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Abstract. A simplified model, representing the dynamics of marine organic particles in a given size range experiencing coagu-

lation and fragmentation reactions is developed. The framework is based on a discrete size spectrum on which reactions act to

exchange properties between different particle sizes. The reactions are prescribed according to triplets interactions. Coagula-

tion combines two particle sizes to yield a third one, while fragmentation breaks a given particle size into two (i.e. the inverse

of the coagulation reaction). The complete set of reactions is given by all the permutations of two particle sizes associated5

with a third one. Since, by design, some reactions yield particle sizes that are outside the resolved size range of the spectrum,

a closure is developed to take into account this unresolved range and satisfy global constraints such as mass conservation. In

order to minimize the number of tracers required to apply this model to an Ocean General Circulation Model focus is placed on

the robustness of the model to the particle size resolution. Thus, numerical experiments were designed to study the dependence

of the results on i) the number of particle size bins used to discretize a given size range (i.e. the resolution) and ii) the type of10

discretization (i.e. linear vs nonlinear). The results demonstrate that in a linearly size discretized configuration, the model is

independent of the resolution. However, important biases are observed in a nonlinear discretization. A first attempt to mitigate

the effect of nonlinearity of the size spectrum is then presented and shows significant improvement in reducing the observed

biases.

1 Introduction15

The biological carbon pump is responsible for a significant fraction of the organic carbon exports from the surface to the deep

ocean (Passow and Carlson, 2012; Le Moigne, 2019), thereby influencing the climate (Kiørboe and Thygesen, 2001). Questions

regarding the quantification and prediction of its efficiency and response times are still broadly unanswered. The carbon pump

obeys to a wide variety of processes, involving the co-action of a large number of physical, chemical and biological variables

(Denman et al., 2007). Coupled Ocean General Circulation Models (OGCMs) and Biogeochemical models (BGCs) contribute20

to our understanding of the relative importance of these processes. They were developed for decades to assess the biological
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pump dynamics at the global scale (e.g. Palmer and Totterdell, 2001; Aumont et al., 2003; Dutkiewicz et al., 2005) or for

specific regions of the world (e.g. Sarmiento et al., 1993; Blackford and Radford, 1995; Doney et al., 2002; Wiggert et al.,

2006; Karakaş et al., 2009).

Since the pioneering work of Riley (1946), BGCs have been widely used in oceanography and their complexity never25

ceased to increase (Vichi et al., 2007; Anderson and Gentleman, 2012). As reported by Leles et al. (2016), they evolved from

Nutrient-Phytoplankton-Zooplankton-Detritus type (NPZD) (e.g. Palmer and Totterdell, 2001), where multiple species and

types of organic and inorganic constituents of the pelagic system are gathered into a broadly defined trophic compartment

(Doney et al., 2003), to food-webs of multiple Plankton Functional Types (PFTs) (Hood et al., 2006; Anderson et al., 2010).

In most coupled OGCMs-BGCs, efforts have concentrated on achieving an accurate representation of primary and secondary30

producers-related particle dynamics, while the detritic compartment is generally reduced to just one variable. Detritus are

nevertheless essential in the downward export of carbon (Hill, 1992; Kriest, 2002). Considering only one detritus variable

may lead to important biases in carbon flux estimations. The size diversity of marine particles is wide, ranging from large,

rapidly sinking particulate material (i.e. marine snow) to small suspended particles and relatively non-labile dissolved organic

matter (i.e. colloids), which usually also show the highest abundances. Then, their representation through a unique variable and35

mean values of its descriptive parameters such as sinking velocity (Doney et al., 1996; Lima et al., 2002; Aumont et al., 2003;

Dutkiewicz et al., 2005; Kishi et al., 2007) to cover the entire size range in BGCs is questionable.

To overcome this caveat and improve carbon export assessments, the number of detritus-related variables in BGCs models

can be increased to better represent the diversity of the sinking particulate matter. For example, some studies such as Moore

et al. (2002); Wiggert et al. (2006); Yool et al. (2011); Butenschön et al. (2016); Kearney et al. (2020) defined multiple (two40

or more) detritic compartments, each being connected differently with other variables and having constant settling velocities.

This approach can certainly increase the level of realism, as these parameterizations are made based on field or experimental

evidences (Doney et al., 2003), but we see two major problems with them. First, the description in the numerical framework

of a high number of state variables enhances BGCs models complexity, and augments the number of parameters required to

characterize relations among those variables (Denman, 2003). Ultimately, it makes it challenging to properly couple them to45

OGCMs. In atmospheric microphysic modeling where size spectral frameworks are used to represent the formation of clouds,

efforts are made to use a small number of variables in 3-D simulations to prevent a drastic increase of the computational costs,

to the expense of accuracy (Khain et al., 2015). The desire to improve realism and accuracy by adding complexity needs to be

tempered by our ability to parameterize key processes as a compromise regarding computational costs and efficiency (Raick

et al., 2006). As underlined by Anderson (2005), the conception of meaningful state variables and constants in numerical50

models are crucial and determining representative values for parameters can be challenging (Flynn, 2005; Le Quéré, 2006).

Second, this approach does not account for processes by which the size, and consequently the settling velocities of these

particles, can be altered with depth. Indeed, parameterization is generally achieved by constraining detritus state variables

by constant parameters or depth-dependant functions (Gloege et al. (2017), e.g. exponential decay, Martin’s curve, ballast

hypothesis) to represent the actions of these processes and associated living organisms. As an example, coagulation (i.e. the55

formation of larger particles from the collision and aggregation of smaller particles) increases particle size and may end up
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in aggregate formation. Fragmentation is the opposite process, breaking particles into smaller pieces. Both processes are then

affecting particle size distribution but are barely explicitly implemented or parameterized in OGCMs-BGCs.

It is indeed based on the seminal work of Gelbard et al. (1980) on the sectional representation of aerosol size distribution

evolution due to collision and coagulation events, that the first coagulation models applied to marine snow emerged. Jackson60

and Burd (1998) extended the model of Gelbard et al. (1980) and applied it to the marine environment, pointing out the role of

fragmentation to counter balance the importance of coagulation (Jackson et al., 1995; Hill, 1996). These innovative works have

been widely used in various ecological contexts and linked to plankton models as listed by De La Rocha and Passow (2007) and

Jackson and Burd (2015) (e.g. for coagulation refer to Jackson, 1990; Kriest and Evans, 1999; Jackson, 2001; Kriest, 2002, and

for fragmentation to Alldredge et al., 1990; Dilling and Alldredge, 2000; Kiørboe, 2000; Ploug and Grossart, 2000; Goldthwait65

et al., 2004; Stemmann et al., 2004) but scarcely coupled to OGCMs. It is probably due to the remaining quantitative unknowns

regarding the ensemble of processes affecting transport efficiency of the particulate organic matter to depth by constraining

particle size distribution even after decades of extensive work (Le Quéré et al., 2005; De La Rocha and Passow, 2007). The

intrinsic heterogeneous nature of these processes at all spatiotemporal scales increases the challenge to properly implement

them in complex OGCMs-BGCs and to evaluate and predict the ocean’s role in the Earth’s carbon budget. Similar challenges70

arise in atmospheric GCMs. According to Kang et al. (2019) GCMs with full cloud microphysics are still at an early stage in

terms of understanding and simulating many observed aspects of weather and climate, and research is needed to circumvent

these difficulties..

In order to circumvent the issues related to the representation of the dynamics of the complete particles size spectrum for

OGCMs, we develop in this study a new numerical framework where a particles’ size range is discretized in size bins, and where75

concentration dynamics over these bins is driven by coagulation and fragmentation reactions. This framework is designed to

conserve mass over the size range and reactions, and can accommodate size and mass linear and nonlinear discretizations.

Since the main motivation for developing such a model is to provide a tool allowing to characterise detritic variables relations

and dynamics in coupled OCGMs without unreasonably increasing the computational cost, a formulation is sought that will

attenuate the dependence of the results to the size discretization resolution. Numerical experiments are designed to study the80

dependence of the results on i) the number of size bins used to discretize a given size range (i.e. the resolution) and ii) the

type of discretization (i.e. linear vs nonlinear). Innovations of the approach as regards to previously developed coagulation-

fragmentation models and designed detritic state variables is briefly discussed as well as the potential for further improvements

to allow the inclusion of the presented model into OGCMs to better estimate current carbon export.

The outline of the paper is as follows. Section 2 presents the model description, Sect. 3 describes numerical experiments and85

Sect. 4 presents and briefly discusses the results. A summary of our main conclusions is given in Sect. 5.
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2 Model description

2.1 Discrete size spectrum

Whereas most laboratory and field studies estimate particle’ number concentration, n ( m−3), along a size spectrum (McCave,

1984; Jackson et al., 1995), OGCMs use tracers (or element’) concentration, C (mmol m−3), (e.g. carbon or nitrogen) to study90

fluxes among the model compartments (Doney et al., 1996). These two variables are linked by

C = nN , (1)

where N is the particle’ content of the chosen currency (mmol).

Considering a closed system in a given water volume with no particle sources or sinks, particles may be sorted over a size

range Ls with s a chosen size property (e.g. diameter or volume). To transpose the variables from the continuous form Eq. (1)95

to a discrete form, Ls must be discretized in size bins p such that

Ls =

N∑
p=1

∆sp, (2)

where ∆sp =
∫ sp+1

sp
ds is the size range of the bin p, and (sp,sp+1) are the lower and upper size bounds of this bin. Therefore,

the particle’ content of a given bin p can be interpreted as its mean value

Np =
1

∆sp

sp+1∫
sp

Nds p= 1, ...,N. (3)100

Note that other particle’ properties (e.g. diameter, volume, density, etc.) are similarly interpreted as a bin-averaged value. For

example, the particle’ diameter corresponding to a given bin can be defined by Dp = 1
∆sp

∫ sp+1

sp
Dds. This diameter can in turn

be used to determine the particle’ volume using an allometric relationship such as, Vp = λ1D
λ2
p , (Jackson et al., 1997; Li et al.,

1998; Zahnow et al., 2011) 1. Using this bin-averaged volume (Vp), the particle’ content can be redefined as

Np = λ3V
λ4
p (4)105

where λ3 and λ4 are parameters empirically determined through field and laboratory experiments depending on the element

chosen (Alldredge, 1998, see Table 1).

The discrete form of Eq. (1) thus becomes

Cp = npNp p= 1, ...,N, (5)

where np is the particle’ number concentration in p (i.e. the number of particles in p), and N the total number of resolved110

size bin. In a closed system without sources and sinks of particles, the total concentration, CT =
∑N
p=1Cp, is required to be

1The two constants parameters λ1 and λ2 depend on particles and can be obtain from laboratory experiments (Jackson et al., 1997) or set by the user

(Table 1).
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conserved over time. The time evolution of the concentration inside a given bin obeys the simple differential form

dCp
dt

=Rp p= 1, ...,N, (6)

where Rp represents all reactions occurring in p.

2.2 Reaction for a triplet of particles115

Coagulation and fragmentation are, by essence, reactions that involve three particles. Coagulation involves two particles, with

indices i and j, that collide and stick together to form a third, larger one with index k. Conversely, fragmentation can be

considered as the opposite reaction where a particle k breaks into two smaller ones i and j, in line with what was observed by

Alldredge et al. (1990) in laboratory experiments. Reactions involving more than three particles can always be decomposed as

a sequence of triplet reactions. Note that i and j can originate from identical or different size bins. In a linear size discretization,120

by definition, the k index always refers to a particle belonging to a different bin than particles i and j. Then, the volume Vk of

particle k resulting from the coagulation of particles i and j = 1...k obeys to:

Vi +Vj = Vk Vi ≤ Vj < Vk, (7)

The reaction is arbitrarily built so that the ith particle is always the smallest one. From this assumption, the coagulation reac-

tion can be written as Vi +Vj ⇒ Vk, while fragmentation is Vk⇒ Vi +Vj (Fig. 1). However, in the case of a nonlinear size125

discretization, this rule might be violated and this situation is discussed in Sect. 2.6.

In this model, the rules described above for particles will be applied on the bins discrete spectrum of Eq. (5). For example,

in a coagulation reaction implying a given triplet of bins (i, j,k), the rate of change of the concentration in i will depend on

that of j, and they will conjointly prescribe the rate of change of k. Such a reaction for a triplet of bins can be interpreted as130

multiple reactions for triplets of particles, that can be found in their respective bins (i, j,k). For a reaction implying a given

triplet of bins (i, j,k), the evolution of the concentration in each bins is described by the following set of differential equations:

dCi
dt

= δCki,j ;
dCj
dt

= δCkj,i ;
dCk
dt

=−δCk
i,j − δCk

j,i . (8)

δCki,j is a triplet operator that represents both coagulation and fragmentation reactions acting on a given bin :

δCki,j = δCk
i,j =

1

2

(
− KijninjNi + FknkNk

)
δCkj,i = δCk

j,i =
1

2

(
− KijninjNj︸ ︷︷ ︸

Coagulation

+ FknkNk︸ ︷︷ ︸
Fragmentation

)
.

(9)135

A bold index indicates the bin on which the reaction applies (see also Fig. 2 for a visual explanation of this convention). By

construction, of the total number of k particles involved in the reaction in Eq. (8), half of this number is associated with i and

the other half with j (Fig. 2), which explains why we multiply all the terms in Eq. (9) by 1/2. K is the coagulation rate, while

F is the fragmentation rate. Coagulation has been studied extensively in previous works both in atmospheric (Pruppacher and
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Figure 1. Schematic representation of coagulationK and fragmentationF reactions between triplets of particles in a linear size discretization.

Coagulation is the process by which two particles with indices i and j collide and stick together to form a third, larger one with index k.

Fragmentation is the opposite process by which a particle k breaks into two smaller ones i and j. Size bounds are shown by vertical dashed

gray lines. Reactions involving two small particles (a) from the same size bin (i= j) and (b) from two different size bins (i 6= j) are shown.
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Table 1. Model variables and parameters.

Symbol Description Values Units

C Carbon concentration - mmolC m−3

n Particle’ number concentration Tab. 2 (particle) m−3

N Particle’ carbon content Tab. 2 mmolC

D Particle’ equivalent spherical diameter - m

V Particle’ volume - m3

R Reaction term - mmolC m−3 s−1

Ls Size range (i.e. diameter or volume) - m or m3

p Size bin index - -

N Total number of resolved size bin (i.e. resolution) Tab. 2 -

λ1 Coefficient for diameter to volume relation 2.8 -

λ2 Exponent for diameter to volume relation 2.49 [a] -

λ3 Coefficient for volume to carbon content relation 1.09 [b] -

λ4 Exponent for volume to carbon content relation 0.52 [b] -

λ5 Coefficient for the resolution dependency function 0.99 -

λ6 Exponent the resolution dependency function −0.011 -

K Coagulation rate Tab. 2 m3s−1

F Fragmentation rate Tab. 2 s−1

∆t Time step Tab. 2 s

CT Total initial concentration 100 mmolC m−3

Ψ Slope of the size distribution −3 [c] -
[a] Jackson et al. (1997)

[b] Alldredge (1998)

[c] Li et al. (2004); McCave (1984)
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Klett, 2010) and oceanographic contexts (Jackson, 2001). It may be decomposed in a combination of a sticking probability and140

three main collision mechanisms (Kiørboe et al., 1990; Ackleh, 1997; Engel, 2000; Jackson, 2001): Brownian motion, fluid

velocity shear and differential settling. Fragmentation (F) can be driven by biology (e.g. related to zooplankton activities such

as grazing (Banse, 1990; Green and Dagg, 1997), and swimming behavior (Dilling and Alldredge, 2000; Stemmann et al.,

2000; Goldthwait et al., 2004)) or driven by physics (e.g. scales of turbulence (Alldredge et al., 1990; Kobayashi et al., 1999)).

145

Figure 2. Examples of individual reactions for a triplet of bins: (a),(b) for coagulation only, assuming F = 0 and (c),(d) for fragmentation

only, assuming K= 0 in Eq. (9). Panels on the left (a),(c) involve terms of the diagonal matrix Di=j (Eq. 10), while panels on the right

(b),(d) involve terms of the off-diagonal matrices B (Eq. 11) and T (Eq. 12) in Sect. 2.3. Different colors (blue, green and black) represent

different size bins.
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2.3 Reaction Matrices

Let us now consider a set of discrete bins (p) that are linearly incremented and have indices (i, j) running from 1 to N . By

construction, this yields reactions for k ranging from k = 2 to 2N (i.e. 1 + 1 to N +N ). To account for the concentration

evolution associated with all possible reactions, we define four matrices built from the triplet operator (δCki,j) defined earlier,

Di=j , Bi,j , Tj,i and Fi,k, referring to Diagonal, Bottom, Top and Final matrices, respectively.150

Matrix Di=j has dimensions N ×N and accounts for reactions in which the two particles have the same size (i= j)

(Fig. 2a,c):

Di=j [N ×N ] =


δC2

1,1 0 · · · 0

0 δC4
2,2 · · · 0

...
...

. . .
...

0 0 · · · δC2N
N ,N

 . (10)

The square brackets above indicate the matrix dimensions. Matrix Bi,j accounts instead for all reactions acting on i only

(where i < j, Fig. 2b,d)155

Bi,j [N ×N ] =


0 0 · · · 0

δC3
1,2 0 · · · 0
...

...
. . .

...

δCN+1
1,N δCN+2

2,N · · · 0

 , (11)

while Tj,i accounts for those acting on j only (where j > i, Fig. 2b,d)

Tj,i[N ×N ] =


0 δC3

2,1 · · · δCN+1
N ,1

0 0 · · · δCN+2
N ,2

...
...

. . .
...

0 0 · · · 0

 . (12)
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The fourth matrix contains all the reactions acting on k, which has dimensions N × 2N , and is given by

Fi,k[N × 2N ] =



0 0 0 0 · · · 0

2δC2
1,1 0 0 0 · · · 0

δC3
1,2 δC3

2,1 0 0 · · · 0

δC4
1,3 2δC4

2,2 δC4
3,1 0 · · · 0

...
...

...
...

. . .
...

δCN
1,N−1 δCN

2,N−2 δCN
3,N−3 δCN

4,N−4 · · · 0

δCN+1
1,N δCN+1

2,N−1 δCN+1
3,N−2 δCN+1

4,N−3 · · · δCN+1
N,1

0 δCN+2
2,N δCN+2

3,N−1 δCN+2
4,N−2 · · · δCN+2

N,2

0 0 δCN+3
3,N δCN+3

4,N−1 · · · δCN+3
N,3

0 0 0 δCN+4
4,N · · · δCN+4

N,4

...
...

...
...

. . .
...

0 0 0 0 · · · 2δC2N
N,N



. (13)160

In F , the double line separates the resolved size range (above) from the unresolved one (below). The latter contains reactions

involving particle sizes outside the resolved size range of the spectrum (i.e. reactions for which k > N ).

2.3.1 The unresolved range

Solution strategies to parameterize reactions in the unresolved range must obey two basic rules: i) they must conserve the

total concentration (CT ) in absence of external sources and sinks of particles and ii) they must limit the unbounded growth165

of the particle size due to coagulation. Here we propose a simple closure to account for the reactions in this range. In order

to comply with conservation of the total concentration in the size range (Ls), at least one new bin must be added in which

concentration fluxes in and out of the resolved range are stored. Moreover, in order to avoid unbounded growth of the size

range due to coagulation, this extra bin must not be allowed to further coagulate with itself or any of the other particles sizes.

As such, all reactions that fall into the unresolved range will be accounted for in a single additional bin for which coagulation170

is prohibited but fragmentation back into the resolved range is allowed. This extra bin can thus be interpreted as an average of

all the reactions in the unresolved range (N < k ≤ 2N) and will be referred to as k = 3
2N . Applying this to Eqs. (10), (11),
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(12) and (13) yields matrices with dimensions [N ×N + 1]:

((
Tj,i +Dj=i

)
+
(
Bi,j +Di=j

))
[N ×N + 1] =



2δC2
1,1 δC3

2,1 · · · δC
3
2N

N ,1

δC3
1,2 2δC4

2,2 · · · δC
3
2N

N ,2

...
...

. . .
...

δC
3
2N

1,N δC
3
2N

2,N · · · 2δC
3
2N

N ,N

0 0 . . . 0


, (14)

F i,k[N ×N + 1] =



0 0 0 · · · 0

∆C2
1,1 0 0 · · · 0

∆C3
1,2 ∆C3

2,1 0 · · · 0

...
...

...
. . .

...

∆CN
1,N−1 ∆CN

2,N−2 ∆CN
3,N−3 · · · 0

∆C
3
2N

1,N

N∑
j=N−1

∆C
3
2N
2,j

N∑
j=N−2

∆C
3
2N
3,j · · ·

N∑
j=1

∆C
3
2N

N,j



, (15)175

where ∆C = 2δC when i= j and δC otherwise, and K = 0 in ∆C for k = 3
2N . Equation (14) includes all reactions acting on

either i or j, while Eq. (15) includes all reactions acting on k. Since the unresolved range only involves reactions acting on k,

all the terms below the double line in Eq. (14) are set to zero. Moreover, each term of the last row in Eq. (15) can be viewed

as a sum over all the elements of a given column below the double line in Eq. (13). Note that, for simplicity, we choose to add

only one extra bin in the unresolved range, but one could alternatively choose to add up to N bins in order to improve this180

parametrization.

2.4 Summary of all reactions

Based on matrices (14), (15) and specific reaction rules previously described, the reaction vector Rp, representing all the

reactions for a given bin (1< p <N + 1) is given by

Rp =
(
Tj,p +Dj=p

)
·U +

(
Bi,p +Di=p

)
·U
)
− Fi,p ·U

= Xp + Yp︸ ︷︷ ︸
− Coag + Frag

− Zp︸ ︷︷ ︸
+ Coag − Frag

(16)185
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where U is a unit vector with dimension [N ],

U =


1
...

1

 . (17)

Coag and Frag in Eq. (16) are used to explicitly show the sign of the coagulation and fragmentation reactions from Eq. (9). In

other words, coagulation is removing concentration from p in Xp +Yp, while adding concentration to p in Zp (and conversely

for fragmentation). Equation (16) can be rewritten as a sum of the following series:190

(p = 1) : X1 = δC2
1,1 ; Y1 =

N∑
j=1

δCj+1
1,j ; Z1 = 0

(1 < p ≤ N) : Xp =

p∑
i=1

δCp+ip,i ; Yp =

N∑
j=p

δCp+jp,j ; Zp =

p−1∑
i=1

∆Cp
i,p−i

(p =
3

2
N) : Xp = 0 ; Yp = 0 ; Zp =

2N∑
j=N+1

N∑
i=j−N

∆C
3
2N
i,j−i

(18)

where ∆C = 2δC when p= 2i and δC otherwise. An example of a complete set of reactions with N = 4 and its additional bin
3
2N = 6 is shown in Fig. 3.

Focusing on the resolved range only, Eqs. (16) and (18) can be combined to yield an alternative formulation of the discrete

Smoluchowski equation (Smoluchowski, 1916)195

Rp =

N∑
i=1

∆Cp+ip,i −
p−1∑
i=1

∆Cp
i,p−i

=−
N∑
i=1

1

2
(1 + δip)

(
Kijninp−Fkni+pNp

)
+

p−1∑
i=1

1

2
(1 + δip)

(
Kijninp−i−Fkni+p−1Np

)
,

(19)

where δip is the Kronecker delta function that is equal to 1 for i= p and zero otherwise. Notice that the above equation gives

the rate of change of concentration, whereas the traditional formulation for the Smoluchowski equation is written in terms of

number of particles. Equation 19 can thus be reformulated in terms of number of particles as:

δnp =−
N∑
i=1

(
Kijninp−Fkni+p

)
+

1

2

p−1∑
i=1

(
Kijninp−i−Fkni+p−1

)
. (20)200

The factor 1/2 in the second term ensures that the combination of two particles yields a single larger particle. This is in contrast

to the concentration, for which the combination is additive (see Eq. 8).

2.5 Robustness to resolution

For a discrete representation of the full size range, Ls, larger values of N imply higher resolution of the size spectrum. The

total number of reactions of the system described above increases with the size of the reaction matrices, N(N + 1), which205
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Figure 3. Example of a complete set of reactions applied to N = 4 size bins, with an additional class 3
2
N = 6. Concentration evolution

vectors are shown on top with the 4-size bins defined by the size range, and the last one representing the size bin 3
2
N . Bottom matrices are

modified versions of (a) T + B + 2D (Eq. 14) and (b) F (Eq. 15). Coloured areas and arrows indicate an exchange with the concentration

vector. Solid and dashed arrows indicate coagulation and fragmentation reactions, respectively.

is nearly a quadratic function of resolution. On the other hand, coagulation and fragmentation are respectively quadratic and

linear functions of concentration, as shown in Eq. (9). Since concentration is itself a quantity that depends on resolution (Eq. 5),

an asymmetric response between coagulation and fragmentation to changes in resolution is expected.

In order to build an intuition on the effect of resolution on the reactions, consider a conservative system with a given

total concentration, CT =
∑N
p=1Cp, and a linear size discretization such that both the particle’ content and concentration210

are constants given by Np = 1 and Cp = CT /N , respectively. To further simplify, assume that the rate of coagulation and

fragmentation are constants given by K and F respectively. For a conservative system, the sum of all reactions integrates to

zero, i.e.
∑N+1
p=1 Rp = 0, such that CT remains constant at all time. Since the sum of all reactions does not allow to keep track

of the total concentration exchanged along the spectrum, we instead define from Eq. (16) the total reaction amplitude as

RT =

N+1∑
p=1

(Xp +Yp) =

N+1∑
p=1

Zp

=
1

2
N (N + 1)

(
−K
N

(
CT
N

)2

+ F CT
N

)
,

215

and since N = 1,

RT = −
(
N + 1

N

)
K
2
C2
T︸ ︷︷ ︸

Coagulation

+ (N + 1)
F
2
CT︸ ︷︷ ︸

Fragmentation

(21)
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where the first term on the right hand side is the total coagulation amplitude and the second term is the total fragmentation

amplitude. In this simple example, dependence to resolution is revealed through the respective prefactors
(
N+1
N

)
and (N + 1).

It thus becomes obvious that fragmentation is more sensitive to resolution than coagulation. This result can be explained a220

posteriori if we notice that the total number of reactions is nearly quadratic with N , while the coagulation concentration is

proportional to N−2, cancelling most of the variation with N . In contrast, the fragmentation concentration is proportional to

N−1, which yields a larger residual dependence on N . To counterbalance this dependence on resolution, the reaction terms are

divided by their respective resolution-dependent coefficients such that

δCki,j = δCk
i,j =

1

2

(
−
(

N

N + 1

)
KijninjNi +

(
1

N + 1

)
FknkNk

)
δCkj,i = δCk

j,i =
1

2

(
−
(

N

N + 1

)
KijninjNj︸ ︷︷ ︸

Coagulation

+

(
1

N + 1

)
FknkNk︸ ︷︷ ︸

Fragmentation

)
.

(22)225

While the general case with non-constant contents and concentrations yields a similar qualitative dependence onN , this simple

parametrization produces significant biases in the nonlinear experiment (E2) described in the Sect. 4.2. Thus, a more exhaustive

study on robustness to resolution is needed in order to improve this parametrization, and solutions strategies are discussed in

Sect. 4.3.

2.6 Nonlinear size spectrum230

For simplicity, we chose to describe the above framework using a linear size discretization (i.e. where bins are equally dis-

tributed along the size range). However, this choice was arbitrary and we now generalize the framework to a nonlinear size

discretization, which is a more natural choice for representing marine particles. A nonlinear size discretization can be seen as

local variations of the resolution in the full size range. For example, for a given total number of bins,N , switching from a linear

to a logarithmic spacing increases resolution for the small particles, while decreasing it for the large particles. Intuitively, this235

choice seems better suited to represent marine particles that have a wider variety of microscopic than macroscopic particles.

In this context, the main difference with the framework described in the previous sections is that volume conservation can be

violated when using a nonlinear size spectrum, i.e. Eq. (7) is no longer valid. Although counter-intuitive, this does not imply

however that mass conservation is necessarily violated. Consider, for example, a simple nonlinear discretization where bins are

each separated by an order of magnitude (1 µm3, 10 µm3, 100 µm3, etc.). Coagulation of particles belonging to bins 1 µm3 and240

10 µm3 would ideally produce particle size 11 µm3. However, since 11 µm3 is much closer to bin 10 µm3 than bin 100 µm3

(the next larger bin) all the concentration associated with this reaction will fall into the 10 µm3 bin, thus violating volume

conservation, yet conserving the concentration associated with the reaction. We thus modify Eq. (7) to allow that the resulting

size of a coagulation reaction is not required to be strictly equal to the sum of the two reacting particles (and conversely for

fragmentation), i.e.245

Vi +Vj ≤ Vi+j . (23)
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The main consequence of Eq. (23) is that it modifies the reaction matrices (14) and (15). In Eq. (14), only the k indices will

be modified by a nonlinear discretization. In Eq. (15), the elements themselves will be redistributed on different rows of the

matrix. For a logarithmic discretization that enhances resolution towards smaller particles, elements will be moved upwards

in the F matrix as an increased number of reactions yield Vi +Vj 6= Vi+j . For example, δC3
1,2 could be switched from the250

third row using a linear spectrum to δC2
1,2 in the second row using a logarithmic spectrum. Conversely, elements will be moved

downwards in the F matrix if a discretization that enhances resolution towards larger particles is chosen. Here, we do not

explicitly write the matrix encompassing all possible cases since this would be unnecessarily complex. The construction of the

reaction matrices (14) and (15) is done numerically at the beginning of our algorithm (see Gremion and Nadeau (2021)).

2.7 Application to a plankton ecosystem model255

The framework presented here gives rise toN variables that together represent detritic particulate matter. Like other variables of

plankton ecosystem models, these additional variables must be treated as Eulerian tracers submitted to diffusive and advective

transport. In a typical three-dimensional OGCM, the evolution of the carbon concentration Cp (mmolC m−3) belonging to the

size bin p, is given by

∂Cp
∂t

=−∇ · (uCp) +∇ · (K∇Cp)−wp
∂Cp
∂z

+Sp−Lp +Rp (24)260

where u = îu+ ĵv+ k̂w is the velocity field and∇= î ∂∂x + ĵ ∂∂y + k̂ ∂
∂z is the nabla operator. The terms on the right side are: (i)

the advective flux convergence, (ii) the diffusive flux divergence, with K the turbulent diffusivity, (iii) the background vertical

advection due to the settling velocity wp associated to size bin p, (iv) the sources and (v) the losses of detritic matter associated

with other biogeochemical processes, and (vi) the reaction term, Rp, representing coagulation and fragmentation derived in

this paper (Eq. 16). The three dimensional velocity u is provided by equations driving geophysical fluid dynamics. The vertical265

settling velocity, wp, is here assumed constant for a given size, but can vary considerably from one size to another as it strongly

depends on particle’ properties such as its volume, density and porosity. Therefore, Cp does not vary due to differential settling

(divergence or convergence), but CT can through the action of the reaction term, Rp. In order to focus uniquely on the reaction

term, Rp, we do not solve Eq. (24) explicitly in this work and leave this for a subsequent study. In the following we use the

simplified zero dimensional form ∂Cp/∂t=Rp to investigate the robustness of the proposed framework on the resolution, N .270

3 Numerical experiments

Two model configurations are set up to study detritic carbon concentration (C) dynamics experiencing coagulation and frag-

mentation reactions using the previously described model. The first configuration, named E1, uses a linear size discretization

over the arbitrarily chosen range 0 to 8 (Fig. 4a). The second configuration, identified as E2, uses a nonlinear size discretization

that more realistically represents particle’ number distributions observed in the ocean (i.e. particle’ size from D1 = 1 µm to275

DN = 1 cm, (Stemmann et al., 2004; Monroy et al., 2017), Fig. 4b). Each set of experiments within the configurations, is

performed using two different numbers of size bins (N ), in order to study the impact of resolution on the model. The high res-
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olution (HR) simulations uses N = 400 size bins while the low resolution (LR) uses N = 4. An additional bin having an index

value of 3
2N is added to represent the unresolved size range, which increases the total number of bins to N = 401 and N = 5,

respectively. For each resolution, three simulations are performed: two simulations where coagulation (K) and fragmentation280

(F) are considered separately, and one simulation where they are combined (KF). In total, twelve simulations are performed

with parameter values summarized in Tables 1 and 2.

Figure 4. Initial conditions for (a) the linear size discretization (E1) and (b) the nonlinear size discretization (E2), for the two resolutions.

The low resolution (LR), in red, has N = 4 size bins plus one unresolved size bin 3
2
N = 6, while the high resolution (HR), in green, has

N = 12 size bins plus one unresolved bin 3
2
N = 18. This is an illustrative example as the HR simulations performed in this paper with

N = 400. Size bin bounds are shown by vertical dashed gray lines. All simulations are initialized with the same total carbon concentration

CT (see Table. 1). The initial concentration is spread uniformly over the resolved range for E1-LR and E1-HR, and following a power law

for E2-LR and E2-HR (see Table. 2). No concentration is initialized in the unresolved 3
2
N size bin. As HR has more size bins than the LR,

concentrations values are consequently lower as determined by Cp = CT
N

in E1. Concentrations are prescribed to the middle size value of a

given bin.
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Table 2. Numerical experiments and associated model configurations and parameters.

Run Discretization N K F N n(D) ∆t

m3s−1 s−1 mmolC (particle) m−3 s

E1-LR-K Linear 4 6× 10−3 0 Uniform 86400

E1-LR-F Linear 4 0 6× 10−1 Uniform 86400

E1-LR-KF Linear 4 6× 10−3 6× 10−1 Uniform 86400

E1-HR-K Linear 400 6× 10−3 0 Uniform 86400

E1-HR-F Linear 400 0 6× 10−1 Uniform 86400

E1-HR-KF Linear 400 6× 10−3 6× 10−1 Uniform 86400

E2-LR-K Nonlinear 4 1× 10−13 0 Power law (Eqs. 4 and 26) 3600

E2-LR-F Nonlinear 4 0 1× 10−4 Power law (Eqs. 4 and 26) 3600

E2-LR-KF Nonlinear 4 1× 10−13 1× 10−4 Power law (Eqs. 4 and 26) 3600

E2-HR-K Nonlinear 400 1× 10−13 0 Power law (Eqs. 4 and 26) 3600

E2-HR-F Nonlinear 400 0 1× 10−4 Power law (Eqs. 4 and 26) 3600

E2-HR-KF Nonlinear 400 1× 10−13 1× 10−4 Power law (Eqs. 4 and 26) 3600
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3.1 Initialisation

For each configurations, all experiments are initialized from a reference distribution at very high resolution (i.e. N† = 4000

bins) that is meant to represent an ideal distribution. This discretization is indicated by the symbol †. The total carbon concen-285

tration is set to CT = 100 mmolC m−3, and initial concentrations, Cp(t= 0), are then initialized for HR and LR by integrating

on the reference distribution using a discrete version of Eq. (3)

Cp =
1

∆Vp

Vq=Vp+1∑
Vq=Vp

C†q∆Vq p= 1, ...,N. (25)

where p refers to indices of the HR and LR discretizations and q to indices of the reference distribution. For HR and LR in

configuration E1, the initial carbon concentrations of the reference is uniform (i.e. C†p = CT

N† ) as for the particle carbon content290

(Np = 1). The chosen time step is ∆t= 86400 s and it is run for one time step.

In E2, the reference is initialized with a power law distributed carbon concentration of the form (McCave, 1984; Li et al.,

2004)

n(D)∼D−Ψ (26)

where n is the number of particles of diameter D and Ψ is the slope of the distribution, by connecting with Eq. (5). Unlike295

in E1, particle’ carbon content is set to a size-dependent function following Eq. (4). HR and LR initial carbon concentration

distribution are then obtain following Eq. (25), and the model is integrated for a day with a timestep ∆t= 3600 s.

In both configurations (E1 and E2), in order to compare results from both simulations and assess the resolution-dependence

of the model, HR carbon concentrations are mapped to the LR discretization following Eq. (25). Moreover, in order to simplify

the problem and to focus only on the resolution-dependence of the framework, coagulation and fragmentation rates, K and F300

respectively, are set to constant values (Table 2).

4 Results and discussion

4.1 Linear discretization

Figure 5 shows the results from the linear size discretization (E1), for both LR and HR simulations and for coagulation and

fragmentation considered separately as well as simultaneously.305

Starting with initial uniform carbon concentration distribution, coagulation leads to a reduction of Cp in small size bins and

an increase in larger ones for both LR and HR, resulting in a linearly increasing distribution of Cp over the resolved size range

(p= 1 to N , Fig. 5a,b). The largest accumulation of Cp appears in the unresolved size range (p= 3
2N ) for both LR and HR

simulations.Notice that the carbon concentration in the unresolved bin of the HR experiment is divided by a factor 100 in order

to fit in the y scale. However, a smaller amount of particles end up in this range in the HR simulation compared to the LR310
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Figure 5. Evolution of the carbon concentration distribution over the size range in the linear size discretization configuration (E1) as function

of the arbitrary size. Our three sets of reaction simulations are represented : coagulation only (panels a, b and c), fragmentation only (panels

d, e and f) and when both reactions are combined (panels g, h and i). The left column (a, d, g) represents our Low Resolution (LR) set up,

the middle column (b, e, h) the High Resolution (HR) one, and the right column (c, f, i) the comparison of the HR carried back to LR (See

Eq. 25 in Sect. 3.1 for details). Y-abscissas are different between our resolutions and are set to allow an easy comparison. For each panel, the

initial time step t0 is in black and the final time step t1 = 24 h appears in red for LR and in green for HR. As it is the linear size discretization

configuration, the LR resolved bins indexes equal the arbitrary size. Solitary points represent the size bin 3
2
N for both resolutions, as they

represent the average of a larger number of size bins (LR: 5 to 8, and HR : 401 to 800) than the ones in the resolved range. Notice that the

final carbon concentration in the unresolved bin of the HR experiment is divided by a factor 100 in order to fit in the y scale. As detailed

in the methods (Sect. 2.3.1), both coagulation and fragmentation reactions occur in the resolved range but only fragmentation occurs in the

unresolved range. For further details, refer to the legend of Fig. 4.

(Fig. 5c), which is associated with larger final concentrations Cp in the resolved range for HR since the model is conservative

by design. The final carbon concentration distributions are nonetheless very similar considering the very large difference in the

number of bins between LR and HR.
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In contrast with coagulation, fragmentation yields a reduction of Cp in larger size bins to the benefit of an increase in the

small ones (Fig. 5d-f). Only very small differences of Cp are noticeable between LR and HR over the resolved range (Fig. 5f),315

suggesting that fragmentation is very weakly dependent on the size range resolution when a linear discretization is used. As

the unresolved range is initialized to zero, and fragmentation does not allow particle to increase in size, C 3
2N

remains zero for

both simulations.

When both reactions are combined and act simultaneously, they nearly compensate each other in small size bins in both

simulations (Fig. 5g,h) but to a greater extent in the HR case. For larger size bins however, fragmentation seems to operate320

nonlinearly and more strongly than coagulation, leading to a smaller carbon concentrations related to large particles compared

to the initial value. The comparison (Fig. 5i) shows a significantly greater Cp in each resolved size bins for HR compared

to LR, but it is the inverse for the unresolved range. This is explained by the asymmetry that exists in the mathematical

formulation of coagulation and fragmentation (Eq. 9), the former being a quadratic function of concentration while the latter

is a linear function. Overall, despite the fact that coagulation and fragmentation do not compensate each other, which is not a325

prerequisite in the model, the dependence on the number bins for a given range of particle sizes is quite weak when using a

linear discretization.

These results demonstrate that in a linearly size discretized configuration, the model is reasonably independent of the reso-

lution when coagulation and fragmentation are used independently or combined (Fig. 5). They show however the importance

of considering the unresolved size range in the model design, which guarantees mass conservation and unbounded growth due330

to coagulation.

4.2 Nonlinear discretization

We now consider the results from the nonlinear size discretization model (E2), shown in Figs. 6 and 7. Recall that instead of

a uniform Cp distribution, the model is initialized with a distribution that is exponentially decreasing over a size range from

10−6 m to 10−2 m, thus spanning four orders of magnitude (Eq. (26), Table 2). In this case, results differ as a function of335

resolution, for the reactions taken separately or combined. All LR simulations (K, F and KF) react more strongly than the HR

ones.

Focusing first on the resolved range in the coagulation-only experiment, we observe a diminution of Cp in the smaller size

bins and an accumulation in the larger size bins in LR simulation (Fig. 6a). However in HR, this distribution pattern is limited

to a small range of sizes between 10−6m and 10−4m (Fig. 6b). In addition, no significant accumulation of concentration is340

observed in the largest size bins, and by extension neither into the unresolved range (p= 3
2N ). This leads to a difference of Cp

regarding the larger size bins between LR and HR when mapped on the same grid (Fig. 6c), with the LR overestimating carbon

concentration for larger size bins. Figure 7 shows the time evolution of the distributions of Fig. 6. In the LR case, the initial

response (roughly 2 hours) is characterized by a fast time scale, followed by a slower response during the rest of the simulation

(Fig. 7a). In contrast, in the HR case, the response is localised in the small size range and only the slower response is observed345

(Fig. 7b). While attenuated, these biases are still clearly visible when HR is remapped on LR (Fig. 7c).

20



Figure 6. Evolution of the carbon concentration distribution over the size range in our nonlinear size discretization configuration (E2) as

function of diameters. Our three sets of reaction simulations are represented : coagulation only (panels a, b and c), fragmentation only (panels

d, e and f) and when both reactions are combined (panels g, h and i). The left column (a, d, g) represents our Low Resolution (LR) set up,

the middle column (b, e, h) the High Resolution (HR) one, and the right column (c, f, i) the comparison of the HR carried back to LR (See

Eq. (25) in Sect. 3.1 for details). Y-abscissas are different between our resolutions and are set to allow an easy comparison. For each panel,

the initial time step t0 is in black and the final time step t1 = 24 h appears in red for LR and in green for HR. Solitary points represent the

size bin 3
2
N for both resolutions, as they represent the average of a larger number of size bins (LR: 5 to 8, and HR : 401 to 800) than the

ones in the resolved range. Notice that the final carbon concentration in the unresolved bin of the HR experiment is divided by a factor 100 in

order to fit in the y scale. As detailed in the methods (Sect. 2.3.1), both coagulation and fragmentation reactions occur in the resolved range

but only fragmentation occurs in the unresolved range. For further details, refer to the legend of Fig. 4.

Results for fragmentation only yield a similar biases between the LR and HR cases. Reactions are magnified in LR compared

to HR (middle panels (d, e, f) of Figs. 6 and 7). When both reactions are combined, coagulation dominates over fragmentation to

explain most of the observed changes in distribution of the LR simulation (Fig. 6g). In HR, both coagulation and fragmentation

have localised effects on the smallest and largest size ranges (Fig. 6h). The comparison of HR versus LR shows a pattern that350

is similar to the comparison between resolutions for the coagulation reaction (Figs. 6i and 7i). This indicates that coagulation

21



Figure 7. Hovmöller plots of carbon concentration as a function of particle diameter over a 24 hours period for the nonlinearly discretized

configuration (E2). Simulations for coagulation and fragmentation considered separately (on top and middle lines respectively) and combined

(on bottom line), and for LR (left column) and HR (middle column), are shown. The right column shows the HR when mapped to the LR grid.

Note the logarithmic scale for the vertical axis representing particle diameter (m) and for the color scale representing carbon concentrations

(mmolC m−3). Concentration value scales are different between our resolutions, and are set to allow an easy comparison. Dashed lines

represent the bounds of each LR size bin. Dealing with size spectrum logarithmic scale, middle size bin concentration value will induce no

concentration data in the lower bound of the first size bin in the LR (panels a, d and g) and for the HR mapped to LR grid (panels c, f and i).

dominates over fragmentation, which is expected for an initial concentration distribution that is highly skewed towards small

particles.

These simulations demonstrate that when using a nonlinear size discretization and a nonlinear initial carbon concentration

distribution, the model behaviour is significantly dependent on resolution. To attenuate this dependence, which arises from the355

asymmetry between coagulation and fragmentation, we propose adding and tuning a penalty function that will compensate this

difference as N varies.
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4.3 Resolution dependency function

The residual dependence of the model to resolution in the nonlinear discretization arises mainly from the fact that the prefactors

used in Eq. (22) are derived from a linear analysis, which yields an asymmetry between coagulation and fragmentation. To360

minimize the effect of this asymmetry, we propose multiplying both reaction terms by a resolution-dependent function f(N)

that is positive and that monotonically varying between a value to be determined at low N and 1 for N →∞. For simplicity,

we here assume an exponential function of the form

f(N) = 1−λ5e
−λ6N , (27)

with λ5 and λ6 positive constant parameters that were determined empirically (see Table 1).365

Simulation results obtained with this correction factor (Figs. 8 and 9) show that both LR and HR simulations now agree

much better. The LR simulation is the one that is the most impacted by this change (Fig. 8a,b,c), as f(N = 400) = 0.9878

and f(N = 4) = 0.0526. Comparing Fig. 6c,f,i with Fig. 8c,f,i, it is clear that a carefully chosen penalty function such as

Eq. (27) can significantly reduce the error attributed to a number of size bins as low as 4. The fundamental causes of the

resolution dependency seems to be linked with the nonlinear size discretization, but it is not clear how the penalty function can370

be determined in a simple way from its priori knowledge. Is this solely dependent on the choice of discretization, or is it also

dependent on how particles are distributed along that spectrum? This remains an open question.

5 Summary

We have developed a new 0D numerical model for representing coagulation and fragmentation as an interaction between three

particles of arbitrary sizes. Particles are categorized in size bins that can be linearly or nonlinearly distributed along a given375

size spectrum. In the linear configuration, E1, the total volume of suspended particulate matter (i.e. the sum of the volume of all

individual particles) is also conserved. However, this is not strictly the case in the nonlinear configuration, E2, because it can

happen that two particles of two different size bins can end up in the same size bin as the biggest one. By construction, the total

concentration of carbon carried by particles is conserved over the resolved and unresolved range. The unique arbitrary size bin
3
2N offers i) boundaries to avoid any exponential growth of the size range, ii) reduces falsified carbon concentration estimation380

in the larger size bins. When absent, accumulation of particles was observed (exploratory studies of our current work which

are not shown). This caveat is present in models using the sectional approach, the solution of which is to increase the number

of bins, as described by Burd (2013).

Coagulation has a quadratic dependence on particle’ number concentration participating to the reaction, while fragmentation

has a linear dependence on the particle’ number concentration. The linear configuration has a very week dependence to the size385

spectral resolution (number of size bins N for a given size range). The nonlinear configuration has a significant dependence to

resolution. This dependence can be overcome by multiplying both reaction terms with a function f(N) such that f(N)→ 1

when N →∞. However, further work is required to unearth what is causing the dependence, as the assumption made that

reactions need to be divided by the inverse dependent resolution coefficient (Eq. 22) for both linear and nonlinear cases were
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Figure 8. Evolution of the carbon concentration distribution over the size range in our nonlinear size discretization configuration (E2) as

function of diameters when the function reducing resolution dependency is implemented (Eq. 27).Our three sets of reaction simulations are

represented : coagulation only (panels a, b and c), fragmentation only (panels d, e and f) and when both reactions are combined (panels g, h

and i). The left column (a, d, g) represents our Low Resolution (LR) set up, the middle column (b, e, h) the High Resolution (HR) one, and

the right column (c, f, i) the comparison of the HR carried back to LR (See Eq. 25 in Sect. 3.1 for details). For each panel, the initial time step

t0 is in black and the final time step t1 = 24 h appears in red for LR and in green for HR. For further details, refer to the legend of Fig. 6.

partly wrong. The surmise that Cp will be equally distributed between the size bins (i.e. Cp = CT

N ) is not respected in the390

nonlinear case as distribution assigned is nonlinear over the size bins (Eq. (26), i.e. Cp = CT
∆p∑

∆p
) in addition to be coupled

to a nonlinear size discretization. The presented attempt to rectify this wrong assumption via the elaboration of the function

(Eq. 27) for the nonlinear case allows prospects to thrive and reassure that solutions exist. Despite this, the model succeeds

in representing the evolution of the size of suspended particulate matter due to the simultaneous action of coagulation and

fragmentation using a low number of size bins (N = 4). This is comparable to biogeochemical models of low (e.g. Fasham395

et al. (1990) with seven states variables or Neumann (2000) with nine) to moderate complexity (e.g. Aumont et al. (2015) with

24 prognostic variables or Ward et al. (2012) with more than 50). But, the sensitivity of our model outcomes to many arbitrary

constant parameters needs to be profoundly investigated, as some of them may be size-dependent and therefore vary along the
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Figure 9. Hovmöller plots of carbon concentration as a function of particle diameter over a 24 hours period for the nonlinearly discretized

configuration (E2) with the application of the function which attempt to reduce the dependency to the resolution of our model (Eq. 27).

Simulations for coagulation and fragmentation considered separately (on top and middle lines respectively) and combined (on bottom line),

and for LR (left column) and HR (middle column), are shown. For further details, refer to the legend of Fig. 7.

size range. Such parameters are the coagulation rate and associated stickiness of particles (K, Eq. 9) and the fragmentation

rate (F , Eq. 9). Other parameters values, such as the slope of the particles distribution (Ψ, Eq. 26) and parameters relying on400

the carbon content estimation of each particles (N , Eq. 4) were chosen according to literature, determined through field or

laboratory studies for specific geographic regions or ecosystem states. The total initial carbon concentration over the size range

(CT ), will also require deeper investigation, as by acting jointly with other parameters it may affect reactions thresholds in the

model, and the final outcomes and conclusions. Lastly, the role of coagulation and fragmentation reactions on the cell density

behavior along the size range will be required (Gregory, 1997) in the parameterization of the settling velocity for each detritic405

state variable implemented. This step will be required to incorporate the model in a 1-D environment coupled to physical fields.

Ultimately, when reliably parameterized, this model will be coupled to an upper trophic level ecological model and OGCMS

that will enable addressing further questions related to the fate of particle evolution with depth.
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6 Conclusions

Through our approach, a balance between a low computational cost and a proximity to particulate organic matter ecological410

dynamics expected to be found in the ocean was fulfilled. This is a first attempt to fill the knowledge gap underlined by Boyd

et al. (2019), by offering a model of particle transformations to incorporate in OGCMs. This work as well as the steps to come,

will then offer new perspectives to estimate the downward carbon export in global models, as coagulation and fragmentation

reactions will be characterized alongside of other known processes affecting the vertical flux of organic matter (e.g. grazing,

remineralization). Thus, comparisons with previous studies will be possible to conclude on the influence to consider or not415

these often ignored reactions on the estimation of the biological pump response to climate change.
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