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Abstract.

A new model is presented for multisite statistical downscaling of temperature and precipitation using convolutional condi-

tional neural processes (convCNPs). ConvCNPs are a recently developed class of models that allow deep learning techniques

to be applied to off-the-grid spatio-temporal data. In contrast to existing methods which map from low-resolution model output

to high resolution predictions at a discrete set of locations, this model outputs a stochastic process which can be queried at5

an arbitrary latitude-longitude coordinate. The convCNP model is shown to outperform an ensemble of existing downscaling

techniques over Europe for both temperature and precipitation taken from the VALUE intercomparison project. The model

also outperforms an approach that uses Gaussian processes to interpolate single-site downscaling models at unseen locations.

Importantly, substantial improvement is seen in the representation of extreme precipitation events. These results indicate that

the convCNP is a robust downscaling model suitable for generating localised projections for use in climate impact studies.10

1 Introduction

Statistical downscaling methods are vital tools in translating global and regional climate model output to actionable guid-

ance for climate impact studies. General circulation models (GCMs) and regional climate models (RCMs) are used to provide

projections of future climate scenarios, however coarse resolution and systematic biases result in unrealistic behaviour, partic-

ularly for extreme events (Allen et al., 2016; Maraun et al., 2017). In recognition of these limitations, downscaling is routinely15

performed to correct raw GCM and RCM outputs. This is achieved either by dynamical downscaling, running a nested high-

resolution simulation, or statistical methods. Comparisons of statistical and dynamical downscaling suggest that neither group

of methods is clearly superior (Ayar et al., 2016; Casanueva et al., 2016), however in practice computationally cheaper statisti-

cal methods are widely used.

Major classes of statistical downscaling methods are model output statistics (MOS) and perfect prognosis (PP; Maraun et20

al., 2010). MOS methods explicitly adjust the simulated distribution of a given variable to the observed distribution, using

variations of quantile mapping (Teutschbein and Seibert, 2012; Piani et al., 2010; Cannon et al., 2020). Though these methods

are widely applied in impact studies, they struggle to downscale extreme values and artificially alter trends (Maraun, 2013;
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Maraun et al., 2017). In contrast, in PP downscaling, the aim is to learn a transfer function f such that

ŷ = f(x,Z) (1)25

Where ŷ is the downscaled prediction of a given climate variable whose true value is y at location x and Z is a set of predictors

from the climate model (Maraun and Widmann, 2018). This is based on the assumption that while sub-grid-scale and param-

eterised processes are poorly represented in GCMs, the large scale flow is generally better resolved (Maraun and Widmann,

2018).

Multiple different models have been trialled for parameterising f . Traditional statistical methods used for this purpose in-30

clude multiple linear regression (Gutiérrez et al., 2013; Hertig and Jacobeit, 2013), generalised linear models (San-Martín

et al., 2017) and analog techniques (Hatfield and Prueger, 2015; Ayar et al., 2016). More recently, there has been considerable

interest in applying advances in machine learning to this problem, including relevance vector machines (Ghosh and Mujum-

dar, 2008), artificial neural networks (Sachindra et al., 2018), autoencoders (Vandal et al., 2019), recurrent neural networks

(Bhardwaj et al., 2018; Misra et al., 2018), generative adversarial networks (White et al., 2019) and convolutional neural net-35

works (Vandal et al., 2017, 2018; Pan et al., 2019; Baño-Medina et al., 2020; Höhlein et al., 2020; Liu et al., 2020). These

models are trained in a supervised framework by learning a mapping from low-resolution predictors to downscaled values at

a particular set of locations for which observations are available. Unsupervised downscaling using normalising flows has also

been proposed (Groenke et al., 2020).

Limitations remain in these models. In many climate applications it is desirable to make projections that are both (i) con-40

sistent over multiple locations and (ii) specific to an arbitrary locality. The problem of multi-site downscaling has been widely

studied, with two classes of approaches emerging. Traditional methods take analogues or principal components of the coarse-

resolution field as predictors. The spatial dependence is then explicitly modelled for a given set of sites, using observations at

those locations to train the model (Maraun and Widmann, 2018; Cannon, 2008; Bevacqua et al., 2017; Mehrotra and Sharma,

2005). More recent work has sought to leverage advances in machine learning, for example CNNs, for feature extraction (Van-45

dal et al., 2017; Bhardwaj et al., 2018; Misra et al., 2018; Baño-Medina et al., 2020; Höhlein et al., 2020). These methods take

in a grid of low-resolution predictors and output downscaled predictions either on a fixed grid or at a pre-determined list of

sites. The question naturally arises as to how we can generate predictions at new locations at test time. Models trained in one

location can be applied in another using transfer learning (Wang et al., 2021). In this case, however, the output predictions are

still at the resolution or list of sites determined at training time (i.e a CNN model trained on 0.1 degree resolution will output50

0.1 degree resolution predictions, regardless of where it is applied). To make predictions on a grid with different resolution or

at a new set of locations requires interpolation of model predictions or taking the closest location.

In this study we propose a new approach to statistical downscaling using a convolutional conditional neural process model

(convCNP; Gordon et al., 2019), a state of the art probabilistic machine learning method combining ideas from Gaussian

Processes (GPs) and deep neural networks. This model learns a mapping between a gridded set of low-resolution predictors55

and a continuous stochastic process over longitude and latitude representing the downscaled prediction of the required variable.

In contrast to previous work where discrete predictions are made at a list of locations determined at training time, the stochastic
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process output from the convCNP can be queried at any location where a prediction is required. Although to our knowledge this

is the first application of such a model in downscaling, similar work has demonstrated the advantages of learning a mapping

from discrete input data to continuous prediction fields in modelling idealised fluid flow (Li et al., 2020a, b; Lu et al., 2019).60

The specific aims of this study are as follows:

1. Develop a new statistical model for downscaling GCM output capable of generating a stochastic process as a prediction

which can be queried at an arbitrary site.

2. Compare the performance of the statistical model to existing strong baselines.

3. Compare the performance of the statistical model at locations outside of the training set to existing interpolation methods.65

4. Quantify the impact of including sub-grid-scale topography on model predictions.

Section 2 outlines the development of the downscaling model, and presents the experimental setup used to address aims

2-4. Section 3 compares the performance of the statistical model to an ensemble of baselines. Sections 4 and 5 explore model

performance at unseen locations and the impact of including local topographic data. Finally, Section 6 presents a discussion of

these results and suggestions for further applications.70

2 Datasets and methodology

We first outline the development of the statistical downscaling model, followed by a description of three validation experiments.

2.1 The downscaling model

Our aim is to approximate the function f in equation 1 to predict the value of a downscaled climate variable y at locations x

given a set of coarse-scale predictors Z. In order to take the local topography into account, we assume that this function also75

depends on the local topography at each target point, denoted e, i.e

ŷ = f(x,Z,e)

In this study, f is modelled as a convCNP (Gordon et al., 2019), a member of the conditional neural process family (Garnelo

et al., 2018). A neural process model is a deep learning model which parameterises a mapping from a discrete input set to

a posterior stochastic process as a neural network. This is implemented as an encoder, which maps the input set to a latent80

representation, followed by a decoder which takes the latent representation and a target location as input and outputs the

predictive distribution at that location (Dubois et al., 2020). In the context of this downscaling problem, the input set is the low-

resolution predictors, the mapping a neural network and the output a stochastic process over temperature or precipitation which

can be queried at an arbitrary spatial location to generate the downscaled predictions. For spatial problems such as downscaling,

a desirable inductive bias in a model is that it is translation equivariant, that is the model makes identical predictions if the input85

data are spatially translated. The convCNP model applied here builds this equivariance into the conditional neural process.
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Using the convCNP model, we take a probabilistic approach to specifying f where we include a noise model, so that

p(y|x,Z,e) = p(y|θ(x,Z,e))

Deterministic predictions are made from this by using, for example, the predictive mean

ŷ =

!
yp(y|x,Z,e)dy90

In this model θ is parameterised as

θ(x,Z,e) = ψMLP [φc(h= CNN(Z),x),e]

Here θ is a vector of parameters of a distribution for the climate variable at prediction locations x. Consistent with previous

stochastic downscaling studies (Cannon, 2008; Wilks, 2012), this is assumed to be Gaussian for maximum temperature and

a Gamma-Bernoulli mixture for precipitation. We note that this is an extension of existing conditional and convolutional95

conditional neural process models where the predictive distribution is assumed to be Gaussian (Garnelo et al., 2018; Gordon

et al., 2019). e is a vector of sub-grid-scale topographic information at each of the prediction locations, ψMLP is a multi-layer

perceptron, φc is a kernel function with learnable length scale and CNN is a convolutional neural network. Each component of

this is described below, with a schematic of the model shown in Figure 1.

1. Convolutional neural network In the first step, daily gridded reanalysis predictor data Z for a single timestep are fed100

into the model. These grids are used as input to a convolutional neural network to extract relevant features. This is

implemented as a 6-block Resnet architecture (He et al., 2016) with depthwise separable convolutions (Chollet, 2017).

The output from this step is a prediction of the relevant parameters for each variable at each grid point in the predictor

set, i.e

hnm = CNN(Z)105

Where hnm is the vector-valued output at latitude m∆x1 and longitude n∆x2 and m,n ∈ Z+ with ∆xi indicating the

grid spacing where the grid consists of M points in the longitude direction and N points in the latitude direction.

2. Translation to off-the-grid predictions These gridded predictions are translated to the off-the-grid target locations x

using outputs from step 1 as weights for an exponentiated-quadratic (EQ) kernel φ, i.e

φc(h,x) =
M"

m=1

N"

n=1

hnmφ(x1 −m∆x1,x2 −n∆x2) =

M"

m=1

N"

n=1

hnme
− 1

2l21
(x1−m∆x1)

2− 1

2l22
(x2−n∆x2)

2

110

This outputs predictions of the relevant distributional parameters, θ, at each target location. An EQ kernel is chosen here

as it ensures that the predictions are approximately translation equivariant.

3. Inclusion of sub-grid scale topography
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Figure 1. Schematic of the convCNP model for downscaling precipitation demonstrating the flow of data in predicting precipitation for a

given day at target locations x. Gridded coarse resolution data for each predictor is fed into the CNN, producing predictions of θ = (ρ,α,β)

at each grid point. These gridded predictions are then transformed to a prediction at the target location using an exponentiated-quadratic

kernel. Finally, these elevation agnostic predictions are fed into a multi-layer perceptron together with topographic data e to produce a final

prediction of the parameters.
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Figure 2. Examples of convCNP model predictions compared to observations for (top) maximum temperature in Helgoland, Germany and

(bottom) precipitation in Madrid, Spain.

By design, the predictions from the previous step only model variation on the scale of the context grid spacing. This

elevation agnostic output is post-processed using a multi-layer perceptron (MLP). This takes the parameter predictions115

from the EQ kernel as input together with a vector of topographic data e at each target location.

θ(x,Z,e) = ψMLP (φc(h,x),e)

The vector e consists of three measurements at each target point:

(a) True elevation

(b) Difference between the true and grid-scale elevation.120

(c) Multi-scale topographic position index (mTPI), measuring the topographic prominence of the location, (i.e quanti-

fying whether the point is in a valley or on a ridge).

This MLP outputs the final prediction of the distributional parameters θ at each target location.

Figure 2 shows a concrete example of temperature and precipitation time-series produced using this model by sampling

from the output distributions. Maximum temperature is shown for Helgoland, Germany, and precipitation for Madrid, Spain.125

For both variables the model produces qualitatively realistic time-series.
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2.1.1 Training

The convCNP models are trained by minimising the average negative log-likelihood. For temperature, this is given by

NLLtemp =− 1

N

N"

i=1

ln[N (yi|µi(xi,Z,ei),σi(xi,Z,ei))

where yi is the observed value, N (yi;µi,σi) denotes a Gaussian distribution over y with mean µi and variance σ2
i . These130

parameters θ(xi,Z,ei) = {µi(xi,Z,ei),σ2
i (xi,Z,ei)} are generated by the model at each location xi and use topography ei. N

is the total number of target locations. For precipitation, the negative log likelihood is given by

NLLprecip =− 1

N

N"

i=1

[ri(ln(ρi(xi,Z,ei))+ ln(Γ(yi|αi(xi,Z,ei),βi(xi,Z,ei)))+ (1− ri) ln(1− ρi(xi,Z,ei))]

where ri is a Bernoulli random variable describing whether precipitation was observed at the ith target location, yi is the

observed precipitation, ρi parameterises the predicted Bernoulli distribution and Γ(yi;αi,βi) is a Gamma distribution with135

shape parameter αi and scale parameter βi. Here θ(xi,Z,ei) = {ρi(xi,Z,ei),αi(xi,Z,ei),βi(xi,Z,ei)}.

Weights are optimised using Adam (Kingma and Ba, 2014), with the learning rate set to 5×10−4. Each model is trained for

100 epochs on 456 batches of 16 days each, using early stopping with a patience of 10 epochs.

2.2 Experiments and datasets

Having addressed the first aim in developing the convCNP model, we next evaluate model performance via three experiments.140

The first experiment compares the convCNP model to an ensemble of existing downscaling methods following a standardised

experimental protocol. In contrast to the convCNP model, these methods are unable to make predictions at locations where

training data are not available. In the second experiment, we assess the performance of the convCNP model at these unseen

locations compared to a baseline constructed by interpolating single-site models. Finally, ablation experiments are performed

to quantify the impact of including sub-grid scale topographic information on performance.145

2.2.1 Experiment 1 - baseline comparison

ConvCNP model performance is first compared to strong baseline methods taken from the VALUE experimental protocol.

VALUE (Maraun et al., 2015) provides a standardised suite of experiments to evaluate new downscaling methods, together with

data benchmarking the performance of existing methods. In the VALUE 1a experiment, each downscaling method predicts the

maximum temperature and daily precipitation at 86 stations across Europe (Figure 2), given gridded data from the ERA-Interim150

reanalysis (Dee et al., 2011). These stations are chosen as they offer continuous, high fidelity data over the training and held

out test periods and represent multiple different climate regimes (Gutiérrez et al., 2019). Data is taken from 1979-2008, with

five-fold cross validation used over six-year intervals to produce a 30 year time-series.

The convCNPs are trained to predict maximum temperature and precipitation at these 86 VALUE stations given the ERA

Interim grids over Europe. Station data are taken from the European Climate Assessment Dataset (Klein Tank et al., 2002).155
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Figure 3. Locations of ECA&D (left) and VALUE (right) stations, with altitude shaded.

These grids are restricted to points between 35 and 72 degrees latitude and -15 to 40 degrees longitude. The VALUE experiment

protocol does not specify which predictors are used in each downscaling model (i.e which gridded variables are included in

Z), with different predictors chosen for each member of the baseline ensemble, as detailed in Gutiérrez et al. (2019). It is

emphasised that in the VALUE baselines a separate model is trained for every location, hence topographic predictors are not

required.160

Based on the predictors used by methods in the baseline ensemble, winds, humidity and temperature are included at multiple

levels together with time, latitude, longitude and invariant fields. Predictors are summarised in Table 1.

For the sub-grid scale information for input into the final MLP, the point measurement of three products is provided at

each station. True station elevation is taken from the Global Multi-resolution Terrain Elevation Dataset (USGS, 2010). This is

provided to the model together with the difference between the ERA-Interim gridscale resolution elevation and true elevation.165

Finally, topographic prominence is quantified using the ALOS Global mTPI (Theobald et al., 2015).

Results of the convCNP model are compared to all available PP models in the VALUE ensemble, a total of 16 statistical

models for precipitation and 23 for maximum temperature. These models comprise a range of techniques including analogs,

multiple linear regression, generalised multiple linear regression and genetic programming. For a complete description of all

models included in the comparison, see Appendix A.170
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Predictor Level Description

Surface

TMAX surface Maximum temperature

TMEAN surface Mean temperature

U10 surface Northward wind

V10 surface Eastward wind

Pr surface Accumulated precipitation

Upper level

Q 850hPa, 700hPa, 500hPa Specific humidity

TA 850hPa, 700hPa, 500hPa Temperature

UA 850hPa, 700hPa, 500hPa Northward wind

VA 850hPa, 700hPa, 500hPa Eastward wind

Invariant

ASO surface Angle of sub-gridscale orography

ANSO surface Anisotropy of sub-grid scale orography

FSO surface Standard deviation of filtered subgrid orography

SDO surface Standard deviation of orography

GSFC surface Geopotential

LAT surface Latitude

LON surface Longitude

Temporal

Time - Day of year, transformed as (cos(time), sin(time))

Table 1. Gridded predictors from ERA-Interim reanalysis included in Z.

2.2.2 Experiment 2 - performance at unseen locations

We next quantify model performance at unseen locations compared to an interpolation baseline. The convCNP models are

retrained using station data from the European Climate Assessment Dataset (ECA&D), comprising 3010 stations for precipita-

tion and 3047 stations for maximum temperature (Figure 2). The 86 VALUE stations are held out as the validation set, testing

the model performance at both unseen times and locations.175

As existing downscaling models are unable to handle unseen locations, it is necessary to construct a new baseline. A natural

baseline for this problem is to construct individual models for each station using the training set, use these to make predictions at

future times, and then interpolate to get predictions at the held out locations. For the single-station models, predictors are taken

from ERA-Interim data at the closest gridbox, similar to Gutiérrez et al. (2013). Multiple linear regression is used for maximum

temperature. For precipitation, occurrence is modelled using logistic regression, and accumulation using a generalised linear180
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Means

Metric Variables Description

mb Tmax, Precip mean bias

sp Tmax, Precip Spearman correlation between observed and predicted timeseries

MAE Tmax, Precip Mean absolute error

R01 Precip Relative wet day frequency (predicted precipitation days: observed pre-

cipitation days.

SDII Precip Mean wet day precipitation

Extremes

Metric Variables Description

98P Tmax, precip Bias in the 98th percentile.

R10 Precip Relative frequency of days with precipitation greater than 10mm

Table 2. Evaluation metrics.

model with gamma error distribution, similar to San-Martín et al. (2017). These methods are chosen as they are amongst the

best-performing methods of the VALUE ensemble for each variable (Gutiérrez et al., 2019).

Following techniques used to convert station observations to gridded datasets (Haylock et al., 2008), predictions at these

known stations in the future time period are made by first interpolating monthly means (totals) for temperature (precipitation)

using a thin-plate spline, then using a GP to interpolate the anomalies (fraction of the total value). All interpolation is three185

dimensional over longitude, latitude and elevation. Throughout the results section, this model is referred to as the GP-baseline.

2.2.3 Experiment 3 - topography ablation

Finally, the impact of topography on predictions is quantified. Experiment 2 is repeated three times with different combinations

of topographic data fed into the final MLP (step 3 in Figure 1): no topographic data, elevation and elevation difference only

and mTPI only.190

2.3 Evaluation metrics

A selection of standard climate metrics are chosen to assess model performance over the evaluation period, quantifying the

representation of mean properties and extreme events (Table 2). Metrics are chosen based on those reported for the VALUE

baseline ensemble (Gutiérrez et al., 2019; Widmann et al., 2019; Maraun et al., 2019; Hertig et al., 2019).

Comparison to these metrics requires generating a timeseries of values from the distributions predicted by the convCNP195

model. For temperature, this is generated by taking the mean of the predicted distribution for mean metrics, and sampling is

used to complete the extreme metrics. For precipitation, a day is first classified as wet if ρ≥ 0.5 or dry if ρ< 0.5. For wet days,

accumulations are generated by taking the mean of the gamma distribution for mean metrics or sampling for extreme metrics.
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3 Results: baseline comparison (experiment 1)

The convCNP model outperforms all VALUE baselines on median mean absolute error (MAE) and Spearman correlation for200

both maximum temperature and precipitation. Comparisons of convCNP model performance at the 86 VALUE stations to each

model in the VALUE baseline ensemble are shown in Figure 4. The low MAE and high Spearman correlation indicate that the

model performs well at capturing day-to-day variability.

For maximum temperature, the mean bias is larger than baseline models at many stations, with interquartile range -0.02C

to 0.08C. This is a direct consequence of training a global model as opposed to individual models to each station which205

will trivially correct the mean (Maraun and Widmann, 2018). Though larger than baseline models, this error is still small

for a majority of stations. Similarly for precipitation, though mean biases are larger than many of the VALUE models, the

interquartile range is just -0.07mm to 0.12mm. For precipitation, the bias in convCNP relative wet day frequency (R01) and

mean wet day precipitation (SDII) are comparable to the best models in the VALUE ensemble (not shown).

When downscaling GCM output for impact studies, it is of particular importance to accurately reproduce extreme events210

(Katz and Brown, 1992). In line with previous work comparing the VALUE baselines (Hertig et al., 2019), an extreme event is

defined to be a value greater than the 98th percentile of observations. Comparisons of biases in the 98th percentile of maximum

temperature and precipitation are shown in Figure 5. The convCNP performs similarly to the best baselines, with a median bias

of -0.02C for temperature and -2.04mm for precipitation across the VALUE stations. R10 biases are comparable to baselines,

with a median bias of just -0.003mm.215

4 Results: performance at unseen locations (experiment 2)

The convCNP model outperforms the GP-baseline at unseen stations. Results for MAE, Spearman correlation and mean bias

are shown in Figure 6. For maximum temperature, the convCNP model gives small improvements over the baseline model,

with Spearman correlations of 0.99 (0.98) and MAE of 1.19C (1.35C) for the convCNP (GP baseline). Importantly, large

outliers (>10C) in the baseline MAE are not observed in the convCNP predictions. Figure 7 shows the spatial distribution of220

MAE for the convCNP and GP-baseline together with the difference in MAE between the two models. This demonstrates that

stations with high MAE in the convCNP model are primarily concentrated in the complex topography of the European Alps.

The GP-baseline model displays large MAE not only in the Alps, but also at other locations for example in Spain and France.

The convCNP improves predictions at 82 out of the 86 stations.

Repeating this analysis for precipitation, the convCNP model gives substantial improvement over the baseline for MAE225

and Spearman correlation. Spearman correlations are 0.57 (0.20) and MAE 2.10mm (2.71mm) for convCNP (GP-baseline).

In contrast to maximum temperature, there is no clear link between topography and MAE, though again convCNP predictions

have large MAE for multiple stations located in the Alps. The convCNP model improves on baseline predictions at 80 out of

86 stations.

Comparisons between models for extreme metrics are shown in Figure 8. For maximum temperature, the convCNP has230

slightly lower absolute 98th percentile bias than the baseline. For precipitation, errors are substantially lower, with median
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Figure 4. Comparison of the convCNP model to VALUE ensemble baselines for mean metrics, with the convCNP model shaded in blue.

Each box summarises performance for one model in the ensemble over the 86 training stations on the held out validation data.
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Figure 5. As for Figure 4, but for extreme metrics.
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Figure 6. Comparison of the convCNP model to the GP-baseline. Boxes summarise model performance over the 86 held out VALUE stations

for maximum temperature (top) and precipitation (bottom) for each of the mean metrics.

absolute 98th percentile bias of 4.90mm for convCNP compared to 22.92mm for the GP-baseline. The spatial distributions of

98th percentile bias for maximum temperature and precipitation predictions together with the difference in absolute bias are

shown in Figure 9. For maximum temperature, the convCNP does not improve on the baseline at all stations. The GP-baseline

exhibits uniformly positive biases, while the convCNP model has both positive and negative biases. Improvements are seen235

through central and eastern Europe, while the convCNP performs comparatively poorly in Southern Europe and the British

Isles. For precipitation, predictions have low biases across much of Europe for the convCNP, with the exception of in the

complex terrain of the Alps. GP-baseline biases are negative throughout the domain. For this case, convCNP predictions have

lower bias at 84 of the 86 validation stations.

A limitation to the analysis of the standard climate metrics in Table 2 is that these only assess certain aspects of the predicted240

distribution. To assess the calibration of the models, we next examine the probability integral transform (PIT) values. The PIT

value for a given prediction is defined as the CDF of the distribution predicted by the convCNP model evaluated at the true

observed value. These values can be used to determine whether the model is calibrated by evaluating the PIT for every model

prediction at the true observation, and plotting their distribution. If the model is properly calibrated, it is both necessary and

sufficient for this distribution to be uniform (Gneiting et al., 2007). PIT distributions for maximum temperature and wet-day245
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Figure 7. Spatial distribution of mean absolute error for convCNP (right), GP baseline (centre) and convCNP - GP baseline (left). Maximum

temperature (precipitation) is shown on the top (bottom) row. All panels show results for each of the 86 held out VALUE stations.

precipitation are shown in Figure 10. For temperature, the model is well calibrated overall, although the predicted distributions

are often too narrow, as demonstrated by the peaks around zero and one indicating that the observed value falls outside the

predicted normal distribution. Calibration of the precipitation model is poorer overall. The peak in PIT mass around zero

indicates that this model often over predicts rainfall accumulation. Performance varies between individual stations for both

temperature and precipitation, with examples of PIT distributions for both well- and poorly-calibrated stations shown in Figure250

10.
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Figure 8. As for Figure 6, but for P98 and R10 biases.

5 Results: topography ablation (experiment 3)

Results of the topography ablation experiment are shown in Figure 11 (mean metrics) and Figure 12 (extreme metrics). These

figures compare the performance on each metric between the convCNP model with all topographic predictors, and convCNP

models trained with no topography, elevation and elevation difference only and mTPI only.255

For maximum temperature, inclusion of topographic information improves MAE, mean bias and Spearman correlation.

Models including only mTPI or no topographic predictors have a number of stations with very large MAE, exceeding 10C

at several stations. Unsurprisingly, these stations are found to be located in areas of complex topography in the Alps (not

shown). Including elevation both decreases the median MAE and corrects errors at these outliers, with further improvement

observed with mTPI added. A similar pattern is seen for mean bias. More modest improvements are seen for precipitation,260

though inclusion of topographic data does result in slightly improved performance.

For maximum temperature, inclusion of topographic data results in reduced 98th percentile bias. This is primarily as a result

of including elevation and elevation difference data, with limited benefit derived from the inclusion of mTPI. In contrast, for

precipitation, models with topographic correction perform worse than the elevation agnostic model for both 98th percentile

and R10 biases. This reduced performance for precipitation may result from overfitting.265

16



Figure 9. As for Figure 7, but for P98 biases. Here, the difference panels quantify the difference in absolute bias |P98convCNP |−
|P98GP−Baseline|. Negative (positive) values indicate that the convCNP (GP-Baseline) has better performance.

6 Discussion and conclusion

This study demonstrated the successful application of convCNPs to statistical downscaling of temperature and precipitation.

The convCNP model performs well compared to strong baselines from the VALUE ensemble on both mean and extreme

metrics. For both variables the convCNP model outperforms an interpolation based baseline. Inclusion of sub-grid-scale to-

pographic information is shown to improve model performance for mean and extreme metrics for maximum temperature,270

and mean metrics for precipitation. The convCNP model has a significant advantage over these baselines in that the output

prediction is a continuous function, allowing predictions to be made at an arbitrary (longitude, latitude, elevation) location.

Although only temperature and precipitation are considered in this study, the model is easily applied to any climate variable

with available station observations, for example windspeed.
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Figure 10. Histograms showing probability integral transforms for model predictions compared to a uniform distribution to assess calibration

for temperature (top) and precipitation (bottom). For temperature PIT plots are shown for all values (left), a station where the model is well

calibrated (Braganca, Portugal; centre) and a station where the model is poorly calibrated (Gospic, Croatia; right). Similarly for precipitation,

PIT plots are shown for all values (left), a station where the model is well calibrated (Stornoway, UK; centre) and a station where the model

is poorly calibrated (Sondankyla, Finland; right).

Several areas remain for future work, both within the convCNP model and in comparison to other downscaling methods.275

In the convCNP predictions, representation of certain metrics, notably precipitation extremes requires further improvement,

particularly in areas with complex topography. The topography ablation experiments demonstrate that the convCNP P98 bias

increases in regions with complex topography. Dynamically, this is likely due to local flow effects such as Föhn winds (Gaffin,

2007; Basist et al., 1994), which depend on the incident angle of the background flow. A possible explanation for this is that the

MLP is insufficient to model these effects. Further experimentation with adding a second CNN to capture the sub-grid-scale280

processes, and possibly conditioning predictions of this model on local flow is left as a topic for future research. Another avenue

for improving model performance would be to change the distribution predicted by the convCNP. Model calibration results

presented in Section 4 indicate that the temperature downscaling model could be improved using a distribution with heavier

tails. Precipitation model calibration requires improvement, with the model frequently under-predicting wet day accumulations.

A possible explanation for this is that the left hand tail of the gamma distribution decays rapidly. For cases where the mode285

of the predicted distribution is greater than zero, small observed accumulations are therefore heavily penalised. Previous work

has acknowledged that the Bernoulli-Gamma distribution used in this study is not realistic for all sites (Vlček and Huth,

2009), and suggested that representation of precipitation extremes can be improved using a Bernoulli-Gamma-Gerneralised
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Figure 11. Comparison of model performance in the topography ablation experiment. The complete model (All) is compared to models with

no topographic data (None), elevation and elevation difference only (Elevation) and mTPI only (mTPI). Boxes summarise model performance

over the 86 held out VALUE stations for maximum temperature (top) and precipitation (bottom) for each of the mean metrics.

Pareto distribution (Ben Alaya et al., 2015; Volosciuk et al., 2017). Future work will explore improving the calibration of

the downscaling models using mixture distributions and normalising flows (Rezende and Mohamed, 2015) to improve the290

calibration of the model. A further possibility for extending the convCNP model would be to explicitly incorporate time by

building recurrence into the model (Qin et al., 2019; Singh et al., 2019).

Future work will also focus on developing a standardised framework to compare the convCNP model to a variety of deep

learning baselines, building on the work of (Vandal et al., 2019). Although some studies have indicated that in certain cases

deep learning models offer little advantage over widely used statistical methods such as those included in the VALUE ensemble295

(Baño-Medina et al., 2020; Vandal et al., 2019), others suggest that deep learning methods offer improved performance (White

et al., 2019; Vandal et al., 2017; Höhlein et al., 2020; Liu et al., 2020; Sachindra et al., 2018; Misra et al., 2018). Further work

is required both to rigorously compare the convCNP model to other machine learning models for downscaling and to generate

a standardised intercomparison of models more broadly. Examination of a larger set of metrics, particularly for precipitation,

would also be beneficial.300
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Figure 12. As for Figure 11, but for extreme metrics.

The final aspect to consider is extending these promising results downscaling reanalysis data to apply to future climate

simulations from GCMs. An in depth analysis of the convCNP model performance on seasonal and annual metrics would

be beneficial in informing application to impact scenarios. A limitation in all PP downscaling techniques is that applying a

transfer function trained on reanalysis data to a GCM makes the assumption that the predictors included in the context set are

realistically simulated in the GCM (Maraun and Widmann, 2018). Future work will aim to address this issue through training a305

convCNP model directly on RCM or GCM hindcasts available through projects such as EURO-CORDEX (Jacob et al., 2014).

Code availability. Model code is available at https://github.com/anna-184702/convCNPClimate DOI:10.5281/zenodo.4554603).
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Huth, R., Mikšovskỳ, J., Štěpánek, P., Belda, M., Farda, A., Chládová, Z., and Pišoft, P.: Comparative validation of statistical and dynamical

downscaling models on a dense grid in central Europe: temperature, Theoretical and Applied Climatology, 120, 533–553, 2015.

Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G., et al.:

EURO-CORDEX: new high-resolution climate change projections for European impact research, Regional environmental change, 14,375

563–578, 2014.

Jacobeit, J., Hertig, E., Seubert, S., and Lutz, K.: Statistical downscaling for climate change projections in the Mediterranean region: methods

and results, Regional environmental change, 14, 1891–1906, 2014.

Katz, R. W. and Brown, B. G.: Extreme events in a changing climate: variability is more important than averages, Climatic change, 21,

289–302, 1992.380

Kingma, D. P. and Ba, J.: Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980, 2014.

Klein Tank, A., Wijngaard, J., Können, G., Böhm, R., Demarée, G., Gocheva, A., Mileta, M., Pashiardis, S., Hejkrlik, L., Kern-Hansen, C.,

et al.: Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment, International

Journal of Climatology: A Journal of the Royal Meteorological Society, 22, 1441–1453, 2002.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., and Anandkumar, A.: Neural operator: Graph kernel network385

for partial differential equations, arXiv preprint arXiv:2003.03485, 2020a.

23



Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., and Anandkumar, A.: Fourier neural operator for parametric

partial differential equations, arXiv preprint arXiv:2010.08895, 2020b.

Liu, Y., Ganguly, A. R., and Dy, J.: Climate Downscaling Using YNet: A Deep Convolutional Network with Skip Connections and Fusion,

in: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3145–3153, 2020.390

Lu, L., Jin, P., and Karniadakis, G. E.: Deeponet: Learning nonlinear operators for identifying differential equations based on the universal

approximation theorem of operators, arXiv preprint arXiv:1910.03193, 2019.

Maraun, D.: Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue, Journal of Climate, 26, 2137–2143, 2013.

Maraun, D. and Widmann, M.: Statistical downscaling and bias correction for climate research, Cambridge University Press, 2018.

Maraun, D., Wetterhall, F., Ireson, A., Chandler, R., Kendon, E., Widmann, M., Brienen, S., Rust, H., Sauter, T., Themeßl, M., et al.:395

Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user,

Reviews of geophysics, 48, 2010.

Maraun, D., Widmann, M., Gutiérrez, J. M., Kotlarski, S., Chandler, R. E., Hertig, E., Wibig, J., Huth, R., and Wilcke, R. A.: VALUE: A

framework to validate downscaling approaches for climate change studies, Earth’s Future, 3, 1–14, 2015.

Maraun, D., Shepherd, T. G., Widmann, M., Zappa, G., Walton, D., Gutiérrez, J. M., Hagemann, S., Richter, I., Soares, P. M., Hall, A., et al.:400

Towards process-informed bias correction of climate change simulations, Nature Climate Change, 7, 764–773, 2017.

Maraun, D., Huth, R., Gutiérrez, J. M., Martín, D. S., Dubrovsky, M., Fischer, A., Hertig, E., Soares, P. M., Bartholy, J., Pongrácz, R., et al.:

The VALUE perfect predictor experiment: evaluation of temporal variability, International Journal of Climatology, 39, 3786–3818, 2019.

Mehrotra, R. and Sharma, A.: A nonparametric nonhomogeneous hidden Markov model for downscaling of multisite daily rainfall occur-

rences, Journal of Geophysical Research: Atmospheres, 110, 2005.405

Misra, S., Sarkar, S., and Mitra, P.: Statistical downscaling of precipitation using long short-term memory recurrent neural networks, Theo-

retical and applied climatology, 134, 1179–1196, 2018.

Pan, B., Hsu, K., AghaKouchak, A., and Sorooshian, S.: Improving precipitation estimation using convolutional neural network, Water

Resources Research, 55, 2301–2321, 2019.

Piani, C., Haerter, J., and Coppola, E.: Statistical bias correction for daily precipitation in regional climate models over Europe, Theoretical410

and Applied Climatology, 99, 187–192, 2010.

Qin, S., Zhu, J., Qin, J., Wang, W., and Zhao, D.: Recurrent attentive neural process for sequential data, arXiv preprint arXiv:1910.09323,

2019.

Raynaud, D., Hingray, B., Zin, I., Anquetin, S., Debionne, S., and Vautard, R.: Atmospheric analogues for physically consistent scenarios of

surface weather in Europe and Maghreb, International Journal of Climatology, 37, 2160–2176, 2017.415

Rezende, D. J. and Mohamed, S.: Variational inference with normalizing flows, arXiv preprint arXiv:1505.05770, 2015.

Ribalaygua, J., Torres, L., Pórtoles, J., Monjo, R., Gaitán, E., and Pino, M.: Description and validation of a two-step analogue/regression

downscaling method, Theoretical and Applied Climatology, 114, 253–269, 2013.

Sachindra, D., Ahmed, K., Rashid, M. M., Shahid, S., and Perera, B.: Statistical downscaling of precipitation using machine learning tech-

niques, Atmospheric research, 212, 240–258, 2018.420

San-Martín, D., Manzanas, R., Brands, S., Herrera, S., and Gutiérrez, J. M.: Reassessing model uncertainty for regional projections of

precipitation with an ensemble of statistical downscaling methods, Journal of Climate, 30, 203–223, 2017.

Singh, G., Yoon, J., Son, Y., and Ahn, S.: Sequential Neural Processes, in: Advances in Neural Information Processing Systems, pp. 10 254–

10 264, 2019.

24



Teutschbein, C. and Seibert, J.: Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review425

and evaluation of different methods, Journal of hydrology, 456, 12–29, 2012.

Theobald, D. M., Harrison-Atlas, D., Monahan, W. B., and Albano, C. M.: Ecologically-relevant maps of landforms and physiographic

diversity for climate adaptation planning, PLoS One, 10, e0143 619, 2015.

USGS: Global Multi-resolution Terrain Elevation Data, 2010.

Vandal, T., Kodra, E., Ganguly, S., Michaelis, A., Nemani, R., and Ganguly, A. R.: Deepsd: Generating high resolution climate change pro-430

jections through single image super-resolution, in: Proceedings of the 23rd acm sigkdd international conference on knowledge discovery

and data mining, pp. 1663–1672, 2017.

Vandal, T., Kodra, E., Dy, J., Ganguly, S., Nemani, R., and Ganguly, A. R.: Quantifying uncertainty in discrete-continuous and skewed data

with Bayesian deep learning, in: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining, pp. 2377–2386, 2018.435

Vandal, T., Kodra, E., and Ganguly, A. R.: Intercomparison of machine learning methods for statistical downscaling: the case of daily and

extreme precipitation, Theoretical and Applied Climatology, 137, 557–570, 2019.
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Appendix A: VALUE ensemble methods455

Table 3 summarises the baseline methods in the VALUE ensemble. This information is adapted from (Gutiérrez et al., 2019).
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Model Variables Description

ANALOG Tmax, precip Standard analog, no seasonal component (Gutiérrez et al., 2013)

ANALOG-

ANOM

Tmax Analog with seasonal component (Ayar et al., 2016)

ANALOG-MP Tmax, precip Analog method with seasonal component (Raynaud et al., 2017)

ANALOG-SP Tmax, precip Analog method with seasonal component (Raynaud et al., 2017)

ESD-EOFSLP Tmax Multiple linear regression (Benestad et al., 2015)

ESD-SLP Tmax Multiple linear regression (Benestad et al., 2015)

ESD-T2 Tmax Multiple linear regression (Benestad et al., 2015)

FIC01P Tmax, precip Two step analog method (Ribalaygua et al., 2013)

FIC03P precip Two step analog method (Ribalaygua et al., 2013)

GLM precip Generalised linear Model with log-canonical link function (San-Martín et al., 2017). Bernoulli error

distribution for occurrence and gamma error distribution for accumulation. Predictions sampled from

output distribution.

GLM-det precip As for GLM, predictions given as mean of output distribution (San-Martín et al., 2017).

GLM-WT precip As for GLM, conditioned on 12 weather types identified by k-means clustering (San-Martín et al.,

2017).

MLR Tmax Multiple linear regression using PCA for predictors (Gutiérrez et al., 2013).

MLR-AAI Tmax, precip Multiple linear regression, annual training, anomaly data, inflation variance correction (Huth et al.,

2015).

MLR-AAN Tmax, precip Multiple linear regression, annual training, anomaly data, white-noise variance correction (Huth et al.,

2015).

MLR-AAW Tmax, precip Multiple linear regression, annual training, anomaly data, white-noise variance correction (Huth et al.,

2015).

MLR-ASI Tmax, precip Multiple linear regression, seasonal training, anomaly data, inflation variance correction (Huth et al.,

2015).

MLR-ASW Tmax, precip Multiple linear regression, seasonal training, anomaly data, white-noise variance correction (Huth et al.,

2015).

MLR-PCA-

ZTR

Tmax Multiple linear regression with s-mode principal component predictors (Jacobeit et al., 2014).

MLR-RAN Tmax, precip Multiple linear regression, seasonal training, raw data, no variance correction (Huth et al., 2015).

MLR-RSN Tmax, precip Multiple linear regression, seasonal training, raw data, no variance correction (Huth et al., 2015).

MLR-SDSM Tmax, precip Single-site multiple linear regression using the statistical downscaling method (Wilby et al., 2002).

MLR-WT Tmax As for MLR, but conditioned on weather types defined using k-means clustering (Gutiérrez et al., 2013).

MO-GP Tmax, precip Multi-objective genetic programming (Zerenner et al., 2016).

SWG Tmax, precip Two-step vectorised generalised linear models (Ayar et al., 2016).

WT-WG Tmax, precip Distributional fitting based on weather types selected using k-means clustering (Gutiérrez et al., 2013).
Table A1. Summary of models included in the VALUE ensemble.
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