
Response to review #1

Thank you Doug for this helpful review! Original comments are in blue, our
responses in black.

Summary

In ‘icepack: a new glacier flow modeling package in Python, version 1.0’, Shapero
and co-authors present a promising new ice sheet modeling framework. The frame-
work contains mechanisms for solving both the prognostic mass balance equations
for updating ice sheet geometry, as well as diagnostic solvers for approximations to
the non-linear Stokes equations. Throughout both the software and the manuscript
describing it, the authors focus on ensuring usability (readability), a trait that is
bound to make this software (and paper) frequently used. Despite its accessibil-
ity, the capabilities of icepack are already impressive, made all the more so by its
explicit design prioritization of easy extensibility. I find the manuscript to be excep-
tionally well-crafted, and I think that it could be published as is. That said, I offer
a few suggestions, comments, and points of clarification below.

Minor points

L15-18 It would be nice to have a cited example or three for each of these suggested
use cases. This would help the reader identify the kinds of practical problems
where icepack might fill a need.

We’ve added one or two references for each.

L74 A low aspect ratio isn’t really an approximation; it’s an existential fact. The ap-
proximation that the first order approximation makes is that vertical resistive
stresses (or bridging stresses as they are referred to later in this manuscript)
are small, pressure is hydrostatic, and bed slopes are small.

Changed to: “The first-order model is based on an asymptotic expansion of
the Stokes equations in the ratio of the ice thickness to a typical horizontal
length scale. The aspect ratio of most glacier flows is on the order of 1/20
or less, although there are some exceptions. For example, the main trunk of
Jakobshavn Isbrae in Greenland flows through a very deep and narrow trough
with an aspect ratio closer to 1/5. ”
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L92 It would be useful to offer a reference regarding an anisotropic fluidity.

Added a reference to Gillet-Chaulet et al. 2006.

L100 Not clear where the Legendre transform enters: the viscous and frictional
dissipation can be read off from Eq. 4.

Other reviewers didn’t find this digression useful so we’ve removed it.

Eqs. 6 and 12 While I understand that it is convenient to manipulate the action
to reflect the algebraic manipulations to yield the analytical SIA solution, the
break in symmetry between Eq. 6 and Eq. 12 is frustrating, given that they
both are name ‘gravity’, and that they should in some sense be the same re-
gardless of which strain rates are assumed to be zero.

These modules were implemented by two different authors, the SSA / hy-
brid models by myself (DRS) and the SIA model by Jessica Badgeley (second
author) as a project for her PhD thesis and to learn more about finite ele-
ment analysis. We recognize that there’s a discrepancy here and this will be
corrected in future releases of the package.

L144 That the terminal potential term, Eq. 13 disappears is not obvious. This
should probably be clarified, since many readers will be surprised by this.

Expanded the explanation to: “Additionally, the terminal stress term of the
action disappears after applying integration by parts to the gravity term to
shift the gradient of the surface elevation over onto the velocity.”

L152 Cite the method of manufactured solutions.

Added a citation to Roache 2002, Code verification by the method of manu-
factured solutions.

L159 The benefit to avoiding complicated 3D meshing should not be under- stated,
in addition to the reduction in the cost of computational solution.

3D meshing is something to be avoided, but we make a big deal elsewhere
in the paper about using extruded meshes. With extruded meshes you only
need to do 2D meshing, for which there are algorithms with much better
guarantees, but solving 3D problems like the Stokes equations is still possible.
We chose not to add any text here as it would then contradict or obscure some
of the points we make later.

L188 This is a bit of a red herring, given that impenetrability is a natural bound-
ary condition on the incompressibility equation. It can go right in the action
principle, no extra Lagrange multiplier (besides pressure) needed.

I don’t think this is entirely correct. Imposing zero velocity at the boundary
is easy, but imposing no normal flow or a fixed normal flow together with
friction along the opposite directions is much more challenging. When the
boundary is flat, you can set one component of the velocity to 0. But if the
finite element basis for the velocity has degrees of freedom that are located at
the mesh vertices, you have to confront the fact that the unit outward normal
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vector isn’t uniquely defined at the mesh vertices. In the next sentence we
cited a paper from the Elmer/Ice group where they devised an ad-hoc (but
still very effective) scheme for defining the normal vector at mesh vertices
and thus imposing this boundary condition. You can also do it with Nitsche’s
method for linear problems but to my knowledge no one has figured that
out for power-law fluids. I think that the natural boundary condition you’re
thinking of in most weak formulations of the Stokes equations is that the
average of the pressure is zero.

L367 I’m surprised by this. For challenging geometries, I’ve always needed to sta-
bilize even when using implicit Euler. Are you sure that implicit Euler is un-
conditionally stable even for non-linear advection like this?

See Donea and Huerta, Finite element methods for flow problems, chapter 3,
sections 4-6. This section was also written very early on but became out of
date by the time we submitted the paper. Since then, we added an implicit
version of the Lax-Wendroff scheme, which has better stability properties and
higher order accuracy. The text has been amended to reflect this change.

We did have similar experiences to what you describe when preparing the
MISMIP+ test case for this paper. The melt phase produces very high abla-
tion rates concentrated in a small region right near the grounded line. In
our initial setup, the mesh we used didn’t adequately resolve this feature.
The finite element interpolation errors can then have an oscillatory pattern
that, while not directly amplified by the implicit Euler timestepping scheme
as such, still persists and gives a nonsense solution. This behavior manifests
even at timesteps substantially below the CFL timestep. High-amplitude os-
cillatory garbage in the thickness field can then result in unrealistically large
driving stresses and crash the nonlinear solver for the velocity. The extra
terms from the Lax-Wendroff method help to diffuse out these oscillatory fea-
tures. Both schemes give good results when the mesh is sufficiently refined;
the Lax-Wendroff scheme just require less refinement. So this could be more
an issue of spatial resolution than stability of the timestepping scheme. You’re
right that saving users from having to think about the CFL condition doesn’t
completely alleviate all the difficulties and we state as much in the next sen-
tence.

L453 Many advances have occurred in the last 5 years regarding gradient descent
due to its necessity for optimizing neural networks. These may yet be useful
in this context if you have to deal with a large scale optimization problem
where forming the Hessian becomes prohibitive.

One hard criterion we have is that the method needs to naturally map from
the dual of the parameter space (where the gradient lives) back to the pa-
rameter space itself. Neglecting to do so often results in unspeakable horrors
like the vertex degrees of freedom converging at a different rate than the
edge degrees of freedom under mesh refinement. See Schwedes et al. 2017,
Mesh Dependence in PDE-Constrained Optimisation. Using the Hessian or an
approximation does that. The acceleration tricks for first-order optimization

3



methods are really amazing but I’ve yet to find a nice way to adapt them to
problems posed over Sobolev spaces. By contrast, I know that I can scale
second-order methods to larger problems than we’re solving now by using
matrix-free application of the Hessian and coming up with better precondi-
tioners.

L459 Gauss-Newton needs a reference if you’re not going to describe it here.

We added a reference to Pratt et al. 1998 which, although focused on appli-
cations in seismology, I think does a better job describing it than any other
reference.

Eq. 34 It’s worth noting that the Schoof law is phenomenological, and was selected
because it has the right shape and obeys Iken’s bound. As such, if your sliding
law obeys Iken’s bound and looks right, then it’s not any less valid.

This was stated around line 586 but it makes more sense to say that earlier
in the text. We’ve moved the statement accordingly.

L580 I think that having to specify a variational principle for the sliding law is
useful because it guarantees a law that is positive (semi-)definite, as it must
be to be physical.

I’m not completely sure what you mean. If the basal shear stress has the wrong
sign this is arguably just as easy to check by looking at the action functional
as it is a nonlinear system of equations. If you mean that the action has to be
convex then this isn’t true, the sliding law could be rate-weakening, but then
there might be multiple steady states.

L701-713 I enjoyed reading this paragraph, but I wonder if stabilizing the Stokes
equations is the best illustration of the point, given that icepack does not
in fact have Stokes equations implemented (although I imagine it could be
done in short order). Maybe stabilizing a transport equation would be a more
appropriate case?

This would indeed be a stronger point if we actually had a Stokes solver (it’s
in the works now) but the example was just to be illustrative. No change to
the text.
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