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Abstract. We introduce a new software package called icepack for modeling the flow of glaciers and ice sheets. Icepack is built

on the finite element modeling library Firedrake, which uses the domain-specific language UFL for describing weak forms of

partial differential equations. The diagnostic models in icepack are formulated through action principles that are specified in

UFL. The components of each action functional can be substituted for different forms of the user’s choosing, which makes it

easy to experiment with the model physics. The action functional itself can be used to define a solver convergence criterion that5

is independent of the mesh and requires little tuning on the part of the user. Icepack includes the 2D shallow ice and shallow

stream models. We have also defined a 3D hybrid model based on spectral semi-discretization of the Blatter-Pattyn equations.

Finally, icepack includes a Gauss-Newton solver for inverse problems that runs substantially faster than the BFGS method

often used in the glaciological literature. The overall design philosophy of icepack is to be as usable as possible for a wide a

swath of the glaciological community, including both experts and novices in computational science.10

1 Introduction

Nearly all glaciologists, from graduate students to senior researchers, need to use numerical models at some point in their career.

Several software packages for glacier flow modeling already exist and are effective in the hands of experts. We highlight four

main uses of glacier models in the literature:

1. projecting future glacier extent and estimating the sea-level rise contribution from glacier dynamics,15

2. exploring aspects of glacier physics, such as hydrology and calving, that are not completely understood,

3. estimating unobservable quantities, such as bed friction or rheology, from observational data, and

4. reconstructing what glaciers of the near- or distant-past may have looked like.

To accomplish these tasks, modeling tools are usually written in compiled programming languages such as C, C++, and

Fortran for reasons of computational efficiency. Many glaciologists receive little or no formal programming training, much less20

in these languages, and are instead self-taught in either Python or MATLAB. The ubiquity of C, C++, and Fortran in scientific

computing can create a barrier to entry for glaciologists who are not experts in high-performance computing. In this paper, we

introduce a new Python software package for glacier flow modeling called icepack. Our goal is to make a tool that will be both

accessible to novices and more productive for experts.

1

https://doi.org/10.5194/gmd-2020-419
Preprint. Discussion started: 12 January 2021
c© Author(s) 2021. CC BY 4.0 License.



The glacier flow modeling package closest in spirit to icepack is VarGlaS (Brinkerhoff and Johnson, 2013). VarGlaS is25

implemented using the finite element modeling (FEM) package FEniCS (Logg et al., 2012), whereas icepack is built on top

of Firedrake, which began as an outgrowth of FEniCS. Both packages share a similar goal of saving users from manually

writing low-level code for assembling the systems of equations that discretize their model physics. Instead, users describe the

weak form of the partial differential equations they wish to solve using a high-level domain-specific language (DSL) called

the Unified Form Language or UFL (Alnæs et al., 2014). This DSL is embedded entirely into Python, i.e. the complete syntax30

of UFL can be mapped directly onto overloaded operators in the Python programming language. Both FEniCS and Firedrake

then generate optimized C or C++ code to assemble the discretized system of equations from this symbolic description of the

problem (Kirby and Logg, 2006; Rathgeber et al., 2016). Combining a DSL and a code generator frees users from the very

error-prone process of writing these assembly kernels themselves, and makes the syntax of the code align more closely to the

syntax of written mathematical expressions. Additionally, having a high-level symbolic description of the problem makes it35

possible to automatically derive tangent linear models and adjoints (Mitusch et al., 2019).

Icepack improves upon the groundwork laid in VarGlaS in three main respects. First, icepack includes a simple 3D flow

model that uses several features only available in Firedrake: extruded meshes and tensor product finite elements (Bercea et al.,

2016; McRae et al., 2016) (see §2.2.3). Second, icepack’s architecture is designed to make it easy for users to alter the various

physics components, such as the rheology and basal friction, of any of its constituent models (see §2.3). Finally, the inverse40

solver in icepack uses the Gauss-Newton method, which converges faster and more reliably than the BFGS method used in

VarGlaS (see section §4.4).

2 Physics

The two main components of a glacier flow model are a diagnostic and a prognostic equation. The diagnostic equation pre-

scribes the ice velocity through a time-independent, nonlinear, elliptic partial differential equation (PDE). The prognostic45

equation prescribes how the ice thickness evolves through conservation of mass. Mathematically, these two coupled PDEs can

be thought of as a differential-algebraic equation.

The rheology and friction coefficient are functions of other fields that have their own evolution equations. For example, the

rheology is a function of temperature, englacial water content, and damage from crevassing. Likewise, the friction coefficient

can be described in terms of the subglacial water pressure and a roughness factor for the underlying bedrock (Cuffey and50

Paterson, 2010). The diagnostic and prognostic equations can then be supplemented with evolution equations for these fields,

for example the heat equation for temperature, or a hydrology model for subglacial water pressure.

2.1 Prognostic model

The prognostic model or mass transport equation (the two terms are synonymous) describes how the ice thickness changes in

time. The prognostic model is a conservative advection equation:55

∂h

∂t
+∇ ·hu= ȧs− ȧb, (1)
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Symbol Meaning

h thickness

b bed elevation

s surface elevation

d water depth

u velocity

ȧs surface mass balance

ȧb basal mass balance

ε̇ strain rate

C bed friction coefficient

A rheology coefficient

ν unit outward normal

J action functional
Table 1. Mathematical symbols

Symbol Meaning

n Glen’s flow law exponent

m Weertman sliding law exponent

ρI ice density

ρW seawater density

g gravitational acceleration
Table 2. Physical constants

where ȧs and ȧb are the surface and basal mass balance. Icepack represents the thickness using continuous, piecewise polyno-

mial basis functions in each cell of the mesh. We have not yet implemented a formulation that works with discontinuous basis

functions, but this extension is completely feasible within our framework.

The surface elevation is calculated as60

s= max{b+h,(1− ρI/ρW )h}, (2)

the first case corresponding to grounded ice and the second case corresponding to floating ice. In the immediate vicinity of

the grounding line, the assumption that the floating ice is in hydrostatic equilibrium with the ocean fails. Most models assume

hydrostasy and icepack does as well. Elmer/Ice, on the other hand, solves a contact problem for the moving upper and lower

ice surfaces and thus can accurately model non-hydrostatic ice shelves (Gagliardini et al., 2013). We have not implemented65

this feature but support for non-hydrostatic ice shelves may come in a future release of icepack.
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2.2 Diagnostic model

There are four diagnostic or momentum transport models implemented in icepack. For each of the diagnostic models, we

use a formulation of the physics based on a minimization or action principle (Dukowicz et al., 2010). Action principles are

completely equivalent to the usual weak form of a partial differential equation but have certain numerical advantages, as70

described below.

The most complex and most physically accurate model that we implement is the first-order or Blatter-Pattyn approximation,

a 3D system describing the horizontal velocity (Blatter, 1995; Pattyn, 2003). (In icepack we refer to our implementation of this

equation as a hybrid model as it includes both shear and plug flow modes, described below.) The only approximation that the

first-order model makes is that the flow has a low aspect ratio – the thickness of the glacier is much less than its horizontal75

extent. This approximation may be questionable around, say, the main trunk of Jakobshavn Isbrae in Greenland, which flows

through a very deep and narrow trough. Even Jakobshavn has an aspect ratio on the order of 1/5 and almost all glacier flows

have an aspect ratio less than 1/10 or even 1/20.

From the first-order model, two approximations are possible. First, the shallow ice approximation (SIA) comes from as-

suming that vertical shear is the dominant mode of ice flow. The SIA model (Hutter, 1981) describes the interior of ice sheets80

well, where flow can be simply described as bed-parallel shear and surface and basal slopes are small. This approximation

breaks down near ice margins, where basal sliding can be a large fraction of the surface speed and where membrane stresses

are substantial. Second, one could assume that ice flow is purely by horizontal extension and that the surface and bed velocities

are practically the same, which is called the shallow stream approximation (SSA). The SSA model describes the fast-flowing

margins of the ice sheet best, encompassing grounded ice streams or floating ice shelves (MacAyeal, 1989).85

All the diagnostic models inherit a fundamental nonlinearity in the mechanics of ice flow. For a Newtonian viscous fluid,

the stress tensor τ and the strain rate tensor ε̇ are linearly proportional to each other. Glaciers, however, have a nonlinear

constitutive relation:

ε̇=A|τ |n−1τ (3)

where A is the fluidity and n is the Glen flow law exponent (Cuffey and Paterson, 2010). The most commonly-used value of the90

flow law exponent is n≈ 3 as determined from laboratory experiments. Strictly speaking, the fluidity should be a tensor field,

but is almost universally treated as a scalar.

All of the diagnostic models in icepack are described through variational or action principles (Dukowicz et al., 2010). Rather

than describe the velocity as the weak solution of a nonlinear PDE, an action principle instead states that the velocity minimizes

a functional called the action. The action consists of four terms:95

action =
∫∫

stress× strain ratedz dx−
∫

basal friction× sliding velocitydx

−
∫∫

surface slope× velocitydz dx−
∫∫

ocean pressure× velocitydz dγ (4)

where dz dx denotes integration over the entire glacier, dx denotes integration over the glacier footprint, and dz dγ over the side

wall boundary. The action has units of power (energy/time) and can be related to the rate of decrease of the thermodynamic
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free energy. Moreover, the energy lost to viscous and frictional heating can be calculated from the action and its Legendre100

transform. The action principle can be viewed as a consequence of the Onsager reciprocity relations for systems near to

equilibrium (De Groot and Mazur, 2013).

Every diagnostic model in icepack is encapsulated in its own Python class. The key responsibility of the model classes is to

take in the input fields – the ice thickness, velocity, etc. – and return a symbolic description of the action functional in UFL.

The action principle is especially useful for designing a robust numerical solver. For viscous flow problems near to steady-105

state, the action is convex as a function of the ice velocity, i.e. its second derivative is positive-definite. Convexity implies that

the action functional has a unique minimizer and that, with an appropriate line search strategy, Newton’s method will converge

from any initial guess. Minimizing a convex action functional is vastly more convenient numerically than solving a general

nonlinear equation while having no additional computational cost. Both formulations are mathematically equivalent.

2.2.1 Shallow ice approximation110

The shallow ice model can be derived from the Blatter-Pattyn approximation by assuming ice flow is dominated by bed-

parallel shear and that surface and basal slopes are small, i.e. ∂u/∂x� ∂u/∂z. The result is a 2D system of equations for

depth-averaged horizontal velocity. The class in icepack that represents this physics model is called ShallowIce. The terms

in the action functional are:

mass =
1
2

∫

Ω

u ·udx (5)115

gravity =
∫

Ω

2A(ρIg)n

n+ 2
hn+1|∇s|n−1∇s ·udx (6)

penalty =
1
2

∫

Ω

`2∇u · ∇udx (7)

and the action functional is

J = mass + gravity + penalty. (8)

The default value of the length scale ` in the penalty term is defined as:120

`= 2max{cell diameter,5h} (9)

but users can adjust this to the value of their choice. This penalty term smooths over numerical artifacts, especially near the ice

margins and termini. In these regions the shallow ice approximation is less applicable, so the error in solving a different set of

equations is small compared to the inherent modeling error in using these equations in the first place.

We verified the correctness of our implementation by check that numerical results converge at the expected rate to the125

analytical Beuler profile for a circular symmetric ice sheet (Greve and Blatter, 2009).

The shallow ice approximation applies well in ice-sheet interiors. For this reason, and because the equations are particularly

simple to solve, this approximation has been a common choice for ice-sheet modeling (Cuffey and Paterson, 2010; Kirchner

5

https://doi.org/10.5194/gmd-2020-419
Preprint. Discussion started: 12 January 2021
c© Author(s) 2021. CC BY 4.0 License.



et al., 2016). This approximation does not work well in areas of the ice sheet where the flow has substantial membrane stresses,

like fast outlet glaciers.130

2.2.2 Shallow stream and shelf approximations

The shallow stream model can be derived from the Blatter-Pattyn approximation by assuming nearly plug flow, i.e. ∂u/∂z�
∂u/∂x. The momentum equations can, again, be vertically integrated to obtain a 2D system of equations. The class in icepack

that represents this physics model is called IceStream. The terms in the action functional are:

viscosity =
n

n+ 1

∫

Ω

hA−
1
n |ε̇(u)| 1n +1dx (10)135

friction =
m

m+ 1

∫

Ω

C|u| 1m +1dx (11)

gravity =−
∫

Ω

ρIgh∇s ·udx (12)

terminus =
1
2

∫

Γ

(ρIgh2− ρW gd2)u · ν dγ (13)

and the action functional is

J = viscosity + friction− gravity− terminus. (14)140

When the ice is floating, there are two simplifications: the friction coefficient C is 0, and the surface elevation s can be written

in terms of the thickness h as

s= (1− ρI/ρW )h. (15)

Additionally, the terminal stress term of the action disappears by applying integration by parts to the gravity term. Since the

action functional for ice shelves has fewer terms than for grounded ice streams, we have defined a separate IceShelf model145

class. The ice shelf and ice stream models share common components, i.e. the viscosity and side wall stress.

We verified the correctness of the ice shelf model by checking that numerical results converge at the expected rate to an

analytical solution for the velocity with a linearly sloping thickness in a rectangular domain (Greve and Blatter, 2009). When

there is basal friction, the shallow stream equations do not have a simple analytical solution. To get an exact solution, we chose

the ice velocity and thickness a priori and used the computer algebra system SymPy (Meurer et al., 2017) to generate a friction150

coefficient that makes these fields an exact solution. We then checked that numerical results converge to this manufactured

solution at the expected rate.

Several studies have compared the shallow stream approximation to 3D models such as Blatter-Pattyn or full Stokes (Pattyn

et al., 2013). The most appreciable difference between lower- and higher-order models occurs near the glacier grounding line,

where the full Stokes equations can represent bridging stresses (Van der Veen, 2013). The lack of vertical strain rates in the155
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ice viscosity in 2D models can also lead to different equilibrium grounding line positions under the same external forcing. The

advantage of the SSA is that that it can capture most of the overall flow features of an individual fast-flowing glacier but at

much lower computational cost than the Stokes equations.

2.2.3 Hybrid model

The first-order model in icepack is described in the class HybridModel. The shallow ice and shallow stream models follow160

directly from the variational principles described above. The hybrid flow model, while also based on a variational principle,

uses two more advanced mathematical techniques: terrain-following coordinates and spectral discretization in the vertical

dimension.

Each of these techniques has appeared in the literature on glacier modeling before but rarely all in the same place for a 3D

model. Langdon and Raymond (1978) and Bassis (2010) used variational principles and vertical spectral methods, but these165

works considered only flowband models. Kleiner and Humbert (2014) used terrain-following coordinates for 3D glacier flow

modeling, but they discretized the problem with finite difference methods in every direction and did not take into account the

variational formulation of the diagnostic model. Jouvet (2015) used vertical semi-discretization of the variational problem,

but this model used a finite difference discretization in the vertical direction. The model used in Brinkerhoff and Johnson

(2015) is the closest to the one we present below. This work used both terrain-following coordinates and a tensor product170

basis of Lagrange finite elements in the vertical and higher-degree polynomials in a single vertical layer. For the vertical basis

functions, they used a plug flow mode and one shear mode.

Terrain-following coordinates. Rather than the usual Cartesian coordinate system, the hybrid flow model uses terrain-

following coordinates. The terrain-following vertical coordinate ζ is

ζ =
z− b
h

(16)175

where b is the ice base. We can then think of the computational domain as the Cartesian product of a 2D footprint domain Ω

and the unit interval [0,1].

Both the bed elevation and thickness depend on x and y. As a result, the formula for the horizontal gradient of a field

in terrain-following coordinates includes an additional geometric correction factor. Letting ∇z and ∇ζ denote the horizontal

gradient with respectively z and ζ held constant, the chain rule gives us that180

∇zq =∇ζq+
∂q

∂ζ
∇ζ, (17)

where we can calculate the spatial gradient of ζ as

∇ζ =−h−1 {(1− ζ)∇b+ ζ∇s} . (18)

Likewise, the strain rate of a vector field can be expressed as

ε̇z(u) = ε̇ζ(u) +
1
2

(u⊗∇ζ +∇ζ ⊗u) (19)185
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where ⊗ is the tensor product of two vectors.

For the Stokes equations, this alternative coordinate system also helps avoid the problem of how to enforce the condition

u·ν =−ȧb at the ice base, where ν is the unit outward normal vector and ȧb is the basal mass balance. This boundary condition

is difficult to impose exactly because the unit outward normal vector ν is defined on mesh faces while the velocity is defined at

mesh vertices. Elmer/Ice uses an ad-hoc procedure to define the unit normal vectors at mesh nodes (Gagliardini et al., 2013).190

This procedure is nearly always effective in practice. But with a transformation to terrain-following coordinates, we can set

the terrain-following vertical velocity ω to be −ȧb/h at the ice base to impose this boundary condition with no additional

intervention.

We also argue that answers expressed in terrain-following coordinates are more intuitive in some respects than in Cartesian

coordinates. At the bed of a grounded glacier, the vertical velocity in Cartesian coordinates is195

w =−ȧb +u · ∇b. (20)

Knowing that a model gives a vertical velocity at the base of a glacier of, say, 10 cm/year, the modeler needs to also know the

bed slope and sliding velocity. In other words, it is not immediately clear whether the vertical velocity is a result of basal mass

balance or of geometry without additional information. By contrast, the vertical velocity ω in terrain-following coordinates

evaluated at ζ = 0 is completely determined by basal mass balance and ice thickness.200

Spectral discretization. Terrain-following coordinates open up several choices for how to describe the vertical variation of

the velocity field. In Elmer/Ice, for example, the user can extend the finite element discretization into a number of vertical layers.

The number of vertical layers is a user-tuneable parameter, depending on the desired resolution along this axis (Gagliardini

et al., 2013).

The horizontal velocity for many realistic flows is very smooth as a function of depth and this suggests a different approach.205

For example, under the plug flow approximation, the horizontal velocity is constant with depth. Under the shallow ice approx-

imation, the horizontal velocity varies with depth as 1− (1− ζ)n+1 where n= 3 is the Glen flow law exponent. This extra

information about our solution suggests a modal rather than a nodal discretization strategy.

Rather than divide the spatial domain into many vertical layers, we can instead use only one vertical layer and increase the

polynomial degree in the vertical direction to obtain higher resolution. This type of basis, in which different shape functions210

are used in different dimensions, is called a tensor product element (McRae et al., 2016). Given a set of finite element basis

functions {φk(x,y)} defined on the 2D domain Ω and a set of basis functions {ψl(ζ)} defined on the unit interval [0,1], the

tensor product finite element basis {Φkl} on the extruded domain is defined as

Φkl(x,y,ζ) = φk(x,y)ψl(ζ). (21)

For example, we can use piecewise linear or quadratic elements on triangles and use quintic or higher degree polynomials in215

the vertical. Rather than use the usual Lagrange interpolating polynomial basis in the vertical dimension, we can instead use

the Legendre polynomial basis. The Legendre polynomials are mutually orthogonal and this choice makes the mass matrix

block-diagonal. Our main reason for choosing to build icepack using the Firedrake package was because it natively supports

tensor product elements.

8

https://doi.org/10.5194/gmd-2020-419
Preprint. Discussion started: 12 January 2021
c© Author(s) 2021. CC BY 4.0 License.



The combination of using extruded meshes and tensor product elements in the vertical direction can be thought of merely as220

a way to discretize a PDE that has special structure. Alternatively, we can view discretization in the vertical as defining a family

of models indexed by the number of vertical basis functions. The order-d model defines a coupled system of PDEs for d vector

fields. Each vector field represents one mode of vertical variability, similar to the distinction between barotropic and baroclinic

modes in atmospheric physics and oceanography. The system is then discretized in the horizontal and solved numerically. In

any case, the code is the same regardless of how one views the underlying mathematics.225

The user then has to decide how many vertical modes are sufficient. Using only degree 0 is exactly equivalent to the shallow

stream approximation and we use this fact as a “smoke test” for the hybrid model. The degree 2 model is the most minimalistic

model that still exhibits vertical shear and can satisfy the zero-stress boundary condition at the ice surface. Going to higher

degree gives a more accurate approximation at the expense of greater computational effort.

Brinkerhoff and Johnson (2015) used a similar approach to the one described above, with a one vertical basis function for230

plug flow and one for shear flow. The shear flow basis function was chosen to be exact assuming the SIA balance with cold

ice, together with a heuristic approximation for polythermal ice. By contrast, our approach allows for an arbitrary number of

shear modes, although using a high-degree basis in the presence of a cold-temperate transition surface will introduce ringing

artifacts. In principle, one could confront this problem by using two layers – one cold and one temperate – instead of a single

layer. The extruded mesh capabilities in Firedrake provide the needed functionality for implementing such a model. We have235

not yet implemented a multilayer model but this will be the subject of future work.

2.3 Substituting model components

Many aspects of glacier physics are not completely understood. For example, the most commonly used sliding law is the power

law

τb =−C|u| 1m−1u (22)240

for some exponent m. Older research assumed m= 3 based on the theory of regelation (Weertman, 1957), which has since

been referred to as the Weertman sliding law. When m=∞, the basal shear stress is independing of the sliding speed; this

is referred to as perfect plasticity. More recently, Schoof (2005) proposed an alternative form that acts like the Weertman law

when |u| � uc and like the plastic law when |u| � uc. A simplified form of this model can be expressed as

τb =−C
( |u|
|u|+uc

) 1
m u

|u| (23)245

where uc is some critical speed. This latter equation has been found to agree best with laboratory experiments on till (Zoet and

Iverson, 2020) and in reproducing observed velocity variations (Joughin et al., 2019).

The Weertman and plastic sliding laws possess the same functional form but differ only in the value of a single scalar param-

eterm. The Schoof sliding law, on the other hand, has a totally different functional dependence on the velocity. Several authors,

including Schoof, have proposed that the basal shear stress is also a function of the effective pressure N = ρgh− pw within250
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the subglacial hydrological system (Budd et al., 1979; Schoof, 2005). Implementing these more sophisticated mathematical

models would require adding an extra argument to the procedure for solving the diagnostic equation.

One of our goals with icepack is to facilitate experimentation with the model physics, even for novice users. Of the pro-

gramming languages that are commonly used for scientific computing, only Python and possibly Julia would appear to meet

these needs. To support use cases like implementing the Schoof sliding law, it must be possible not just to change the value255

of a single parameter but to completely alter the functional form of a given model component. For uses cases like explicitly

adding the dependence of basal shear stress on hydrology, it must also be possible to add entirely new fields to a given model

component. In programming terms, this amounts to changing the number of arguments to the function that calculates basal

shear stress, which Python accomodates easily. For a library developed in C or Fortran, the user would then also have to change

the signature of the diagnostic solve function, which is undesirable. In C++, one could avoid changing the signature of the260

diagnostic solve routine by (1) using variadic templates, (2) wrapping the inputs in a class, or (3) passing all arguments in

a dictionary. Using variadic templates or wrapping the inputs in a class would require users to know more about generic or

object-oriented programming than a novice might. Using a dictionary data structure to pass arguments is relatively easier but

would be more idiomatic in Python than in C++.

In icepack, users can substitute any diagnostic model component for the parameterization of their choosing, including adding265

new fields. From the user’s perspective, substituting model physics components does not require any advanced language fea-

tures beyond keyword arguments. To understand how this is possible, we’ll briefly describe the path that the input fields take

through the program.

1. The user passes all arguments to the diagnostic solve procedure by keyword.

2. The diagnostic solve procedure creates a symbolic representation of the action functional by summing up several terms,270

like the viscosity, basal friction, etc. Calculating these terms is delegated to specialized procedures for each term. Each

term procedure gets the entire collection of fields.

3. The routine that calculates the terms of the action selects which fields it actually needs from the argument dictionary,

and then creates the symbolic representation of that term.

4. Finally, once the symbolic representation of the action functional has been created, all the responsibility passes to the275

nonlinear solver.

To substitute different model components, the user intervenes at step 3. Each model object – shallow ice, shallow stream, etc.

– is initialized with a default set of routines to calculate the terms of that model’s action functional. The user can replace these

default routines with one of their own choosing by passing the function of their choice when that model object is initialized.

In step 3, any fields that were unnecessary for calculating a given component are ignored. For example, the gravitational280

driving power routine will pull out the velocity, thickness, and surface elevation. While the routine will not use them, it also

has access to other fields, for example the ice fluidity.
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In adopting this approach, we are restricted to using keyword arguments instead of positional arguments. We argue that

employing only keyword arguments is a strength rather than a weakness because it enhances readability and comprehensibility

for the particular use case of calling a physics solver. The user only needs to know the argument names, which are chosen to285

agree with the English name most commonly used in the literature – “friction”, “rheology”, “velocity”, etc. The order of the

arguments is arbitrary and immaterial. The preference for argument passing by name is specific to this use case, however, and

is not universal.

2.4 Heat transport

We implemented the enthalpy transport model described in Aschwanden et al. (2012). The enthalpy describes the heat content290

of the material in a way that incorporates both temperature and latent heat stored in meltwater. The temperature and meltwater

fraction can be uniquely calculated at any point from the value of the enthalpy, so nothing is sacrificed in describing heat content

one way or the other. Using the enthalpy has the advantage of circumventing many of the difficulties associated with tracking the

interface between cold and temperate ice. Our implementation of the model uses all of the simplifying assumptions described

in Aschwanden et al. (2012), for example that horizontal diffusion is negligible and that heat capacity and conductivity are not295

temperature-dependent within each phase.

The fluidity factor A in Glen’s law is roughly a known function of both temperature and melt fraction and we have included

this function in the package. Having some description of heat transport is thus necessary for describing realistic glacier flows,

but it is not sufficient by itself. For one, while the dependence of fluidity on temperature is known fairly well from laboratory

experiments, the dependence on melt fraction is known with much less certainty. It is likely that users of this module will300

want to substitute in their own parameterization for melt fraction dependence. Second, other processes such as damage, fabric

development, and impurities can affect the fluidity as well. For these reasons, the diagnostic model takes in the fluidity as an

argument and users must calculate the fluidity field themselves, either using the default parameterization that icepack supplies

or one of their own. Our general design principle is that icepack will solve differential equations for the various prognostic

fields but it’s up to users to decide how these fields are coupled.305

We have not implemented a model for the surface or englacial transport of meltwater, although it would be possible to

include this process. Instead, we rely on an external scheme to act as a sink of enthalpy for meltwater fraction values above

some user-defined critical value. A common choice for this critical value is 1% (Aschwanden et al., 2012).

2.5 Damage transport

Other physical fields besides temperature can influence ice fluidity. At large spatial scales (> 5 km), crevasse fields affect310

ice flow by reducing the lateral area over which stress can be transmitted. Modeling individual fractures is not computation-

ally feasible for large-scale simulations. Instead, we have implemented the phenomenological model described in Albrecht

and Levermann (2014), which is based on the theory of continuum damage mechanics. This model is defined in the class

DamageTransport. Prognostic damage models can be broken down into three parts: (1) evolve the damage field based on

the membrane stress of the glacier, (2) advect the damage field with flow, and (3) feed the damage field back into the fluidity of315
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the glacier. Changes in fluidity in turn affect the membrane stress; the coupling between bulk damage and ice flow goes both

ways. The model from Albrecht and Levermann (2014) adds sources of damage where the membrane stress exceeds a critical

value and sinks of damage when the principal strain rate is less than a critical value. These kinds of simplified models ignore

complications such as inertial or 3D effects. They are intended more to capture some important features of the real physical

system ecnomically than to describe it exactly.320

3 Data assimilation

Icepack includes a set of routines for estimating the basal friction or rheology coefficients from observational data. The class

InverseProblem represents the specification of an inverse problem, which requires:

– the model object and the method that solves the diagnostic equation,

– the objective and regularization functionals,325

– the observed field and the name of the argument to the diagnostic solver,

– an initial guess for the field to be estimated and the name of the argument to the diagnostic solver, and

– extra data passed to the diagnostic solver such as boundary conditions.

This class currently assumes that the observed state is always the ice velocity. In principle the same design would suffice for

more complicated inverse problems and this is an area of active development.330

The inverse problem class is flexible enough to account for users defining their own parameterization for the rheology or

friction coefficient as described in §2.3. This flexibility with respect to parameterization is not just convenient but essential

for common data assimilation workflows. Nearly all studies in the literature introduce a parameterization of the field to be

estimated in terms of some auxiliary field in order to guarantee positivity (MacAyeal, 1992; Joughin et al., 2009). For example,

one could define the friction coefficient C in terms of an auxiliary variable β as C = β2 to guarantee positivity. One could also335

just as easily use C ∝ exp(β). The data assimilation routines in icepack can work the same way for any parameterization of

the physics because Firedrake provides a rich set of routines for symbolically calculating functional derivatives. The inverse

problem class only needs to know which functional needs to be differentiated with respect to which field.

The InverseSolver class is responsible for actually solving the inverse problem. This class will be described further in

section §4.4.340

4 Numerics

In the previous sections we described what problems icepack can solve, i.e. various physics models and data assimilation

problems. In this section, we’ll describe how these problems are solved. This separation between the two questions parallels

the broader design of the software package.
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The key classes that users interact with are flow models and solvers. The role of the model classes is to describe what345

problem is being solved. These classes describe the diagnostic model by taking in the input fields – ice velocity, thickness,

surface elevation, etc. – and returning a symbolic representation of the action functional. There are several model classes,

one for each set of physics equations: ShallowIce, IceShelf, IceStream, HybridModel. The model classes do not

dictate how that problem should be solved numerically; this is the realm of a separate class called FlowSolver. This flow

solver class has methods for computing the solutions of the diagnostic and prognostic equations and works the same regardless350

of which model is being solved. The diagnostic solve method amounts to invoking an external Newton solve procedure on the

symbolic action functional that the model object creates. The Newton solver itself is completely standard but the convergence

criterion is not (see section §4.3). Finally, the flow solver has a method to update the ice thickness from the current value, the

ice velocity, and the mass balance rates.

The Unified Form Language for specifying weak forms of PDEs contains all of the primitives necessary to express individual355

terms of the action functional. These primitives consist of the basic vector calculus operators like the gradient of a field, tensor

calculus operations like taking the dot product of two vectors or tensors, scalar functions like the square root or exponential,

and symbolic integration over the mesh or its boundary. For example, the strain rate for a given velocity field u can be written as

sym(grad(u)), where the function grad represents the symbolic gradient of a field and sym represents the symmetrization

of a rank-2 tensor.360

4.1 Advective transport

The simplest explicit timestepping schemes are unstable with continuous Galerkin finite elements. To solve the advection

equation equation, other packages use the streamlined upwind Petrov-Galerkin (SUPG) method for the timestepping scheme

(Brinkerhoff and Johnson, 2013; Larour et al., 2012). The SUPG method with an explicit time discretization is conditionally

stable (Donea and Huerta, 2003), but this scheme introduces a tuneable stabilization parameter. In the interest of simplicity,365

we instead default to the implicit Euler scheme, which has no such parameters. The implicit Euler scheme requires solving a

non-symmetric linear system, but the computational cost comes with the advantage of unconditional stability.

Practicing glaciologists who have not studied numerical PDE may be unfamiliar with the Courant-Friedrichs-Lewy (CFL)

condition. The use of an unconditionally stable scheme guarantees that they will get an answer, rather than a runtime error,

should they try to use a large timestep. Users are still responsible for checking the accuracy of their results, for example by370

running at more than one resolution. The extra computational cost of using an implicit time discretization for the prognos-

tic equation is dwarfed by the cost of the diagnostic solve in any case. Advanced users who are interested in maximizing

performance can subclass the solver to implement a faster explicit scheme.

The implicit Euler scheme tends to diffuse out sharp discontinuities that may be present in the true solution (Donea and

Huerta, 2003). Since the ice thickness does not possess shockwaves or propagating discontinuities this error mode is tolerable.375

The coupling of ice thickness to velocity makes the whole system more resemble a parabolic problem than a hyperbolic one,

and under the shallow ice approximation the system is truly parabolic.
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Other problems in glaciology have more of a hyperbolic character. For example, the thresholding behavior of the source

terms for the damage model (see §2.5) can create sharp discontinuities. The implicit Euler scheme would obscure this im-

portant feature. For the damage solver, we have instead used a strong stability-preserving Runge-Kutta method in time and a380

discontinuous Galerkin basis in space to best capture these sharp interfaces (Shu and Osher, 1988).

4.2 Convex optimization

The action functional for each diagnostic model is convex, i.e. the second derivative is strictly positive-definite. From a theo-

retical persepctive, convexity guarantees that the problem has a unique solution. This property is also especially advantageous

for implementing numerical solvers. We use a damped Newton method to solve the diagnostic equations. Starting from a guess385

uk for the velocity, the search direction vk is the unique solution of the linear system

d2J(uk) · vk =−dJ(uk). (24)

The next approximation for the velocity minimizes J along the search direction vk starting from uk, i.e.

uk+1 = uk +αk · vk,

αk = argminα J(uk +αvk). (25)390

For an initial guess sufficiently close to the exact solution, the undamped Newton method (αk = 1 at every step) converges

quadratically. The line search step ensures that the method can converge even from a poor initial guess, provided that the line

search method satisfies the Armijo-Wolfe criteria (Nocedal and Wright, 2006).

For a convex problem, d2J is a symmetric and positive-definite matrix. This has two advantages. First, the search direction

is always a descent direction for J , which is not always the case for non-convex problems. Second, symmetry and positivity395

enable the use of specialized linear solvers, such as the Cholesky decomposition or the conjugate gradient algorithm, that are

superior to their more general counterparts in many respects.

Other software packages that treat diagnostic models as nonlinear systems of equations tend to rely on ad-hoc procedures

for initializing the numerical solution process. For example, without a damping procedure in Newton’s method, the iteration

can prove unstable if initialized far away from the true solution. Some packages combat this problem by using a few iterations400

of the more robust but slower Picard method first (Gagliardini et al., 2013). While this approach can be effective, it requires

tuning the number of Picard iterations. There is no guarantee that an adequate amount for one problem will work well on

another. This issue rarely appears on realistic input data, but when solving inverse problems, the intermediate guesses for the

inferred field can be wildly unrealistic before converging. A forward model solver that is not sufficiently robust can crash in

these extreme scenarios. By contrast, a damped Newton procedure using a line search that satisfies the Armijo-Wolfe criteria405

is guaranteed to converge on non-degenerate, if unrealistic, input data.
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4.3 Convergence metrics

Several works in the literature have weighed the relative merits of different iterative methods for solving the nonlinear diag-

nostic equation (Perego et al., 2012). Few have considered the problem of when to stop iterating. The most common stopping

criteria are when (1) the 2-norm of the residual is sufficiently small or (2) the relative change in the iterates is sufficiently small.410

Each of these approaches has problems. The residual norm depends on the discretization and does not weight all degrees of

freedom proportionally, e.g. vertex and edge degrees of freedom in higher-order finite element methods. The relative change

criterion, on the other hand, can suggest convergence when in fact the method has stagnated.

We can devise a convergence criterion that works equally well, independent of the discretization and the quality of the

initial guess, based on the Newton decrement (Nocedal and Wright, 2006). Since the second derivative operator d2J(uk) is415

positive-definite, the Newton search direction vk computed from equation (24) is a descent direction for J :

dJ(uk) · vk < 0. (26)

The absolute value of the quantity in the last equation is defined as the Newton decrement. For uk sufficiently close to the true

solution u, the Newton decrement roughly tells us how much we can expect the action to decrease:

J(uk)− J(u)≈ 1
2
|dJ(uk) · vk|. (27)420

We can then use the Newton decrement to decide when to stop the iteration, as described below.

As shown in equation (4), the action for most models has units of power and is the sum of dissipation due to viscosity,

friction, gravitational driving, and ocean back-pressure at the terminus. The viscous and frictional terms are convex, positive

functions of the velocity. The gravitational and terminus stress terms are linear in the velocity and can be of either sign. If we

define the scale functional425

K(u) = viscous dissipation + frictional dissipation (28)

as only the positive parts of the action, then the convergence criterion

|dJ(uk) · vk|< εK(uk) (29)

is independent of the discretization. The intuition behind this criterion is that the iteration is halted when the expected decrease

in the action functional is much smaller than the positive part of the action itself.430

We have found empirically that, with this criterion and the Newton solver implementation in icepack, the iteration usually

converges to machine precision in around 8 steps. The iteration count can reach as high as 20 for exceptionally bad initial

guesses for the velocity or with unphysical fluidity or friction values. We also observe the expected doubling of the number of

accurate digits in the value of the action once the velocity guesses are within the convergence basin of the true solution. Other

convergence criteria, such as using relative change in the velocity guesses, can terminate prematurely when the initial guess is435

very far outside the quadratic convergence basin.
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The numerical solvers in icepack have been designed so that users who are not familiar with numerical optimization need not

be confronted with a possibly bewildering array of algorithmic parameters. Consequently, sensible defaults have been chosen

for the Armijo and Wolfe criteria (Nocedal and Wright, 2006), and the tolerance for the line search is chosen based on that of

the outer-level Newton iteration. The Newton search direction is calculated using a direct factorization solver rather than, say,440

the conjugate gradient algorithm, as the use of another iterative method would introduce yet another algorithmic parameter.

Advanced users who are interested in performance optimization can change these algorithmic parameters by passing extra

arguments to the solve procedure.

4.4 Inverse solvers

The InverseProblem class describes what problem is being solved, while the InverseSolver class is responsible for445

carrying out the numerical optimization. There are three inverse solvers in icepack: a simple gradient descent solver, a quasi-

Newton solver based on the BFGS approximation to the Hessian, and a Gauss-Newton solver. All of these classes are based

around the general idea of first computing a search direction and then performing a line search. They differ in how the search

direction is computed.

The gradient descent solver uses the search direction450

φk =−M−1dJ(θk) (30)

where M is the finite element mass matrix. Gradient descent is a popular choice because the objective functional is always

decreasing along this search direction. However, the search direction can be poorly scaled to the physical dimensions of the

problem at hand. This method can be very expensive and brittle in the initial iterations and often takes many steps to converge.

The BFGS method uses the past m iterations of the algorithm to compute a low-rank approximation to the inverse of the455

objective functional’s Hessian matrix; see Nocedal and Wright (2006) for a more in-depth discussion. The BFGS method

converges faster than gradient descent. However, it suffers from many of the same brittleness issues in the initial iterations

before it has built up enough history to approximate the Hessian inverse.

Finally, the Gauss-Newton solver defines an approximation to the “first-order” part of the objective functional Hessian. Each

iteration of Gauss-Newton is more expensive than that of BFGS or gradient descent because it requires the solution of a more460

complex linear system than just the mass matrix. The Gauss-Newton method converges fastest by far in virtually every test

case we have found, in some instances by up to factor of 50.

The derivative of the objective functional with respect to the unknown parameter is calculated using the adjoint method and

the symbolic differentiation features of Firedrake. The user does not need to provide any routines for the derivatives, only the

symbolic form of the error metric and the regularization functional. The model object is responsible for providing the symbolic465

form of the action functional.
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4.5 Hybrid model

The hybrid flow model uses several features that are available in Firedrake to better exploit the special structure of the problem.

Implementing this model also required some mathematical sleight-of-hand related to the terminus boundary condition that has

not appeared in the literature before. Additionally, the hierarchical structure of spectral basis functions presents an opportunity470

for developing fast algorithms. In all other respects the implementation of the hybrid flow model using convex optimization

follows the techniques described above.

4.5.1 Discretization

In order to use terrain-following coordinates, the hybrid model assumes that the geometry of the domain is an extruded mesh,

where a 2D footprint mesh is lifted into 3D. Firedrake includes support for creating extruded meshes by calling the function475

ExtrudedMesh on the 2D footprint (Bercea et al., 2016; McRae et al., 2016). The cells of an extruded mesh are triangular

prisms instead of the more common tetrahedra used for general 3D meshes. Not every 3D domain can be described by extruding

a 2D domain, but the geometry of most glacier flow problems can.

The geometric correction factor in equation (19) for gradients in terrain-following coordinates can easily be represented

in UFL. By defining a wrapper around the UFL grad function, the code to define the action functional in terrain-following480

coordinates is only slightly more complex than in Cartesian coordinates.

For problems defined on extruded geometries, Firedrake includes support for tensor product elements, which includes using

different bases in the horizontal and vertical directions (McRae et al., 2016). Tensor product elements are defined in Firedrake

by passing the extra keyword arguments vfamily, vdegree to the constructor for a function space. In our case, we used the

usual continuous Galerkin basis in the horizontal and Gauss-Legendre elements in the vertical. To select the Legendre polyno-485

mial basis, the user passes the keyword argument vfamily=‘Gauss-Legendre’ or ‘GL’ for short to the constructor for

the function space.

Extruded meshes and tensor product elements are available in Firedrake but not in FEniCS. Other general-purpose finite

element modeling packages that support tensor product elements include deal.II and nektar++ (Bangerth et al., 2007; Cantwell

et al., 2015). Like most other packages in this domain, deal.II and nektar++ are written in C++, whereas our goal for icepack490

was to have both the core and the user interface in Python.

4.5.2 Ocean boundary condition

Our approach for implementing a hybrid flow model works completely seamlessly but for one important detail. The backpres-

sure from ocean water at the calving front of a marine-terminating glacier is not a smooth function of depth. The pressure is 0

above the water line and linearly increasing below it:495

backpressure power =
∫

Γ

1∫

0

ρW gh(ζsl− ζ)+ dζ dγ, (31)
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where ζsl denotes the relative depth to the water line and the subscript + denotes the positive part of a real number. Were

we to use the standard asssembly procedure in Firedrake to evaluate this integral, we would get an inaccurate result due to an

insufficient number of integration points. The resulting velocity solutions are then wildly inaccurate due to the mis-specification

of the Neumann boundary condition. A blunt solution to this problem would be to pass an extra argument to the Firedrake form500

compiler that specifies a much greater integration accuracy in the vertical for this term. This fix reduces the errors in the

velocities, but it does not eliminate them completely and it incurs a large computational cost.

Figure 1. The normalized ocean pressure (pw/ρW g) and Legendre polynomial approximations of several degrees (left), and the residuals of

the approximation (right). For this particular example, the waterline is at ζ = 1/3, which would be representative of a glacier grounded on a

higher moraine. The moments of each of the residuals up to the approximation degree are all zero.

We instead implemented a routine that symbolically calculates the Legendre polynomial expansion of the function (ζsl−ζ)+

with respect to the parameter ζsl using the package SymPy (Meurer et al., 2017). The symbolic variables for ζ and ζsl used in
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the SymPy representation of the polynomial expansion are then substituted for equivalent symbolic variables in Firedrake/UFL505

using the SymPy object’s subs method. The Legendre polynomial approximation to this function only converges linearly as

the number of coefficients is increased, since the the function is continuous but not smooth, and the approximation exhibits

noticeable ringing artifacts at high degree. While the approximation itself is not very accurate, the calculated value of the

integral in equation (31) is exact because of the orthogonality property of Legendre polynomials. Stated another way, the

residuals in the approximation are large, but they integrate to 0 when multiplied by any Legendre polynomial up to the number510

of vertical modes. An example of the pressure approximations using linear, quadratic, and cubic Legendre polynomials are

shown in figure 1.

The exact symbolic integration approach is both faster and more accurate than using a large number of quadrature points.

The same technique could be used to exactly calculate the ocean backpressure for any model, say the full Stokes equations,

using terrain-following coordinates together with a Legendre polynomial expansion in the vertical.515

4.6 Performance

Icepack largely inherits the performance capabilities of the Firedrake package, for which we refer to the benchmarks in Rathge-

ber et al. (2016). Firedrake is in turn built on PETSc, which includes a rich suite of nonlinear solvers and preconditioners that

have been demonstrated to scale up to hundreds of processors (Balay et al., 2019). Firedrake also includes special features for

defining sophisticated solvers and preconditioners that take advantage of problem-specific structure (Kirby and Mitchell, 2018).520

Icepack exposes these tools through the interface of the flow solver objects, so users can select any solver and preconditioner

from PETSc.

We have mainly developed icepack for process-scale studies of individual glaciers or drainage basins. For the demonstra-

tions presented below, nearly all simulations run in a matter of minutes to hours on a single core. Larger problems, such as

continental-scale modeling, will require more sophisticated and possibly problem-specific approaches. For example, a rudi-525

mentary preconditioner for the hybrid model system could use the degree-0 model as the coarse space in a multigrid-type

approach. These optimizations will be the subject of future work.

5 Demonstrations

The following demonstrations aim to show the capabilities of icepack on both synthetic and real problems. The key features of

icepack that these demonstrations aim to highlight are the variety of different physics models implemented and the flexibility530

of the components of these physics models.

5.1 MISMIP+

As a first test case for icepack, we ran the first experiment from the Marine Ice Sheet Model Intercomparison Project version

3 (MISMIP+). The parameters and geometry for this experiment can be found in Asay-Davis et al. (2016). The MISMIP+

experiment has three phases. First, the model must find a steady state marine ice sheet with a fixed accumulation rate and535
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no submarine melting. Next, submarine melting with a given depth-dependent parameterization is applied for 100 years. The

increased melt thins the ice ice shelf and initiates a retreat of the glacier grounding line. Finally, submarine melting is turned

off for at least 100 years, optionally longer. The grounding line then readvances, but not as far as its original position.

The original intercomparison project specified that participants could use the Weertman sliding law (equation (22)) as well

as two other sliding laws that transition to a more plastic rheology at high sliding speeds. The first alternative sliding law540

consists of Weertman sliding until the stress reaches a critical value, at which point the constitutive relation transitions to

perfect plasticity. The second alternative is the Schoof sliding law (Schoof, 2005):

τb =− C|u|1/m · τc
(Cm|u|+ τmc )1/m

u

|u| , (32)

where the critical stress τc is a certain specified fraction of the water pressure in the subglacial hydrological system. Sliding laws

in icepack are not expressed directly, but rather as the the derivative of an action functional. To implement the Schoof sliding545

law we need to know the antiderivative of equation (32). Using a computer algebra system, we found that the antiderivative

of this expression in terms of hypergeometric functions. The Unified Form Language has several transcendental functions

(sine, cosine, exponential, etc.), but it does not currently support hypergeometric functions. Instead, we implemented a sliding

relation that exhibits the important features of the Schoof law, i.e. it behaves like an m= 3 power law at low sliding speeds

and m=∞ at high sliding speeds, but which is more tractable algebraically. Knowing the critical stress τc and the friction550

coefficient C, which has units of stress × speed−1/m, we can define a critical speed uc as

uc = C−mτmc . (33)

The power dissipation density for the Schoof-type sliding law that we use is

P = τc

{(
u

1
m +1
c + |u| 1m +1

) m
m+1 −uc

}
(34)

Figure 2 shows a comparison of the original Schoof sliding law and the sliding law that arises as the derivative of the functional555

in equation (34). The two have the same asymptotic behavior when the speed is much smaller or much larger than the critical

speed; they differ in a relatively small range around the critical speed. The relative difference in basal shear stress between the

two sliding laws is less than 10% throughout the entire range. Although figure 2 shows a comparison of both sliding laws with

the same value of the critical speed, by using different values, the agreement between our sliding law can be brought into much

closer agreement with the Schoof law.560

To change the sliding law, users only need to pass one function or the other to the model object at initialization. (See Code

and data availability below for the source code.) Users do not need to implement a subclass that overrides some parent method.

This approach would be idiomatic in C++, but it requires knowledge of object-oriented programming that a non-expert might

lack.

Figure 3 shows the thickness and ice speed after spinning up the MISMIP+ geometry and input data to steady state with565

the sliding law described above. The spin-up used used degree-1 basis functions for both thickness and velocity. To get a

high-resolution estimate for the steady state, the spin-up started from a relatively coarse resolution to propagate out most of the
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Figure 2. The Weertman, Schoof, and modified Schoof sliding law of equation (34). The critical speed and shear stress are uc = 250 m/year

and τc = 100 kPa.

transient signal. Then the mesh was successively refined and spun up again to propagate out the remaining high-wavenumber

transients. This process was repeated three times. The net result is that most of the spin-up is done at relatively little computa-

tional cost. Figure 4 shows the total ice mass during the retreat and readvance phases of the experiment. The initial response to570

turning on melting is very rapid but then becomes roughly linear with time. When the high melt is turned off at the 100-year

mark, the ice readvances, but the rate is much slower than the rate of decrease when melt was on. This asymmetric response

is typical and expected from ice physics; the rates broadly agree with the reference results computed with BISICLES in the

original experimental specification (Asay-Davis et al., 2016).

We also ran the experimental setup to steady state using the hybrid flow model with vertical basis functions up to degree575

2. This is the most minimal set of vertical basis functions that can resolve plug flow and the stress boundary conditions at the

ice base and surface. The ratio of basal velocity to surface velocity is shown in figure 5. The areas with the most significant

vertical deformation are at the inflow boundary and where the troughs at the side walls are steepest. Otherwise, the sliding ratio

is above 0.8 throughout almost the entire domain.

Using variational principles to express all constitutive laws is less flexible than specifying the sliding law directly and this is580

a distinct disadvantage. We were nonetheless able to implement a sliding law that exhibits the important characteristics of the

Schoof sliding law. Asay-Davis et al. (2016) also suggest using a sliding law that transitions sharply to exact plasticity above

the critical speed. Expressing this sliding law in UFL requires a conditional in the velocity and is thus no longer differentiable,

causing the forward solver to crash. The numerical advantages of using variational principles are so great, however, that we

view this tradeoff as acceptable. Moreover, there are few physical reasons to prefer one form over another, as long as the585

asymptotic behavior is correct above and below the critical speed.
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Figure 3. The steady state thickness and velocity of the MISMIP+ experimental setup with the modified Schoof sliding law of equation (34).

Figure 4. Total ice mass history during retreat (first 100 years) and readvance (second 100 years) of MISMIP+ experiment.

5.2 Synthetic ice sheet

As a demonstration of the shallow ice approximation model, we ran an experiment inspired by Kessler et al. (2008). In this

work, the authors coupled an ice flow model to simple models for bed-erosion, calving, and glacial isostatic adjustment (GIA) to

investigate the formation of deep fjords that are characteristic of coastlines on Baffin Island, Greenland, and British Columbia,590
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Figure 5. Ratio of basal velocity to surface velocity in steady state of MISMIP+ scenario computed with hybrid model.

Figure 6. Synthetic ice sheet simulation. (a) The bed elevation profile consists of a ring of mountains with valleys of varying depth surround-

ing a flat plateau where the ice sheet is initialized. The black square outlines the domain of subplot (b) which shows the velocity of the ice as

it passes through the southernmost mountain pass, with contours of the bed elevation shown in greyscale.

among others. We emulated their domain and bedrock geometry – a plateau surrounded by a ridge punctuated by four valleys

– without also simulating erosion or GIA.

Figure 6 shows the results of this computational experiment. We initialized the experiment with a simple but unrealistic ice

thickness. We then evolved the ice sheet without climate forcing for 500 years. The ice sheet relaxes very rapidly in the first

200 years, but after this changes are much slower as ice must be funneled through one of the four narrow valleys. The resulting595
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velocity pattern is similar to that of Kessler et al. (2008), with the highest velocities where ice flows out from the valleys. In

and upstream of the valleys, the surface is drawn down due to the elevated export of ice.

The diagnostic model used in this demonstration is computationally cheap enough that it can be used to simulate ice sheets

over several millenia in a matter of minutes on a desktop. A key feature of icepack is the ability to choose between many

different diagnostic models. Users are free to decide what model works best for the spatial and temporal scales of their problem,600

how accurately they need to solve this problem to produce useful results, and what computational resources they are willing to

devote.

5.3 Synthetic ice shelf

Figure 7. Results of ice shelf damage simulation: (a) ice velocity without damage, (b) change in ice speed with and without damage, (c)

thickness, and (d) damage field.

We simulated the evolution of a synthetic ice shelf towards steady state and coupled it with the damage transport model

described in §2.5. The geometry of the ice shelf consists of the intersection of two circles, one with a larger radius and offset605

center, designed to roughly mimic the shape and size of real ice shelves. The radius of the whole shelf is 200km. Four ice

streams flow into the shelf with varying speeds and a prescribed inflow thickness. In the first phase of the experiment, the
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ice shelf is propagated to steady state without damage for 200 years. After this time interval, the flux imbalance is less than

1% of the influx. In the second phase, damage transport is turned on and coupled to the ice velocity. An interesting feature to

observe in the approximate equilibrium damage field is that the highest values occur between the streams and not within them.610

Additionally, the spacing between the streams changes as a result of adding damage. The final ice thickness, velocity, strain

rate, and damage are shown in figure 7.

5.4 Larsen C Ice Shelf

To demonstrate the inverse solver, we will estimate the rheology of the Larsen C Ice Shelf in the Antarctic Peninsula from

observational data. Several recent studies have focused on Larsen C because it may be unstable in the warmer climate of the615

coming decades. From January to March of 2002, the neighboring Larsen B Ice Shelf disintegrated due to surface melt pond-

induced fracture (Banwell et al., 2013). This mechanism might also lead to the breakup of Larsen C in the future. One of the

key factors affecting the stability of ice shelves is the presence of marine ice – seawater that freezes onto the base of an ice

shelf – in the suture zones where two flow units meet (Kulessa et al., 2014). Marine ice is warmer than meteoric ice and usually

includes brine pockets, which are discernible in radio echo sounding measurements as the absence of reflection from the ice620

shelf base (Holland et al., 2009). This warmer and impurity-laden ice is more ductile and thus should be less prone to fracture

than cold and brittle meteoric ice. Ocean models predict that marine ice forms under Larsen C as well (Holland et al., 2009).

By estimating the material rigidity of an ice shelf, we can constrain where marine ice may be forming.

5.4.1 Data

We used the InSAR phase-based ice velocity map from Mouginot et al. (2019). This dataset has nominal errors over the Larsen625

Ice Shelf on the order 1 – 7 meters per year. We used the recently-released BedMachine map of the thickness of Antarctica,

which takes advantage of newly available remote sensing data (Morlighem et al., 2019).

Existing work on glaciological inverse problems uses the mismatch between the computed and observed velocity fields

as part of the objective functional. The effect of thickness errors is studied largely through a posteriori validation (Joughin

et al., 2004; Larour et al., 2005). Errors in thickness or surface slope can be large enough that it might be impossible to fit630

the velocity measurements to the degree that statistical theory predicts (MacAyeal et al., 1995). The velocity measurements

themselves might have significant outliers, in which case using the usual weighted sum of squared misfits as an error metric

will give poor results. For these reasons, some studies have explored alternative objective functionals (Morlighem et al., 2010).

We have opted to use the regularized L1-type error metric

E(u−uo) =
∫

Ω

(√
|u−uo|2

σ2
+ γ2− γ

)
dx. (35)635

This error metric approaches the usual weighted sum of squared errors as γ→∞, and approaches the sparsity-promoting L1

error metric as γ→ 0. For finite, positive values of γ this error metric is robust to non-normality or a small fraction of outliers

(Barron, 2019).
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5.4.2 Parameterization

The rheology parameter of an ice shelf is strictly positive. The optimization algorithm, however, can explore unphysical regions640

of parameter space without some a priori constraints. Rather than try to solve an inequality-constrained problem, most studies

in glaciology instead re-parameterize the problem in terms of some auxiliary field in such a way that the rheology is manifestly

positive. In this case we use the parameterization

A=A0e
θ (36)

and estimate θ. The inverse solver calculates the derivative of the objective functional symbolically and is thus agnostic to the645

particular parameterization. The only information that the user needs to pass is the name of the arguments to the forward model

representing the parameter and the observed field so that these can be passed by keyword.

5.4.3 Results

Figure 8. Left: Inferred fluidity parameter θ. Lower values indicate more deformable ice. Right: stream plot of ice velocity computed from

this fluidity parameter. Background image is the MODIS Mosaic of Antarctica (Scambos et al., 2007; Haran et al., 2014), courtesy of NASA

NSIDC DAAC.

The inferred parameter field θ is shown in figure 8. The algorithm detects areas of much lower ice rigidity around highly

damaged ice. This feature is especially apparent around the large rift emanating from the Gipps Ice Rise, as well as the crevassed650

areas upstream. We find other areas of low rigidity in the suture zones where two flow units converge and where marine ice

tends to form, releasing heat to the ice shelf, exactly as observed in Holland et al. (2009). Finally, the inferred rheology field

reproduces features that have already been found in previous studies of Larsen C Ice Shelf (Khazendar et al., 2011).
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The final value of the model-data misfit from equation (35) matches the value we would expect if the velocity errors actually

came from this probability distribution. In a separate computational experiment, we used the older bedmap2 ice thickness655

(Fretwell et al., 2013). We were unable to achieve the same model-data misfit using bedmap2 at the same grid resolution with

any regularization parameter.

6 Usability

One of the main goals for icepack is to create a tool that is accessible to researchers who might not be experts in scientific

computing. Previous work on numerical modeling of glacier flow has focused largely on the technical details of the models660

themselves – does a given solver converge with the accuracy expected from finite element theory; does it scale to large numbers

of processors; can models accurately predict grounding line retreat, etc. The person learning to use an unfamiliar software tool

is largely absent from the discussion. For graduate students or other researchers who are not experts in computational physics,

the difficulty of learning to use a particular software package may be more of a rate-limiting factor than the speed or efficiency

of that software.665

The field of human-computer interaction (HCI) asks how we can design software that is easier to learn and use effectively.

In the following, we will describe some of the design choices in icepack and how they relate to what HCI researchers call the

cognitive dimensions of notations. Green and Petre (1996) introduced this concept to assess the usability of visual programming

languages, but the criteria they laid out in their study have been used to analyze software systems across many disciplines.

Consistency: After a user learns part of the software, can they guess the remaining parts? Each of the model objects in670

icepack is a class with a method ending in solve that takes in keyword arguments for the various input fields and options for

things like boundary conditions. Users already familiar with, say, the IceStream class can then use the HeatTransport

class under the assumption that the input fields – the current temperature T , ice velocity u, and basal melt rate m – are passed

as keyword arguments with the same name as the fields themselves. Consistency obviates the need for repeatedly consulting

the documentation or examples once users are already familiar with the software.675

Progressive evaluation: How easily can users get feedback during their use of the software? Progressive evaluation is

the main advantage of having a user interface in an interpreted programming language such as Python as opposed to a compiled

language where programs can only run in batch mode. In the early stages of the development process, any non-trivial simulation

of a physical system exists as a prototype which may be non-functional or even broken. The ability to manually step through

a simulation and examine the entire state in an interpreter is critical to finding errors faster. Icepack was designed to give fine-680

grained control over how simulations work in order to support this mode of debugging. The API provides routines for solving

the diagnostic and prognostic equations. It is the user’s responsibility for making the repeated calls to these routines, either in

a loop or by manually iterating through one step at a time. With this responsibility comes the freedom to add in arbitrary code.

This capability might be used to add sanity checks, such as printing minimum and maximum thickness or velocity values. It

can also be used to get feedback on how long the simulation will take, or to save results for later visualization. Other packages685
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support a more coarse-grained view where the user only specifies the start and end time of a simulation and has more limited

options for inspecting the state of the running program.

Icepack makes extensive use of Jupyter notebooks as a form of executable documentation. Jupyter notebooks are a document

format that includes code and explanatory text with typeset mathematics that runs interactively in a web browser (Kluyver

et al., 2016). The contents of a notebook can executed incrementally much like running code in the Python interpreter. Most690

importantly, Jupyter notebooks can render and display visualizations on the fly. This enables a workflow where plotting all

intermediate results serves for sanity-checking an experimental simulation.

Abstraction gradient: What are the levels of abstraction exposed by the library? Can irrelevant details be hidden? The

API for icepack has been designed so that the users only need to decide what problem to solve and not how to solve it. Where

a choice does concern more the “how” than the “what”, we use a sensible default that biases for correctness rather than speed.695

For example, the Newton solver uses a direct factorization method to solve the linear system for the search direction because

factorization requires no tuning whereas iterative methods do. A user interested in achieving greater runtime performance

can pass additional keyword arguments instead specifying, say, the preconditioned conjugate gradient method. This choice

is of interest mostly to advanced users so we keep the linear solver algorithm as a default argument. In so doing, we avoid

confronting novice users with options that they might not understand.700

Advanced users who do wish to tune solver performance for large simulations will need some way to make choices about

algorithms. For example, one might choose the GMRES iterative solver together with an incomplete LU preconditioner to

solve linear systems. The solver classes, as opposed to the model classes, provide the interface for making these choices. While

alternative solvers might offer faster runtime performance than direct factorization, they also requires making additional choices

– how often to restart GMRES? How much fill-in to allow in the incomplete factorization? Many glaciologists do not have705

the background in numerical linear algebra to know that adjusting these parameters could make the difference between solver

convergence or breakdown. As another example, users might want to select between different discretization strategies for the

Stokes equations. The discretization of the Stokes equations has to be chosen carefully in order to satisfy the Ladyzhenskaya-

Babuška-Brezzi (LBB) conditions (Boffi et al., 2013). When using Galerkin least-squares stabilization of the weak form,

the user has to pick a value of the stabilization parameter. Determining exactly what value of this parameter is necessary to710

guarantee stability is a subtle problem, even more so for the kinds of highly anisotropic meshes that are commonly encountered

in 3D glacier flow modeling. If the solver fails to converge, it might not be obvious even to an expert whether the problem lies

with the stabilization or the aforementioned parameters of the linear solver.

7 Conclusions

We have presented a new software package called icepack for modeling the flow of glaciers and ice sheets. This package715

advances the state of the art in this field by providing a platform for easily experimenting with the model physics. In this paper,

we have presented three demonstrations of this feature:

1. coupling a model of ice shelf flow to a phenomenological model of damage,
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2. changing the sliding law in a simulation of a marine-terminating glacier, and

3. inferring the fluidity of a floating ice shelf in a way that guarantees positivity.720

The phyics of how glaciers interact with their environment are not completely understood. Consequently, the ability to change

components of the model is an essential feature for any tool aimed at researchers in this field.

We have also paid special attention to how we can design this software package to be most usable for its intended audience.

Usability is not often discussed in the literature on computational science. We believe that this is because of two difficulties:

(1) quantifying the degree to which usability is a rate-limiting factor and (2) concretely assessing what features make software725

tools more or less usable. By contrast, measuring computational performance is much more feasible although still fraught with

difficulties of its own. (This is not to say that performance optimization is easy by any means.) In working with several graduate

students and postdoctoral researchers in glaciology, we have observed that usability is a substantial bottleneck for researchers

at these career stages. For this reason, we have chosen to focus explicitly on usability by drawing on the research literature in

HCI. We argue that the same design features that enhance usability for relative novices to the subject area will also enhance730

the productivity of expert users.

This paper has presented several physics models currently implemented in icepack along with demonstrations. Future devel-

opments will include:

1. an implementation of full Stokes flow,

2. dynamic glacier termini to enable calving models, and735

3. adaptivity through moving mesh methods.

New features will be guided by feedback from icepack users and from the glaciological community at large. By providing

implementations of several glacier flow models from less to more complex and by enabling users to experiment with the

physics, this tool both lowers the barrier to entry for novices to glacier flow modeling and provides a pathway for these users

to progress towards ever more sophisticated and advanced simulations.740

Code and data availability. All code used in this repository is free and open source and all data sets used in the demonstrations are publicly

available. The icepack source repository is at https://github.com/icepack/icepack. Icepack is released under the GPLv3 license. The git com-

mit hash of the version of the code used for this publication is b78b0ee5, see also the Zenodo release at https://doi.org/10.5281/zenodo.1205640.

The icepack documentation and user manual is hosted at https://icepack.github.io. The source code for the demonstrations used in this

paper is hosted at https://github.com/icepack/icepack-paper, commit hash 4db3dc28. The demonstrations used glacier outlines that were745

hand-digitized from satellite imagery in order to generate the model domains. These outlines are kept in version control and hosted at

https://github.com/icepack/glacier-meshes and the git commit hash for the version used in this publication is c98a8b75. Additional observa-

tional data are hosted at the US National Snow and Ice Data Center (https://www.nsidc.org).
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