Response to review #2

Summary

Thank you for this helpful review! Original comments are in blue, our responses in
black.

In this manuscript, the authors introduce a new land-ice modeling software
package known as icepack. icepack is written in Python on top of the Firedrake
library, which uses the domain-specific Unified Form Language (UFL) and provides
a high-level symbolic description of the problem to facilitate the add of new physics
and/or equations. The intended user base of icepack is the glaciological commu-
nity, in particular, glaciologists who may not have an extensive background/training
in computational science. The idea is to provide a code that would be easy to
use/develop by this class of prospective users. Following a description of the code,
some numerical examples are presented to demonstrate the method’s capabilities
and accuracy. The manuscript in question is well-written and interesting to read.
Addressing usability is noteworthy and something that not enough authors in glaciol-
ogy/climate science address. I personally have some qualms with some of the phi-
losophy described by the authors, namely I worry about folks who are not familiar
with numerical methods developing an application code in which a lot of what is
under the code is hidden from them in some sense. In an ideal world, one would
have glaciologists working with computational scientists to help them pick the right
solvers, discretizations, etc., for their problem. The authors are correct that some
solver options are for optimizing performance, which is secondary to getting the
code/model running; but there are also solver/algorithm choices that depend very
much on the physics (e.g., CG is only valid for symmetric problems) - is icepack
designed so as to prevent the naive user from inadvertently using the incorrect
default setting for their problem? I will assume it is to the extent it can be, and
that the authors’ argument is that the default hidden settings are likely to do less
damage than some arbitrary settings a user might put in his/her input file without
knowing what they are doing. Also, I realize that the reality is that many glaciol-
ogists do not have strong ties to computational scientists, and still wish to make
progress in numerical modeling of land-ice; therefore, I will not focus too much on
much “philosophical” perspective described above. Another qualm I have about the
paper has to do with performance - I am skeptical whether icepack can really be
performant if one tries to run it on continental scale problems, and it is not clear to
me if the code is even parallel. I think the intention may be to use icepack as more
of a sandbox for prototyping small problems (similar to FeniCS), in which case, this



is not a huge deal. Despite the above concerns, I like this paper and see it pub-
lished in GMD. I like in particular the idea of describing all the equations using the
variational principle/action functional and having everything else propagate from
there - not enough people do this. I do, however, feel that there is a lot of missing
information in various parts of the paper, which should be filled in in the revision
prior to the paper being suitable for publication. Please see below my enumerated
list of questions/comments to address in the revision.

Specific comments

1. The authors suggest that C++ makes it inherently difficult to add new physics/PDEs
(e.g., on p. 10 and p. 20), which I somewhat disagree with. One advance-
ment that can make a C++-based code easy to add to is Automatic Differen-
tiation (AD) - with AD, one can effectively code the weak form of the residual
within a C++ code and AD will handle the rest, making it very easy to add new
physics. An example is the Albany/Land Ice model (previously known as Al-
bany/FELIX) of Tezaur et al. (https://doi.org/10.5194/gmd-8-1197-2015).
I think it would be worth mentioning that there have been efforts like Al-
bany/Land Ice out there to make C++-based codes more accessible to users
of varied backgrounds. I agree that even an “easy-to-use” C++ code will be
more difficult and more intimidating than a Python code, so I am not trying
to minimize the authors’ efforts at all.

I hope this paragraph made the point more that we had specific goals that
could better be achieved in Python and not as some blanket condemnation
of C++ — I don’t like being dogmatic about language choice. I've added a
citation to Tezaur et al. and to another paper from the ISSM group about
AD. I agree with you about AD tools: they definitely relieve the burden of
having to rewrite the code to calculate variational derivatives of functionals
of the solutions of the model with respect to input parameters upon changing
the model or parameters. The experiences I had rolling my own adjoints
are what pushed me to tools that would either have AD or a more symbolic
approach like what FEniCS, Firedrake, and Devito offer. In idiomatic Python
it’s nonetheless possible to be much more flexible about function signatures
than in C++ by virtue of being able to throw arbitrary data into kwargs.
Now of course you pay for this in that all input validation is done at runtime
rather than at compile time, but it’s a tradeoff we had to make.

2. Can the authors comment on the overhead of the symbolic descriptions/manipulations
done by their framework? This sounds potentially like it would be very expen-
sive. How does the cost compare to automatic differentiation, for example? A
broader question is: is computational performance/cost a concern for users of
icepack, or is it intended to be a “sandbox” in which performance is secondary
to being able to code up something “quick-and-dirty” for initial prototyping?

See Rathgeber et al. 2016 for more information about the architecture of
Firedrake and for performance benchmarks. We are constrained only by what



Firedrake can do, so we refer to this paper for performance with no change
to the text.

Loosely speaking, the path through the toolchain goes like this. A user cre-
ates a symbolic description of the weak form of the PDE they want to solve.
Firedrake then computes a hash of this expression and looks to see if it has
encountered this problem before. If not, it does a long, complicated, and ex-
pensive series of transformations to generate highly optimized C code that
fills the relevant matrices and vectors. This C code is then compiled into
a dynamic library for later reuse. If the user has solved this problem before,
Firedrake simply looks up the dynamic library that it already generated. (Cru-
cially, the only thing that matters is the symbolic shape of the problem, not
the actual data that goes into it — you don’t have to do codegen all over again
just because you changed the boundary conditions or forcing.) In either case,
Firedrake then calls into PETSc’s scalable nonlinear equation solvers (SNES)
to solve the resulting system of equations. As with any just-in-time compiled
language, performance is slow the first time the code is run, and faster ever
after. Most importantly, the performance-critical parts are all written in
C. Firedrake has been shown to scale up to large problems on thousands of
processors.

It is possible to ruin the performance of the application by accidentally hard-
coding a floating point value into a symbolic expression of a PDE and then
changing that value in a loop. For example you could easily make this mis-
take if you were doing adaptive timestepping on an evolutionary problem
discretized via the method of lines. The remedy is to wrap this value in a
firedrake.Constant object. This kind of performance regression is easily
caught using htop. While this is more a result of programmer error, it’s an
easy mistake to make and the Firedrake team are working on ways to diag-
nose it and issue appropriate warnings.

For the problems that we have used icepack for so far, we have focused more
on individual glaciers or catchments, and thus performance has been a sec-
ondary concern. We aim to move towards larger continental-scale problems
in the future. The rate-limiting factor there is more our ability to find the
right incantation of PETSc solver options and preconditioners than it is any
inherent limitation in our tools.

. I'was alittle bit confused about the reference of the FO Stokes-based model in
this paper as a “hybrid model”. Isee that it is hybrid in the sense that you have
a different discretization in the horizontal and vertical direction, but there are
also hybrid ice models that use different PDEs in different domains, e.g., the
ISCAL model of Ahlkrona et al. (https://doi.org/10.1016/j.quascirev.2016.01
Is the term “hybrid model” a common name for the approach in Section 2.2.3?
Perhaps it is and I am not aware of it. Does the hybrid model described in the
paper have the same applicability as say the First Order Stokes model? Can
it be used for both Greenland and Antarctica at continental scales?

The fundamental physics are the first-order model obtained by asymptotic ex-

.032).



pansion of the Stokes equations in the aspect ratio, also known as the Blatter-
Pattyn equations. We have amended the text to make this clear. What I had
imagined is that using only vertical basis functions up to degree 2 essentially
defines its own semi-discrete physics model, similar to two- or three-layer
ocean models. You can view these as very coarse discretizations of the primi-
tive equations, or you can view them as simplified models in their own right.
But I made this naming choice before there were many other collaborators on
the project. The ensuing confusion has shown that this was a bad choice of
terminology and we intend to change it in a future version. This model can
be used for both regions at continental scales — it can capture both plug and
shear flow.

. Section 2.2.1: in my opinion, the authors do not provide sufficient justifica-
tion for the penalty term, equation (7). They describe this as something that
is added to smooth over artifacts - this would be needed based on the dis-
cretization, which there is little discussion of. The authors should state what
order finite elements they are using - I presume they are linear, and that this
is why the stabilization is needed? Why is stabilization needed only for the
SIA? I think these things should be made clear.

See comments by reviewer #3. The technical answer is that this makes the
solution live in the Sobolev space H!(2). A more heuristic answer is that
the shallow ice approximation is usually assumed to hold only over distances
greater than a few ice thicknesses. The penalty term is meant to filter out
variability at length scales where the model doesn’t even apply. No change to
the text.

. Section 2.2.2: there is some imprecision here in equation (13) - you have
not defined anywhere that T is the boundary, and which boundary you are
referring to. One can figure it out, but it is not precise. Q is not defined either
though one will assume invariably that this is an open bounded domain in 2D
or 3D depending on which approximation one is looking at.

These were not stated explicitly anywhere. We've added them to table 1.

. The boundary conditions are not discussed very rigorously systematically -
the authors seem to sprinkle in some boundary conditions here and there. I
think the boundary conditions need to be given for each of the models at the
time the models are presented - boundary conditions are needed to complete
the definition of each models.

We added this statement to section 2.1: “We implement two types of boundary
conditions for the prognostic equation. Users can specify an inflow flux value
and this value becomes a source of thickness at any point along the domain
boundary where the ice velocity is pointing in to the domain. The flux at the
inflow boundary can change in time. Second, we impose outflow boundary
conditions on any part of the domain where the ice velocity is pointing out-
wards. Which segments of the boundary are inflow or outflow are diagnosed



10.

11.

automatically by calculating the sign of the dot product between the velocity
and the unit outward normal vector.”

We also added an entirely new section which is now §2.3 in the text just on
the boundary conditions for the different diagnostic models.

Certain terms in the equations I do not believe are defined anywhere, for
instance, in equation (10), there is no expression given for the strains €(u).
This is one of the things I cam across that need to be made more precise.

This was stated in table 1 but we’ve added the definition as %(Vu +vu')and
added a sentence to the text referring readers to table 1.

Section 2.2.3: the authors comment that higher degree polynomials can be
used in the vertical layer in the hybrid approach. What order is typically used?

Added the following text: “Going up to a degree-4 model is sufficient to cap-
ture the exact solution for the shallow ice approximation. In the tutorial note-
books for icepack, we use up to degrees 2 and 4, but the test suite checks up
to degree 8.”

Section 2.2.3: this might be a naive question, but does Glen’s flow law come
into the hybrid model? I was expecting to see it there, but maybe I'm missing
something.

This was a bad oversight on our part — the hybrid model does use Glen’s flow
law and we've added more detail at the end of this section describing the
terms in the action functional (equations 22 through 26 in the revised text).
The main difference is the term for viscous power dissipation.

P 10: the discussion here about substituting model components suggests it
may be possible to use different models in different regions and couple them
(a la the ISCAL method). Is this possible, or something that the authors are
thinking to add to their model/code?

Implementing this idea will require some new developments to Firedrake,
namely first-class support for subdomains, defining different PDEs on differ-
ent subdomains, and defining matching conditions for the solutions at the
interfaces between subdomains. The Firedrake developers are working on
this feature right now as it’s very much in demand. We are very much inter-
ested in, for example, using SIA in the interior of the ice sheet and SSA in
the ice streams and margins, as this would give a much less computationally-
intensive way to do some form of whole-ice sheet modeling than using, say,
the first order model. No change to the text.

Section 2.4: This section is very incomplete. You need to give the enthalpy
equation and given the Glen’s law expression as well, since it is mentioned.

We have added some text and equations describing the model we used, the
boundary conditions, and the shear heating rate, the latter of which implicitly
includes Glen’s flow law.



12.

13.

14.

15.

In my opinion, there is not enough discussion of the thickness equation (Sec-
tion 2.1) and how it is discretized. In typical ice sheet models, this equation
is used to change the ice extent - one meshes up a region of “potential” ice,
and then uses the thickness to dynamically determine a mask for ice-covered
regions. Do you do something like this in your model? It should be discussed
for completeness. I think you maybe start to do this in Section 4.1, but it is
very confusing and hard to make the connection.

We added this statement to section 2.1: “Icepack represents the thickness us-
ing continuous, piecewise polynomial basis functions in each cell of the mesh.
In the examples we use up to degree 2 and the unit tests use up to degree 4.
We have not yet implemented a formulation that works with discontinuous
basis functions, but this extension is completely feasible within our frame-
work.” See also previous comment on boundary conditions for the thickness
equation. We also added a longer description of our treatment of ice-free re-
gions (which is very ad hoc for now) at the end of section 2.1. This is a weak
point at present and we plan to improve this in future versions.

What sort of meshes do you use in your model (in the horizontal dimension,
for the hybrid one)? Structured/unstructured? Hex/tet (quad/tri)?

We use unstructured triangular meshes although Firedrake in principle can
use unstructured quad meshes. We've added the word “unstructured” to clar-
ify this.

Section 3: It is not clear from the description what the inverse problem you
are describing is for. Is it to obtain parameters in the model like the basal
friction using observational data of e.g. surface velocity? There really needs
to be more discussion here, and I personally would like to see a mathematical
statement of a representative inverse problem you are solving. It would be
worth citing the work Perego et al. on optimization-based inversion, if what
you are doing is similar: https://doi.org/10.1002/2014JF003181. BTW, the
basal friction has not been defined, yet it is discussed - it needs to be defined
earlier, when talking about boundary conditions (which needs to be added).

We added a brief description of the mathematics of the inverse problem to be
solved. We also added: “The state to be estimated can be any single input
field to the diagnostic model — basal friction, rheology, or another field that
the user has added by customizing the model.”

Section 4.1: I find this section confusing. I assume you are talking about dis-
cretizing the thickness equation here - that should be made clear. I disagree
with several statements in this section as well. “The simplest explicit timestep-
ping schemes are unstable with CG finite elements” - if you are talking about
CFL stability, this is not true. You need to satisfy a CFL condition which could
give rise to very small time-steps but you can get the scheme to be stable. I'm
also confused about the notion of SUPG as a time-stepping scheme - I think
of SUPG as a finite element approach to deal with advection-dominated flow
problems, for example, that does not have anything to do with time- stepping.



16.

17.

Maybe you are referring to upwinding? In any case, I think SUPG has noth-
ing to do with forward Euler, so the discussion about forward Euler requiring
parameters is erroneous. Additionally, I don’t understand the comment about
implicit Euler smoothing out sharp discontinuities... I believe explicit and im-
plicit Euler have effectively the same diffusion and dispersion properties, so
there should not really be a difference between the schemes. Did the authors
verify their time-stepper on a manufactured problem to ensure that it was
implemented correctly?

This was sloppily written. What we should have said was that SUPG confers
some of the benefits of upwind finite difference stencils when using contin-
uous Galerkin basis functions. I was basing the statement about stability on
the expression for the numerical amplification factor for the 8-scheme with
piecewise linear finite elements from section 3.5.2 in Donea and Huerta, Fi-
nite Element Methods for Flow Problems. In any case, we’ve cut much of
this section to focus more on the implementation in icepack rather than what
other packages use. The text was also out of date; the actual default now is
an implicit scheme with a Lax-Wendroff correction that gives higher order ac-
curacy in time. Our statement that implicit Euler has predominantly diffusive
errors was not to imply that explicit Euler doesn’t share the same property.
We were trying to draw a contrast between what types of errors are tolerable
for the prognostic model as opposed to other problems like damage transport,
which is described in the next paragraph in the text.

Section 4.2: there is an approach discussed in Tezaur et al. (https://doi.org/10.5194/gmd-

8-1197-2015) for dealing with bad initial conditions in a Newton solver that
relies on homotopy continuation that would be worth citing. It is an alter-
nate to the approach you describe that lets you get away with not doing a
line search for Newton. By the way, it should be no surprise that Newton is
not converging without a line search - in general Newton is not guaranteed
to converge from an arbitrary initial guess without the line search.

Added a reference to the Albany paper as well as another one on trust region
methods. We described a fairly rudimentary line search method in more detail
than perhaps is necessary for a reader who’s a seasoned modeler. It’s a bit of
a pet peeve of mine when papers just say “We used Newton!” without any
attention to the globalization strategy, which can make a huge difference to
the solver robustness.

Section 4.3, lines 411-412: there are actually ways to construct weighted
norms to deal with the issue of DOFs having different orders of magnitude
for the purpose of convergence.

I think you can use a lumped mass matrix as the H; in BFGS too, but I find it
to be far preferable to use something like Gauss-Newton which gives mesh-
independent convergence and which achieves close to the second-order rate
of full Newton on many problems. No change to the text.



18.

19.

20.

21.

22.

Section 4.4: Again, it is not clear to me what is your inverse problem. You
need to state this explicitly so it is clear.

See correction to section 3. The point of the inverse solver class is that it is
very general with respect to what field is being inferred and what diagnostic
model is being used. Since the solver was designed to work for many different
inverse problems

Section 4.5.1: you talk about problems defined on “extruded geometries” -
do you ever use non- extruded geometries? It has been shown in various
references that there can be numerical problems for land-ice solvers that do
not use extruded geometries, e.g. Tezaur et al.

We have restricted our implementation to use only extruded geometries. Hav-
ing made this choice, we might not ever be able to solve really geometrically
complex problems like what the Elmer/Ice crowd did with the drainage of the
lake underneath Téte Rousse glacier. But the simplifications that this results
in for the vast majority of glaciological applications are so advantageous that
it’s a sacrifice we’re willing to accept. No change to the text.

Section 4.5.2: I think this section needs to be made earlier, and other BCs
need to be added to that discussion.

See response to previous comment and the additional section we added on
boundary conditions. This section describes some extra care that we had to
do in our implementation which was purely a consequence of our choice of
basis functions and which does not appear in the idealized mathematical form
of the model. In keeping with our overall goal of splitting the paper up into
a section on what we’re solving and a different section on how we’re solving
it, we've kept this section where it is.

Section 4.6: The authors mention running their code on 1 core. Is the code
parallel - can it be run on multiple cores? Are there any hope for performance
portability of the code to take advantage of emerging HPC architectures, e.g.,
GPUs?

Firedrake relies on the package loo.py for code generation, which can target
C and OpenCL. There is ongoing work with the developers of loo.py to target
GPUs and other accelerators by generating OpenCL instead. Firedrake is built
on PETSc and thus can run on parallel machines. See again Rathgeber et al.
2016 for performance and scaling benchmarks; Firedrake has been run on
problems with millions of degrees of freedom on supercomputers, for example
the UK national supercomputer ARCHER. No change to the text.

Section 4.6: Can you please clarify what you mean by the following state-
ment? “Large problems, such as continental-scale modeling, will require
more sophisticated and possibly problem-specific approaches”. I'm wonder-
ing in particular about the problem-specific approach part. There are models
like first order Stokes that can be used at the continental scale and they are
not really problem specific.



23.

24.

25.

We have clarified the text to state that “problem-specific” refers more to the
strategies we use to solve the resulting nonlinear systems of equations rather
than to what equations are being solved, e.g. Stokes vs first-order Stokes: “For
the demonstrations presented below, nearly all simulations run in a matter of
minutes to hours on a single core. We have used sparse LU factorization to
solve linear systems for many problem instances in order to eliminate the lin-
ear solver as a possible failure mode. Defaulting to a robust solution method
is especially important for onboarding novice users who may not be famil-
iar with different iterative linear solvers and preconditioners. Larger prob-
lems, such as continental-scale modeling, will require solving the diagnostic
equations using the conjugate gradient method with an appropriate precondi-
tioner to achieve parallel scalability. The particular structure of the problems
we solve may be useful in choosing a preconditioner. For example, a rudi-
mentary preconditioner for the hybrid model system could use the degree-0
model as the coarse space in a multigrid-type approach. These optimizations
will be the subject of future work.”

Since we use a modal basis in the vertical to discretize solutions of the 3D
model, we can devise a p-type multigrid scheme along this axis. This is an
example of using problem-specific knowledge to choose a solution strategy.
Just using LU or throwing a black-box algebraic multigrid preconditioner at
it would be failing to use this special structure. That said, we did not want to
speculate too much on approaches that we haven’t implemented yet.

p. 20: I don’t understand why you need to create an analytical expression
of (32) using special functions. Is this something specific to your framework,
which requires expressions in a certain form for the symbolic representation?

We don’t need an analytical expression of equation 32, but rather of the an-
tiderivative of that function with respect to u. This problem is specific to
icepack because we have made the choice to use action principles to describe
all of the diagnostic models. A package that also made the choice to use action
principles but which was built on a different finite element modeling library
or coded in an entirely different language would also need the antiderivative
of this function. We are hampered by the fact UFL does not include support
for hypergeometric functions. If we were instead writing everything from
scratch in C++, we could call into Boost or GSL to evaluate hypergeomet-
ric functions. We believe that the benefits outweight the costs but this is a
definite drawback of our approach. No change to the text.

It's great that you have executable documentation in something easy-to-use
such as Jupyter notebooks! (no need to address this comment)

p. 29: are you considering putting in the first-order Stokes/Blatter Pattyn
model into your code framework?

The thing that we mistakenly called the “hybrid” model is really the first order
/ Blatter-Pattyn model. We have rewritten some of the text to try and make
this clearer.



26. The methods do not discuss their code development/testing stance on icepack.
How do users contribute to the code - through pull requests? Is there re-
gression/performance testing? Continuous integration testing? These are all
really important, especially if you have non-experts contributing to the code!

This information is on the icepack website (https://icepack.github.io/developers).
Users contribute through pull requests which are automatically checked against

a regression testing suite. We try to keep the test coverage at 95% or higher.
There is at present no automated performance testing short of looking at the
timings from our CI service. Our development practices have changed ap-
preciably even during the process of writing this manuscript; several of the
contributors are students who are learning more about version control in tan-
dem with learning to implement new or modify existing models. We have
added references in the code and data availability section about where to
find this information.

Minor comments

e “UFL” is not defined in the abstract.

Changed the sentence to: “Icepack is built on the finite element modeling
library Firedrake, which uses the Unified Form Language (UFL), a domain-
specific language embedded into Python for describing weak forms of partial
differential equations.”

* p. 4,line 90: A is also called the “flow factor”. I would mention here that it is
usually a function of the temperature, which comes from a different equation.

* p. 5, line 125: should be “checking”, not “check”. v/

* p. 5, line 126: I think it should be “Bueler” not “Beuler”, if I'm thinking of the
right person. v’

* p. 5, line 147: change “we verified the correctness of the ice shelf model” to
“we verified the correctness of our implementation of the ice shelf model”. v/

* p. 10, line 270: change “we’ll” to “we will”. v/

10



