reaches 90% in the stratosphere. When compared with removing long-lived species (lifetime > 10 days), a strategy that 

is most commonly used in simplifying the chemical mechanism (e.g. Young and Boris, 1977), removing slow ones is more 

effective because it can exclude a large majority of unimportant species. As seen from Figure 2a, long-lived but fast species 

are only present in the lower troposphere and their percentage is below 1% when averaged globally. Figure 2b shows the 195 

ni, j
reduced ni, j

full

ni, j
full
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percentage of slow reactions (<10 molecules cm-3s-1) in the atmosphere, which is found to be 75-85% in the troposphere and 

90% in the stratosphere (Figure 2b). A slow reaction does not necessarily mean that it is not important, but if it is slow in all 

gridboxes of a subdomain of the atmosphere then we can safely remove it in this subdomain. These results show that most of 

the atmosphere does not in fact require solving for the full complexity of the mechanism, so considerable simplification is 

possible if we can recognize the spatial and temporal patterns of chemical complexity in different atmospheric subdomains. 200 

As we will show later, we are able to exclude 50-80% species and 40-60% reactions at different altitudes of the atmosphere 

from the coupled system in our adaptive algorithm (Figure 2).  

3.2 Performance of our adaptive algorithm 

Our work addresses two problems  in the original Shen et al. (2020) approach. First, the blocks identified by their machine 

learning approach based solely on minimizing computational time (Equation 6 with no regularization term) were not 205 

chemically coherent. Some species known to be chemically coupled by simple inspection of the mechanism were separated 

in different blocks. The regularization term addresses this shortcoming by penalizing the separation of species that are linked 

in the mechanism by direct and indirect reactant-product relationships. Second, Shen et al. (2020) only achieved 30-40% 

time-savings. Here we improve the performance of the algorithm by not only isolating slow species but also removing slow 

reactions from the submechanisms, thus speeding up the computation of the Jacobian. The slow reactions removed in each 210 

submechanism are pre-defined (see Section 2.2 for more details). 

Figure 3 shows the fraction of fast species that needs to be solved using the chemical solver in the global domain as a 

function of M (submechanisms) and N (blocks). If N is low so each block is large, the mixing of slow species with fast ones 

will increase the likelihood of treating all species in this block as fast. If N is too high relative to M, more gridboxes cannot 

be represented by the M submechanisms and hence have to use submechanisms of higher complexity than needed. For each 215 

N, there exists a threshold for M above which the cost function remains almost unchanged. In order to make the code 

manageable, we choose to use M = 20 resulting in an optimal value N = 13 at which only 30% of the species need to be 

treated as fast in the global tropospheric and stratospheric domain (Figure 3).  As shown in Figure 3, this performance is 

relatively insensitive to the choice of M. 

Figure 4a-b shows the method and the results of partitioning of species into the 13 (N=13) blocks (the detailed list of species 220 

is in Table 1). Oxidants and methane oxidation products are important everywhere so blocks 1 and 2 are part of the 

submechanism in 50-80% of gridboxes (Figure 4b). Aside from the oxidants, bromine and chlorine radicals (block 3) also 

play a pervasive role in tropospheric and stratospheric chemistry, and are part of the submechanism in 39% of gridboxes 

(Figure 4b). Our algorithm can also largely separate anthropogenic VOCs from biogenic ones, although a few such species 

may overlap because they have similar products (e.g. block 7 contains both anthropogenic and biogenic precursors of 225 

glyoxal; see Table 1). Anthropogenic VOC species are important in 10-20% gridboxes, which are mainly found in the lower 
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troposphere (Figure S1). Biogenic VOC species generally have shorter lifetimes, so they are found to be important only in 

0.5-4% gridboxes in the terrestrial lower troposphere near their sources (Figure S2). Most of the secondary organic aerosols 

can be found in Block 8 and 11, which are found to be fast in 0.5-3% gridboxes (Figure 4b). Halocarbons are relatively inert 

in the atmosphere and they are found to be important in <2 % of gridboxes (Figure 4b).  230 

Figure 4c shows the network of these 13 blocks in the full mechanism. A connection between two blocks means that species 

from these two blocks are reactants or products in the same reactions. If more species from two blocks are found in the same 

reactions and have similar products, the distance between these two blocks is shorter (Eq.3), as represented by the length of 

edges in the graph. As seen from the figure, atmospheric oxidants play a central role in the mechanism; thus they connect 

with all other blocks. Anthropogenic and biogenic VOCs have similar products (e.g. acetone and formaldehyde) and they are 235 

found to be interconnected with each other. Halogen species interact with the system mainly through the atmospheric 

oxidants. This network also shows that the optimized blocks by our algorithm are chemically coherent.  

Figure 5 shows the composition of the 20 submechanisms as defined by the 13 blocks. The first 11 submechanisms do not 

need to solve any biogenic VOC species and include <40% of the full mechanism’s species. More than 70% of gridboxes 

select these non-biogenic submechanisms, which are mainly distributed in the stratosphere and free troposphere (Figure 5b 240 

and S3). The other 9 submechanisms have higher complexity and are mainly used in the lower troposphere over the 

continents (Figure 5b and S3). Only 0.05% of gridboxes need to use the full chemical mechanism.  

Based on different choices of the rate thresholds δ separating fast and slow species, we can adjust the complexity and 

accuracy in the adaptive mechanism. Increasing the threshold can speed up the computation but at the expense of accuracy. 

Figure 6b-c shows the median RRMS error (see the definition in Eq.7) of all species and the CPU time used by chemical 245 

integration for threshold rates of 500 and 1500 molecules cm-3 s-1, compared to the full chemical mechanism. This 

comparison is conducted by running the simulation for 3 years to examine the sensitivity to different δ. For each δ, we test 

the effects of using two strategies, including isolating slow species (A1) and removing slow reactions (A2) (see Figure 6). 

By isolating slow species (A1), we can reduce the chemical integration time by 38-43% with errors of 0.4-0.9%. By further 

removing the slow reactions in each submechanism (A1+A2), we can reduce the CPU time by 44-49% and the median 250 

RRMSE error remains at 0.53-1.0%. When using a higher threshold δ = 1500 molecules cm-3 s-1 to isolate slow species and 

removing the slow reactions, we can reduce the chemical integration time by 50%, and the median RRMSE error maintains 

at the level of 1% for all gridboxes in the atmosphere and less than 0.5% in the boundary layer. Three-year simulation tests 

show that the errors of our method are stable over time (Figure 7), so it can be safely used for long-term simulations. The 

distribution of errors shows that >97.5% species have an error lower than 10% (Figure S4). The relative error on 255 

concentrations compared to the standard simulation is below 0.5% everywhere for key species like O3, OH and sulfate, and 

is 1-6% for NO2 (Figure S5-S7). Using a higher threshold of δ (> 1500) only leads to marginal improvement in computer 

time but the RRMSE error quickly increases.   
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The median relative difference in atmospheric abundances among all species remains at 0% over this 3-year period; the 

relative differences for key species like ozone, OH, sulfate and NO2 also remain at 0% and are within ±10% for >99% of the 260 

other species (Figure S7). Computing the RRMSE for all species with concentrations higher than a=1×105 molecules cm-3 

(instead of 1x106 molecules cm-3 ) shows similar results except that the magnitude of the error is higher because the relative 

difference is expected to be higher at low species concentrations (Fig. S6, S8, S9). 

3.3 Adapting to mechanism updates 

Chemical mechanisms in models are frequently updated, including addition and removal of species. Because the species 265 

blocks are chemically coherent, our algorithm can accommodate mechanism updates without requiring reconstruction of the 

submechanisms. New species simply need to be added to the appropriate blocks. Figure S10 shows the diagram for adding 

new species into the mechanism. Attribution of a species to a given block can be easily determined by its chemical family 

and the percentage of gridboxes that treat this species as fast when averaged globally. In order not to compromise the 

computational efficiency, the basic rule is to not mix faster species with slower ones. For example, biogenic VOC species 270 

and their products could go to Block 8-9 if the percentage of gridboxes that treat them as fast is >1% or Block 10-11 if the 

percentage is <1%. Our algorithm is robust to misplacements of new species, which may affect computational performance 

but will not enlarge the error.  

To demonstrated this procedure, we ported our method originally developed with the GEOS-Chem 12.0.0 chemical 

mechanism (228 species and 724 reactions) to the latest GEOS-Chem 12.9.1 version (262 species and 850 reactions). This 275 

involved major changes to the mechanism including for organic nitrate chemistry (Fisher et al., 2018), isoprene chemistry 

(Bates and Jacob, 2019), and halogen chemistry (Wang et al., 2019), with removal of 49 species and addition of 83 new ones. 

We add these new species following the diagram in Figure S10. After running the new version of the model for 12 months, 

our reduced algorithm shows consistent improvement in performance, reducing the chemical integration time by 53% and 

maintaining error of 0.8% in the atmosphere and <0.4% in the boundary layer (Figure 6d). 280 

4. Conclusions 

The high computational cost of chemical integration has been a barrier for the inclusion of atmospheric chemistry in Earth 

system models. Typical chemical mechanisms include over 100 species coupled on short time scales. Previous research has 

proposed a variety of ways to speed up the chemical operator, all involving some loss of accuracy or generality. In this study, 

we have presented a machine learning-guided adaptive method that can reduce the chemical integration time by 50% when 285 

compared to the full chemical mechanism while maintaining error at the level of 1% and retaining full diagnostic capability.  

In our algorithm, we first partition the mechanism species in into chemically coherent blocks using a machine learning 

approach that analyzes production/loss rates and  chemical linkages between species. . We then assemble these blocks into 
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an ensemble of submechanismsto encompass the range of chemical environments in the atmosphere. The model  picks 

locally on the fly which submechanism to use based on species’ production and loss rates. The original mechanism can thus 290 

be greatly reduced in most environments while maintaining complexity where needed. Our method can reduce the chemical 

integration time by 50% while incurring errors of less than 1%, with no error growth over multi-year global simulations. 

Updates to the original mechanism can be accommodated by assigning new species to the existing chemically coherent 

blocks without having to reconstruct the suite of submechanisms.  

Our method has many advantages over previously proposed approaches to reduce chemical mechanism: (1) it is chemically 295 

coherent; (2) it can save 50% computer time in chemical integration and maintain the error better than 1%; (3) it is stable (no 

error growth over time) and can be used for long-term integrations; (4) it retains full diagnostic information of concentration 

and rates; and (5) it is scale-independent. Our algorithm can significantly ease the computational bottleneck for inclusion of 

comprehensive atmospheric chemistry in the next generation of earth system models. 

Code availability. The standard GEOS-Chem code is available through https://doi.org/10.5281/zenodo.1343547 (version 300 

12.0.0) and https://doi.org/10.5281/zenodo.3950473 (version 12.9.1). The updates for the adaptive mechanism can be found 

at https://doi.org/10.7910/DVN/KASQOC. 
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Figures and Tables 
 
Table 1. Partitioning of GEOS-Chem chemical species into N = 13 blocksa.  365 

Categories Blocks Major components Species %gridboxb 

Oxidants 

and methane 

products 

1 Oxidants MPN, N2O5, HNO3, O3, NO2, MO2, H2O, NO3 74.3±14.5% 

2 Oxidants, methane HNO4, HNO2, H, CH4, H2O2, CH2O, HO2, NO, O, CO, O1D, OH 55.3±11.6% 

Inorganic 

halogens 

3 
Bromine and chlorine 

radicals 

BrNO2, IONO, OIO, ClOO, OClO, BrCl, HOI, Br2, IONO2, BrNO3, I, 

IO, HOBr, HOCl, ClNO3, BrO, HCl, HBr, Cl, Br, ClO 
39.4±18.1 

4 Iodine reservoirs 
AERI, ISALA, ISALC, I2O4, I2O2, I2O3, IBr, INO, HI, ICl, Cl2O2, 

ClNO2, BrSALC, BrSALA, I2, Cl2 
1.7±1.4% 

Anthropogen

ic VOCs and 

sulfate 

5 
Alkanes, alkenes, acetone, 

sulfur compounds 

MSA, MAP, ETP, DMS, PAN, SO4, ATOOH, MP, C2H6, ATO2, 

ACET, ETO2, ALD2, MCO3, SO2 
20.0+9.1% 

6 
Higher alkanes and 

oxidized organics 

PPN, RA3P, RB3P, RP, ALK4, R4P, C3H8, EOH, A3O2, B3O2, RCO3, 

KO2, ACTA, MGLY, R4O2, R4N2, RCHO, MEK 
9.5±4.1% 

7 
Aromatics, glyoxal, and 

related OVOCs 

SOAGX, IMAE, DHDC, BENZ, TOLU, TRO2, BRO2, XRO2, XYLE, 

HPALD, DHPCARP, HPC52O2, GLYX, HCOOH, GLYC, HAC 
3.9±1.7% 

Biogenic 

VOCs 

8 

Isoprene products (low 

NOx), secondary organic 

aerosols 

LVOCOA, LVOC, SOAIE, SOAME, IEPOXD, IEPOXA, IEPOXB, 

HC187, IAP, VRP, MOBA, DHMOB, RIPB, RIPA, RIPD, IEPOXOO, 

HC5OO 

2.5±1.4% 

9 Isoprene, isoprene nitrates 

IMAO3, PP, MRP, DIBOO, IPMN, INPN, ISOPNB, MVKOO, 

CH2OO, PO2, ISOPNDO2, MACROO, ISOP, LIMO2, ISOPNBO2, 

ISOPND, VRO2, ISN1, HC5, RIO2, INO2, MRO2, PRPE, MACR, 

MVK 

3.8±2.0% 
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10 Terpenes 

INDIOL, MONITA, IONITA, PIP, HONIT, ISNP, MTPA, MTPO, 

MOBAOO, LIMO, ROH, MONITS, CH3CHOO, MVKN, MONITU, 

MGLOO, R4N1, OLND, OLNN, PIO2 

3.0±1.5% 

11 

Isoprene products (high 

NOx), secondary organic 

aerosols 

ISN1OA, ISN1OG, PYAC, SOAMG, DHDN, PMNN, PRPN, MAOP, 

ETHLN, ISNOHOO, NPMN, ISNOOB, MACRNO2, GAOO, 

MGLYOO, PRN1, PROPNN, MAN2, ISNOOA, MACRN, MAOPO2, 

NMAO3 

0.5±0.6% 

Organic 

halogens and 

other long-

lived species 

12 Halocarbons 
CH2I2, CH2ICl, CH2IBr, CH3CCl3, CH3I, CHBr3, CH2Cl2, CHCl3, 

CH2Br2, HCFC123, HCFC141b, HCFC142b, HCFC22, CH3Br, CH3Cl 
0.47±1.70% 

13 Chlorofluorocarbons 
H1301, H2402, CCl4, CFC11, CFC12, CFC113, CFC114, CFC115, 

H1211, N2O, N, OCS 
0.55±1.91% 

aThe full GEOS-Chem mechanism has 228 species. The full names of these acronyms can be found at 

http://wiki.seas.harvard.edu/geos-chem/index.php/Species_in_GEOS-Chem.  
bPercentage of gridboxes in the global tropospheric+stratospheric domain that treat this species block as fast. We use a 

threshold δ of 500 molecules cm-3 s-1 to partition the fast and slow species.  

 370 

 
Figure 1. Definition of species distances for TOLU (toluene) and XYLE (xylene) using the analysis of family trees in graph 

theory. The number denotes for the distance between species as calculated by Eq. 3. The shortest path from TOLU to XYLE 

is TOLU-GLYX-XYLE in this graph, where GLYX is glyoxal.  
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Figure 2. Potential for simplifying the full chemical mechanism in a global GEOS-Chem model simulation. Panel (a) 

shows the percentage of slow and long-lived species by altitude when averaged globally on Aug 1st 2013 at 0 GMT. We use 380 

a threshold of 500 molecules cm-3 s-1 to partition fast (P or L is > 500 molecules cm-3s-1) and slow species (P and L are both < 

500 molecules cm-3s-1), and a lifetime of 10 days to separate long-lived and short-lived species. The blue line denotes for the 

percentage of slow and long-lived species that are actually removed in the reduced mechanism. Panel (b) shows the 

percentage of slow reactions (<10 molecules cm-3s-1) by altitude. The black line is the percentage of slow reactions actually 

removed in the reduced mechanism.  385 
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Figure 3. The fraction of species solved as fast as a function of M and N. We use M=20 and N=13 in our work, as shown by 

the triangle in the figure, with a threshold δ of 500 molecules cm-3 s-1 to partition the fast and slow species. The contour lines 390 

are spaced by 0.01 with the bold line for 0.30.  
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Figure 4. Optimized species blocks and their network in the full chemical mechanism. Panel (a) describes the machine 395 

learning method to solve for the species blocks. See more details in Section 2. Panel (b) shows the 13 species blocks and the 

percentage of gridboxes that treat the blocks in their submechanisms. The list of species in each block is given in Table 1. 

Block 7 includes both anthropogenic and biogenic VOCs. The left and right of each box are the 25th and 75th percentile, and 

the centerline is the 50th percentile. We use a threshold of 500 molecules cm-3 s-1 to partition fast and slow species. Panel (c) 

is the network of species blocks. A connection means that at least two species from these two blocks appear in the same 400 

reaction. The distance between the two blocks is proportional to the block distance as defined by Eq. 3. 
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Figure 5. Submechanisms and percentage of gridboxes using each mechanism. Panel (a) shows the composition of the 

20 submechanisms and full mechanism (the 21st one) as well as the percentage of species from the full mechanism that are 405 

treated as fast in each of them. Colors denote species block types as defined in Figure 4. Panel (b) shows the percentage of 

gridboxes using each submechanism in the marine boundary layer (BL), continental BL, free troposphere, and stratosphere.  
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Figure 6. Performance and accuracy of the adaptive chemical mechanism. We test the performance of this adaptive 410 

method by (A1) removing slow species (Pi or Li > δ) and (A2) removing slow reactions (reaction rate < 10 molecules cm-3s-1) 

on the last day of 3-year simulations. The unit of δ is molecules cm-3 s-1. The performance is measured by the computing 

processor unit (CPU) time used by the chemical operator, and the accuracy is measured by the median relative root mean 

square (RRMS) error for species concentrations using the full chemical mechanism. For (a) and (b), we use the δ as 500 and 

1500 molecules cm-3 s-1 in GEOS-Chem 12.0.0 that has 228 species and 724 reactions. For (c), we port the algorithm to 415 

GEOS-Chem 12.9.1 that has 262 species and 850 reactions. The number of blocks (N) is 13 and the number of chemical 

regimes is 21 (20 submechanisms (M=20) and one full mechanism).  
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Figure 7. Accuracy of the adaptive reduced chemistry mechanism algorithm over a three-year GEOS-Chem simulation (see 420 

text). The accuracy is measured by the Relative Root Mean Square (RRMS, see Eq. 5) error on simulated concentrations 

relative to a simulation including the full chemical mechanism. Results are shown for the median RRMS error across all 

species in the mechanism and more specifically the RRMS error for ozone, OH, NO2, and sulfate.  The three panels show the 

effect of using different thresholds δ ranging from 500 to 1500 molecules cm-3 s-1 to separate fast and slow species.  
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