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Abstract. A series of model sensitivity experiments was designed to explore the effects of different initial conditions and 

emissions in December 2016 in Xi’an, a major city in the “Fen-Wei Plains”, which is key area for air pollution control in 

China. Three methods were applied for the initial condition tests: clean initial simulation, restart simulation, and continuous 10 

simulation. In the clean initial simulation test, the sensitivity experiments C00, C06, C12, C18, and C24 were conducted 

according to the intercepted time periods, and the results showed that the PM2.5 model performance was better with the delay 

of the start time of the intercepted time periods. For experiments C00 to C24, the absolute mean bias (MB) decreased from 

51.07 µg/m3 to 3.72 µg/m3, and the index of agreement (IOA) increased from 0.49 to 0.86, which illustrates that the model 

performance of C24 is much better than C00. Sensitivity experiments R1120 and R1124 were used to explore the restart 15 

simulation based on the time of the first day of the model simulation. While the start times of the simulations were different, 

after a spin-up time period, the simulation results with different start times were nearly consistent and the results revealed that 

the spin-up time was approximately 27 h. For the continuous simulation test, CT12 and CT24 were conducted. The start times 

of the intercepted time periods for CT12 and R1120 were the same, and the simulation results were almost identical. The 

simulation results of CT24 performed best in all the sensitivity experiments, with the correlation coefficient (R), MB, and IOA 20 

reaching 0.81, 6.29 µg/m3, and 0.90, respectively. For the emission tests, the updated local emission inventory with 

construction fugitive dust emissions were added and compared with the simulation results of the original emission inventory. 

The simulation with the updated local emissions showed a much better performance for PM2.5 modelling. Therefore, combining 

the CT24 method with the updated local emission inventory can satisfactorily improve the PM2.5 model performance in Xi'an, 

and the absolute MB decreased from 35.16 µg/m3 to 6.29 µg/m3 and the IOA reached 0.90. 25 

1 Introduction 

In recent years, severe air pollution has gradually become a major challenge in China and other developing countries (Wu 

et al., 2014; Li et al., 2017a). China released a three-year action plan for cleaner air in 2018, and efforts will be focused on 

areas including the Beijing-Tianjin-Hebei region, the Yangtze River Delta, and the Fen-Wei Plains. As a major city of the 

“Fen-Wei Plains” key area, Xi’an is located in the Guanzhong Basin. The city is surrounded by the Qinling Mountains to the 30 

south, and the Loess Plateau extends to the north and west, which is not conducive to the spread of air pollutants. Xi’an has 
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suffered severe air pollution in recent years because of its particular topography and rapid economic development (Cao et al., 

2002; Zhang et al., 2012). Unfortunately, Xi'an is under the rapid development of urban construction activities with large 

construction fugitive dust (Long et al., 2016). 70 

Air quality modelling systems are an important tool for air pollution assessment and have evolved over three generations 

since the 1970s, driven by crucial regulations, societal and economic needs, and increasing high-performance computing 

capacity (Zhang et al., 2012). Various air quality models are widely used in the simulation and forecasting of pollutants, such 

as the Community Multiscale Air Quality (CMAQ) (Eder and Yu, 2006; Appel et al., 2017), the Comprehensive Air Quality 

Model with extensions (CAMx) (ENVIRON, 2013), WRF-Chem (Grell et al., 2005), and the Nested Air Quality Prediction 75 

Modelling System (GNAQPMS/NAQPMS) (Wang et al., 2006; Chen et al., 2015; Wang et al., 2017). To accurately analyse 

the apportionment of emission categories and contributions from different source regions for atmospheric pollution, many 

researchers used the CAMx model with the particulate matter source apportionment technology (PSAT) in different areas of 

China, including Beijing (Zhang et al., 2018), Tangshan (Li et al., 2013), Pearl River Delta region (Wu et al., 2013), and 

Yangtze River Delta region (Li et al., 2011). The CAMx showed a satisfactory model performance for the air pollution 80 

simulation (Panagiotopoulou et al., 2016). 

The input files for the CAMx model include initial/boundary conditions, gridded and elevated point source emissions, and 

meteorological files (ENVIRON, 2013). Meteorology and emissions inputs can cause high uncertainty for air quality models 

(Tang et al. 2010; Gilliam et al., 2015). Many researchers have reduced the uncertainty of meteorology through refined physical 

parameterizations and other techniques, such as data assimilation (Sistla et al., 1996; Seaman, 2000; Gilliam et al., 2015; Li et 85 

al., 2019). A reasonable emission inventory is very important for the simulation accuracy of the air quality model. Many 

researchers have studied East Asian emissions (Kato et al., 1992; Streets et al., 2003; Ohara et al., 2007; Zhang et al., 2009), 

and tried to construct emission inventories of particulate matter (PM) in China (Wang et al. 2005; Zhang et al. 2006). However, 

the absence of detailed information on China introduces uncertainty into emission inventories (Cao et al., 2011). In recent 

years, an increasing number of researchers have focused on constructing and updating regional local emission inventories to 90 

improve model performance. Wu et al. (2014) improved the model performance by adding more regional point source 

emissions and updating the area source emissions in villages and surrounding cities in Beijing. Based on that work, Yang et 

al. (2019) added local datasets to the emission inventory of the Guanzhong Plain (China), which was applied to simulate PM2.5 

concentrations using the CMAQ model in Xi’an. Numerous studies have indicated that construction dust emissions play an 

important role in air pollution, especially in urban areas (Ni et al., 2012; Huang et al., 2014; Wang et al., 2015). In our previous 95 

study, we built a particulate matter emission inventory from construction activities at the county level in Xi'an, based on an 

extensive survey of construction activities and combined with two sets of dust emission factors for a typical city in north China 

(Xiao et al., 2019). 

However, few studies have investigated the initial conditions effects on the simulation or prediction of PM2.5 concentrations. 

Therefore, this study aimed to explore the effects of different initial simulations and emissions on the PM2.5 model performance 100 

in the CAMx model. A series of model sensitivity experiments for the initial simulation and emissions were designed to find 
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a suitable method for simulating PM2.5 concentrations with a reasonable initial condition and emission inventory. In addition 

to Xi'an, other cities may apply a similar research method for simulating PM2.5 concentrations in the future. 

The remainder of this paper is organised as follows. Section 2 provides the model descriptions for the WRF-SMOKE-CAMx 

model system, including meteorological fields, air quality model descriptions, model domain, emission inventory, and 

processes in Sects 2.1-2.4. Section 3 presents the design of the sensitivity experiments for different initial conditions and 240 

emissions. Section 4 discusses the model performance of the initial condition tests and emission tests to simulate the PM2.5 

concentration model in Xi'an. The conclusions are presented in Section 5. 

2 WRF-SMOKE-CAMx model descriptions 

In this study, the National Center for Atmospheric Research (NCAR) Weather Research and Forecasting (WRF v3.9.1.1) 

model (Skamarock et al., 2008), the Center for Environmental Modeling for Policy Development (CEMPD) Sparse Matrix 245 

Operator Kernel Emissions (SMOKE v2.4) (Houyoux and Vukovich, 1999), and the Ramboll Environmental Comprehensive 

Air Quality Model with Extensions (CAMx v6.1) (ENVIRON, 2013) were used to build up the air quality model system, as 

shown in Fig.1. The WRF model provided the meteorological conditions for the SMOKE and CAMx models. The SMOKE 

model was used to process the emissions data and provide 4-D, model-ready gridded emissions for the air quality model CAMx.  

 250 
Figure 1. Framework of the WRF-SMOKE-CAMx model system in Xi’an. OMI O3 map prepares ozone column input files 

for CAMx to improve the photolysis rate calculation. The CAMx forecasted the air pollutant for the next 48 h. 
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2.1 Meteorological fields 

For the WRF model configuration, we chose the rapid radiative transfer model (RRTM; Mlawer et al., 1997) and Dudhia 270 

for longwave and shortwave radiation options (Dudhia, 1989), WSM3 cloud microphysics (Hong et al., 2004), the YSU scheme 

(Hong et al., 2006), the Kain–Fritsch (new Eta) cloud parameterisation (Kain, 2004), and five-layer thermal diffusion scheme 

(Dudhia, 1996). The meteorological initial and boundary conditions were derived from the National Centres for Environmental 

Prediction (NCEP) global final analysis data (FNL), with a spatial resolution of 1° ×1° and temporal resolution of 6 h. The 

simulation was conducted between 20 November 2016 and 20 January 2017. 275 

The simulation effect of daily average temperature (T2) and relative humidity (RH2) simulated by the WRF model in domain 

3 were primarily validated by the observation data at 7 monitoring stations in Xi’an, and the station map is shown in Fig. 2. 

Some statistical parameters of Appendix A were used to evaluate the model performance and are shown in Table 1, and the 

time series is shown in Fig 3. The ME, R, and RMSE of the daily average T2 are 1.37 ℃, 0.80, and 1.65 ℃, respectively, and 

the simulation shows a cooling bias of -0.95 °C. The ME and RMSE of the daily average RH2 are 6.77% and 8.30%, 280 

respectively. The correlation coefficient of the relative humidity is 0.71, which is reasonable. RH2 was slightly overestimated 

when the MB was 6.22%. 

In previous studies, Yang et al. (2019) used WRF to drive the CMAQ model for winter air quality in Xi’an, and the model 

evaluations for winter in 2016 showed that the MB, ME, R, and RMSE of T2 were -2.83 ℃, 2.83 ℃, 0.89, and 3.29 ℃, 

respectively. The MB, ME, R, and RMSE of RH2 were 9.59%, 10.63%, 0.71, and 13.43%, respectively. Wu et al. (2010) used 285 

the fifth-generation NCAR/Penn State Mesoscale Model (MM5) as a meteorological driver for the Nested Air Quality 

Prediction Modelling System (NAQPMS). The statistical results showed that the MB and R of T2 were 2.1 °C and 0.84, and 

those of RH2 were -15.8% and 0.65, respectively. Under the same model configuration and monitoring sites, Yang et al. (2020) 

compared the simulated and observed wind speeds at a 10 m altitude (W10) at Xi’an station from 20 November 2016 to 20 

January 2017. As the results show, W10 is underestimated. The MB of W10 is -0.14 m/s. The R of W10 is 0.63, indicating a 290 

good agreement between the observations and the model results. 

Compared with previous studies, T2 and RH2 have lower MB, ME, and RMSE values. The R of T2 is slightly lower than 

in previous studies, while the R of RH2 is higher. Thus, the meteorological simulation in this study is reasonable. 
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Figure 2. Stations map of the meteorological and air quality monitoring network in Xi’an. The triangles are the meteorological 325 

monitoring stations. The square with a dot is the city background station and the black squares are the National Standard Air 

Quality Observation (NSAQ) Stations: Gaoyachang (GYC), Xingqing (XQ), Fangzhicheng (FZC), Xiaozhai (XZ), Tiyuchang 

(TYC), Gaoxinxiqu (GXXQ), Jingkaiqu (JKQ), Qujiang (QJ), Gaoyuntan (GYT), Changanqu (CAQ), Yanliangqu (YLQ), 

Lintongqu (LTQ), and Caotan (CT) Station. 



 
Figure 3. Time series plots of (a) daily average simulated and in situ 2 m temperature (T2), and (b) simulated and in situ 2 m 

relative humidity (RH2) at the Xi’an station. 
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Table 1. Verification statistics of daily temperature at 2 m height (T2), relatively humidity at 2 m height (RH2).  

Variable                           Mean     ME MB  R      RMSE 

 Obs.        Sim.      

T2(�)       3.68 2.73 1.37 - 0.95 0.80 1.65 

RH2(%)     69.65     75.88 6.77 6.22 0.71 8.30 

 340 

2.2 Air quality model descriptions 

The CAMx model is a state-of-the-science air quality model developed by Ramboll Environ (http://www.camx.com). In this 

study, the PPM advection scheme (Colella and Woodward, 1984) was used for horizontal diffusion, and the K-theory was 

selected for vertical diffusion. The Regional Acid Deposition Model (RADM-AQ) (Chang et al., 1987) scheme as the aqueous-

phase oxidation, ISORROPIA (Nenes et al., 1999) as the inorganic aerosol thermodynamic equilibrium, and CB05 (Yarwood 345 

et al., 2005) as the gas-phase chemical mechanism and the Euler-Backward Iterative (EBI) solver with Hertel's solutions 

(Hertel et al., 1993) was used in the model system. The resistance model for gases (Zhang et al., 2003) and aerosols (Zhang et 

al., 2001) in the dry deposition module and the scavenging model for gases and aerosols (Seinfeld and Pandis, 1998) in the 

wet deposition module was chosen in this study. The CAMx model forecasted the next 48 h of PM2.5 concentrations in clean 

initial simulation testing and is described in Section 2.3. On the first day, CAMx used the results of the ICBCPREP, which 350 

can prepare a simple, static CAMx initial condition (IC) and boundary condition (BC). On the following days, it used the 

different initial conditions of the sensitivity experiments. 

2.3 Model domain 

Three-nest domains were designed for the WRF model (Fig. 4), with a horizontal resolution of 27 km × 27 km (D1), 9 km 

× 9 km (D2) 3 km × 3 km (D3). The largest domain (D1) covered most parts of China, the second domain (D2) includes 355 

Shaanxi Province, Shanxi Province, Henan Province, and the inner domain (D3), which focused on the 11 cities in the Fen-

wei Plain, including Xi’an. The CAMx has only one domain and the settings are the same as those in the D3 domain, while 

focusing on Xi’an as one sensitivity test area for initial conditions and emissions. To reduce the boundary effects, the CAMx 

model cuts down the outermost grid of the WRF model and used the variable of the centre grid in the WRFCAMx module. 

Thus, the CAMx model had three grid cells smaller than the WRF model in the D3 domain. The vertical resolution of WRF 360 

was 37 layers from the ground to 5 hPa at the top, and 14 layers were extracted by the WRFCAMx module, which can convert 

the WRF output files into the data format for the CAMx model. 
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Figure 4. Three-nest model domain with 27-9-3 km horizontal resolution in the WRF-CAMx modelling system. D1 covers 385 

most parts of China, with 148 × 121 grids, and D2 includes Shaanxi, Shanxi and Henan Provinces. The inner domain covers 

Fen-wei Plain, including Xi’an. 

2.4 Emission Inventory and Processes 

The SMOKE version 2.4 (Houyoux and Vukovich, 1999) model was used to improve the Fen-wei emissions, especially 

Xi’an local emissions, and provide gridded emissions for the CAMx model in this study. Based on the emission inventories of 390 

a previous study (Yang et al., 2019), this study added the emission quantity of PM2.5 from construction fugitive dust in Xi’an 

to update the local emission inventories. The emission inventories in this study include: 

1. The regional emissions in East Asia and the local emissions in the Guanzhong Plain were obtained from Wu et al. (2014) 

and Yang et al. (2019). Major industrial emissions were slightly adjusted according to the annual report in this study. The 

emission inventory at the city-level is presented in Table 2. 395 

2. Construction fugitive dust emissions in Xi’an, based on the survey data of construction projects in Fig. 5, were collected in 

a previous study (Xiao et al., 2019), indicated as a “local area source”. This is a new dataset at the county level and updated 

in 2017. The basic data included the location and area of each construction project. We also replenished the missing 

construction data and corrected the error information with Google Earth and other geographic information tools to obtain 

more accurate location information. According to statistics, there were 1595 construction projects in Xi'an in 2017, with 400 

86.1 km2 of the total construction area. The construction area in the main urban area (Xincheng, Beilin, Lianhu, Yanqiao, 

Weiyang, and Yanta) was about 62.2 km2, accounting for 7.5% of the total area in the main urban area. The distribution of 

the construction fugitive dust emissions in Xi’an is shown in Fig. 6. 
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We took the statistics-allocation approach to generate gridded area source emissions, which was used to allocate the total 420 

emissions to each horizontal model grid according to the related spatial factors. In this study, the Land Scan 2015 Global 

Population Database (Dobson et al., 2000) was used as a population spatial factor to allocate the emissions. For the construction 

of fugitive dust emissions, we used the area of each construction project as the weight in the surrogate calculation, allocated 

the input construction project data to the target polygons (map of administrative division in Xi'an at the county level) based on 

the weighted spatial overlap of the input data and target polygons. The spatial results provide the SMOKE model as a spatially 425 

allocated factor. The horizontal and vertical allocation of point source emissions were assigned from their longitude-latitude 

coordinates and the Briggs algorithm (Briggs, 1972; 1984), respectively. The temporal variation and chemical species 

allocation were based on profile files in the SMOKE model.  

As shown in Table 2, the NOx emissions ranged from 352.0 kt yr-1 to 758.5 kt yr-1 between 2008 in Zhang et al. (2009) to 

2017 in this study. For PM10 emissions in Shaanxi Province, the emissions also increased from 474.0 kt yr-1 to 830.0 kt yr-1. 430 

The PM10 emissions in this study are higher than others because of the construction of fugitive dust. Other emission species, 

such as NOx, SO2, NH3, VOCs, and CO, were slightly higher in this study than in previous studies.  

 

Table 2. Emission of major anthropogenic species in Shaanxi Province (Unit: 103 tons yr−1). 

 CO            NOX           VOCs           NH3           SO2           PM10          PM2.5         

 

 

 

This study 

point source 1196.0  534.4  1572.7  - 724.7  321.7  257.5  

area source 3272.5  224.1  471.9  294.0  490.2  508.3  244.9  

Xi'an 964.1  177.5  370.5  23.4  155.4  198.6  82.8  

Baoji 628.3  65.8  256.9  32.8  131.0  68.4  41.1  

Xianyang 773.9  93.2  584.5  25.9  173.0  88.6  66.8  

Tongchuan 80.6  45.0  32.2  4.4  27.5  60.5  32.3  

Weinan 561.9  140.3  500.9  30.5  224.7  132.6  103.7  

Shaanxi Prov. 4468.5  758.5  2044.6  294.0  1214.8  830.0  502.3  

Zhang et al. 2009 Shaanxi Prov.  3528.0 352.0 491.0 - 907.0 474.0 328.0 

CCCPSC, 2011 Shaanxi Prov.  - 521.2 - - 938.7 580.1 - 

Yang et al. 2019 Shaanxi Prov. 4369.0  736.9  1994.1  293.2  1193.7  770.4  534.9  

Yang et al. 2020 Shaanxi Prov. 3905.8 575.7 1904.3 287.6 802.3 564.0 398.1 

 435 

�
���: of population 

�
���: projects

�
���: And the

�
���: to 

�
���: While the440 

�
���: emission

�
���: ,

�
���: including

�
���:  are little



9 
 

 445 
Figure 5. Spatial distribution of construction sites in Xi’an. Gray dots indicate the construction sites. The base map shows 

the types of land use (Xiao et al., 2019). 

 
Figure 6. Spatial distribution of PM10 emissions in Xi’an and its surrounding area. (a) only construction fugitive dust in Xi’an. 

(b) all surface PM10 emissions in Xi’an. The grid size is 3 km x 3 km. Unit: g/km2·s 450 
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3 Sensitivity experiments design 

A set of model sensitivity experiments under different initial conditions and emissions were designed in this study. Three 

methods were applied for the initial condition tests: using the clean initial condition files as clean initial simulation, using the 

restart files as restart simulation and the continuous simulation. For the emission tests, we compared the simulation results of 455 

the original emission inventory and the updated local emission inventory with construction fugitive dust emissions. The 

configurations of the simulation sensitivity experiments are shown in Table 3, and the time period for each initial condition 

experiment is shown in Fig. 7. 

3.1 ICON test for using the clean initial condition files 

The icbcprep module used a clean-troposphere vertical profile to generate the initial concentration fields for each day of the 460 

simulation to use the clean initial condition files. The output files of CAMx were initialised at 13:00 UTC. The CAMx model 

forecasted the next 48 h of PM2.5 concentrations in each cycle simulation. By extracting data from simulated results based on 

different time periods (0–24 h, 6–30 h, 12–36 h, 18–42 h and 24–48 h, respectively) shown in Fig. 7 (a), we conducted 

sensitivity experiments C00, C06, C12, C18, and C24, and explored the influence of different time periods on the simulation 

effect of PM2.5. For the sensitivity experiment C00, the data of the period for the first 24 h of the output file were cut and 465 

merged for analysis. For C06, the first 6 h of data was spin-up time; we cut and merged the data from 19:00 UTC to 18:00 

UTC on the second day. C12, C18, and C24 used the same method to extract and merge data, and their spin-up times were the 

first 12 h, 18 h, and 24 h of data, respectively. 

3.2 ICON test for using the restart files 

The meteorological data for the period 12–36 h were cut to estimate the PM2.5 concentrations by restarting the simulation 470 

of the CAMx model. The icbcprep module also used clean initial concentration fields at the beginning of the first-day 

simulation to use the restart files. The gridded three-dimensional instantaneous concentrations of all species on all grids were 

written at the end of the simulation to allow for a model restart. Then, ICON used the 24-h forecast results from the day before 

as the initial conditions for the following days, as shown in Fig. 7 (b). The first day of the simulation started at 12:00 UTC, 

and the following days started at 00:00 UTC. To explore how long the spin-up time can eliminate the error caused by the initial 475 

value, the sensitivity experiments R1120 and R1124 were set at the time of the first day for the model simulation, which began 

on the 20th and 24th of November 2016, respectively. 

3.3 ICON test for continuous simulation 

For the continuous simulation, sensitivity experiments CT12 and CT24 were at the start time of the intercepted time periods, 

which started at 00:00 UTC and 12:00 UTC, respectively, as shown in Fig. 7 (c). For CT12, the meteorological data of the 480 

period 12–36 h were cut and merged into one file. The 24–48 h period was cut and merged for CT24. We also built the 
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continuous emission files using the SMOKE model. During the simulation, there was no interruption, and finally, a long-term 

sequence simulation result for each start time was generated. 

3.4 Emission test for different emission inventories 

Based on the initial condition tests, we selected the best method to perform the emission sensitivity experiments. We 

compared the simulation results of the original emission inventory (sensitivity experiments Enc) and the updated local emission 580 

inventory with the construction fugitive dust emissions (sensitivity experiments Ec) for the emission tests. 

 

Table 3. The simulation experiment configurations. C00-C24, R1120, R1124, CT12 and CT24 were used to investigate the 

impact of simulation methods, start time and extracted time period. The impact of different emission inventory was investigated 

by Ec and Enc. Method C, R, CT presented for the clean initial condition simulation methods, restart simulation and 585 

continuous simulation. Emission inventory nc and c presented for the original emission inventory and the updated local 

emission inventory with the construction fugitive dust emissions, respectively. 

Experiment Method Emission inventory Start time and extracted time period 

C00 C c 2016/11/26 0-24th hour 

C06 C c 2016/11/26 6-30th hour 

C12 C c 2016/11/26 12-36th hour 

C18 C c 2016/11/26 18-42th hour 

C24 C c 2016/11/26 24-48th hour 

R1120 R c 2016/11/20 12-36th hour 

R1124 R c 2016/11/24 12-36th hour 

CT12 CT c 2016/11/26 12-36th hour 

CT24/Ec CT c 2016/11/26 24-48th hour 

CT24/Enc CT nc 2016/11/26 24-48th hour 
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 595 
Figure 7. Time period for each initial condition experiments. (a) shows the time period for Clean initial condition (mark C) 

experiments. The output files of CAMx were initialised at 13:00 UTC every day and the CAMx model forecasted the next 48 

hours’ PM2.5 concentrations in each cycle simulation. The sensitivity experiments C00, C06, C12, C18, and C24 extract 

different time periods (0–24 h, 6–30 h, 12–36 h, 18–42 h and 24–48 h, respectively) in each output file as valid data, represented 

by the grids with a number. Each grid represents an hour and the numbers on the grids indicate the hours of the data. The grids 600 

with numbers represent the valid time period for each output file. The 24-hour data of a day is cut and merged from 16:00 

UTC in the valid time period of each output file to analyse from 0:00 Beijing time (16:00 UTC) every day. The shaded grids 

represent the data for one single day. (b) shows the time period for Restart (mark R) experiments. The meteorological data of 

the 12–36 h period was cut to estimate the PM2.5 concentrations by restart simulation. The first day of the simulation starts at 
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12:00 UTC, and the following days starts at 00:00 UTC. (c) shows the time period for continuous simulation (mark CT) 

experiments. The meteorological data of the 12–36 h period is cut and merged to one file for CT12 and the period 24–48 h 

was cut and merged for CT24. 

4 Results and discussion 620 

In this study, we collected the observations in December 2016 and evaluated the model performance and improvement. 

Hence, the model ability from both the meteorological field and daily PM2.5 simulations in Xi’an was evaluated. 

4.1 Model performance of the initial condition tests 

There are 13 NSAQ Stations in Xi’an, which are marked as squares in Fig 2. Nine stations are in urban Xi’an, including 

GYC, XQ, FZC, XZ, TYC, GXXQ, JKQ, QJ, and GYT. Three stations are located in suburban towns, including CAQ, YLQ, 625 

and LTQ. The CT Station is the city background station, which is located in northern urban Xi’an. 

4.1.1 Sensitivity experiments for using clean initial condition files 

A Taylor nomogram (Taylor, 2001; Gates et al., 1999) was used to evaluate the accuracy of simulated PM2.5 daily 

concentrations for NSAQ stations, which was used for the sensitivity experiments of using the clean initial condition files, as 

shown in Fig 8. There are three statistical parameters to evaluate model accuracy: the correlation coefficient (R), normalised 630 

standard deviation (NSD), normalised root, and mean square error (NRMSE) in Taylor nomogram (Taylor, 2001; Gates et al., 

1999; Chang et al., 2004). The sensitivity experiments C00, C06, C12, C18, and C24 are shown by symbols of different colours. 

We randomly selected 3 stations in urban Xi’an, 2 stations in county towns, and a background station to show the simulation 

results. And the “AVG” meant the average of 13 NSAQ Stations. 

As shown in Fig 8, R is 0.36–0.76 for the sensitivity experiments C00, C06, C12, C18, and C24. C24’s R is the largest and 635 

best for all NSAQ Stations, and C00’s is the lowest. The NRMSE, which measures the distance from the marker to the REF 

in the Taylor nomogram, is smallest and best for C24, and longest for C00. For NSD, most NSAQ Stations have similar 

regularity, that is, the NSD values from C00 to C24 are getting closer to "1". The other statistical parameters are presented in 

Table 4. From experiments C00 to C24, the absolute mean bias (MB) and the mean error (ME) decreased from 51.07 µg/m3 to 

3.72 µg/m3 and from 74.09 µg/m3 to 45.82 µg/m3, respectively. The absolute normal mean bias (NMB) and the normal mean 640 

error (NME) decreased from 29.73% to 2.17% and from 43.12% to 26.67%, respectively. The index of agreement (IOA) 

increased from 0.50 to 0.8. In general, the C24 model performance is better than that of other sensitivity experiments in clean 

initial simulation tests. 
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Figure 8. Taylor nomogram for modelled and observed daily averaged PM2.5 concentrations for the sensitivity experiment 

using the clean initial condition files. The “AVG” refers to the average of 13 NSAQ Stations. The sensitivity experiments C00, 670 

C06, C12, C18, and C24 are represented using symbols of different colours. According to Chang et al. (2004) REF represents 

a perfect simulated result for the air quality model. 

4.1.2 Sensitivity experiments for using restart files 

Sensitivity experiments R1120 and R1124 were set at the time of the first day for the model simulation to explore the restart 

simulation. Starting from 12:00 UTC on the 24th of November, the PM2.5 concentration simulation results of the two sensitive 675 

experiments, R1120 and R1124, are shown in Fig 9. At first, the results of the two sensitivity experiments were very different, 

and then the two lines were gradually fitted until 16:00 UTC on November 25th. After 16:00 UTC on the 25th of November, 

the two lines fitted almost completely. Therefore, a spin-up time of 27 h can eliminate the error brought by the initial field for 

the PM2.5 concentrations in the CAMx model. 

As shown in Table 4, the model performances of the sensitivity experiments R1120 and R1124 are similar in December 680 

2016. For the sensitivity experiments R1120 and R1124, the R value between observations and simulations was 0.70. The 

mean bias (MB) and mean error (ME) were 4.01 µg/m3 and 49.68 µg/m3, respectively. The normal mean bias (NMB) and 

normal mean error (NME) were 2.33% and 28.92%, respectively. The root mean square error (RMSE) was 67.28, and the IOA 

reached 0.82. 
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Figure 9. The time series of hourly simulated PM2.5 concentrations using the restart files during a spin-up time period. The red 

and blue lines represent the model sensitivity experiments R1120 and R1124, respectively. The starting day of the model 

simulation for R1120 was 20th November 2016, and for R1124 was 24th November 2016.  710 

4.1.3 Sensitivity experiments for continuous simulation 

For the continuous simulation, sensitivity experiments with CT12 and CT24 were conducted. Although the sensitivity 

experiments CT12 and R1120 use different methods to generate the initial concentration fields, the start times of the intercepted 

time periods for the two experiments were the same. The PM2.5 concentrations of CT12 and R1120 are presented in Fig 10. As 

shown in Fig 10, the points lie very close to the perfect line “y=x”, which indicates that the simulation results of CT12 and 715 

R1120 were nearly identical. 

The model starting time of sensitivity experiments CT12 and CT24 are 26th November at 00:00 UTC and 26th November at 

12:00 UTC, respectively. The concentration accumulation of CT24 was 12 h higher than that of CT12. As shown in Fig 11, 

there is an air pollution peak in December 2016, in which CT24 matches better than CT12. The statistical parameters of CT12 

and CT24 are presented in Table 4. The mean bias (MB) and mean error (ME) of CT24 results were 6.29 µg/m3 and 42.67 720 

µg/m3, respectively, which are slightly better than the CT12 results. The root mean square error (RMSE) of the CT24 results 

is 68.21, which is also slightly better than the CT12 results. From CT12 to CT24, the R and IOA increased from 0.69 to 0.81 

and from 0.81 to 0.90, respectively. Thus, the sensitivity experiments with CT24 have better model performance than CT12. 
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Figure 10. Scatter diagram of the R1120 and CT12 experiments of PM2.5 concentrations. Line “y=x” represents the simulated 

of R1120 is the same to CT12. 745 

 
Figure 11. Time series of daily PM2.5 concentrations for continuous simulation in Xi'an. The black line represents observations, 

the blue and red lines show simulated data started at November 26th 00:00UTC and November 26th 12:00UTC, respectively. 

4.2 Model performance of emission tests 

The Taylor nomogram for modelled and observed daily averaged PM2.5 concentrations for all initial condition sensitivity 750 

experiments, as shown in Fig 13. The red symbols indicate the sensitivity experiment to use the clean initial condition files, 

the blue symbols represent the sensitivity experiment to use the restart files, and the brown symbols show the sensitivity 
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experiment for continuous simulation. One experiment per symbol. The circles and triangles represent the “bias”. As shown 

in Fig. 13, R is 0.36–0.81 in all initial condition sensitivity experiments. The CT24 R value is the highest in all initial condition 

sensitivity experiments. The CT24 marker has the shortest distance to the “REF” than other initial condition sensitivity 

experiments, which means that the NRMSE is the smallest. The NSD of CT24 is 0.92, which shows that the modelled and 

observed patterns have a more consistent variation amplitude. According to these statistical parameters, the sensitivity 760 

experiments CT24 have the best model performance compared to other initial condition sensitivity experiments.  

Based on the initial condition tests, we selected the best method, CT24, to perform the emission sensitivity experiments, as 

shown in Fig 12. CT24 is the experiment with construction fugitive dust emissions (sensitivity experiments Ec), and the 

sensitivity experiments Enc is not. As shown in Fig. 12, the simulated PM2.5 concentrations of Ec exhibited a better model 

performance than that of Enc in the high concentration range. As shown in Fig. 13, the R values of Ec and Enc are 0.81 and 765 

0.85, respectively. The NRMSE for Enc is smaller than Ec, as shown in the Taylor nomogram. However, the NSD of Ec, 0.92, 

is better than that of Enc, 0.74. Moreover, the bias of Enc is much larger than that of Ec. The other statistical parameters are 

presented in Table 4. The ME decreased from 49.18 µg/m3 to 42.67 µg/m3 and the IOA of simulation results with the updated 

local emissions was 0.90. Thus, compared to the simulation results based on the original emission inventory, the new 

simulation results, driven by the updated local emissions, showed an improved performance on PM2.5 concentrations.  770 

 
Figure 12. Time series of daily observed and simulated PM2.5 concentrations averaged from 13 NSAQ Observation Stations 

during December 2016 in Xi’an. The black line represents the observations, the blue line represents the simulated values by 

the CAMx model with construction fugitive dust, and the red line represents the simulated values without construction fugitive 

dust. 775 
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Figure 13. Taylor nomogram for modelled and observed daily PM2.5 concentrations for all sensitivity experiments under 

different initial conditions and emissions. The red symbols indicate the clean initial simulation, the blue symbols represent the 

restart simulation, the brown symbols show the sensitivity experiment for continuous simulation, and the orange symbols are 800 

for emission tests. The triangles and circles signify “Bias”. The scale of the triangle's size represents the bias value, and the 

direction of the triangle's vertex represents positive or negative.  

 

Table 4. Statistical measures of the modelled daily PM2.5 in Xi'an, unit: µg/m3. 

 R MB(µg/m3) ME(µg/m3) NMB% NME% RMSE IOA 

C00 0.36 -51.07 74.09 -29.73 43.12 100.72 0.49 

C06 0.48 -24.17 60.95 -14.07 35.48 85.50 0.61 

C12 0.58 -12.88 53.25 -7.50 30.99 76.64 0.70 

C18 0.68 -7.00 48.83 -4.08 28.42 68.85 0.78 

C24 0.76 -3.72 45.82 -2.17 26.67 60.12 0.86 

R1120 0.70 4.01 49.68 2.33 28.92 67.28 0.82 

R1124 0.70 4.01 49.68 2.33 28.92 67.28 0.82 

CT12 0.69 6.73 50.20 3.92 29.22 68.21 0.81 

CT24/Ec 0.81 6.29 42.67 3.66 24.83 55.29 0.90 

CT24/Enc 0.85 -35.16 49.18 -20.47 28.63 61.22 0.86 
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4.3 Model performance of SO2 and NO2 

Sulfur dioxide (SO2) and nitrogen dioxide (NO2) concentrations are important precursors of SO4 and NO3, which are 

particulate matter components. Daily observed and simulated SO2 and NO2 concentrations averaged from 13 NSAQ 

Observation Stations under the initial restart simulation. Figure 2 shows the time series of daily average SO2 and NO2 

concentrations from 13 NSAQ Observation Stations under the initial restart simulation, and the statistical results are listed in 810 

Table 1. The model has an evident overestimation of SO2, with an average bias of 156.31 µg/m3, and the observed SO2 

concentration was only 18% of the simulated value. The main reason is that the implementation of desulfurization projects for 

important emission sources, such as coal-fired power plants, has not been fully considered, which has led to an overestimation 

of SO2 emissions in the emission inventory. Li et al. (2017b) found that the SO2 emissions in China decreased by 75% from 

2007 to 2016, i.e. SO2 emissions in 2016 were about 25% in 2007. In addition, the intensity of emissions reduction has uneven 815 

spatial distribution. The model performance of the NO2 concentration is better, the IOA is 0.82, and the MB is only 3.32 µg/m3. 

There is a high consistency of the variation trend between the simulated and observed SO2 and NO2 concentrations, with R 

being 0.81 and 0.75, respectively. 

 
Figure 14. Time series of daily observed and simulated SO2 (top) and NO2 (bottom) concentrations averaged from 13 NSAQ 820 

Observation Stations during December 2016 in Xi’an. The black and green lines indicate observed and simulated results, 

respectively. 
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Table 5. Statistical verification parameters of SO2 and NO2 during December 2016in Xi'an. 

Species Mean(µg/m3) R MB ME NMB NME RMSE IOA 

Obs. Sim.  (µg/m3) (µg/m3)     

SO2 35.45 191.76 0.81 156.31 156.31 4.41 4.41 171.73 0.11 

NO2 76.77 80.09 0.75 3.32 12.86 0.04 0.17 17.13 0.82 
 840 

4 Conclusions 

The WRF-SMOKE-CAMx model system was used to simulate fine particulate matter (PM2.5) concentrations in Xi’an in 

December 2016. In this study, the construction fugitive dust emissions in Xi'an were added to the SMOKE model to update 

the local emission inventory. A series of model sensitivity experiments for the initial conditions and emissions were designed 

to improve the model performance in the megacity, Xi’an.  845 

Three methods were applied for the initial condition tests: using the clean initial condition files as clean initial simulation, 

using the restart files as restart simulation and continuous simulation. The updated emission inventories drive all initial 

condition sensitivity experiments. The emission tests are based on the initial condition sensitivity experiment, which has the 

best model performance.  

Comparing the model performance of PM2.5 concentrations in different model sensitivity experiments in Xi’an, we found 850 

that the model combining the continuous simulation method with the updated local emission inventory can effectively improve 

the model performance. According to statistical parameters, for initial condition tests, the model performances of CT24, C24, 

and R1120/R1124 are the best. R ranges from 0.36 to 0.81 in all initial condition sensitivity experiments. The R value of CT24 

is the largest and best in all initial condition sensitivity experiments. The R values of C24 and R1120/R1124 can reach 0.76, 

0.70, respectively. The MB of CT24, C24 and R1120/R1124 are lower, which are 6.29 µg/m3, -3.72 µg/m3 and 4.01 µg/m3, 855 

respectively. The IOA of CT24, C24, and R1120/R1124 reached above 0.8, of which CT24 was 0.9. Compared with other 

methods, the method of using the clean initial condition files has a longer simulation time and larger data volume. Therefore, 

the method of continuous simulation for hindcasts, which is to retrieve PM2.5 concentrations, is suggested. For air quality 

forecasting, we can prioritise the method of restart simulation. In addition, for simulating PM2.5 concentrations using the 

CAMx model, the simulation requires a spin-up time of at least 27 hours. This can improve the simulation effect and reduce 860 

the simulation time. 

This study updated the emissions inventory, which added construction fugitive dust emissions to the original emissions 

inventory. Compared to the simulation results based on the original emission inventory, the new simulation results, which were 

driven by the updated local emissions, showed a much better performance in PM2.5 modelling. The absolute MB decreased 
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from 35.16 µg/m3 to 6.29 µg/m3 and the IOA of simulation results with the updated local emissions was 0.90. Therefore, the 

right addition of emissions will also help to improve the effects of simulation and forecasting. 

  Finally, we recommend the continuous simulation method for hindcast, which performs best for PM2.5 concentrations, and 

can also reduce the output of IO files to improve computing efficiency. For forecasting, the method of restart simulation is 890 

suggested, which can reach a similar model performance as the continuous simulation. If the restart simulation cannot be used 

owing to the limitation of computing resources and storage space when forecasting PM2.5 concentrations, we attempt to extend 

the spin-up time as much as possible, at least 27 h according to our results. 

Code and data availability 

The source codes of the WRF model version 3.9.1.1 used in this study are available online at 895 

https://www2.mmm.ucar.edu/wrf/users/download/get_source.html(NCAR, 2020, last access: 4 June 2020). The CAMx 

version 6.1 code is available at http://www.camx.com/download/default.aspx(ENVIRON, 2020, last access: 4 June 2020), and 

the SMOKE version 2.4 code is available at https://www.cmascenter.org/smoke/ (CMAS, 2020, last access: 4 June 2020). The 

global final analysis data (FNL) were obtained from https://rda.ucar.edu/datasets/ds083.2/(NCEP, 2000, last access: 4 June 

2020). The dataset related to this manuscript is available online via ZENODO (https://doi.org/10.5281/zenodo.3824676)(Xiao 900 

et al., 2020).  
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Appendix A 

Statistical parameters for the model evaluation: 910 

Mean bias (MB): 

MB = ∑(()*+))

-
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 Mean error (ME): 

ME = ∑ |()*+)|

-
                           (A2) 930 

Normalised mean bias (NMB): 

NMB = ∑(()*+))

∑+)
                         (A3) 

Normalised mean error (NME): 

NME = ∑|()*+)|

∑+)
                         (A4) 

Root Mean Square Error (RMSE): 935 

RMSE = 3
4

-
∑ (56 − 86)9-
6:4 ;

<
=                             (A5) 

Correlation coefficient (R)� 
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                               (A6) 

Index of agreement (IOA): 

IOA = 1 − ∑ (()*+))=
@
)A<
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@
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                            (A7) 940 

Normalised Standard Deviations (NSD):  

NSD =
J∑ KL)ML???N

=@
)A<

@

J∑ KO)MO>N
=@

)A<
@

                               (A8) 

In the equations, 56 and 86 represent the simulated value and observation value of a station, respectively. P represents the 

number of stations. 5>  and 8? represent the average values of the simulated and observation values, respectively. 
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