Submitted as: model evaluation paper 05 Feb 2021
Submitted as: model evaluation paper | 05 Feb 2021
Modelling Gas Exchange and Biomass Production in West African Sahelian and Sudanian Ecological Zones
- 1Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany
- 2Laboratoire d’Ecologie Appliquée, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, Cotonou, Bénin
- 3Biodiversity and Landscape Unit, Université de Liège Gembloux Agro-Bio Tech, Gembloux, Belgium
- 4International Livestock Research Institute (ILRI), Ouagadougou, Burkina Faso
- 5University of Augsburg, Regional Climate and Hydrology Research Group, Augsburg, Germany
- 6International Livestock Research Institute (ILRI), Nairobi, Kenya
- 7HydroSciences Montpellier, Univ. Montpellier, IRD, CNRS, Montpellier, France
- 8Centre de Suivi Ecologique (CSE), Dakar, Senegal
- 9Satellite-based Climate Monitoring, Deutscher Wetterdienst (DWD), Offenbach, Germany
- 10Géosciences Environnement Toulouse (GET), CNRS, IRD, UPS, Toulouse, France
- 11CIRAD, UMR Eco&Sols, BP1386, CP18524, Dakar, Senegal
- 12Eco&Sols, Univ Montpellier, CIRAD, INRAE, IRD, Institut Agro, Montpellier, France
- 13LMI IESOL, Centre IRD-ISRA de Bel Air, BP1386, CP18524, Dakar, Senegal
- 14Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- 15Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
- 16Department of Physical Geography and Ecosystem Sciences, Lund University, Lund, Sweden
- 1Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany
- 2Laboratoire d’Ecologie Appliquée, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, Cotonou, Bénin
- 3Biodiversity and Landscape Unit, Université de Liège Gembloux Agro-Bio Tech, Gembloux, Belgium
- 4International Livestock Research Institute (ILRI), Ouagadougou, Burkina Faso
- 5University of Augsburg, Regional Climate and Hydrology Research Group, Augsburg, Germany
- 6International Livestock Research Institute (ILRI), Nairobi, Kenya
- 7HydroSciences Montpellier, Univ. Montpellier, IRD, CNRS, Montpellier, France
- 8Centre de Suivi Ecologique (CSE), Dakar, Senegal
- 9Satellite-based Climate Monitoring, Deutscher Wetterdienst (DWD), Offenbach, Germany
- 10Géosciences Environnement Toulouse (GET), CNRS, IRD, UPS, Toulouse, France
- 11CIRAD, UMR Eco&Sols, BP1386, CP18524, Dakar, Senegal
- 12Eco&Sols, Univ Montpellier, CIRAD, INRAE, IRD, Institut Agro, Montpellier, France
- 13LMI IESOL, Centre IRD-ISRA de Bel Air, BP1386, CP18524, Dakar, Senegal
- 14Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- 15Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
- 16Department of Physical Geography and Ecosystem Sciences, Lund University, Lund, Sweden
Abstract. West African Sahelian and Sudanian ecosystems are providing essential services to people and also play a significant role within the global carbon cycle. However, climate and land use are dynamically changing and it remains uncertain how these changes will affect the potential of these regions for providing food and fodder resources or the biosphere-atmosphere exchange of CO2. In this study, we investigate the capacity of a process-based biogeochemical model, LandscapeDNDC, to simulate net ecosystem exchange (NEE) and aboveground biomass of typical managed and natural Sahelian and Sudanian savanna ecosystems. We tested the model for various sites with different proportions of trees and grasses, as well as for the most typical arable cropping systems of the region. In order to describe the phenological development with a common parameterization across all ecosystem types, we introduced soil-water availability in addition to temperature as a driver as seasonal soil water-shortage is a common feature for all these systems. The new approach was tested by using a sample of sites (calibration sites) that provided NEE from flux tower observations and leaf area index data from satellite images (MODIS). For assessing the simulation accuracy, we applied the calibrated model to 42 additional sites (validation sites) across West Africa for which measured aboveground biomass data were available. The model showed a good performance regarding simulated biomass development. Overall, the comparison of simulated and observed biomass at sites with a dominating land cover of crops, grass or trees yielded correlation coefficients of 0.82, 0.94, and 0.77 and the Root Mean Square Error of 0.15, 0.22, and 0.12 kg m−2, respectively. In absolute terms, the model results indicate above-ground carbon stocks up to 1733, 3291, and 5377 kg C ha−1 yr−1 for agricultural, savanna grasslands, and savanna mixed tree-grassland sites. Carbon stocks as well as exchange rates correlated in particular with the abundance of trees. The simulations indicate higher grass biomass and crop yields under more humid climatic conditions as can be found in the Sudanian savanna region. Our study shows the capability of LandscapeDNDC to accurately simulate carbon balances in natural and agricultural ecosystems in semi-arid West Africa under a wide range of conditions, so that it might be used to assess the impact of land-use and climate change on the regional biomass productivity.
Jaber Rahimi et al.
Status: open (until 02 Apr 2021)
-
CEC1: 'Comment on gmd-2020-417', Juan Antonio Añel, 03 Mar 2021
reply
Dear authors,
Please, in the next step of the review process, be sure that you fix the following issues with your paper:
- The code of the LandscapeDNDC model must be stored in a permanent archive. For example, Zenodo.
- You must include the name of the model and the version that you use in the title of the manuscript.Best regards,
Juan A. Añel
Geosc. Mod. Dev. Executive Editor-
AC1: 'Reply on CEC1', Rüdiger Grote, 05 Mar 2021
reply
Thank you for indicating the issues that we will fix with the next step of the reviewing process. More specifically,
- we will change the title, probably by adding 'using LandscapeDNDC' (also depends on potential requests of the reviewers that might lead to further changes but that will in any case include the model name)
- we will provide the executable as well as the model code of the respective model version within a permanent archive that will be hosted by the KIT/IMK-IFU and will be accessible freely via the models website.
Best regards
-
CEC2: 'Reply on AC1', Juan Antonio Añel, 05 Mar 2021
reply
Dear authors,
Please, be sure that the chosen archive complies with our 'Archive standards'. We could request evidence that it is funded to be available and online for over more than a decade.
Best regards,
Juan A. Añel
Geosc. Mod. Dev. Executive Editor
-
AC2: 'Reply on CEC2', Rüdiger Grote, 05 Mar 2021
reply
Thanks for the reminder. We have considered the archive standards and can confirm that we are able to provide sufficient support for data security, identification, and availability (possibly with the support of the KIT data management support, https://www.scc.kit.edu/en/services/5591.php). We will specify the exact means in further elaborations of the manuscript.
Best regards
-
AC2: 'Reply on CEC2', Rüdiger Grote, 05 Mar 2021
reply
-
CEC2: 'Reply on AC1', Juan Antonio Añel, 05 Mar 2021
reply
-
AC1: 'Reply on CEC1', Rüdiger Grote, 05 Mar 2021
reply
Jaber Rahimi et al.
Jaber Rahimi et al.
Viewed
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
226 | 67 | 7 | 300 | 3 | 4 |
- HTML: 226
- PDF: 67
- XML: 7
- Total: 300
- BibTeX: 3
- EndNote: 4
Viewed (geographical distribution)
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1