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Abstract 1 
Nitrogen oxides (NOx = nitric oxide (NO) + nitrogen dioxide (NO2)) are important trace gases that 2 
affect atmospheric chemistry, air quality, and climate. Contemporary development of NOx 3 
emissions inventories is limited by the understanding of the roles of vegetation (net NOx source or 4 
net sink), gasoline and diesel in vehicle emissions, and the application of NOx emission control 5 
technologies. The nitrogen stable isotope composition (δ15N) of NOx is an effective tool to evaluate 6 
the accuracy of the NOx emission inventories, which are based on different assumptions. In this 7 
study, we traced the changes in δ15N values of NOx along the “journey” of atmospheric NOx, driven 8 
by atmospheric processes after different sources emit NOx to the atmosphere. The 15N was 9 
incorporated into the emission input dataset, generated from the US EPA trace gas emission model 10 
SMOKE (Sparse Matrix Operator Kernel Emissions). Then the 15N incorporated emission input 11 
dataset was used to run CMAQ (the Community Multiscale Air Quality Modeling System). The 12 
simulated spatiotemporal patterns in NOx isotopic composition for both SMOKE outputs and 13 
CMAQ outputs were compared with corresponding atmospheric measurements in West Lafayette, 14 
Indiana, USA. By enhancing NOx deposition, we simulated the expected d15N of NO3- assuming 15 
no isotope fractionation during chemical conversion or deposition. These simulations were 16 
compared to d15N of NO3- in NADP sites. The results indicate the potential underestimation of 17 
emissions from soil, livestock waste, off-road vehicles, and natural gas power plants and the 18 
potential overestimation of emissions from on-road vehicles and coal-fired power plants, if only 19 
considering the difference in NOx isotopic composition for different emission sources. The 20 
estimation of atmospheric δ15N(NOx) using CMAQ shows better agreement (by ~3‰) with 21 
observations than using SMOKE (Sparse Matrix Operator Kernel Emissions), due to the 22 
consideration of mixing, dispersion, transport, and deposition of NOx emission from different 23 
sources. 24 
  25 
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 1 
1. Introduction 2 

NOx are important trace gases that affect atmospheric chemistry, air quality, and climate (NOx 3 
= NO + NO2). The main sources of tropospheric NOx are emissions from vehicles, power plants, 4 
agriculture, livestock waste, as well as the natural by-product of nitrification and denitrification 5 
occurring in soil, and lightning (Galloway, et al., 2004). The NOx photochemical cycle generates 6 
OH and HO2 radicals, organic peroxy radicals (RO2), and ozone (O3), which ultimately oxidize 7 
NOx into NOy (NOy = NOx + HONO + HNO3 + HNO4 + N2O5 + other N oxides). During the 8 
photochemical processes that convert NOx to NOy, ground-level concentrations of O3 become 9 
elevated and secondary particles are generated. Secondary aerosols in turn affect cloud physics, 10 
enhancing the reflection of solar radiation (Schwartz, 1996) and are hazardous to human health 11 
(Lighty et al., 2000). Thus, the importance of NOx in air quality, climate, and human and 12 
environmental health makes understanding the spatial and temporal variation in the sources of NOx 13 
a vital scientific question.  14 

Despite years of research, however, there are still several significant uncertainties in the NOx 15 
budget. About 15% of global NOx emissions, ranging from 6.6 to 21 Tg N yr-1, is derived from 16 
global soil NOx emissions yet evaluating and verifying emission rates using both laboratory and 17 
field measurements is still a challenge (Jaeglé et al., 2005; Yan et al., 2005; Stehfest and Bouwman, 18 
2006; Hudman et al., 2012). Soil NOx emissions vary by different biome types, meteorological 19 
conditions, and soil physicochemical properties. The application of N fertilizer also has a strong 20 
effect on soil NOx emissions, which can dramatically increase during the first 1-2 days after N 21 
fertilizer application and can take several weeks for the emission rate to drop to pre-fertilizer levels 22 
(Ludwig et al., 2001). Furthermore, the role of vegetation, acting as a net source of atmospheric 23 
NOx when ambient NOx concentration is below the “compensation point”, while acting as a net 24 
sink of atmospheric NOx when ambient NOx concentrations are above it (Johansson, 1987; Thoene, 25 
Rennenberg & Weber, 1996; Slovik et al., 1996; Webber & Rennenberg, 1996). This significantly 26 
impacts the biotic NOx emission inventory (Almaraz et al., 2018). Uncertainties also exist in the 27 
amount of NOx emitted during the combustion of fossil fuels by vehicles and industry. According 28 
to Parrish (2006), the estimation of on-road vehicle NOx emission has at least 10 to 15% 29 
uncertainty. For the mileage-based algorithm, which is used in the National Emission Inventory 30 
(NEI), the uncertainty is caused by the limited number of sites to determine the emission factors 31 
of vehicle classifications and emission types (Ingalls, 1989; Pierson et al., 1990; Fujita et al., 1992; 32 
Pierson et al., 1996; Singer and Harley, 1996). The uncertainty of the alternative fuel-based 33 
approach is caused by the fuel sales data and emission factors (Sawyer et al., 2000). The 34 
uncertainty in power plant NOx emissions results from the choice of emission control technologies, 35 
of which the removal efficiencies of NOx emission are different. NOx removal by low NOx burning, 36 
over-fire air reduction, and selective non-catalytic reduction is highly variable, ranging from 50 to 37 
75% (Srivastava et al., 2005). 38 

The nitrogen stable isotope composition of NOx might be a useful tool to help resolve the 39 
uncertainties of how NOx emission sources vary in space and time because natural and 40 
anthropogenic NOx sources have distinctive 15N/14N ratios (Ammann et al., 1999; Felix et al., 2012; 41 
Felix and Elliott, 2013; Fibiger et al., 2014; Heaton, 1987; Hoering, 1957; Miller et al., 2017; 42 
Walters et al., 2015a, 2015b, 2018). This variability in NOx 15N/14N ratios is quantified by  43 
δ15N(NOx) (‰) = [(15NOx/14NOx) / (15N2/14N2) air -1] × 1000)    Eq. (1) 44 
 45 
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where 15NOx/14NOx is the measurement of relative abundance of 15N to 14N in atmospheric NOx, 1 
compared with the ratios in air N2 = 0.0036. Previous research has shown that there are distinctive 2 
differences in δ15N values for NOx from different emission sources and significant variations 3 
within each source (Fig. 1). Soil NOx has the lowest δ15N values (Li & Wang, 2008; Felix & Elliott, 4 
2014; Yu & Elliott, 2017; Miller et al., 2018) followed by waste (Felix & Elliott, 2014) and  NOx 5 
emissions from vehicles (Moore, 1977; Heaton, 1990; Ammann et al., 1999; Pearson et al., 2000; 6 
Savard et al., 2009; Redling et al., 2013; Fibiger, 2014; Felix & Elliott, 2014; Walters et al., 2015a; 7 
Walters et al., 2015b). The NOx emissions from natural gas power plants are isotopically heavier 8 
than soil and waste (Walters et al., 2015b) while those from coal-fired power plants have the 9 
highest values (Heaton, 1987; Heaton, 1990; Snape, 2003; Felix et al., 2012; Felix et al., 2015; 10 
Savard et al., 2017). The implement of emission control technology tends to increase NOx δ15N 11 
values in both coal-fired power plants (Felix et al., 2012) and vehicles (Walters et al, 2015a). These 12 
distinctive differences in δ15N values among different NOx emission sources suggest δ15N could 13 
be an effective tracer of atmospheric NOx sources. For example, Redling et al. (2003) found higher 14 
δ15N of NO2 in samples collected closer to the highway compared to those adjacent to a forest, 15 
showing the emissions from vehicles were dominant near the highway. A strong positive 16 
correlation between the amount of NOx emission from coal-fired power plants within 400 km 17 
radial area of study sites and δ15N(NO3-) of deposition has been demonstrated (Elliott et al., 2007; 18 
2009). What is lacking is a systematic way of connecting d15N values of NOx sources, regional 19 
emissions, and data from numerous studies that measure d15NOy (Elliott et al., 2009; Garten, 1992; 20 
Hall et al., 2016; Occhipinti, 2008; Russell et al., 1998).  21 

 22 
Here we have simulated the emission of 15NOx and its mixing in the atmosphere and compared 23 

the predicted δ15N(NOx, NO3-) values to observations. The δ15N values of atmospheric NOx are 24 
impacted by three main factors. The first is the inherent variability of the δ15NOx emissions in time 25 
and space. Secondly, atmospheric processes that mix the emitted NOx, blurring multiple emission 26 
sources within a mixing lifetime relative to the NOx chemical lifetime (2-7 hours), which depends 27 
on its concentration and photooxidation chemistry, that also vary in time and by location (Laughner 28 
& Cohen, 2019). And thirdly, isotope effects occurring during tropospheric photochemistry may 29 
alter the δ15NOx emissions as they are transformed from NOx into NOy. In this paper, we consider 30 
the effects from the first and second considerations, the temporal and spatial variation in NOx 31 

Figure 1: Box (lower quartile, median, 
upper quartile) and whisker (lower 
extreme, upper extreme) plot of the 
distribution of δ15N values for various 
NOx emission sources. 
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emission and the impacts from atmospheric transport and deposition processes (source and mixing 1 
hypothesis). We accomplish this by incorporating an input dataset of 15N emissions used in 2 
simulations by the Chemistry-Transport Model (CTM) used in CMAQ (The Community 3 
Multiscale Air Quality Modeling System). In a companion paper, we will discuss the impacts of 4 
tropospheric photochemistry by incorporating a 15N chemical mechanism (Fang et al., 2021) into 5 
CMAQ. The ultimate goal will be to evaluate the accuracy of the NOx emission inventory using 6 
15N. 7 
 8 
2. Methodology 9 
2.1 Incorporating 15N into NOx emission datasets 10 

The EPA trace gas emission model SMOKE (Sparse Matrix Operator Kernel Emissions) was 11 
used to simulate 14NOx and 15NOx emissions. 14NOx emissions were estimated using the SMOKE 12 
model based on the 2002 NEI (National Emission Inventory, USEPA, 2014), and 15N emissions 13 
were determined using these 14NOx emissions and the corresponding δ15N values of NOx sources 14 
from previous research (Table 1). Using the definition of δ15N (‰), 15NOx emitted by each 15 
SMOKE processing category (area, biogenic, mobile, and point) was calculated by 16 

        𝑁𝑂!(𝑖)"# = 𝑁𝑂!(𝑖)"$ × 𝑅%&! 	(𝑖)
"#                                     Eq. (2) 17 

where 14NOx (i) are the NOx emissions for each category (i) obtained from NEI and SMOKE and 18 
15RNOxi is a 15N emission factor (15NOXi/14NOxi) calculated by: 19 

𝑅%&!	(𝑖)
"# =	 ((

"#%$%!	(()
")))

+ 1) × 0.0036                                Eq. (3) 20 
δ15NNOx(i) is the δ15N value of some NOx source (i = area, biogenic, mobile, and point) and 0.0036 21 
is the 15N/14N of air N2, the reference point for δ15N values.  22 
  23 

Annual NOx emissions for 2002 were obtained from the NEI at the county-level and were 24 
converted into hourly emissions on a 12 km x 12 km grid as previously published (Spak, Holloway, 25 
& Stone, 2007). The modeling domain includes latitudes between 37 º N and 45 º N, and longitudes 26 
between 98º W and 78º W, which fully covers the Midwestern US (Fig. 2, in yellow). SMOKE 27 
categorizes NOx emissions into four “processing categories”: Biogenic, Mobile, Point, and Area 28 
(Table 1). The choice of the 2002 version of NEI is, in part, arbitrary. However, to compare the 29 
model predicted d15N values with observations, it requires the emission inventory to be relevant to 30 
the same timeframe as the d15N measurements of the NOy. The data sets we compare to the model 31 
(discussed below) span from 2002 to 2009, thus the 2002 inventory is more relevant than later 32 
inventories (2014 onward). The county-level annual 14NOx emission for the Midwestern US from 33 
NEI was converted to the dataset with hourly 14NOx emissions. Livestock waste and off-road 34 
vehicles classified as area sources and each county was gridded evenly. Power plants are regarded 35 
as the point source and are located in grids corresponding to their latitudes and longitudes. On-36 
road vehicles were regarded as the mobile source by SMOKE estimated by MOBILE model (see 37 
SA). The soil NOx produced by microbial nitrification and denitrification is classified as biogenic 38 
NOx emission and was estimated by BEIS model (see SA). 39 
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 1 
 2 

SMOKE Category NEI Sector δ15N-NOx (‰) range  δ15N-NOx (‰) this study 

Biogenic Soil -59.8 ~ -14.0 -34.3 (Felix & Elliott, 2014) 

Area 

Livestock Waste -29 ~ -8.5 -18.8 (Felix & Elliott, 2014) 

Off-road Gasoline 
-21.1 ~ 8.5 

-11.5 (Walters et al., 2015b) 

Off-road Diesel -10.5 (Walters et al., 2015b) 

Mobile 
On-road Gasoline 

-28.1 ~ 17 
-2.7 (Walters et al., 2015b) 

On-road Diesel -2.5 (Walters et al., 2015b) 

Point 

Coal-fired Fossil Fuel 
Combustion -19.7 ~ 25.6 

15 (Felix et al., 2012) 

Natural Gas Fossil 
Fuel Combustion -16.5 (Walters et al., 2015) 

 3 
Table 1: The δ15N values (in ‰) for NOx emission sources based on SMOKE processing 4 

category and NEI sector 5 
 6 
2.1.1 Biogenic 15NOx emissions 7 

The NOx emission from the soil (Biogenic) was modeled in SMOKE using standard 8 
techniques (details in SA) and the δ15N values of biogenic NOx were taken from previous studies. 9 
Li & Wang (2008) measured the NOx fluxes using dynamic flow chambers for 2 to 13 days after 10 
cropland soil was fertilized by either urea (n=9) or ammonium bicarbonate (n=9), and the δ15N 11 
values of NOx ranged from -48.9 ‰ to -19.8 ‰. Felix & Elliott (2014) used passive samplers to 12 
collect NO2 in a cornfield for 20 days, before and after fertilizer application. The δ15N values of 13 

Figure 2: The full geographic domain 
(yellow) and extracted domain (light purple) 
for the study. 
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NOx emissions from these measurements range from -30.8 ‰ to -26.5 ‰. Using a similar 1 
methodology, Miller et al. (2018) collected NO2 between May and June finding δ15N ranging from 2 
-44.2 ‰ to -14.0 ‰ (n=37). Yu & Elliott (2017) measured -59.8 ‰ to -23.4 ‰ in 15 samples from 3 
soil plots in a fallow field 2 weeks after the precipitation. Based on these studies we adopted an 4 
average δ15N value for NOx emissions from the soil of -34.3 ‰ (Li & Wang, 2008; Felix & Elliott, 5 
2014; Yu & Elliott, 2017; Miller et al., 2018).  6 

 7 
2.1.2 Mobile 15NOx emissions 8 

The SMOKE NOx emission from on-road vehicles used standard methods (details in SA) and 9 
used δ15N values from prior studies (Moore, 1977; Heaton, 1990; Ammann et al., 1999; Pearson 10 
et al., 2000; Savard et al., 2009; Redling et al., 2013; Felix & Elliott, 2014; Fibiger, 2014; Walters 11 
et al., 2015a, 2015b). We have excluded studies that infer NOx δ15N by measuring plant proxies or 12 
passive sampling in the environment (Ammann et al., 1999; Pearson et al.,2000; Savard et al. 2009; 13 
Redling et al., 2013; Felix & Elliott, 2014). This is because of equilibrium and kinetic isotope 14 
effects that can occur as NOx reacts in the atmosphere to form NOy, prior to NOx deposition. In 15 
addition, the role vegetation plays in NOx removal and atmospheric processes that mix the δ15N of 16 
emission with the surroundings can also alter the δ15N from the mobile source. Instead, we 17 
estimated the δ15N value of NOx emissions from vehicles only using studies that directly measured 18 
tailpipe NOx emissions. Moore (1977) and Heaton (1990) collected tailpipe NOx spanning -13 ‰ 19 
to 2 ‰, with an average of -7.5 ± 4.7 ‰. Neither Heaton nor Moore noted whether these 6 vehicles 20 
were equipped with any catalytic NOx reduction technology, but it is unlikely since the late 1970 21 
and 80’s s vehicles were seldomly equipped with catalytic NOx reduction technology. Fibiger 22 
(2014) measured 5 samples of NOx from diesel engines without SCR emitted into a smog chamber, 23 
the δ15N values range from -19.2 ‰ to -16.7 ‰ (±0.97 ‰). The most comprehensive studies on 24 
vehicle NOx δ15N values are by Walters et al. (2015a, 2015 b) who measured gas and diesel 25 
vehicles separately, including those with and without three-way catalytic converter (TCC) and 26 
SCR technology. They also measured on-road and off-road vehicles separately. This research 27 
showed that the δ15N of NOx for vehicles without SCR or when SCR was not functioning was 28 
negative, at around -15‰. As SCRs warmed and became efficient at reducing NOx the δ15N value 29 
became less negative and even went positive. The measurements showed that the δ15N values of 30 
NOx emitted by gasoline on-road vehicles averages at -2.5 ± 1.5 ‰, and on-road diesel ranged 31 
from -5 ‰ to 0 ‰.  32 

The emission rate of 15NOx from the mobile source was determined by Eq. 4 grid by grid, 33 
according to the contributions from on-road gasoline vehicles and on-road diesel vehicles, as well 34 
as their corresponding δ15N values of these two types of vehicles grid by grid. NOx emissions from 35 
off-road vehicles are regarded as area sources in SMOKE, which were processed over each county. 36 
In contrast, NOx emissions from on-road vehicles are regarded as the mobile source in SMOKE, 37 
which will be processed along each highway. Each grid emission rate of 15NOx was assigned based 38 
on the contributions from gasoline and diesel vehicles, as well as the relative δ15N values. The 39 
δ15N of on-road gasoline vehicles (-2.7 ± 0.8 ‰) was based on the average of the vehicle travel 40 
time within each region with the same zip code (Walters et al., 2015b). 41 

 𝑁𝑂!	(𝑚𝑜𝑏𝑖𝑙𝑒)"# =	5
("#%$%!	(*+,-*./	0.1)

")))
+ 16 × 0.0036 × 𝑁𝑂!	(𝑜𝑛 − 𝑟𝑜𝑎𝑑	𝑔𝑎𝑠)"$  42 

+5
("#%$%!	(*+,-*./	/(2123)

")))
+ 16 × 0.0036 × 𝑁𝑂!	(𝑜𝑛 − 𝑟𝑜𝑎𝑑	𝑑𝑖𝑒𝑠𝑒𝑙)"$    Eq. (4) 43 

Where δ"#𝑁%&!	(+,-.+/0	1/2) = −12.35	 + 	3.02 × ln(𝑡 + 0.455) 44 
 45 
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2.1.3 Point source 15NOx emissions 1 
NOx point sources are large anthropogenic NOx emitters located at a fixed, stationary position 2 

such as EGUs (electric generating units). Fugitive dust does not significantly contribute to point 3 
NOx emissions, so our inventory focused only on power plants (Houyoux, 2005). Power plants 4 
were separated into two different types: EGU and Non-EGU (e.g. commercial and industrial 5 
combustions). The δ15N value of NOx emitted from power plants have been estimated to vary from 6 
-19.7 ‰ to 25.6 ‰ (Heaton, 1987; Heaton, 1990; Snape, 2003; Felix et al., 2012; Felix et al., 2015; 7 
Walters et al., 2015b; Savard et al., 2017). We have ignored studies that measured δ15N of NO3- or 8 
HNO3 from EGUs (Felix et al., 2015, Savard et al., 2017) and instead, only consider those studies 9 
that directly measured δ15N of NOx. Heaton (1990) collected 5 samples from the different coal-10 
fired power stations finding NOx from 6 ‰ to 13 ‰, with a standard deviation of 2.9 ‰. Snape 11 
(2003) measured δ15N values of 36 samples from power plants using three different types of coals 12 
in combustion chars in a drop tube reactor, with values ranging from 2.1 ‰ to 7.2 ‰, with a 13 
standard deviation of 1.37 ‰. The most comprehensive study on coal-fired power plants' NOx 14 
values was by Felix et al. (2012). They measured the δ15N values of NOx emission from the coal-15 
fired power stations with and without different emission control technologies. 16 coal-fired power 16 
plants with SCR, 3 coal-fired power plants with SNCR, 15 coal-fired power plants with OFA/LNB, 17 
and 8 coal-fired power plants without emission control technology were measured. The δ15N 18 
values of NOx emissions from these 42 measurements range from 9 ‰ to 25.6 ‰, with a standard 19 
deviation of 4.51 ‰. The NOx δ15N values when different emission control technologies were used 20 
varied: the δ15N values of NOx emissions from coal-fired power plants with SCR range from 15.5 ‰ 21 
to 25.6 ‰, those with SNCR ranged from 13.6 ‰ to 15.1 ‰, and those with OFA/LNB ranged 22 
from 9.0 ‰ to 12.6 ‰. The δ15N values of NOx emissions from coal-fired power plants without 23 
emission control technology range from 9.6 ‰ to 11.7 ‰, with a standard deviation of 0.79 ‰. 24 
According to Xing et al. (2013), about half of the coal-fired power plants in the United States are 25 
equipped with SCR. Thus, we assume 15 ‰ for the NOx emissions from coal-fired power plants, 26 
which is the average between SCR and other emission control technologies. 27 

The most comprehensive study on natural gas-fired NOx values (Walters et al. 2015) collected 28 
12 flue samples on the rooftop of a house from the ventilation pipe of a natural gas low-NOx burner 29 
residential furnace without NOx emission control technology. The measurement showed that the 30 
δ15N values of NOx emitted by natural gas power plants average -16.5 ± 1.7 ‰, which we used for 31 
the NOx emission from natural gas power plants. The reason for using these values is because they 32 
were measurements taken directly from the exhaust pipes, rather than inferring from downwind 33 
area or from rain samples, emitted by natural gas power plants, and included power plants with 34 
and without SCR technology. The latitude, longitude, and point sources characteristics (EGU and 35 
non-EGU, coal-fired or natural gas-fired, implementation of emission control technology) of each 36 
power plant was obtained from the US Energy Information Administration (2017). The power 37 
plants were assigned grids by their latitudes and longitudes, and the δ15N values were assigned to 38 
these grids based on their emission characteristics, before determining the emission rate of 15NOx 39 
from point source using Eq. (2) and (3). 40 
 41 
2.1.4 Area source 15NOx emissions 42 

Area NOx (details in SA) δ15N values were based on the assumption that livestock waste and 43 
off-road vehicles (utility vehicles for agricultural and residential purposes) accounted for total area 44 
sources. Livestock waste NOx δ15N values were taken from Felix & Elliott (2014) since it is 45 
currently the only study about the δ15N value of NOx livestock waste emissions. They placed a 46 



 

	 9	

passive sampler with ventilation fans in an open-air and closed room in barns of cows and turkeys, 1 
respectively. The δ15N values of NOx emissions from these measurements range from -29 ‰ to -2 
8.5 ‰. Among these samples, the δ15N of NOx emissions from turkey waste averages at -8.5 ‰, 3 
the δ15N of NOx emissions from cow waste averages at -24.7 ‰. We used -18.8 ‰ as the values 4 
of δ15N values for NOx emissions from livestock waste, which is the weighted average of the δ15N 5 
of NOx from turkey waste and cow waste emissions. We used the δ15N values from Walters et al. 6 
(2015b) to estimate the δ15N value of NOx emissions from the off-road vehicle since it is the latest 7 
in-depth study that measured the δ15N value of NOx specifically from the off-road vehicle. They 8 
collected 45 samples from the tailpipe of 9 different off-road vehicles (gasoline and diesel) with 9 
and without SCR, and before and after the sufficient engine warm-up times. The measurement 10 
showed that the δ15N values of NOx emitted by gasoline-powered off-road vehicles averaged -11.5 11 
± 2.7 ‰, diesel off-road vehicles without SCR averaged -19 ‰ ± 2 ‰, and diesel off-road vehicles 12 
with SCR averaged -2 ‰ ± 8 ‰. The emission rate of 15NOx from area source was determined by 13 
Eq. 5 grid by grid, according to the contributions from waste, off-road gasoline vehicle, and off-14 
road diesel vehicle, as well as their corresponding δ15N values based on previous researches. 15 

 𝑁𝑂!	(𝑎𝑟𝑒𝑎)"# =	5
("#%$%!	(4.152)

")))
+ 16 × 0.0036 × 𝑁𝑂!	(𝑤𝑎𝑠𝑡𝑒)"$  16 

          	+ 5
("#%$%!	(*66,-*./	0.1)

")))
+ 16 × 0.0036 × 𝑁𝑂!	(𝑜𝑓𝑓 − 𝑟𝑜𝑎𝑑	𝑔𝑎𝑠)"$  17 

+5
("#%$%!	(*66,-*./	/(2123)

")))
+ 16 × 0.0036 × 𝑁𝑂!	(𝑜𝑓𝑓 − 𝑟𝑜𝑎𝑑	𝑑𝑖𝑒𝑠𝑒𝑙)"$    Eq. (5) 18 

 19 
 20 

The 15NOx emission data files of each SMOKE processing category was incorporated into the final 21 
dataset based on the δ15N values from previous research (Table 1) and Eq. (2-5).  22 

 23 

δ"#𝑁%&!	(4+4/5) = (

$%!	(.-2.)"# 7 $%!	(8(*0)"# 7 $%!	(9*8(32)"# 7 $%!	(:*(+5)"#

$%!	(.-2.)"; 7 $%!	(8(*0)"; 7 $%!	(9*8(32)"; 7 $%!	(:*(+5)";

).))78
− 1) × 1000  Eq. (24 

6) 25 
 26 

2.2 Simulating atmospheric δ15N(NOx) in CMAQ 27 
In order to investigate the role of mixing in the spatiotemporal distribution of NOx δ15N values, 28 

CMAQ was used to simulate the meteorological transport effects (advection, eddy diffusion, etc). 29 
In this “emission + mixing” scenario grid specific NOx δ15N values emitted blur as NOx mixes 30 
across the regional scale. This blurring will depend on grid emission strength and mixing vigor 31 
and is effectively treating NOx as a conservative tracer. The simulations used the 2002 National 32 
Emission Inventory (NEI), as well as 2002 and 2016 meteorological conditions respectively, in 33 
order to explore how meteorological conditions will impact the atmospheric δ15N(NOx). 34 
Simulations covering the full domain and extracted domain were conducted, in order to explore 35 
and eliminate the bias near the domain boundary. 36 

In addition, CMAQ simulated the d15NOx effect by NOx removal using enhanced deposition. 37 
These “emission + mixing + enhanced deposition” simulations were not imposing an isotope effect 38 
related to dry/wet deposition, rather they are an attempt to show how “lifetime chemistry” alters 39 
NOx d15N values by removing NOx before it can be transported significant distances. For example, 40 
in an “emission + mixing” scenario NOx from a high emission powerplant could travel across the 41 
domain altering regional NOx d15N as it mixes with other grids. By contrast, in the “emission + 42 
mixing + enhanced deposition” scenario most of that NOx would be removed near the power plant, 43 
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effectively constricting its d15N influence. This enhanced deposition effect was simulated by 1 
disabling the chemistry module in CMAQ and enhancing the NOx dry deposition rates (discussed 2 
in 2.2.3). This has an added advantage in that the deposited NOx d15N should be similar to the NO3- 3 
d15N, which is not being generated in this model. We emphasize that in this model the isotope 4 
effects associated with the photochemical transformation of NOx into HNO3 (and other higher N 5 
oxides) and deposition are ignored and will be addressed in the forthcoming paper.  6 
 7 
2.2.1 Meteorology input dataset 8 

To explore the impact of atmospheric processes, the meteorology input datasets for the years 9 
2002 and 2016 were prepared and compared. The CMAQ CTM (CCTM) used the NARR (North 10 
American Regional Reanalysis) and NAM (North American Mesoscale Forecast System) to 11 
convert the weather observations (every 3 hours for NARR, every 6 hours for NAM Analyses) 12 
into gridded meteorological elements, such as temperature, wind field, and precipitation, with the 13 
horizontal resolution of 12 km, and 34 vertical layers, with the thickness, increases with height, 14 
from 50 m near the surface to 600 m near the 50 mb pressure level. These were used to generate 15 
the gridded meteorology files on an hourly basis, using the Weather Research and Forecasting 16 
Model (WRF). To maintain consistency between the NOx emission dataset and the meteorology, 17 
the same coordinate system, spatial domain, and grid size used in the SMOKE model were used 18 
in the WRF simulation. The WRF outputs were used to prepare the CMAQ-ready meteorology 19 
input dataset using CMAQ’s MCIP (the Meteorology-Chemistry Interface Processor; see SA for 20 
details). In these emission-only simulations, the deposition of NOx was effectively set to zero. This 21 
was accomplished by defining YO =14NO and YO2 = 14NO2 (in addition to ZO =15NO and ZO2 = 22 
15NO2) and setting their VDs (deposition velocities) to 0.001 (since setting them to zero collapses 23 
the simulation) in the namelist for the gas-phase species (GC_cb6r3_ae6_aq.nml). 24 

 25 
2.2.2 Initial condition and boundary condition for the simulation 26 

The meteorological fields generated by MCIP were used as the inputs for Initial Conditions 27 
Processor (ICON) and Boundary Conditions Processor (BCON), used for running CCTM of 28 
CMAQ. The ICON program prepares the initial chemical/isotopic concentrations in each of the 29 
3D grid cells for use in the initial time step of the CCTM simulation. The BCON program prepares 30 
the chemical/isotopic boundary condition throughout the CCTM simulation. The CMAQ default 31 
ICON and BCON for a clean atmosphere were used, which had NOx < 0.25 ppb. The 15NOx were 32 
added to the outputs of ICON and BCON, with the concentration equal to 0.0036[14NOx], which 33 
assumes δ15N = 0 at the initial time step and outside the domain of the simulation.  34 
 35 
2.2.3 The role of deposition and chemical transformation of NOx 36 

The deposition rates 14NOx and 15NOx were varied to assess their role in the spatiotemporal 37 
distribution of NOx δ15N value and to emulate photooxidation of NOx. In these “emission + mixing 38 
+ enhanced deposition” simulations, the molecular mass of Y and Z were set equal (14) to ensure 39 
no isotope effect was induced by dry deposition, since the equations for dry deposition have a mass 40 
term in the diffusion coefficient calculation. The 15NOx/NOx deposition rates were amplified by 41 
first magnifying it to 20 times normal (14 kg/hectare/yr) and testing for the change in NOx 42 
concentration relative to the normal deposition rate. Multiple tuning trials were conducted until 43 
the e-folding time (lifetime) of NOx in the atmosphere across the domain averaged about 1 day. 44 
This is a typical average NOx lifetime for a combination of urban, suburban, and rural 45 
environments (Laughner & Cohen, 2019).  This approach is limited since NOx lifetime varies 46 
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depending on oxidation capacity, with urban NOx lifetimes (~2-11 hours) being significantly 1 
shorter than in rural conditions (Fang et al., 2021). This limitation will be resolved once 15N is 2 
included in the gas and aerosol chemistry modules to future versions of CMAQ.    3 
 4 
2.2.4 The simulation over the extracted domain 5 

As mentioned in section 2.2.4, atmospheric NOx δ15N = 0‰ for initial condition and boundary 6 
condition. As a result, the bias occurs near the border of the research area, mainly under the 7 
following two circumstances. Firstly, when the air mass transports out of the research area (Fig. 8 
S1). Due to the lack of the emission dataset, Canada is considered an “emission-free zone” for this 9 
research. As a result, the atmospheric NOx is diluted, which impacts its δ15N values, especially for 10 
those with extreme δ15N values (δ15N < -15‰ or δ15N > 5‰). Secondly, the air mass with 11 
δ15N(NOx) = 0 transports from the “emission-free zone” to the research area (Fig. S2), the 12 
atmospheric δ15N(NOx) is flattened. Therefore, to avoid the bias near the border, the extracted 13 
domain that only covers Indiana, Illinois, Ohio, and Kentucky was determined (Fig. 2, in light 14 
purple), where the measurements of δ15N values at NADP sites are available (Mase, 2010; Riha, 15 
2013). The boundary condition for the simulation over the extracted domain is based on the CCTM 16 
output of the full-domain simulation (BCON code available on Zenodo.org 17 
(10.5281/zenodo.4311986)). 18 
 19 

Results and Discussion 20 
3.1  Simulated spatial variability of NOx emission rates 21 

 22 
We first examine the spatial heterogeneity of the NOx emission rate for a single time period 23 

to illustrate the overall pattern of NOx emission over the domain (Fig. 3). This is because the δ15N 24 
value of total NOx emission is determined by the fraction of each NOx source (Eq. 6), which in 25 
turn is a function of their emission rates. Since our NOx emissions are gridded by SMOKE using 26 

Figure 3: Total NOx emission in the Midwest 
between April and June in tons/day. High NOx 
emissions are associated with major urban 
areas such as Chicago, Detroit, Minneapolis-St 
Paul, Kansas City, St. Louis, Indianapolis, and 
Louisville. 
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the NEI, they are, by definition, corrected with respect to the NEI. However, a brief discussion of 1 
the salient geographic distribution of NOx emissions and comparisons with other studies is 2 
warranted for completeness and as a backdrop for the discussion of NOx fractions and resulting 3 
d15N values. We have arbitrarily chosen to sum the NOx emissions during the April to June time 4 
period for this discussion (Fig. 3). 5 

The seasonal average NOx emissions within the geographic domain during April to June range 6 
from less than 0.01 tons N/day to more than 15 tons N/day, with the seasonal grid average of 0.904 7 
tons/day. This average agrees well with estimates in previous studies for the United States, which 8 
were between 0.81 and 1.02 tons/day (Dignon & Hameed, 1989; Farrell et al., 1999; Selden et al., 9 
1999; Xing et al, 2012). Within 75% of the geographic domain, the NOx emissions are relatively 10 
low, ranging from between 0 and 0.5 tons/day (Fig. S3). Geographically, these grids are located in 11 
rural areas some distance away from metropolitan areas and highways (Fig. 3). NOx emissions 12 
within about 20% of the grids is relatively moderate, ranging between 0.5 and 2.0 tons/day (Fig. 13 
S3). Geographically, these grids are mainly located along major highways and areas with medium 14 
population densities (Fig. 3). Urban centers comprise about 5% of the grids within the geographic 15 
domain and these have high NOx emissions rates, ranging between 2.0 and 15.0 tons/day (Fig. S3). 16 
The metropolitan area's average is 5.03 tons/day, which is nearly 14 times of the average emission 17 
rate over the rest of the grids within the geographic domain (0.37 tons/day) due to the high vehicle 18 
density associated with high population densities. The highest emissions rates are located within 19 
large cities (Fig. 3), such as Chicago, Detroit, Minneapolis-St Paul, Kansas City, St. Louis, 20 
Indianapolis, and Louisville, as well as the edge of the east coast metropolitan area (dark red). 21 
Summing the NOx emissions among the grids that encompass these major midwestern cities, yields 22 
city-level NOx emission rates that vary from 61.2 tons/day (Louisville, KY) to 634.1 tons/day 23 
(Chicago, IL). These city-level NOx emission rates (Table S4) agree well with estimates derived 24 
from the Ozone Monitoring Instrument (Lu et al., 2015). Grids containing power plants are the 25 
significant NOx hotspots within the geographic domain. These account for less than 1% of the 26 
grids, but the NOx emissions from a single grid that contains a power plant can be as high as 93.4 27 
tons/day. Geographically, the power plants are mainly located along the Ohio River valley, near 28 
other water bodies, and often close to metropolitan areas (Fig. 3). The NOx emission rates of the 29 
major power plants within the Midwest simulated by SMOKE (Table S5) match well with the 30 
measurement from the Continuous Emission Monitoring System (CEMS) (de Foy et al., 2015; 31 
Duncan et al., 2013; Kim et al., 2009). The geographic distribution of grid-level annual NOx 32 
emission density in our simulation also agrees with the county-level annual NOx emission density 33 
discussed in the 2002 NEI booklet (Fig. S4; USEPA, 2018b).  34 
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 4 

Figure 4: The geographical distribution of the fraction of NOx emission from each SMOKE 
processing category (area, biogenic, mobile, point) over each grid throughout the Midwest 
between April and June based on NEI-2002. 
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We next examine the spatial heterogeneity of the NOx source fractions (Fig. 4) for the same 1 
time period (April to June). The NOx fraction (f) is defined as the amount of NOx from a source 2 
category normalized to total NOx ( fs =NOx(source)/NOx(total).  Since the δ15NOx is determined 3 
by the NOx emission fractions within each grid it is important to understand where in the domain 4 
these fractions differ and why. The area sources, which mainly consist of off-road vehicles, 5 
agriculture production, residential combustion, as well as the industrial processes, which are 6 
individually too low in magnitude to report as point sources, are fairly uniform in their distribution 7 
across the domain.  8 

The SMOKE simulation shows that NOx emissions from area sources contribute an average 9 
NOx emission fraction (farea) of 0.271 for total NOx emission and 0.290 for anthropogenic NOx 10 
emission within the Midwest from April to June. The fractions of NOx emission from area sources 11 
show a clear spatial variation and range from 0.125 to 0.5 over about 75% of the grids (Fig. S5). 12 
Geographically, the grids with relatively higher farea are located in the rural area away from 13 
highways, especially in the states of Indiana, Illinois, Iowa, Minnesota, and Ohio, where 14 
agricultural is the most common land use classification. In the states of Wisconsin and Missouri, 15 
the farea is slightly lower due to the higher fraction of NOx emission from biogenic sources (fbiog). 16 
In the states of Pennsylvania and Michigan, the farea is slightly lower due to the higher fraction of 17 
NOx emission from mobile sources (fmobile). In addition, the grids with farea greater than 0.75 are 18 
mainly located along the Mississippi River and Ohio River, due to wastewater discharge. 19 

The fraction of biogenic NOx (fbiog) that are predominately by-products of microbial 20 
nitrification and denitrification occurring in soil, shows the clear spatial variation and is highest 21 
(from April to June) in the western portion of the domain (Fig. 4). The average fraction of biogenic 22 
NOx emission within the Midwest from April to June and is 0.065, which is less than 0.5 in more 23 
than 90% of the grids within the geographic domain (Fig. S5). Geographically, the grids with 24 
relatively high fbiog are located in the western regions of the Midwest, away from cities and 25 
highways, in the states of Minnesota, Iowa, Missouri, Wisconsin, and Illinois, where the density 26 
of agricultural acreage and natural vegetation is higher than other states. Furthermore, within 27 
regions with higher fbiog, the obvious low fbiog values occur in the megacities and along the 28 
highways, which agrees well with the land-use related to the biogenic emission. 29 

The SMOKE simulation shows that the NOx emissions from mobile sources contribute to the 30 
fraction (fmobile) of 0.325 for total NOx emission and 0.347 for anthropogenic NOx emission within 31 
the Midwest from April to June. The fmobile shows a clear spatial variation, with relatively higher 32 
fmobile are located in major metropolitan regions and along the highways, where vehicles have the 33 
highest density. In addition, within the states with lower fmobile, the obvious high fmobile values occur 34 
in the megacities and along the highways, which agrees well with the vehicle activities (US Census 35 
Bureau, n.d.). The value of fmobile within the geographic domain distributes evenly on the histogram 36 
(Fig. S5). 37 

The point sources consist mainly of EGUs, as well as commercial and industrial processes 38 
involving combustion. Based on the SMOKE simulation, the NOx emission from point sources 39 
contributes to the fraction (fpoint) of 0.339 for total NOx emission and 0.363 for anthropogenic NOx 40 
emission within the Midwest from April to June. The fractions of NOx emission from the point 41 
source over each grid cell within the geographic domain show a clear spatial variation. 42 
Geographically, the NOx emission from point sources is dominant at the grids, where the power 43 
plants are located, mainly along the Ohio River valley and near other water bodies close to 44 
metropolitan areas. The point sources have no contribution to the NOx emission among about 96% 45 
of the grids within the geographic domain. The rest of the 4% of the grids within the geographic 46 
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domain are the locations of power plants. About 1/4 of the power plants are not at the same grids 1 
as highways, thus these grids have a fraction of at least 0.9 NOx emission from point sources. 2 
Whereas the other 3/4 of the power plants share the same grids with highways/cities, thus the point 3 
sources become relatively less dominant, due to the dilution by the NOx emission from mobile 4 
sources.  5 

 6 
3.2  Simulated spatial variability in d15NOx 7 

 8 
Using these NOx emission source fractions in each grid, the d15N values of NOx were 9 

simulated. Here, the spatial heterogeneity of d15N values of NOx for a single time period is 10 
discussed. The “emission only” simulation of NOx δ15N values (at 06 UTC on July 26) ranged 11 

Figure 5: The δ15N values of NOx emission, (a: 
“no transport” scenario) and the δ15N values 
of atmospheric NOx based on NEI-2002 and 
2016 meteorology (b: “with transport” 
scenario), at 06 UTC on July 26, are presented 
by color in each grid. The warmer the color, 
the higher δ15N values of atmospheric NOx. 
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from -34.3‰ to 14.9‰ (Fig. 5a). The majority of the grids within the domain have NOx δ15N 1 
values lower than -16.3‰. These low δ15N values across most of the domain are due to the δ15N 2 
of -34.3‰ for biogenic NOx emission sources in sparsely populated areas where intensive 3 
agriculture dominates the land use (Fig. 5a). The NOx δ15N values for grids within big cities mainly 4 
ranged between -8.75‰ and -5‰ due to the higher fraction of NOx emission from on-road vehicles 5 
(δ15N = -2.7 ± 0.8‰), which also resolve major highways. The highest value of δ15N occurs at the 6 
grids, where the coal-fired EGUs (+15‰) and hybrid-fired EGUs are the dominant NOx source 7 
(Fig. 5a).  8 

 9 
The effect of atmospheric mixing on the d15NOx spatial distribution was then taken into 10 

account by coupling the 15NOx emissions to the meteorology simulation. There are significant 11 
differences between d15NOx values in the “emission only” (Fig. 5a) and the “emission + transport” 12 
(Fig. 5b) simulations. For example, under the “emission only” scenario (Fig. 5a) the map of d15NOx 13 
values clearly shows the locations of big cities, major highways, and power plants, but these 14 
features are much less obvious in the “emission + transport” (Fig. 5b) simulations. The isotopically 15 
heavier NOx emission from big cities disperses to the surrounding rural areas so that the d15NOx 16 
values in rural areas become elevated relative to the emission-only simulation. Similarly, the NOx 17 
emitted along major highways is transported to the surrounding grids, so that the atmospheric NOx 18 
at the grids around the major highways becomes isotopically heavier relative to the “emission only” 19 
scenario. We define Δd15Ntransport as the d15N difference between “emission only” and “emission + 20 
transport” scenarios within the grids covered by the plume to quantify this effect (Fig. 6). The most 21 
obvious and interesting example is the influence of grids containing coal-fired EGUs on the 22 
surrounding region. For example, the southern Illinois’ Baldwin Energy Complex (marked with a 23 
transparent white box on Fig. 5b) that uses subbituminous coal and bituminous coal as its major 24 
energy source. The Δd15Ntransport in the regions is altered as a function of distance away from the 25 
EGU. In this time snapshot (06 UTC on Jul 26), the northeastwards propagating plume of NOx 26 
emission from the EGU creates higher d15NOx over 135 km away (Fig. 6). The domain average 27 
d15N increases from -20.2‰ under the “emission only” scenario to -11.5‰ under the “emission + 28 

Figure 6: The Δd15Ntransport along the plume 
(colored in dark red to orange inside the 
white box on Fig. 5b) over the distance from 
the power plant Baldwin Energy Complex 
(located at southwestern border of Illinois). 
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transport” scenario. While “emission only” d15N pattern shows biogenic emission dominating the 1 
spatial domain, in the “emission + transport” simulation anthropogenic emissions, becomes 2 
dominant over most of the grids, especially for the grids located around major cities' power plants. 3 

 4 
 5 

 6 
 7 

Figure 7: The geographical distribution of the δ15N value of total NOx emissions in each season 
(Winter: Jan-Mar; Spring: Apr-Jun; Summer: Jul-Sep; Fall: Oct-Dec) in per mil (‰) 
throughout the Midwest simulated by SMOKE, based on NEI-2002. 
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3.3 Seasonal variation in d15NOx  1 
We next examine the temporal heterogeneity of d15NOx values over the domain for “emission 2 

only) and interpret them in terms of changes in NOx emission fractions as a function of time. The 3 
predicted δ15N value of total NOx emissions in the Midwest during each season shows a significant 4 
temporal variation (Fig. 7). The δ15NOx ranged from -35 ‰ to 15 ‰, with the annual average over 5 
the Midwest at -6.15 ‰. The maps for different seasons show the obvious changes in δ15N values 6 
over western regions of the Midwest, from green (d15N = -15 ~ -5 ‰) to dark blue (-35 ~ -15 ‰) 7 
during the month from April to October.  8 

In order to qualitatively analyze the changes in δ15NOx among each season, the value of each 9 
grid (Fig. 7) were organized into the histograms (Fig. S6), in order to show the percentage of the 10 
grid in each color scheme. The grids with δ15NOx between -35‰ and -18‰ increase dramatically 11 
from less than 10% during fall (Oct-Dec) and winter (Jan-Mar) to more than 20% during spring 12 
(Apr-Jun) and summer (Jul-Sep). The grids with δ15NOx between -18‰ and -2‰ decrease from 13 
around 90% during fall and winter to around 75% during spring and summer. In addition, the 14 
distribution of δ15NOx shifts to lower values during spring and summer.  15 

The significant temporal variation in the δ15N value of total NOx during different seasons can 16 
be quantitatively explained by changing fractions of NOx emission from the biogenic source in 17 
any grid (Fig. S7) using Eq. (6). Unlike other NOx emission sources, the fraction of NOx emission 18 
from biogenic sources changes significantly among each season within the geographic domain, 19 
especially over the rural areas of the states of Minnesota, Iowa, Missouri, Wisconsin, Illinois, 20 
Indiana, Kentucky, Michigan, and Ohio (Fig. S7). The fraction of NOx emission from biogenic 21 
sources over these areas increases from less than 0.25 to more than 0.50 during the months of April 22 
to October, which is the growing season. During this period, the surface sunlight hours, 23 
temperature, and precipitation are relatively higher and as a result, the canopy coverage of the 24 
plants becomes higher, which leads to the increase of the NOx emission from biogenic sources 25 
(Pierce, 2001; Vukovich & Pierce, 2002; Schwede et al., 2005; Pouliot & Pierce, 2009; USEPA, 26 
2018a). Besides this, the fertilizer application during this period is also responsible for the increase 27 
in soil NOx emission (Li & Wang, 2008; Felix & Elliott, 2014). 28 

In order to qualitatively analyze the changes in the fraction of NOx emission from biogenic 29 
sources among each season, the distributions of the fractions among the same cut-offs as the maps 30 
on Fig. S7 were shown in the histograms (Fig. S8). Comparing the distributions of the fractions of 31 
NOx emission from biogenic sources among the histograms for each season, the effects from the 32 
increasing of biogenic NOx emission during the growing season of plants are clearly shown. In 33 
general, the distribution of the fraction shifts to higher values during spring (Apr-Jun) and summer 34 
(Jul-Sep), indicating the increase of biogenic emissions. As a result, the distribution of δ15NOx 35 
shifts to lower values during the same period (Fig. 7). The percentage of the grids with the fraction 36 
of biogenic emission less than 0.125 decreases dramatically from more than 50% during fall (Oct-37 
Dec) and winter (Jan-Mar) to less than 35% during spring (Apr-Jun) and summer (Jul-Sep). As the 38 
NOx emission from biogenic source becomes dominant, the percentage of the grids with δ15NOx 39 
between -35‰ and -18‰ increases, while the percentage of the grids with δ15N(NOx) between -40 
18‰ and -2‰ decreases, which sufficiently explains the trends shown on Fig. 7.  41 

 42 
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 We then examine the temporal heterogeneity of atmospheric d15NOx under the “emission + 1 
transport” scenario over the domain and interpret them in terms of changes in the propagation of 2 
NOx emission as a function of time. The predicted seasonal average δ15NOx in the Midwest shows 3 
significant variations (Fig. 8). On an annual basis, the δ15NOx values range from -19.2‰ to 11.6‰, 4 
with the annual average over the Midwest domain of -6.10‰. Compared with the seasonal d15NOx 5 
under the “no transport” scenario, the d15NOx under the “with transport” scenario has a similar 6 
overall average while narrower range, due to the transport and mixing of the air mass. This could 7 
be clearly shown on the map, of which the color scheme is smoother, comparing with the seasonal 8 
d15N(NOx) under the “no transport” scenario (Fig. 7). The maps for different seasons show the 9 
obvious changes in δ15N values over western regions of the Midwest, from -8.75 ~ -5‰ in Oct-10 
Mar to -16.25 ~ -12.5‰ in Apr-Oct. 11 

In addition to the variability of the NOx emission source, the significant temporal variation in 12 
the δ15N value of atmospheric NOx during different seasons is controlled by the transport and 13 
mixing of the air mass, under the different meteorology conditions that vary by season. The PBL 14 
height is an effective indicator showing whether the pollutants are under the synoptic condition, 15 
which is favorable for the dispersion, mixing, and transport after being emitted into the atmosphere 16 
(Oke, 2002; Shu et al., 2017; Liao et al., 2018; Miao et al., 2019). In order to qualitatively analyze 17 
the changes in δ15N values driven by atmospheric processes, the difference between the δ15N value 18 
of atmospheric NOx under the “emission + transport” scenario and “emission only” scenario 19 
(Δd15Ntransport) on the seasonal basis were shown (Fig. S9). The seasonal Δd15Ntransport values range 20 
from -21.9‰ to 31.2‰, with an average of 4.9‰. The overall pattern of the Δd15Ntransport values 21 
shows that after the NOx being emitted into the atmosphere, it became isotopically heavier over 22 
the majority of the grids within the domain, and isotopically lighter over the grids that contain big 23 
cities, major highways, and power plants. This could be explained by the transport and dispersion 24 
of biogenic emissions and anthropogenic emission to the surrounding areas. Among the grids 25 
located in rural areas, where the biogenic emission dominates the NOx budget, the δ15N values 26 
increases from around -30‰ to around -10‰, due to transport and dispersion of anthropogenic 27 
emission with relatively high emission rates from surrounding cities, highways, or power plants, 28 
which brings the isotopically heavier NOx into the grids. On the other hand, among the grids 29 
located in the urban area, highways, or power plants, where anthropogenic emission dominates the 30 
NOx budget, the changes in δ15N values decrease is much less obvious, showing the Δd15Ntransport 31 
values ranges between -5‰ and +5‰. This could be explained by the relatively high rates of 32 
anthropogenic emissions. Thus, the effects of the transport and dispersion of biogenic emissions 33 
from the surrounding rural area are minimal. 34 
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 1 
 2 

Comparing the distributions of the difference in δ15N values (Fig. S9) with the 3 
corresponding PBL height (Fig. S10) among the maps of each season, the effects of PBL height 4 
on the propagation of the air mass are clearly shown. The PBL height changes significantly 5 
among each season within the geographic domain, especially over Minnesota, Wisconsin, and 6 

Figure 8: The geographical distribution of the δ15N value of atmospheric NOx in each season 
(Winter: Jan-Mar; Spring: Apr-Jun; Summer: Jul-Sep; Fall: Oct-Dec) in per mil (‰) 
throughout the Midwest (with zoom-in view focusing on Indiana) simulated by CMAQ, based 
on NEI-2002 and 2016 meteorology. 
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Iowa (Fig. S10). The PBL height over these areas increases from less than 250 meters above the 1 
ground level to more than 625 meters above the ground level, during spring (Apr-Jun) and 2 
summer (Jul-Sep), which creates a more favorable synoptic condition for the dispersion, mixing, 3 
and transport of the pollutants after being emitted into the atmosphere. As a result, the difference 4 
in δ15N values shifts to higher values, showing the stronger effect of atmospheric processes 5 
during spring and summer. In order to qualitatively analyze how PBL height affects the level of 6 
the dispersion, mixing, and transport of the pollutants, the average δ15N value of atmospheric 7 
NOx along the plumes of power plants was compared with the domain average PBL height for 8 
each month within the Midwest region. The time series plot (Fig. 9a) shows the same seasonal 9 
trend of δ15N values along the power plants plumes and PBL heights over the domain. 10 
Interestingly, the “turning point” of the δ15N values is about one month later than the “turning 11 
point” of the PBL heights. The scatter plot (Fig. 9b) shows a strong positive correlation between 12 
the domain average PBL height and average δ15N value along the power plants plumes, with 13 
R2=0.85. The positive correlation between PBL height and propagation of air mass, indicated by 14 
the evolution of atmospheric d15NOx in this study, agrees well with the corresponding 15 
measurement in megacities in China from the previous studies (Shu et al., 2017; Liu et al., 2018; 16 
Liao et al., 2018). 17 

 18 

Figure 9: The time series plot (a) and the 
scatter plot (b) of the domain average PBL 
height (m) and the average δ15N (‰) value 
of atmospheric NOx along the plumes of 
power plants during each month throughout 
the Midwest simulated by CMAQ, based on 
NEI-2002 and 2016 meteorology. 
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 The atmospheric d15NOx simulated based on different meteorology input dataset varies. In 1 
order to compare the spatial heterogeneity of the atmospheric d15NOx under different meteorology 2 
conditions, the same analysis was done on the simulation using 2002 meteorology (Fig. S12). 3 
Overall, the simulated atmospheric NOx under 2002 meteorology has the similar geographic 4 
distribution and seasonal trend as the 2016 simulation. In order to qualitatively compare the 5 
propagations of the pollutants under the impact of PBL height, the same plots were generated for 6 
simulation based on 2002 meteorology (Fig. 10). Comparing to the two simulations (Fig. 10a) 7 
reveals a similar seasonal trend but stronger monthly variation. Starting with lower PBL height 8 
during the winter, the corresponding δ15N values along the power plants' plumes were lower, 9 
comparing to the simulation based on 2016 meteorology. As a result, the δ15N values during the 10 
spring and summer were also relatively lower. On the other hand, due to the higher PBL height 11 
during the spring and summer for the simulation based on 2002 meteorology, the δ15N values 12 
decreased slower since July, ending with the relatively higher δ15N values in December. The scatter 13 
plot for the simulation based on 2002 meteorology (Fig. 10b) also shows a strong positive 14 
correlation between the domain average PBL height and average δ15N value along the power plants 15 
plumes, with R2=0.78. The videos of atmospheric d15NOx on an hourly basis throughout the years 16 
2002 and 2016 are available on Zenodo.org (10.5281/zenodo.4311986). 17 

 18 
3.4 The simulation over the extracted domain 19 

Figure 10: The time series plot (a) and the 
scatter plot (b) of the domain average PBL 
height (m) and the average δ15N (‰) value of 
atmospheric NOx along the plumes of power 
plants during each month throughout the 
Midwest simulated by CMAQ, based on NEI-
2002 and 2002 meteorology. 
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 The temporal heterogeneity of difference in atmospheric d15NOx between extracted-domain 1 
simulation and full-domain simulation (Δd15Nextracted-full), to explore the potential bias due to the 2 
motion of the air mass across the boundary of the geographic domain of the study (Fig. 11). The 3 
extracted domain covers the states of Indiana, Illinois, Ohio, and Kentucky, where the 4 
measurements of δ15NO3- at NADP sites are available. The predicted d15N of atmospheric NOx 5 
over the extracted domain shows a similar overall pattern as the d15N within the same domain from 6 
the full-domain simulation, except over the southern border of the domain (Fig. S14). In order to 7 
qualitatively analyze the effects from the initial boundary condition, the δ15N of atmospheric NOx 8 
within IN, IL, OH, and KY were extracted from the full-domain simulation (Fig. 8) and compared 9 
with the extracted-domain simulation within the same region (Fig. 11). The Δd15Nextracted-full values 10 
ranged between -0.25‰ and +0.25‰ over most of the grids within the extracted domain, showing 11 
the difference between extracted-domain simulation and full-domain simulation of δ15N values are 12 
trivial. However, near the southern border of the extracted domain, the obvious Δd15Nextracted-full 13 
values close to +0.75‰ during fall and winter, close to +1.00‰ during spring and summer occur, 14 
which indicate the atmospheric NOx from the extracted-domain simulation is isotopically heavier. 15 
The values of Δd15Nextracted-full become obvious near the southern border, which indicates the 16 
dilution of NOx, after it transports out of the domain since the δ15N on the boundary was set to 17 
zero. Unlike the southern border, the northern, western, and eastern border of the extracted domain 18 
is located a sufficient distance apart from the boundary of the full domain. As a result, the 19 
Δd15Nextracted-full values are similar over the majority grids within the domain. 20 
 21 
 22 
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 1 
 2 
3.5 The role of enhanced NOx deposition 3 

Figure 11: The geographical distribution of the difference between extracted-domain 
simulation and full-domain simulation of δ15N value of atmospheric NOx (Δd15Nextracted-full) in 
each season (Winter: Jan-Mar; Spring: Apr-Jun; Summer: Jul-Sep; Fall: Oct-Dec) in per mil 
(‰) within IN, IL, OH, and KY, based on NEI-2002 and 2016 meteorology. 
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 1 
The “emission + mixing + enhanced deposition” simulations significantly alter the d15N of 2 

atmospheric NOx relative to the normal deposition scenarios. Again, the enhanced deposition cases 3 
are removing NOx at rates that would be similar to those by removal during its conversion into 4 
HNO3. Thus, in these cases the NOx deposited is ~ d15NO3- and the d15NOx is that in the residual 5 
NOx. The impact of high deposition on the residual NOx was assessed using Δd15Nhi-no , the 6 
difference between the δ15NOx values of atmospheric under the “enhanced deposition” and “no 7 
deposition” scenarios. The Δd15Nhi-no range was ± 4‰ and was especially obvious downwind of 8 
the locations with large emission rates, such as power plants or megacities (Fig. 12a).  This can 9 
be explained as a similar fashion to the “no deposition” scenarios (Fig. S15a), where the dispersion 10 
of the isotopically heavier NOx emission from big cities, major highways, and power plants 11 
elevates the d15NOx values in the surrounding grids located in rural areas, the dispersion of the 12 
isotopically lighter biogenic NOx emission lowers the d15NOx values in the surrounding grids 13 
located in the suburb of major cities (Fig. S15b). On the other hand, due to the higher deposition 14 
rate, the transport, mixing, and dispersion of NOx emission from different sources are restricted 15 
within a smaller geographical extent (Fig. S15b). As a result, under the “enhanced deposition” 16 
scenario, the NOx emissions disperse to fewer surrounding grids but lead to a lower d15NOx values 17 
relative to no deposition. The temporal heterogeneity of Δd15N hi-no over the domain was examined 18 
and the impact of enhancing deposition rates of NOx on the δ15N of atmospheric NOx on the 19 
seasonal basis was explored (Fig. 14). The seasonal Δd15N hi-no values range from -3.67‰ to 5.34‰, 20 
with an average of 0.51‰. The overall pattern of the Δd15Nhi-no values shows that due to deposition, 21 
the atmospheric NOx became isotopically lighter over the majority of the grids since EGU and 22 
vehicle NOx is not being transported as far in the enhanced deposition. Conversely, in grids that 23 
contain or surround power plants and big cities the d15NOx increases because it is not as effectively 24 
mixing with low d15NOx from nearby grids. The enhanced deposition simulation somehow 25 
presents the isotope effects associated with the “pseudo photochemical transformation” of NOx 26 
into NOy. 27 

The complete isotope effect of tropospheric photochemistry will be addressed in future work, 28 
which incorporates 15N into the chemical mechanism of CMAQ for the simulation.  29 

Figure 12. The Δd15Nhi-no values at 18 
UTC on July 25.  
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 1 
The δ15NOx deposition (proxy for d15NO3-) simulated by CMAQ at these sites show similar 2 

monthly variations and seasonal trends as SMOKE (Fig. S19). The ranges of δ15N(NOx) values 3 
within each month were narrower, comparing to the simulation from SMOKE, with a minimum 4 
during February (-8.7~ -4.4‰) and a maximum during August (-11.8~-4.2‰). The seasonal trend 5 
shows low δ15N(NOx) during summer, with the median around -7.4‰, and high δ15N(NOx) during 6 
winter, with the median around -6.0‰. Therefore, the CMAQ simulation inherits the monthly 7 
variations and seasonal trends from SMOKE, while the atmospheric NOx becomes isotopically 8 
heavier, after taking atmospheric mixing and transport into account. As mentioned above, most of 9 
the NADP sites are located away from big cities and power plants. Thus, the atmospheric mixing 10 
and transport led to the isotopically heavier atmospheric NOx. 11 

Figure 13: The δ15N values of NOx 
deposition under the “enhanced 
deposition” scenario (a); the Δd15Ndep-atm 
(b), at 18 UTC on July 25, are presented 
by color in each grid (NEI-2002 and 2016 
meteorology). The warmer the color, the 
higher δ15N and Δd15Ndeposition values of 
atmospheric NOx 
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 1 

 2 
3.6  Model-observation comparison of d15NOx 3 

Figure 14: The difference between the δ15N (‰) value of atmospheric NOx under the “enhanced 
deposition” scenario and “no deposition” scenario (Δd15Nhi-no) during each season (Winter: Jan-
Mar; Spring: Apr-Jun; Summer: Jul-Sep; Fall: Oct-Dec), throughout the Midwest simulated by 
CMAQ, based on NEI-2002 and 2016 meteorology. 
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  1 
In order to evaluate the SMOKE/CMAQ simulations of atmospheric δ15N, they were 2 

compared to several existing observational datasets. The δ15N values under the “no transport” 3 
simulation by SMOKE in West Lafayette, IN was compared with the measurement (Walters, Fang, 4 
& Michalski, 2018) from July 8 to August 5, 2016 (Fig. 15). The range of SMOKE simulated 5 
δ15N(NOx) from NEI-2002 ranges from -12.2‰ to -3.8‰, which is within the range of the 6 
corresponding measurement (-33.8 ~ 0.2 ‰). Whereas the median (-5.0 ± 2.2 ‰) of SMOKE 7 
simulated δ15N(NOx) is higher than the median (-11.2 ± 8.0 ‰) of the measured values. The 8 
SMOKE simulated δ15N(NOx) values in West Lafayette, IN are higher than the corresponding 9 
measurements. Therefore, the emission from the soil, livestock waste, off-road vehicles, and 10 
natural gas power plant might be underestimated, and/or the emission from the on-road vehicle 11 
and coal-fired power plant might be overestimated for both versions of NEI. 12 

In addition to the effects from NOx emission sources, the lower values and greater variations 13 
in measured δ15N(NOx) might also be caused by the atmospheric mixing with the emission from 14 
surrounding grids, driven by the atmospheric processes. The δ15N of atmospheric NOx under the 15 
“with transport” scenario by CMAQ with different meteorology conditions (simulated by WRF 16 
for the year 2002 and 2016) was compared with the measurement (Walters, Fang, & Michalski, 17 
2018) from July 8 to August 5, 2016 (Fig. 15). The δ15N of atmospheric NOx simulated based on 18 
2016 meteorology ranges from -15.8‰ to -3.4‰, with the medium of -8.1 ± 2.1‰; the δ15N of 19 
atmospheric NOx simulated based 2002 meteorology ranges from -14.8‰ to -3.7‰, with the 20 
medium of -8.4 ± 1.9‰. The δ15N of the corresponding measurement ranges from -33.8‰ to 0.2‰, 21 
with the medium of -11.2 ± 8.0‰. In general, the CMAQ simulations of δ15N(NOx) under both of 22 
the scenarios conducted in this study perform better than the SMOKE simulation of δ15N(NOx), 23 
which only takes the variability of the NOx emission source into account (Table S7).  24 

 25 
3.7 Enhanced NOx deposition simulating δ15NO3: model observation comparison 26 

Figure 15: The δ15NOx distributions for Lafayette, IN 
from July 8 to August 5, simulated by SMOKE (a), 
CMAQ based on 2016 (b) and 2002 meteorology (c), 
compare with the measured δ15NOx (d) taken on July 
to August in 2016 (box: lower quartile, median, upper 
quartile; whisker: lower extreme, upper extreme; dots 
outside the whisker: outliers) 
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The model was used to predict δ15NO3- and compared with the δ15NO3- in deposition collect 1 
between 2001 and 2003 at several Midwestern NADP sites (Table S4). The measurements of δ15N 2 
values of NO3- at NADP sites from prior studies (Mase, 2010; Riha, 2013) show the similar 3 
monthly variations and seasonal trend as both “no transport” and “with transport” simulations (Fig. 4 
S19). There is a wide range of δ15N(NO3-) values within each month, with a minimum during 5 
January (10.4~17.2‰) and a maximum during August (1.0~16.7‰). The seasonal trend shows 6 
low δ15N(NO3-) during spring, with the median around 9.3‰, and high δ15N(NO3-) during winter, 7 
with the median around 13.0‰. The measured δ15N values of NO3- have the same seasonal trend 8 
as the simulated δ15N values of NOx. Even considering the effect of atmospheric mixing and 9 
transport, the measured δ15N values of NO3- is about 17‰ higher than the simulated δ15N values 10 
of NOx. The difference between CMAQ simulated and measured δ15N values of deposition is 11 
caused by the following two factors: a). the mixture of isotopically lighter NOx from the 12 
surrounding area discussed in section 3.3, and b). the net N isotope effect during the conversion of 13 
NOx to NO3-, which will be addressed in future work. 14 

 15 
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The 30 fold enhanced NOx deposition (see methods) was used to simulate the δ15N value of 1 
NO3- deposition (δ15N(NO3-)) that was then compared to observations (Fig. 16). As previously 2 
noted, rather than explicitly converting NOx into NOy via the chemical mechanism in CMAQ, 3 
which would require writing an isotope-enabled chemical scheme with appropriate rate constants, 4 
we amplified NOx deposition as a surrogate. This amplification reduced the NOx lifetime to about 5 
1 day, thus by calculating the δ15N of NOx in the deposition fraction, as opposed to residual NOx 6 
in the atmosphere, we are approximating the d15N(NO3-) in deposition. The model approximation 7 
was compared to NO3- collected at NADP sites within Indiana, Illinois, and Ohio in the year 2002 8 
(Table S4). The NEI-2002 and WRF2002 were used for the SMOKE emission model and CMAQ 9 
simulations, respectively. The δ15N(NO3-) value in deposition was calculated by δ15N(NO3-) = S 10 

Figure 16: The emission + mixing + deposition CMAQ predicted δ15N value of NOx deposition 
using NEI-2002 and 2002 meteorology compared to the measured δ15N of rain NO3- at NADP 
sites within IN, IL, and OH. 
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fNOxhr d15N(NOx)hr, where fNOxhr is the hourly mole fraction of NOx isotopologue deposited (fNOxhr 1 
= NOxhr/NOxT) and d15N(NOx)hr is the d15N value of NOx in deposition. The total NOx deposited 2 
(NOxT) used to calculate fNOxhr was the amount deposited 5 days prior to the sampling date since 3 
the NADP deposition collection integrate the week. The δ15N values of NOx deposition simulated 4 
by CMAQ under the “enhanced deposition” scenario at each site were compared with the 5 
measurements of δ15N values of NO3 from prior studies (Mase, 2010; Riha, 2013). The scatter 6 
plots show moderate positive correlation between sample δ15N and simulated δ15N, with R2 7 
between 0.16 and 0.57 (Fig. 16). The difference in the trend line equations among the NADP sites 8 
might be caused by the difference in air temperature and photolysis rate, which impact the chemical 9 
mechanisms converting NOx into NOy and will be explored in future study. 10 
 11 
4. Conclusion 12 
    The δ15N of atmospheric NOx was simulated by SMOKE, by considering the NOx emissions 13 
from NEI emission sectors and the corresponding δ15N values from previous research. δ15N is an 14 
effective tool to track the atmospheric NOx, in terms of its evolution of spatial and temporal 15 
composition, altered by atmospheric processes The simulation indicates that the NOx emission 16 
from biogenic sources is the key driver for the variation of δ15N, especially among the NADP sites. 17 
The uncertainties in the δ15N(NOx) simulation are less than 5‰ over the majority of the grids 18 
within the Midwest. For the NOx emission from the regions dominated by biogenic source, the 19 
uncertainties in the δ15N(NOx) simulation are less than 10‰. The uncertainties in the δ15N(NOx) 20 
simulation were well below the difference among the δ15N(NOx) values from different NOx 21 
emission sources (Fig. S20). Comparing with the measurements of δ15N(NO3-) from NADP sites 22 
within Indiana, Illinois, Ohio, and Kentucky, the simulated δ15N agreed well with the seasonal 23 
trend and monthly variation. While the simulated NOx is slightly heavier than the corresponding 24 
measurements in West Lafayette, IN, taken from July to August 2016. According to the previous 25 
research, the uncertainty of NOx emission is 71-250% from soil and 10-15% from the vehicle. The 26 
variations among the removal efficiency of different emission control technologies vary from 30% 27 
to 90%, also causes the uncertainty of power plant NOx emission. In addition, in this study, due to 28 
the lack of measurements, the δ15N of coal-fired and natural gas non-EGUs (industrial boilers, 29 
commercial and residential fuel combustions) were assumed to be the same as the δ15N of coal-30 
fired and natural gas EGUs respectively. Thus, detailed measurements of the δ15N of non-EGUs 31 
are necessary for future study. Besides this, the non-road vehicles (aircraft, ships, and trains) also 32 
need to be included in the future study. 33 

If we only consider the effects from NOx emission sources, the emission from soil, livestock 34 
waste, off-road vehicles, and natural gas power plant in West Lafayette, IN are possible to be 35 
underestimated, and the emission from the on-road vehicle and coal-fired power plant in West 36 
Lafayette, IN are possible to be overestimated. Another reason causing the estimated NOx 37 
isotopically heavier than measured NOx is the mixing caused by atmospheric processes, since the 38 
NOx emission from the surrounding region of West Lafayette, IN is lighter. In addition, the 39 
tropospheric photochemistry could also alter the δ15N values during the processes that convert NOx 40 
to NOy.  41 

After considering the impacts of atmospheric processes, by simulating CMAQ based on the 42 
15N incorporated emission input datasets and the meteorology input dataset simulated from WRF 43 
and MCIP, the performance of the simulated δ15N(NOx) is better. The simulation indicates that the 44 
PBL height is the key driver for the mixture of anthropogenic and natural NOx emission, which 45 
deepens the gap between δ15N of atmospheric NOx and NOx emission. After considering the effects 46 
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of NOx emission sources and atmospheric processes, there is still an obvious gap between the 1 
simulated δ15N(NOx) and the corresponding measurements. Therefore, before adjusting the NOx 2 
emission inventory, the future work is to explore how tropospheric photochemistry alters 3 
δ15N(NOx) by incorporating 15N into the chemical mechanism of CMAQ and comparing the 4 
simulation with the corresponding measurements. With the validation of our nitrogen isotopes 5 
incorporated CMAQ, the NOx emission inventories could be effectively evaluated and improved. 6 
 7 
Data availability: The source code for SMOKE version 4.6 is available at 8 
https://github.com/CEMPD/SMOKE/releases/tag/SMOKEv46_Sep2018. The source code for 9 
CMAQ version 5.2.1 is available at https://github.com/USEPA/CMAQ/tree/5.2.1. The in-detail 10 
simulation results for δ15N of NOx emission based on 2002 and 2016 versions of National Emission 11 
Inventory and the associated python codes are achieved on Zenodo.org (10.5281/zenodo.4048992). 12 
The input datasets for WRF simulation are available at https://www.ncei.noaa.gov/data/. The in-13 
detail simulation results for δ15N of atmospheric NOx under all scenarios discussed in this paper 14 
and the CMAQ-based c-shell script for generating BCON for extracted domain simulation are 15 
achieved on Zenodo.org (10.5281/zenodo.4311986). 16 
 17 
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