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SuperflexPy is an open-source Python framework for constructing conceptual hydrological models for lumped and
semi-distributed applications.

SuperflexPy builds on our 10 year experience with the development and application of Superflex, including collabo-
rations with colleagues at the Eawag (Switzerland), TU-Delft (Netherlands), LIST (Luxembourg), University of Ade-
laide (Australia), and others. The SuperflexPy framework offers a brand new implementation of Superflex, allowing
to build fully customized, spatially-distributed hydrological models.

Thanks to its object-oriented architecture, SuperflexPy can be easily extended to meet your modelling requirements,
including the creation of new components with customized internal structure, in just a few lines of Python code.

Constructing a hydrological model is straightforward with SuperflexPy:

• inputs and outputs are handled directly by the modeler using common Python libraries (e.g. Numpy or Pandas).
The modeller can use hence data files of their own design, without the need to pre- and/or post- process data
into text formats prescribed by the framework itself;

• the framework components are declared and initialized through a Python script;

• the framework components are classes with built-in functionalities for handling parameters and states, routing
fluxes, and solving the model equations (e.g. describing reservoirs, lag functions, etc.);

• the numerical implementation is separated from the conceptual model, allowing the use of different numerical
methods for solving the model equations;

• the framework can be run at multiple levels of complexity, from a single bucket to an entire river network;

• the framework is available as an open source Python package from Github;

• the framework can be easily interfaced with other Python modules for calibration and uncertainty analysis.

Team

SuperflexPy is actively developed by researchers in the Hydrological Modelling Group at Eawag, with the support of
external collaborators.

The core team consists of:

• Marco Dal Molin (implementation and design)

• Dr. Fabrizio Fenicia (design and supervision)
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• Prof. Dmitri Kavetski (design and supervision)

Stay in touch

If you wish to receive e-mails about future developments of the framework, please subscribe to our mailing list clicking
here.

Note: Using SuperflexPy requires a general knowledge of Python and Numpy. Other Python libraries may be needed
for pre- and post- processing of the data.

In line with the Python terminology, we will use the word define when referring to the definition of a class, and
initialize when referring to the creation of an instance of a class, i.e. an object.
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CHAPTER

ONE

INSTALLATION

SuperflexPy is implemented using Python 3 (version 3.7.3). It is not compatible with Python 2.

SuperflexPy is available as a Python package at PyPI repository

The simplest way to install SuperflexPy is to use the package installer for Python (pip). Open the operating system
command prompt and run the command

pip install superflexpy

To upgrade to a newer version (when available), run the following command

pip install --upgrade superflexpy

1.1 Dependencies

SuperflexPy requires the following Python packages

• Numpy

• Numba

All the packages are available through pip and will be installed automatically when installing SuperflexPy.

Note that Numba is required only if the modeler wishes to use the Numba optimized implementation of the numerical
solvers. GPU acceleration (CUDA) is currently not supported but will be explored in future versions.
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TWO

SOFTWARE ORGANIZATION AND CONTRIBUTION

The SuperflexPy framework comprises the following components:

• Source code: Latest version of all the code necessary to use the framework. The source code would normally be
accessed only by advanced users, e.g. to understand the internal organization of the framework, install manually
the latest version, extend the framework to include new functionality, etc.

• Packaged release: Latest stable version of the framework available for users to install and use.

• Documentation: Detailed explanation of the framework.

• Examples: Introduction to SuperflexPy for a new user, providing working models and demonstrating potential
applications.

• Scientific references: Peer-reviewed publications that present and/or use the framework in scientific contexts.

The source code, documentation, and examples are part of the official repository of SuperflexPy hosted on GitHub. A
user who wishes to read the source code and/or modify any aspect of SuperflexPy (source code, documentation, and
examples) can do it using GitHub.

New releases of the software are available from the official Python Package Index (PyPI), where SuperflexPy has a
dedicated page.
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Documentation builds automatically from the source folder on GitHub and is published online in Read the Docs.

Examples are available on GitHub as Jupyter notebooks. These examples can be visualized statically or run in a
sandbox environment (see Examples for further details).

The scientific publication introducing SuperflexPy is currently in preparation and it will be linked here once available.

2.1 Contributions

Contributions to the framework can be made in the following ways:

• Submit issues on bugs, desired features, etc.

• Solve open issues.

• Extend the documentation with new demos and examples.

• Extend and/or modify the framework.

• Use and cite the framework in your publications.

The typical workflow that should be followed when contributing to a GitHub project is described here. In summary,
the following steps should be followed:

1. Fork the SuperflexPy repository to the user GitHub account;

2. Clone the fork on the user computer;

3. Modify the code, commit the changes, and push them to the GitHub fork of SuperflexPy;

4. Make a pull request on GitHub to the SuperflexPy repository.

2.1.1 Branching scheme of the GitHub repository

Updates to SuperflexPy are made directly in the branch master, which represents the most up-to-date branch. The
branch release is used only for the staging of new software releases and, therefore, code should not be pushed
directly to it.

When an update of the code is merged from master to release, a new version of the package is automatically
released on PyPI. Remember to update the version number in the setup.py file to avoid conflicts.

Developers are free to create new branches, but pull requests must be directed to master and not to release.

Documentation and examples are generated from the content of the master branch.
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CHAPTER

THREE

PRINCIPLES OF SUPERFLEXPY

Hydrological models are widely used in engineering and science for prediction and process understanding.

Models can differ depending on how the processes are represented (conceptual vs. physical based models), and how
the physical domain is discretized (from simple lumped configurations to detailed fully-distributed models).

At the catchment scale, conceptual models are the most widely used class of models, due to their ability to capture
hydrological dynamics in a parsimonious and computationally fast way.

3.1 Conceptual models

Conceptual models describe hydrological dynamics directly at the scale of interest. For example, in catchment-scale
applications, they are based on relationships between catchment storage and outflow. Such models are usually rela-
tively simple and cheap to run; their simplicity allows extensive explorations of many different process representations,
uncertainty quantification using Monte Carlo methods, and so forth.

Many conceptual models have been proposed over the last 40 years. These models have in common that they are
composed by general elements such as reservoirs, lag functions, and connections. That said, existing models do differ
from each other in a multitude of major and minor aspects, which complicates model comparison and selection.

Model differences may appear on several levels:

• conceptualization: different models may represent a different set of hydrological processes;

• mathematical model: the same process (e.g. a flux) may be represented by different equations;

• numerical model: the same equation may be solved using different numerical techniques.

Several flexible modeling frameworks have been proposed in the last decade to facilitate the implementation and
comparison of the diverse set of hydrological models.

3.2 Flexible modelling frameworks

A flexible modeling framework can be seen as a language for building conceptual hydrological models, which allows
to build a (potentially complex) model from simpler low-level components.

The main objective of a flexible modeling framework is to facilitate the process of model building and comparison,
giving modelers the possibility to adjust the model structure to help achieve their application objectives.

Although several flexible modeling frameworks have been proposed in the last decade, there are still some notable
challenges. For example:

• implementation constraint can limit the originally envisaged flexibility of the framework;

• the choice of the numerical model can be fixed;
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• the spatial organization can be limited to lumped configurations;

• the ease of use can be limited by a complex software design.

These challenges can impact on usability, practicality and performance, and ultimately limit the types of modeling
problems that can be tackled. The SuperflexPy framework is designed to address many of these challenges, providing
a framework suitable for a wide range of research and operational applications.

3.3 Spatial organization

Hydrologist may need to model large catchments where spatial heterogeneity becomes important. The following
categories of spatial model organization can be distinguished:

• lumped configuration, where the entire physical domain is considered uniform;

• semi-distributed configuration, where the physical domain is subdivided into (usually coarse) areal fractions
that have the same hydrological response and operate in parallel (usually without connectivity between them);

• fully-distributed configuration, where the physical domain is subdivided into a (usually fine) grid. This con-
figuration typically includes flux exchanges between neighboring grid cells.

The lumped approach yields the simplest models, with a low number of parameters and often sufficiently good pre-
dictions. However, the obvious limitation is that if the catchment properties vary substantially in space, the lumped
model will not capture these variations. Nor can a lumped model produce distributed streamflow predictions.

The fully-distributed approach typically yields models with a large number of parameters and high computational
demands, usually related to the resolution of the grid that is used.

The semi-distributed approach is intermediate between the other two approaches in terms of spatial complexity and
number of parameters. A typical example is the discretisation of the catchment into Hydrological Response Units
(HRUs), defined as catchment areas assumed to behave in a hydrologically “similar” way. The definition of HRUs
represents a modelling choice and depends on the process understanding available in the catchment of interest.

3.4 SuperflexPy

SuperflexPy is a new flexible framework for building hydrological models. It is designed to accommodate models
with a wide range of structural complexity, and to support spatial configurations ranging from lumped to distributed.
The design of SuperflexPy is informed by the extensive experience of its authors and their colleagues in developing
and applying conceptual hydrological models.

In order to balance flexibility and ease of use, SuperflexPy is organized in four different levels, which correspond to
different degrees of spatial complexity:

1. elements;

2. units;

3. nodes;

4. network.

The first level is represented by “elements”, which comprise reservoirs, lag functions, and connections. Elements can
represent entire models or individual model components, and are intended to represent specific processes within the
hydrological cycle (e.g. soil dynamics).

The second level is represented by “units”, which connect together multiple elements. This level can be used to build
lumped models or to represent HRUs within a spatially distributed model.

8 Chapter 3. Principles of SuperflexPy
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The third level is represented by “nodes”, where each node contains several units that operate in parallel. Nodes can
be used to distinguish the behavior of distinct units within a catchment, e.g., when building a (semi)-distributed model
where the units are used to represent HRUs (defined according to soil, vegetation, topography, etc).

The fourth level is represented by the “network”, which connects multiple nodes and routes the fluxes from upstream
to downstream nodes. This level enables the representation of large watersheds and river networks that comprised by
several subcatchments with substantial flow routing delays. A SuperflexPy model configuration can contain only a
single network.

Technical details on these components are provided in the Organization of SuperflexPy page.

3.4. SuperflexPy 9
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ORGANIZATION OF SUPERFLEXPY

SuperflexPy is designed to operate at multiple levels of complexity, from a single reservoir to a complex river network.

All SuperflexPy components, namely elements, units, nodes, network, are designed to operate alone or within other
components. For this reason, all components have methods that enable the execution of basic functionality (e.g.
parameter handling) at all levels. For example, consider a unit that contains multiple elements. The unit will then
provide the functionality for setting the parameter values for its elements.

Note that, programmatically, SuperflexPy component types are classes, and the actual model components are then
class instances (objects).

We will first describe each component type in specific detail, and then highlight some Generalities that apply to all
components.

4.1 Elements

Elements represent the basic level of the SuperflexPy. Conceptually, SuperflexPy uses the following elements: reser-
voirs, lag functions, and connections. Elements can be used to represent a complete model structure, or combined
together to form one or more Unit.

Depending on their type, conceptual elements can have parameters and/or states, can handle multiple fluxes as inputs
and/or as outputs, can be designed to operate with one or more elements upstream or downstream, can be controlled
by differential equations or by a convolution operations, etc.

Programmatically, the conceptual elements can be implemented by extending the following classes:

• BaseElement: for elements without states and parameters (e.g., junctions);

• StateElement: for elements with states but without parameters;

• ParameterizedElement: for elements with parameters but without states (e.g., junctions);

• StateParameterizedElement: for elements with states and parameters (e.g., reservoirs and lag func-
tions).

For example, the conceptual element “junction”, which sums the fluxes coming from multiple elements upstream
without needing states or parameters, can be built by extending the class BaseElement to implement the method
that sums the fluxes.

To facilitate usage, SuperflexPy provides a set of “pre-packaged” classes that already implement already most of the
functionality needed to specify reservoirs, lag functions, and connections. The next sections focus on these classes.
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4.1.1 Reservoirs

A reservoir is a storage element described by the differential equation (or, more generally, a system of differential
equations)

dS
d𝑡

= I(𝜃, 𝑡)−O(S, 𝜃, 𝑡)

where S represents the internal states of the reservoir, I represents the sum of all input fluxes (usually independent
from the states), O represents the sum of all output fluxes, and 𝜃 represents the parameters that control the behavior of
the reservoir. In most conceptual models, reservoir elements have a single state variable (representing water storage)
however multiple state variables can be accommodated when necessary (e.g., to represent transport).

SuperflexPy provides the class ODEsElement that contains all the logic needed to represent an element controlled
by a differential equation. The user needs only to specify the equations defining input and output fluxes.

The differential equation is solved numerically; the choice of approximation (e.g. the implicit Euler scheme) is made
by the user when initializing the reservoir element.

SuperflexPy provides several “numerical approximators” to solve decoupled ODEs, including the implicit and the
explicit Euler schemes. The user can either employ the numerical routines provided by the framework, or implement
the interface necessary to use an external solver (e.g. from scipy), which may be needed when the numerical problem
becomes more complex (e.g. coupled differential equations). For more information about the numerical solver refer
to the page Numerical routines for solving ODEs.

4.1.2 Lag functions

A lag function is an element that applies a delay to the incoming fluxes. In mathematical terms, the lag function applies
a convolution to the incoming fluxes. Here, the convolution is implemented by distributing the fluxes at a given time
step into the subsequent time steps, according to a weight array. The same procedure is then repeated over multiple
time steps.

SuperflexPy provides the class LagElement that implements all the methods needed to represent a lag function. The
user only needs to define the weight array.

4.1.3 Connections

Connection elements are used to link together multiple elements when building a unit.

SuperflexPy provides several types of connection elements. For example, a Splitter is used to split the output
flux from a single upstream element and distribute the respective portions to multiple downstream elements. On the
other hand, a Junction is used to collect the output fluxes from multiple upstream elements and feed them into a
single downstream element. Connection elements are designed to operate with an arbitrarily number of fluxes and
upstream/downstream elements.

12 Chapter 4. Organization of SuperflexPy
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Splitter

A Splitter is an element that takes the outputs of a single upstream element and distributes them to several down-
stream elements.

The behavior of a splitter in SuperflexPy is controlled by two matrices: “direction” and “weight”. The direction
specifies which input fluxes contribute (even fractionally) to the downstream elements and in which order. The weight
defines the proportion of each of the input fluxes that goes into each the downstream element.

Looking at the picture, element S receives 3 input fluxes, which are coloured and indexed according to their order: red
(index 0), black (index 1), and blue (index 2). Element E2 receives the black flux as first input (index 0), and the blue
flux as second input (index 1), and does not receive any portion of the third flux. Element E3 receives the blue flux as
first input (index 0), the red flux as second input (index 1), and does not receive any portion of the black flux.

This information is represented by the direction matrix D as follows:

D =

(︂
1 2 None
2 0 None

)︂
The direction matrix is a 2D matrix with as many columns as the number of fluxes and as many rows as the number
of downstream elements. The row index refers to a downstream element (in this case the first row refers to element
E2, and the second row to element E3). The column index refers to the input fluxes received by to the downstream
element. Note that care must be taken when indexing the elements and fluxes to correctly reflect the intended model
structure.

The values of D can be an integer referring to the index of the input flux to the splitter S, or None if an input flux to
the splitter S does not reach a downstream element.

As such, the direction matrix can be used to select the fluxes and change the order in which they are transmitted to
downstream elements.

Next, we consider the weight matrix, which describes the fraction of each flux directed to each downstream element.
The red flux is taken entirely by element E3, the black flux is taken entirely by element E2, and the blue flux is split at
30% to E2 and 70% to E3. This information is represented by the weight matrix W as follows:

W =

(︂
0 1.0 0.3
1.0 0 0.7

)︂
The weight matrix has the same shape as the direction matrix. The row index refers to the downstream element, in the
same order as in the direction matrix \mathbf{D}, whereas the column index refers to the input flux to the splitter
S.

The value of the matrix elements represents the fraction of each input flux received by the splitter S and directed to the
downstream element. In the example, the first downstream element (first row of the matrix W) receives 0% of the first
(red) flux, 100% of the second (black) flux, and 30% of the third (blue) flux.

Note that, as a quick check, the columns of the weight matrix should sum up to 1 to ensure conservation of mass.

4.1. Elements 13
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Junction

A Junction is an element that takes the outputs of several upstream elements and directs them into a single down-
stream element.

The behavior of a junction in SuperflexPy is controlled by direction matrix that defines how the incoming fluxes are to
be combined (summed) to feed the downstream element.

In the schematic, element E3 receives 3 input fluxes, which are indexed based on their order: red (index 0), black
(index 1), and blue (index 2). The red flux comes from both upstream elements (index 0 and 1, respectively); the black
flux comes only from element E1 (index 1); the blue flux comes only from element E2 (index 2). This information is
represented by the direction matrix D as follows:

D =

⎛⎝ 0 1
1 None

None 0

⎞⎠
The direction matrix is a 2D matrix that has as many rows as the number of fluxes and as many columns as number of
upstream elements. The row index refers to the flux (in this case the first row refers to the red flux, the second row to
the black flux, and the third row to the blue flux). The column index refers to the upstream element input flux to the
junction (in this case the first column refers to element E1, the second column to element E2).

The value of the matrix element can be an integer referring to the index of the input flux to junction J coming from the
specific upstream element, or None if an input flux to junction J does not come from the upstream element.

Linker

A Linker is an element that can be used to connect multiple elements upstream to multiple elements downstream
without mixing fluxes.

Linkers are useful in SuperflexPy because the structure of the unit is defined as an ordered list of elements. This means
that if we want to connect the first element of a layer to the second element of the following layer (e.g., direct the

14 Chapter 4. Organization of SuperflexPy
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output from upstream element E1 to downstream element E4, in the example above) we have to insert an additional
intermediate layer with a linker that directs the fluxes to the correct downstream element. Further details on the
organization of the units in layers are presented in section Unit.

Transparent

A transparent element is an element that returns, as output, the same fluxes that it takes as input. This element is
needed to fill “gaps” in the structure defining a unit (refer to Unit).

An example is shown in the schematic above where the transparent element is used to make the two rows have the
same number of elements.

4.2 Unit

A unit is a collection of multiple connected elements. The unit can be used either alone, when intended to represent a
lumped catchment model, or as part of a Node, to create a semi-distributed model.

As shown in the schematic, elements are organized as a succession of layers, from left (upstream) to right (down-
stream).

The first and last layers must contain only a single element, since the inputs of the unit are “given” to the first element
and the outputs of the unit are “taken” from the last element.

The order of elements inside each layer defines how they are connected: the first element of a layer (e.g. E2 in the
schematic) will transfer its outputs to the first element of the downstream layer (e.g. E4); the second element of a layer

4.2. Unit 15
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(e.g. E3) will transfer its outputs to the second element of the downstream layer (e.g. T), and so on.

When the output of an element is split between multiple downstream elements (e.g. E1 is intended to provide its
outputs to E2 and E3) an additional intermediate layer with a splitter is needed. In this case the splitter S has two
downstream elements (E2 and E3); the framework will route the first group of outputs of the splitter to E2 and the
second group of outputs to E3.

Whenever there is a “gap” in the structure, a transparent element should be used to fill the gap. In the example, the
output of E3 is combined with the output of E4. Since these elements belong to different layers, making this connection
directly would create a gap in Layer 3. This problem is solved by specifying a transparent element in Layer 3, i.e., in
the same layer as element E4.

Finally, since the unit must have a single element in its last layer, the outputs of E4 and T must be collected using a
Junction.

Each element is aware of its expected number of upstream and downstream elements. For example, a reservoir must
have a single upstream element and a single downstream element, a splitter must have a single upstream element and
potentially multiple downstream elements, and so on. A unit is valid only if all layers connect to each other using the
expected number of elements. In the example, Layer 1 must have two downstream elements that is consistent with the
configuration of Layer 2.

Elements are copied into the unit. This means that an element that belongs to a unit is completely independent from
the originally defined element and from any other copy of the same element in other units. This SuperflexPy design
choice ensures that, changes to the state or to the parameters of an element within a given unit will not affect any
element outside of that unit. The code below illustrates this behavior:

1 e1 = Element(parameters={'p1': 0.1}, states={'S': 10.0})
2

3 u1 = Unit([e1])
4 u2 = Unit([e1])
5

6 e1.set_parameters({'e1_p1': 0.2})
7 u1.set_parameters({'u1_e1_p1': 0.3})
8 u2.set_parameters({'u2_e1_p1': 0.4})

In the code, element e1 is included in units u1 and u2. In lines 6-8 the value of parameter p1 of element e1 is
changed at the element level and at the unit level. Since elements are copied into a unit, these changes apply to
different elements (in the sense of different Python objects in memory).

For more information on how to define a unit structure in SuperflexPy, refer to the page Application: implementation
of existing conceptual models, where the framework is used to reproduce some existing lumped models.

16 Chapter 4. Organization of SuperflexPy
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4.3 Node

A node is a collection of multiple units assumed to operate in parallel. In the context of semi-distributed models, the
node represents a single catchment and the units represent multiple landscape elements (areas) within the catchment.
The node can be run either alone or as part of a bigger Network.

The default behavior of the nodes is that parameters are shared between elements of the same unit, even if it belongs to
multiple nodes. This SuperflexPy design choice is motivated by the unit being intended to represent areas that have the
same hydrological response. The idea is that the hydrological response is controlled by the parameters, and therefore
elements of the same unit (e.g. HRU) belonging to multiple nodes should have the same parameter values.

On the other hand, each node has its own states that are tracked separately from the states of other nodes. In particular,
when multiple nodes that share the same parameter values receive different inputs (e.g., rainfall), their states will
evolve differently.

This SuperflexPy design choice supports the most common use of nodes, which is the discretisation of a catchment
into potentially overlapping HRUs and subcatchments. Parameters are then assumed constant within HRUs (units),
and inputs are assumed to be constant within subcatchments (nodes).

In term of SuperflexPy usage, this behavior is achieved by (1) copying the states of the elements belonging to the unit
when this unit becomes part of a node; (2) sharing, rather than copying, the parameter values. This means that changes
to the parameter values of an elements within a node will affect the parameter values in the elements of all other nodes
that share the same unit. In contrast, changes to the states will be node-specific.

This default behavior can be changed, by setting shared_parameters=False at the initialization of the node. In
this case, all parameters become node-specific, with no sharing of parameter values even within the same unit.

Refer to the section Simple semi-distributed model for details on how to incorporate units into node.

4.3. Node 17
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4.3.1 Routing

A node can include routing functions that delay the fluxes. As shown in the schematic, two types of routing are
possible:

• internal routing;

• external routing.

A typical usage of these routing functions in semi-distributed hydrological modelling is as follows. Internal routing is
used to represent delays associated with the routing of fluxes across the catchment towards the river network. External
routing is used to represent delays associated with the routing of fluxes within the river network, i.e., from the outlets
of the given node to the inlet of the downstream node.

More generally, routing functions can be used for representing any type of delay between the units and the node, and
between nodes.

In the default implementation of the node in SuperflexPy, the two routing functions simply return their input (i.e. no
delay is applied). The user can implement a different behavior following the example provided in the section Adding
routing to a node.

18 Chapter 4. Organization of SuperflexPy
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4.4 Network

A network connects multiple nodes into a tree structure, and is typically intended to develop a distributed model that
generates predictions at internal subcatchment locations (e.g. to reflect a “nested” catchment setup).

The connectivity of the network is defined by assigning to each node the information about its downstream node. The
network will then compute the node output fluxes, starting from the inlets and then moving downstream, calculating
the outflows of the remaining nodes and routing the fluxes towards the outlet.

The network is the only component of SuperflexPy that does not have the set_input method (see Generalities),
because inputs are assumed to be node-specific and hence has to be assigned to each node within the network.

A node is inserted (rather than copied) into the network. In other words, we initialize a node object and then insert
it into the network. This node can then be configured either directly or through the network. Any changes occurring
within the node as part of the network affect also the node outside the network (because they are the same Python
object).

The output of the network is a dictionary that contains the output of all nodes within the network.

4.5 Generalities

4.5.1 Common methods

All components share the following methods.

• Parameters and states: each component has its own parameters and/or states with unique identifiers. Each
component of SuperflexPy has methods to set and get the states and parameters of the component itself as well
as the states and parameters of its contained components:

– set_parameters: change the current parameter values

– get_parameters: get the current parameter values

– get_parameters_name: get the identifier of the parameters

– set_states: change the current state values

– get_states: get the current state value
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– get_states_name: get the identifier of the states

– reset_states: reset the states to their initialization value

• Time step: as common in hydrological modeling, inputs and outputs are assumed to have the same time reso-
lution, i.e., the input and output data must share the same time stamps. There is no requirement for timestamps
to be uniformly spaced, meaning that the time series can have irregular time step sizes. In SuperflexPy, all com-
ponents that require the definition of a time step (e.g. reservoirs described by a differential equation) contain
methods that set and get the time step size. In case of non-uniform time resolution, an array of time steps needs
to be provided by the user.

– set_timestep: set the time step used in the model. All components at a higher level (e.g. units) have
this method; when called, it applies the change to all elements within the component;

– get_timestep: returns the time step size used in the model.

• Inputs and outputs: all components have functionalities to receive inputs and generate outputs.

– set_input: set the input fluxes of the component;

– get_output: run the component (and all components contained in it) and return the output fluxes.

4.5.2 Component identifiers

All parameters, states, and components (except for the network) in SuperflexPy are identified using an identifier string
assigned by the user. The identifier string can have an arbitrary length, with the only restriction that it cannot contain
the underscore _.

When an element is inserted into a unit or when the unit is inserted into the node, the identifier of the component is
prepended to the name of the parameter using the underscore _ as separator.

For example, if the element with identifier e1 has the parameter par1, the name of the parameter becomes, at
initialization, e1_par1. If element e1 is inserted into unit u1, the parameter name becomes u1_e1_par1, and so
on.

In this way, every parameter and state of the model has its own unique identifier that can be used to change its value
from within any component of the model.

4.5.3 Time varying parameters

In hydrological modelling, time varying parameters can be useful for representing certain types of model variability,
e.g., seasonal phenomena and/or stochasticity.

SuperflexPy can be used with both constant and time varying parameters. Parameters can be specified as either scalar
float numbers or as Numpy 1D arrays of the same length as the input fluxes. In the first case, the parameter will be
interpreted as time constant. In the second case, the parameter will be considered as time varying and may have a
different value at each time step.

4.5.4 Length of the simulation

In SuperflexPy, there is no model parameter controlling the length of the simulation. The number of model time steps
that need to be run is determined automatically at runtime from the length of the input fluxes. For this reason, all input
data time series must have the same length.
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4.5.5 Format of inputs and outputs

The input and output fluxes of SuperflexPy components are represented using 1D Numpy arrays.

For the inputs, regardless of the number of fluxes, the method set_input takes a list of Numpy arrays (one array
per flux). The order of arrays inside the list is relevant and must follow the indications of the docstring of the method.
All input fluxes must have the same length because the number of time steps in the model simulation is determined by
the length of the input time series; see also Length of the simulation.

The outputs are also returned as a list of Numpy 1D arrays, using the get_output method.

Note an important exception for Connections, whenever the number of upstream or downstream elements is different
from one, the set_input or the get_output methods will use 2D lists of Numpy arrays. This solution is used to
route fluxes between multiple elements.
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CHAPTER

FIVE

NUMERICAL ROUTINES FOR SOLVING DIFFERENTIAL EQUATIONS

Reservoirs are the most common elements in conceptual hydrological models. Reservoirs are controlled by one (or
more) ordinary differential equations (ODEs) of the form

dS
d𝑡

= I(𝜃, 𝑡)−O(S, 𝜃, 𝑡)

and associated initial conditions.

Such differential equations are usually difficult or impossible to solve analytically, therefore, numerical approximations
are employed.

Many robust numerical approximations (e.g. implicit Euler) require an iterative root-finding procedure at each time
step.

Therefore, the current implementation of SuperflexPy conceptualizes the solution of the ODE as a two-step procedure:

1. Construct the discrete-time equations defining the numerical approximation of the ODEs

2. Solve the numerical approximation

These steps can be performed using two SuperflexPy components: NumericalApproximator and
RootFinder.

SuperflexPy provides two built-in numerical approximators (implicit and explicit Euler) and a root finder (Pegasus
method).

Other ODE solution algorithms, e.g. Runge-Kutta, can be accommodated by extending the classes
NumericalApproximator and/or RootFinder. Even more generally, ODE solvers from external libraries
could be used within SuperflexPy by incorporating them in a class that respects the interface expected by the
NumericalApproximator.

The following sections describe the standard approach to create customized numerical approximators and root finders.

5.1 Numerical approximator

A customized numerical approximator can be implemented by extending the class NumericalApproximator and
implementing two methods: _get_fluxes and _differential_equation.

1 class CustomNumericalApproximator(NumericalApproximator):
2

3 @staticmethod
4 def _get_fluxes(fluxes, S, S0, args):
5

6 # Some code here
7

(continues on next page)
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(continued from previous page)

8 return fluxes
9

10 @staticmethod
11 def _differential_equation(fluxes, S, S0, dt, args, ind):
12

13 # Some code here
14

15 return [diff_eq, min_val, max_val]

where fluxes is a list of functions used to calculate the fluxes, S is the state that solves the ODE, S0 is the initial
state, dt is the time step, args is a list of additional arguments used by the functions in fluxes, and ind is the
index of the input arrays to use.

The method _get_fluxes is responsible for calculating the fluxes after the ODE has been solved and operates with
a vector of states.

The method _differential_equation calculates the approximation of the ODE, returning the value of the
numerical approximation of the differential equation given a value of S and the minimum and maximum boundary for
the search of the solution. This method is designed to be interfaced with the root finder.

For further details, please see the implementation of ImplicitEuler and ExplicitEuler.

5.2 Root finder

A customized root finder can implemented by extending the class RootFinder implementing the method solve.

1 class CustomRootFinder(RootFinder):
2

3 def solve(self, diff_eq, fluxes, S0, dt, ind, args):
4

5 # Some code here
6

7 return root

where diff_eq is a function that calculates the value of the approximated ODE, fluxes is a list of functions used
to calculate the fluxes, S0 is the initial state, dt is the time step, args is a list of additional arguments used by the
functions in fluxes, and ind is the index of the input arrays to use.

The method solve is responsible for finding the numerical solution of the approximated ODE.

To understand better how this method works, please see the implementation of Pegasus.

5.3 Computational efficiency with Numpy and Numba

Conceptual hydrological models are often used in computationally demanding contexts, such as parameter calibration
and uncertainty quantification, which require many model runs (thousands or even millions). Computational efficiency
is therefore an important requirement of SuperflexPy.

Computational efficiency is not the greatest strength of pure Python, but libraries like Numpy and Numba can help in
pushing the performance closer to traditionally fast languages such as Fortran and C.

Numpy provides highly efficient arrays for vectorized operations (i.e. elementwise operations between arrays). Numba
provides a “just-in-time compiler” that can be used to compile (at runtime) a normal Python method to machine code
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that interacts efficiently with Numpy arrays. The combined use of Numpy and Numba is extremely effective when
solving ODEs, where the method loops through a vector to perform elementwise operations.

For this reason we provide Numba-optimized versions of NumericalApproximator and RootFinder, which
enable efficient solution of ODEs describing the reservoir elements.

The figure below compares the execution times of pure Python vs. the Numba implementation, as a function of the
length of the time series (upper panel) and the number of model runs (lower panel).

The plot clearly shows the tradeoff between compilation time (which is zero for Python and around 2 seconds for
Numba) versus run time (where Numba is 30 times faster than Python). For example, a single run of 1000 time steps
of the HYMOD model solved using the implicit Euler numerical solver takes 0.11 seconds with Python and 1.85 with
Numba. In contrast, if the same model is run 100 times (e.g., as part of a calibration) the Python version takes 11.75
seconds while the Numba version takes 2.35 seconds.

The SuperflexPy user can choose between the available NumericalApproximator implementations (which offer
pure Python and Numba implementations of the Implicit Euler and Pegasus methods), or build their own implementa-
tions.
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CHAPTER

SIX

HOW TO BUILD A MODEL WITH SUPERFLEXPY

This page shows how to build a complete semi-distributed conceptual model with SuperflexPy, including:

1. how the elements are initialized, configured, and run

2. how to use the model at any level of complexity, from single element to multiple nodes.

All the models presented in this section are available as runnable examples (see Examples).

Examples of the implementation of more realistic models are given in the pages Application: implementation of
existing conceptual models and Case studies.

6.1 Importing SuperflexPy

Assuming that SuperflexPy is already installed (see Installation guide), the elements needed to build the model are
imported from the SuperflexPy package. For this demo, this is done with the following lines

1 from superflexpy.implementation.elements.hbv import PowerReservoir
2 from superflexpy.implementation.elements.gr4j import UnitHydrograph1
3 from superflexpy.implementation.computation.pegasus_root_finding import PegasusPython
4 from superflexpy.implementation.computation.implicit_euler import ImplicitEulerPython
5 from superflexpy.framework.unit import Unit
6 from superflexpy.framework.node import Node
7 from superflexpy.framework.network import Network

Lines 1-2 import the two elements that we will use (a reservoir and a lag function), lines 3-4 import the numerical
solver used to solve the reservoir equation, and lines 5-7 import the components of SuperflexPy needed to make the
model spatially distributed.

A complete list of the elements already implemented in SuperflexPy, including their equations and import path, is
available in page List of currently implemented elements. If the desired element is not available, it can be built
following the instructions given in page Expand SuperflexPy: build customized elements.
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6.2 Simplest lumped model structure with single element

The single-element model is composed by a single reservoir governed by the differential equation

d𝑆
d𝑡

= 𝑃 −𝑄

where 𝑆 is the state (storage) of the reservoir, 𝑃 is the precipitation input, and 𝑄 is the outflow.

The outflow is defined by the equation:

𝑄 = 𝑘𝑆𝛼

where 𝑘 and 𝛼 are parameters of the element.

For simplicity, evapotranspiration is not considered in this demo.

The first step is to initialize the numerical approximator (see Numerical routines for solving ODEs). In this case, we
will use the native Python implementation (i.e. not Numba) of the implicit Euler algorithm (numerical approximator)
and the Pegasus algorithm (root finder). The initialization can be done with the following code, where the default
settings of the solver are used (refer to the solver docstring).

1 solver_python = PegasusPython()
2

3 approximator = ImplicitEulerPython(root_finder=solver_python)

The element is initialized next

1 reservoir = PowerReservoir(
2 parameters={'k': 0.01, 'alpha': 2.0},
3 states={'S0': 10.0},
4 approximation=approximator,
5 id='R'
6 )

During initialization, parameters (line 2) and initial state (line 3) are defined, together with the numerical approximator
and the identifier (the identifier must be unique and cannot contain the character _, see Component identifiers).

After initialization, the time step used to solve the differential equation and the inputs of the element are specified.

1 reservoir.set_timestep(1.0)
2 reservoir.set_input([precipitation])

precipitation is a Numpy array containing the precipitation time series. Note that the length of the simulation
(i.e., the number of time steps to run the model) is automatically set to the length of the input arrays.

At this point, the element can be run, calling the method get_output
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1 output = reservoir.get_output()[0]

The method will run the element for all the time steps, solving the differential equation and returning a list containing
all output arrays of the element (in this specific case there is only one output array, i.e., the flow time series 𝑄).

The state of the reservoir at all time steps is saved in the state_array attribute of the element and can be accessed
as follows

1 reservoir_state = reservoir.state_array[:, 0]

state_array is a 2D array with the number of rows equal to the number of time steps, and the number of columns
equal to the number of states. The order of states is defined in the docstring of the element.

With the following code we can create a plot showing the outputs of the simulation.

1 fig, ax = plt.subplots(2, 1, sharex=True, figsize=(10, 6))
2 ax[0].bar(x=range(len(precipitation)), height=precipitation, color='blue')
3 ax[1].plot(range(len(precipitation)), output, color='blue', lw=2, label='Outflow')
4 ax_bis = ax[1].twinx()
5 ax_bis.plot(range(len(precipitation)), reservoir_state, color='red', lw=2, ls='--',

→˓label='Reservoir state')

Note that the method get_output also sets the element states to their value at the final time step (in this case 8.98).
This is done because it may be necessary to continue the simulation afterwards (e.g. real time applications with new
inputs coming in time). As a consequence, if the method is called again, it will use this value as initial state instead of
the one defined at initialization. The states of the model can be reset using the method reset_states.
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1 reservoir.reset_states()

6.3 Lumped model structure with 2 elements

We now move to a more complex model structure where multiple elements are connected in a unit. For simplicity, we
limit the complexity to two elements; more complex configurations can be found in the Application: implementation
of existing conceptual models page.

The unit structure comprises a reservoir that feeds a lag function. The lag function convolves the incoming flux using
the function

𝑄out = 𝑄in

(︂
𝑡

𝑡lag

)︂ 5
2

for 𝑡 < 𝑡lag

and its behavior is controlled by parameter 𝑡lag.

First, we initialize the two elements that compose the unit structure

1 reservoir = PowerReservoir(
2 parameters={'k': 0.01, 'alpha': 2.0},
3 states={'S0': 10.0},
4 approximation=approximator,
5 id='R'
6 )
7

8 lag_function = UnitHydrograph1(
9 parameters={'lag-time': 2.3},

10 states={'lag': None},
11 id='lag-fun'
12 )

Note that the initial state of the lag function is set to None (line 10); in this case the element will initialize the state to
an arrays of zeros of appropriate length, depending on the value of 𝑡lag (in this specific case, ceil(2.3) = 3).

Next, we initialize the unit that combines the elements

1 unit_1 = Unit(
2 layers=[[reservoir], [lag_function]],
3 id='unit-1'
4 )
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Line 2 defines the unit structure: it is a 2D list where the inner level sets the elements belonging to each layer and the
outer level lists the layers.

After initialization, time step size and inputs are defined

1 unit_1.set_timestep(1.0)
2 unit_1.set_input([precipitation])

The unit sets the time step size for all its elements and transfers the inputs to the first element (in this example, to the
reservoir).

The unit can now be run

1 output = unit_1.get_output()[0]

The unit will call the get_output method of all its elements (from upstream to downstream) set the inputs of the
downstream elements to the output of their respective upstream elements, and return the output of the last element.

After the unit simulation has completed, the outputs and the states of its elements can be retrieved as follows

1 r_state = unit_1.get_internal(id='R', attribute='state_array')[:, 0]
2 r_output = unit_1.call_internal(id='R', method='get_output', solve=False)[0]

Note that in line 2 we pass the argument solve=False to the function get_output in order to access the com-
puted states and outputs without re-running the reservoir element.

The plot shows the output of the simulation (obtained by plotting output, r_state, and r_output).
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The elements of the unit can be re-set to their initial state

1 unit_1.reset_states()
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6.4 Simple semi-distributed model

This model is intended to represent a spatially semi-distributed configuration. A node is used to represent a catchment
that is composed by different areas that react differently to the same inputs. For example, suppose we represent 70%
of the catchment using the structure described in Lumped model structure with 2 elements, and the remaining 30%
using a single reservoir.

This model configuration is achieved using a node with multiple units.

First, we initialize the two units and the elements composing them, in the same way as in the previous sections.

1 reservoir = PowerReservoir(
2 parameters={'k': 0.01, 'alpha': 2.0},
3 states={'S0': 10.0},
4 approximation=approximator,
5 id='R'
6 )
7

8 lag_function = UnitHydrograph1(
9 parameters={'lag-time': 2.3},

10 states={'lag': None},
11 id='lag-fun'
12 )
13

14 unit_1 = Unit(

(continues on next page)
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(continued from previous page)

15 layers=[[reservoir], [lag_function]],
16 id='unit-1'
17 )
18

19 unit_2 = Unit(
20 layers=[[reservoir]],
21 id='unit-2'
22 )

Note that, once the elements are added to a unit, they become independent (see Unit), meaning that any change to the
reservoir contained in unit-1 does not affect the reservoir contained in unit-2.

The next step is to initialize the node, which combines the two units

1 node_1 = Node(
2 units=[unit_1, unit_2],
3 weights=[0.7, 0.3],
4 area=10.0,
5 id='node-1'
6 )

Line 2 contains the list of units that belong to the node, and line 3 gives their weight (i.e. the portion of the node
outflow coming from each unit). Line 4 specifies the representative area of the node.

Next, we define the time step size and the model inputs

1 node_1.set_timestep(1.0)
2 node_1.set_input([precipitation])

The same time step size will be assigned to all elements within the node, and the inputs will be passed to all the units
of the node.

We can now run the node and collect its output

1 output = node_1.get_output()[0]

The node will call the method get_output of all its units and aggregate their outputs using the weights.

The outputs of the single units, as well as the states and fluxes of the elements composing them, can be retrieved using
the method call_internal

1 output_unit_1 = node_1.call_internal(id='unit-1', method='get_output', solve=False)[0]
2 output_unit_2 = node_1.call_internal(id='unit-2', method='get_output', solve=False)[0]

The plot shows the output of the simulation.
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All elements within the node can be re-set to their initial states

1 node_1.reset_states()
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6.5 Semi-distributed model with multiple nodes

A catchment can be composed by several subcatchments (nodes) connected in a network, where each subcatchment
receives its own inputs, but may share parameter values with other subcatchments with the same units. This semi-
distributed configuration can be implemented in SuperflexPy by creating a network with multiple nodes.

First, we initialize the nodes

1 reservoir = PowerReservoir(
2 parameters={'k': 0.01, 'alpha': 2.0},
3 states={'S0': 10.0},
4 approximation=approximator,
5 id='R'
6 )
7

8 lag_function = UnitHydrograph1(
9 parameters={'lag-time': 2.3},

10 states={'lag': None},
11 id='lag-fun'
12 )
13

14 unit_1 = Unit(

(continues on next page)
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(continued from previous page)

15 layers=[[reservoir], [lag_function]],
16 id='unit-1'
17 )
18

19 unit_2 = Unit(
20 layers=[[reservoir]],
21 id='unit-2'
22 )
23

24 node_1 = Node(
25 units=[unit_1, unit_2],
26 weights=[0.7, 0.3],
27 area=10.0,
28 id='node-1'
29 )
30

31 node_2 = Node(
32 units=[unit_1, unit_2],
33 weights=[0.3, 0.7],
34 area=5.0,
35 id='node-2'
36 )
37

38 node_3 = Node(
39 units=[unit_2],
40 weights=[1.0],
41 area=3.0,
42 id='node-3'
43 )

node-1 and node-2 contain both units but in different proportions. node-3 contains only unit-2.

When units are added to a node, the states of the elements belonging to them remain independent while the parameters
stay linked, meaning that the change of a parameter in unit-1 in node-1 is applied also to unit-1 in node-2.
As noted in section Node, different behavior can be achieved by setting the parameter shared_parameters to
False when initializing the nodes.

At this point, the network can be initialized

1 net = Network(
2 nodes=[node_1, node_2, node_3],
3 topography={
4 'node-1': 'node-3',
5 'node-2': 'node-3',
6 'node-3': None
7 }
8 )

Line 2 lists the nodes belonging to the network. Lines 4-6 define the connectivity of the network; this is done using
a dictionary with the keys given by the node identifiers and values given by the single downstream node. The most
downstream node has value None.

The inputs are catchment-specific and must be provided to each node.

1 node_1.set_input([precipitation])
2 node_2.set_input([precipitation * 0.5])
3 node_3.set_input([precipitation + 1.0])

6.5. Semi-distributed model with multiple nodes 37



SuperflexPy, Version 1.2.0

The time step size is defined at the network level.

1 net.set_timestep(1.0)

We can now run the network and get the output values

1 output = net.get_output()

The network runs the nodes from upstream to downstream, collects their outputs, and routes them to the outlet. The
output of the network is a dictionary, with keys given by the node identifiers and values given by the list of output
fluxes. It is also possible to retrieve the internals (e.g. fluxes, states, etc.) of the nodes.

1 output_unit_1_node_1 = net.call_internal(id='node-1_unit-1',
2 method='get_output',
3 solve=False)[0]

The plot shows the results of the simulation.
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SEVEN

LIST OF CURRENTLY IMPLEMENTED ELEMENTS

SuperflexPy provides a large variety of components (i.e., elements, units, nodes and network) for constructing con-
ceptual hydrological models. The components presented in the page Organization of SuperflexPy represent the core of
SuperflexPy. However, such components must be extended to create customized models.

Most of the customization efforts will be required for elements (i.e., reservoirs, lag, and connection elements). This
page contains all the elements implemented by extending the classes provided by SuperflexPy, and made available to
the users to help them construct their own models. The elements are divided in three categories

• Reservoir

• Lag elements

• Connections

The elements are listed in alphabetical order.

7.1 Reservoirs

7.1.1 Interception filter

This reservoir is used to simulate interception in models, including GR4J. Further details are provided in the page
GR4J.

from superflexpy.implementation.elements.gr4j import InterceptionFilter

Inputs

• Potential evapotranspiration 𝐸in
POT [𝐿𝑇−1]

• Precipitation 𝑃 in [𝐿𝑇−1]

Outputs from get_output

• Net potential evapotranspiration 𝐸out
POT [𝐿𝑇−1]

• Net precipitation 𝑃 out [𝐿𝑇−1]
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Governing equations

if 𝑃 in > 𝐸in
POT :

𝑃 out = 𝑃 in − 𝐸in
POT

𝐸out
POT = 0

if 𝑃 in < 𝐸in
POT :

𝑃 out = 0

𝐸out
POT = 𝐸in

POT − 𝑃 in

7.1.2 Linear reservoir

This reservoir assumes a very simple linear storage-discharge relationship. It represents arguably the simplest hydro-
logical model. For example, it is used in the model HYMOD to simulate channel routing and lower-zone storage
processes. Further details are provided in the page HYMOD.

from superflexpy.implementation.elements.hymod import LinearReservoir

Inputs

• Precipitation 𝑃 [𝐿𝑇−1]

Outputs from get_output

• Total outflow 𝑄 [𝐿𝑇−1]

Governing equations

d𝑆
d𝑡

= 𝑃 −𝑄

𝑄 = 𝑘𝑆

7.1.3 Power reservoir

This reservoir assumes that the storage-discharge relationship is described by a power function. This type of reservoir
is common in hydrological models, in particular in the HBV family of models where it is used to represent the fast
response of a catchment.

from superflexpy.implementation.elements.hbv import PowerReservoir

Inputs

• Precipitation 𝑃 [𝐿𝑇−1]
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Outputs from get_output

• Total outflow 𝑄 [𝐿𝑇−1]

Governing equations

d𝑆
d𝑡

= 𝑃 −𝑄

𝑄 = 𝑘𝑆𝛼

7.1.4 Production store (GR4J)

This reservoir is used to simulate runoff generation in the model GR4J. Further details are provided in the page GR4J.

from superflexpy.implementation.elements.gr4j import ProductionStore

Inputs

• Potential evapotranspiration 𝐸pot [𝐿𝑇
−1]

• Precipitation 𝑃 [𝐿𝑇−1]

Outputs from get_output

• Total outflow 𝑃r [𝐿𝑇
−1]

Secondary outputs

• Actual evapotranspiration 𝐸act [𝐿𝑇
−1] get_aet()

Governing equations

d𝑆
d𝑡

= 𝑃s − 𝐸act −𝑄perc

𝑃s = 𝑃

(︂
1−

(︂
𝑆

𝑥1

)︂𝛼)︂
𝐸act = 𝐸pot

(︂
2
𝑆

𝑥1
−

(︂
𝑆

𝑥1

)︂𝛼)︂
𝑄perc =

𝑥1−𝛽

(𝛽 − 1)
𝜈𝛽−1𝑆𝛽

𝑃r = 𝑃 − 𝑃s +𝑄perc

7.1.5 Routing store (GR4J)

This reservoir is used to simulate routing in the model GR4J. Further details are provided in the page GR4J.
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from superflexpy.implementation.elements.gr4j import RoutingStore

Inputs

• Precipitation 𝑃 [𝐿𝑇−1]

Outputs from get_output

• Outflow 𝑄 [𝐿𝑇−1]

• Loss term 𝐹 [𝐿𝑇−1]

Governing equations

d𝑆
d𝑡

= 𝑃 −𝑄− 𝐹

𝑄 =
𝑥1−𝛾
3

(𝛾 − 1)
𝑆𝛾

𝐹 =
𝑥2

𝑥𝜔
3

𝑆𝜔

7.1.6 Snow reservoir

This reservoir is used to simulate snow processes based on temperature. Further details are provided in the page Dal
Molin et al., 2020, HESS.

from superflexpy.implementation.elements.thur_model_hess import SnowReservoir

Inputs

• Precipitation 𝑃 [𝐿𝑇−1]

• Temperature 𝑇 [𝐶]

Outputs from get_output

• Sum of snow melt and rainfall input = 𝑃 − 𝑃snow +𝑀 [𝐿𝑇−1]

Governing equations

d𝑆
d𝑡

= 𝑃snow −𝑀

𝑃snow = 𝑃 if 𝑇 ≤ 𝑇0; else 0

𝑀 = 𝑀pot

(︂
1− exp

(︂
− 𝑆

𝑚

)︂)︂
𝑀pot = 𝑘𝑇 if 𝑇 ≥ 𝑇0; else 0
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7.1.7 Unsaturated reservoir (inspired to HBV)

This reservoir specifies the actual evapotranspiration as a smoothed threshold function of storage, in combination with
the storage-discharge relationship being set to a power function. It is inspired by the HBV family of models, where a
similar (but non-smooth) approach is used to represent unsaturated soil dynamics.

from superflexpy.implementation.elements.hbv import UnsaturatedReservoir

Inputs

• Precipitation 𝑃 [𝐿𝑇−1]

• Potential evapotranspiration 𝐸pot [𝐿𝑇
−1]

Outputs from get_output

• Total outflow 𝑄 [𝐿𝑇−1]

Secondary outputs

• Actual evapotranspiration 𝐸act get_AET()

Governing equations

d𝑆
d𝑡

= 𝑃 − 𝐸act −𝑄

𝑆 =
𝑆

𝑆max

𝐸act = 𝐶e𝐸pot

(︂
𝑆(1 +𝑚)

𝑆 +𝑚

)︂
𝑄 = 𝑃

(︀
𝑆
)︀𝛽

7.1.8 Upper zone (Hymod)

This reservoir is part of the Hymod model and is used to simulate the upper soil zone. Further details are provided in
the page HYMOD.

from superflexpy.implementation.elements.hymod import UpperZone

Inputs

• Precipitation 𝑃 [𝐿𝑇−1]

• Potential evapotranspiration 𝐸pot [𝐿𝑇
−1]

Outputs from get_output

• Total outflow 𝑄 [𝐿𝑇−1]
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Secondary outputs

• Actual evapotranspiration 𝐸act [𝐿𝑇
−1] get_AET()

Governing equations

d𝑆
d𝑡

= 𝑃 − 𝐸act −𝑄

𝑆 =
𝑆

𝑆max

𝐸act = 𝐸pot

(︂
𝑆(1 +𝑚)

𝑆 +𝑚

)︂
𝑄 = 𝑃

(︁
1−

(︀
1− 𝑆

)︀𝛽)︁

7.2 Lag elements

All lag elements implemented in SuperflexPy are designed to take an arbitrary number of input fluxes, and apply a
convolution based on a weight array that defines the shape of the lag function.

Different lag elements differ solely in the values of the weight array. The nature (i.e., number and order) of inputs and
outputs depend on the element upstream of the lag element.

The weight array can be defined by giving the area below the lag function as a function of the time coordinate. The
maximum lag 𝑡lag must also be specified. The weights are then given by differences between the values of the area
at consecutive lags. This approach is shown in the figure above, where the weight 𝑊𝑖 is calculated as the difference
between areas 𝐴𝑖 and 𝐴𝑖−1.

7.2.1 Half triangular lag

This lag element implements the element present in the case study Dal Molin et al., 2020, HESS and used in other
Superflex studies.

from superflexpy.implementation.elements.thur_model_hess import HalfTriangularLag
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Definition of weight array

The area below the lag function is given by

𝐴lag(𝑡) = 0

for 𝑡 ≤ 0

𝐴lag(𝑡) =

(︂
𝑡

𝑡lag

)︂2

for 0 < 𝑡 ≤ 𝑡lag

𝐴lag(𝑡) = 1

for 𝑡 > 𝑡lag

The weight array is then calculated as

𝑤(𝑡i) = 𝐴lag(𝑡i)−𝐴lag(𝑡i-1)

7.2.2 Unit hydrograph 1 (GR4J)

This lag element implements the unit hydrograph 1 of GR4J.

from superflexpy.implementation.elements.gr4j import UnitHydrograph1

Definition of weight array

The area below the lag function is given by

𝐴lag(𝑡) = 0

for 𝑡 ≤ 0

𝐴lag(𝑡) =

(︂
𝑡

𝑡lag

)︂ 5
2

for 0 < 𝑡 ≤ 𝑡lag

𝐴lag(𝑡) = 1

for 𝑡 > 𝑡lag

The weight array is then calculated as

𝑤(𝑡i) = 𝐴lag(𝑡i)−𝐴lag(𝑡i-1)

7.2.3 Unit hydrograph 2 (GR4J)

This lag element implements the unit hydrograph 2 of GR4J.

from superflexpy.implementation.elements.gr4j import UnitHydrograph2
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Definition of weight array

The area below the lag function is given by

𝐴lag(𝑡) = 0

for 𝑡 ≤ 0

𝐴lag(𝑡) =
1

2

(︂
2𝑡

𝑡lag

)︂ 5
2

for 0 < 𝑡 ≤
𝑡lag

2

𝐴lag(𝑡) = 1− 1

2

(︂
2− 2𝑡

𝑡lag

)︂ 5
2

for
𝑡lag

2
< 𝑡 ≤ 𝑡lag

𝐴lag(𝑡) = 1

for 𝑡 > 𝑡lag

The weight array is then calculated as

𝑤(𝑡i) = 𝐴lag(𝑡i)−𝐴lag(𝑡i-1)

7.3 Connections

SuperflexPy implements four connection elements:

• splitter

• junction

• linker

• transparent element

In addition, customized connectors have been implemented to achieve specific model designs. These customized
elements are listed in this section.

7.3.1 Flux aggregator (GR4J)

This element is used to combine routing, exchange and outflow fluxes in the GR4J model. Further details are provided
in the page GR4J.

from superflexpy.implementation.elements.gr4j import FluxAggregator

Inputs

• Outflow routing store 𝑄RR [𝐿𝑇−1]

• Exchange flux 𝑄RF [𝐿𝑇−1]

• Outflow UH2 𝑄UH2 [𝐿𝑇
−1]
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Main outputs

• Outflow 𝑄 [𝐿𝑇−1]

Governing equations

𝑄 = 𝑄RR +max(0;𝑄UH2 −𝑄RF)

7.3. Connections 47



SuperflexPy, Version 1.2.0

48 Chapter 7. List of currently implemented elements



CHAPTER

EIGHT

EXPAND SUPERFLEXPY: BUILD CUSTOMIZED ELEMENTS

Note: If you build your own component using SuperflexPy, we would appreciate if you share your implementation
with the community (see Software organization and contribution). Please remember to contribute also to the List of
currently implemented elements page to make other users aware of your implementation.

This page illustrates how to create customized elements using the SuperflexPy framework.

The examples include three elements:

• Linear reservoir

• Half-triangular lag function

• Parameterized splitter

The customized elements presented here are relatively simple, in order to provide a clear illustration of the pro-
gramming approach. To gain a deeper understanding of SuperflexPy functionalities, please see the existing elements
(importing path superflexpy.implementation.elements).

8.1 Linear reservoir

The reservoir is controlled by the following differential equation

d𝑆
d𝑡

= 𝑃 −𝑄

with

𝑄 = 𝑘𝑆

Note that the differential equation can be solved analytically, and the implicit Euler numerical approximation does
not require iteration. However, we will still use the numerical approximator offered by SuperflexPy (see Numerical
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routines for solving ODEs) to illustrate how to proceed in a more general case where analytical solutions are not
available.

The SuperflexPy framework provides the class ODEsElement, which has most of the methods required to implement
the linear reservoir element. The class implementing the reservoir will inherit from ODEsElement and implement
only a few methods needed to specify its behavior.

1 import numba as nb
2 from superflexpy.framework.element import ODEsElement
3

4 class LinearReservoir(ODEsElement):

The first method to implement is the class initializer __init__

1 def __init__(self, parameters, states, approximation, id):
2

3 ODEsElement.__init__(self,
4 parameters=parameters,
5 states=states,
6 approximation=approximation,
7 id=id)
8

9 self._fluxes_python = [self._fluxes_function_python] # Used by get fluxes,
→˓regardless of the architecture

10

11 if approximation.architecture == 'numba':
12 self._fluxes = [self._fluxes_function_numba]
13 elif approximation.architecture == 'python':
14 self._fluxes = [self._fluxes_function_python]
15 else:
16 message = '{}The architecture ({}) of the approximation is not correct'.

→˓format(self._error_message,
17

→˓ approximation.architecture)
18 raise ValueError(message)

The main purpose of the method (lines 9-16) is to deal with the numerical solver. In this case we can accept two
architectures: pure Python or Numba. The option selected will control the function used to calculate the fluxes. Keep
in mind that, since some methods may still need the Python implementation of the fluxes, the Python implementation
must be always provided.

The second method to implement is set_input, which maps the (ordered) list of input fluxes to a dictionary that
gives a name to these fluxes.

1 def set_input(self, input):
2

3 self.input = {'P': input[0]}

Note that the key used to identify the input flux must match the name of the corresponding variable in the flux functions.

The third method to implement is get_output, which runs the model and returns the output flux.

1 def get_output(self, solve=True):
2

3 if solve:
4 self._solver_states = [self._states[self._prefix_states + 'S0']]
5 self._solve_differential_equation()
6

(continues on next page)
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(continued from previous page)

7 self.set_states({self._prefix_states + 'S0': self.state_array[-1, 0]})
8

9 fluxes = self._num_app.get_fluxes(fluxes=self._fluxes_python,
10 S=self.state_array,
11 S0=self._solver_states,
12 dt=self._dt,
13 **self.input,
14 **{k[len(self._prefix_parameters):]: self._

→˓parameters[k] for k in self._parameters},
15 )
16 return [- fluxes[0][1]]

The method takes, as input, the parameter solve: if False, the state array of the reservoir will not be recalculated
and the outputs will be computed based on the current state (e.g., computed in a previous run of the reservoir). This
option is needed for post-run inspection, when we want to check the output of the reservoir without solving it again.

Line 4 transforms the states dictionary to an ordered list. Line 5 calls the built-in ODE solver. Line 7 updates the
state of the model to the last value calculated. Lines 9-14 call the external numerical approximator to get the values of
the fluxes. Note that, for this operation, the Python implementation of the fluxes method is always used because the
vectorized operation executed by the method get_fluxes of the numerical approximator does not benefit from the
Numba optimization.

The last methods to implement are _fluxes_function_python (pure Python) and
_fluxes_function_numba (Numba optimized), which calculate the reservoir fluxes.

1 @staticmethod
2 def _fluxes_function_python(S, S0, ind, P, k, dt):
3

4 if ind is None:
5 return (
6 [
7 P,
8 - k * S,
9 ],

10 0.0,
11 S0 + P * dt
12 )
13 else:
14 return (
15 [
16 P[ind],
17 - k[ind] * S,
18 ],
19 0.0,
20 S0 + P[ind] * dt[ind]
21 )
22

23 @staticmethod
24 @nb.jit('Tuple((UniTuple(f8, 2), f8, f8))(optional(f8), f8, i4, f8[:], f8[:],

→˓f8[:])',
25 nopython=True)
26 def _fluxes_function_numba(S, S0, ind, P, k, dt):
27

28 return (
29 (
30 P[ind],
31 - k[ind] * S,

(continues on next page)
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(continued from previous page)

32 ),
33 0.0,
34 S0 + P[ind] * dt[ind]
35 )

_fluxes_function_python and _fluxes_function_numba are both private static methods.

Their inputs are: the state used to compute the fluxes (S), initial state (S0), index to use in the arrays (ind, all inputs
are arrays and, when solving for a single time step, the index indicating the time step to look for), input fluxes (P), and
parameters (k).

The output is a tuple containing three elements:

• tuple with the computed values of the fluxes; positive sign for incoming fluxes (e.g. precipitation, P), negative
sign for outgoing fluxes (e.g. streamflow, - k * S);

• lower bound for the search of the state;

• upper bound for the search of the state;

The implementation for the Numba solver differs in two aspects:

• the usage of the Numba decorator that defines the types of input variables (lines 24-25)

• the method works only for a single time step and not for the vectorized solution. For the vectorized solution the
Python implementation (with Numpy) is fast enough.

8.2 Half-triangular lag function

The half-triangular lag function has the shape of a triangle that, as shown in the figure, grows linearly until 𝑡lag and
then drops to zero. The growth rate 𝛼 is determined from the constraint that the total area of the triangle must be equal
to 1.

𝑓lag = 𝛼𝑡

for 𝑡 ≤ 𝑡lag

𝑓lag = 0

for 𝑡 > 𝑡lag

SuperflexPy provides the class LagElement that contains most of the functionalities needed to calculate the output
of a lag function. The class implementing a customized lag function will inherit from LagElement, and implement
only the methods needed to apply the transformation to the incoming flux.
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1 import numpy as np
2

3 class TriangularLag(LagElement):

The only method that we need to implement is the private method used to calculate the weight array.

1 def _build_weight(self, lag_time):
2

3 weight = []
4

5 for t in lag_time:
6 array_length = np.ceil(t)
7 w_i = []
8

9 for i in range(int(array_length)):
10 w_i.append(self._calculate_lag_area(i + 1, t)
11 - self._calculate_lag_area(i, t))
12

13 weight.append(np.array(w_i))
14

15 return weight

The method _build_weight makes use of a secondary private static method

1 @staticmethod
2 def _calculate_lag_area(bin, len):
3

4 if bin <= 0:
5 value = 0
6 elif bin < len:
7 value = (bin / len)**2
8 else:
9 value = 1

10

11 return value

This method returns the area 𝐴𝑖 of the red triangle in the figure, which has base 𝑡𝑖 (bin). The _build_weight
method uses this function to calculate the weight array 𝑊𝑖, as the difference between 𝐴𝑖 and 𝐴𝑖−1.

Note that the method _build_weight can be implemented using other approaches, e.g., without using auxiliary
methods.

8.3 Parameterized splitter

A splitter is an element that takes the flux from an upstream element and distributes it to feed multiple downstream
elements. The element is controlled by parameters that define the portion of the flux that goes into a specific element.

The simple case that we consider here has a single input flux that is split to two downstream elements. In this case, the
splitter needs only one parameter (𝛼split). The fluxes to the downstream elements are

𝑄out
1 = 𝛼split𝑄

in

𝑄out
2 = (1− 𝛼split)𝑄

in

SuperflexPy provides the class ParameterizedElement, which can be extended to implement all elements that
are controlled by parameters but do not have a state. The class implementing the parameterized splitter will inherit
from ParameterizedElement and implement only some methods.
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1 from superflexpy.framework.element import ParameterizedElement
2

3 class ParameterizedSingleFluxSplitter(ParameterizedElement):

First, we define two private attributes that specify the number of upstream and downstream elements of the splitter.
This information is used by the unit when constructing the model structure.

1 _num_downstream = 2
2 _num_upstream = 1

We then define the method that takes the inputs, and the method that calculates the outputs.

1 def set_input(self, input):
2

3 self.input = {'Q_in': input[0]}
4

5 def get_output(self, solve=True):
6

7 split_par = self._parameters[self._prefix_parameters + 'split-par']
8

9 return [
10 self.input['Q_in'] * split_par,
11 self.input['Q_in'] * (1 - split_par)
12 ]

The two methods have the same structure as the ones implemented as part of the Linear reservoir example. Note
that, in this case, the argument solve of get_output is not used, but it is still required to maintain a consistent
interface.
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CHAPTER

NINE

EXPAND SUPERFLEXPY: MODIFY EXISTING COMPONENTS

9.1 Adding routing to a node

Nodes in SuperflexPy have the capability to apply a lag to the fluxes simulated by the units. Such lags can represent
routing delays in the fluxes as they propagate through the catchment (“internal” routing) and through the river network
(“external” routing). Both types of routing can be implemented within a SuperflexPy node.

The default implementation of the node (Node class in superflexpy.framework.node) does not provide the
routing functionality. The methods _internal_routing and external_routing exist but are set to simply
return the incoming fluxes without any transformation.

To implement the routing, we need to implement a customized node that implements those two methods for given lag
functions. The object-oriented design of SuperflexPy simplifies this operation, because the new node class inherits all
the methods from the original class, and has to overwrite only the two methods that are responsible for the routing.

In this example, we illustrate an implementation of routing with a lag function in the shape of an isosceles triangle
with base t_internal and t_external, for internal and external routing respectively. The implementation is
similar to the case of the Half-triangular lag function.

The first step is to import the Node component from SuperflexPy and define the class RoutedNode

1 from superflexpy.framework.node import Node
2

3 class RoutedNone(Node):

We then need to implement the methods _internal_routing and external_routing. Both methods receive
as input a list of fluxes, and return as output the fluxes (in the same order of the inputs) with the delay applied.

1 def _internal_routing(self, flux):
2

3 t_internal = self.get_parameters(names=[self._prefix_local_parameters + 't_
→˓internal'])

4 flux_out = []
5

6 for f in flux:
7 flux_out.append(self._route(f, t_internal))
8

9 return flux_out
10

11 def external_routing(self, flux):
12

13 t_external = self.get_parameters(names=[self._prefix_local_parameters + 't_
→˓external'])

14 flux_out = []

(continues on next page)
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(continued from previous page)

15

16 for f in flux:
17 flux_out.append(self._route(f, t_external))
18

19 return flux_out

In this simple example, the two routing mechanisms are handled using the same lag function. Hence, the methods take
advantage of the method _route (line 7 and 17) to simulate the routing.

The method is implemented as follows

1 def _route(self, flux, time):
2

3 state = np.zeros(int(np.ceil(time)))
4 weight = self._calculate_weight(time)
5

6 out = []
7 for value in flux:
8 state = state + weight * value
9 out.append(state[0])

10 state[0] = 0
11 state = np.roll(state, shift=-1)
12

13 return np.array(out)
14

15 def _calculate_weight(self, time):
16

17 weight = []
18

19 array_length = np.ceil(time)
20

21 for i in range(int(array_length)):
22 weight.append(self._calculate_lag_area(i + 1, time)
23 - self._calculate_lag_area(i, time))
24

25 return weight
26

27 @staticmethod
28 def _calculate_lag_area(portion, time):
29

30 half_time = time / 2
31

32 if portion <= 0:
33 value = 0
34 elif portion < half_time:
35 value = 2 * (portion / time) ** 2
36 elif portion < time:
37 value = 1 - 2 * ((time - portion) / time)**2
38 else:
39 value = 1
40

41 return value

Note that the code in this block is similar to the code implemented in Half-triangular lag function. The meth-
ods in this last block are “support” methods used only to make the code more organized and easier to maintain.
A similar result can be obtained by moving the functionality of these methods into _internal_routing and
external_routing.
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CHAPTER

TEN

APPLICATION: IMPLEMENTATION OF EXISTING CONCEPTUAL
MODELS

This page describes the implementation of existing conceptual hydrological models using SuperflexPy. The translation
of a model in SuperflexPy requires the following steps:

1. Design of a structure that reflects the original model but satisfies the requirements of SuperflexPy (e.g. does not
contain mutual interaction between elements, see Unit);

2. Extension of the framework, coding the required elements (as explained in the page Expand SuperflexPy: build
customized elements)

3. Construction of the model structure using the elements implemented at point 2

10.1 Model M4 from Kavetski and Fenicia, WRR, 2011

M4 is a simple conceptual model presented, as part of a model comparison study, in the article

Kavetski, D., and F. Fenicia (2011), Elements of a flexible approach for conceptual hydro-
logical modeling: 2. Application and experimental insights, WaterResour.Res.,47, W11511,
doi:10.1029/2011WR010748.

10.1.1 Design of the model structure

The structure of M4 is simple and can be implemented directly in SuperflexPy without using connection elements.
The figure shows, on the left, the structure as presented in the original M4 publication; on the right, the SuperflexPy
implementation is shown.
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The upstream element, i.e., the unsaturated reservoir (UR), is intended to represent runoff generation processes (e.g.
separation between evaporation and runoff). It is controlled by the differential equation

𝑆 =
𝑆UR

𝑆max

d𝑆UR

d𝑡
= 𝑃 − 𝐸P

(︂
𝑆 (1 +𝑚)

𝑆 +𝑚

)︂
− 𝑃

(︀
𝑆
)︀𝛽

The downstream element, the fast reservoir (FR), is intended to represent runoff propagation processes (e.g. routing).
It is controlled by the differential equation

d𝑆FR

d𝑡
= 𝑃 − 𝑘𝑆𝛼

FR

𝑆UR and 𝑆FR are the model states, 𝑃 is the precipitation input flux, 𝐸P is the potential evapotranspiration (a model
input), and 𝑆max, 𝑚, 𝛽, 𝑘, 𝛼 are the model parameters.

10.1.2 Element creation

We now show the code used to implement the elements designed in the previous section. Instruction on how to use the
framework to build new elements can be found in the page Expand SuperflexPy: build customized elements.

Note that some elements have already been implemented in SuperflexPy (refer to the page List of currently imple-
mented elements) and, therefore, the modeller does not need to implement them.

Unsaturated reservoir

This element can be implemented by extending the class ODEsElement.

1 class UnsaturatedReservoir(ODEsElement):
2

3 def __init__(self, parameters, states, approximation, id):
4

5 ODEsElement.__init__(self,
6 parameters=parameters,
7 states=states,
8 approximation=approximation,
9 id=id)

(continues on next page)
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(continued from previous page)

10

11 self._fluxes_python = [self._fluxes_function_python]
12

13 if approximation.architecture == 'numba':
14 self._fluxes = [self._fluxes_function_numba]
15 elif approximation.architecture == 'python':
16 self._fluxes = [self._fluxes_function_python]
17

18 def set_input(self, input):
19

20 self.input = {'P': input[0],
21 'PET': input[1]}
22

23 def get_output(self, solve=True):
24

25 if solve:
26 self._solver_states = [self._states[self._prefix_states + 'S0']]
27

28 self._solve_differential_equation()
29

30 # Update the state
31 self.set_states({self._prefix_states + 'S0': self.state_array[-1, 0]})
32

33 fluxes = self._num_app.get_fluxes(fluxes=self._fluxes_python,
34 S=self.state_array,
35 S0=self._solver_states,
36 dt=self._dt,
37 **self.input,
38 **{k[len(self._prefix_parameters):]: self._

→˓parameters[k] for k in self._parameters},
39 )
40 return [-fluxes[0][2]]
41

42 def get_AET(self):
43

44 try:
45 S = self.state_array
46 except AttributeError:
47 message = '{}get_aet method has to be run after running '.format(self._

→˓error_message)
48 message += 'the model using the method get_output'
49 raise AttributeError(message)
50

51 fluxes = self._num_app.get_fluxes(fluxes=self._fluxes_python,
52 S=S,
53 S0=self._solver_states,
54 dt=self._dt,
55 **self.input,
56 **{k[len(self._prefix_parameters):]: self._

→˓parameters[k] for k in self._parameters},
57 )
58 return [- fluxes[0][1]]
59

60 # PROTECTED METHODS
61

62 @staticmethod
63 def _fluxes_function_python(S, S0, ind, P, Smax, m, beta, PET, dt):

(continues on next page)
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64

65 if ind is None:
66 return (
67 [
68 P,
69 - PET * ((S / Smax) * (1 + m)) / ((S / Smax) + m),
70 - P * (S / Smax)**beta,
71 ],
72 0.0,
73 S0 + P * dt
74 )
75 else:
76 return (
77 [
78 P[ind],
79 - PET[ind] * ((S / Smax[ind]) * (1 + m[ind])) / ((S / Smax[ind])

→˓+ m[ind]),
80 - P[ind] * (S / Smax[ind])**beta[ind],
81 ],
82 0.0,
83 S0 + P[ind] * dt[ind]
84 )
85

86 @staticmethod
87 @nb.jit('Tuple((UniTuple(f8, 3), f8, f8))(optional(f8), f8, i4, f8[:], f8[:],

→˓f8[:], f8[:], f8[:], f8[:])',
88 nopython=True)
89 def _fluxes_function_numba(S, S0, ind, P, Smax, m, beta, PET, dt):
90

91 return (
92 (
93 P[ind],
94 PET[ind] * ((S / Smax[ind]) * (1 + m[ind])) / ((S / Smax[ind]) +

→˓m[ind]),
95 - P[ind] * (S / Smax[ind])**beta[ind],
96 ),
97 0.0,
98 S0 + P[ind] * dt[ind]
99 )

Fast reservoir

This element can be implemented by extending the class ODEsElement.

1 class PowerReservoir(ODEsElement):
2

3 def __init__(self, parameters, states, approximation, id):
4

5 ODEsElement.__init__(self,
6 parameters=parameters,
7 states=states,
8 approximation=approximation,
9 id=id)

10

11 self._fluxes_python = [self._fluxes_function_python] # Used by get fluxes,
→˓regardless of the architecture (continues on next page)
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12

13 if approximation.architecture == 'numba':
14 self._fluxes = [self._fluxes_function_numba]
15 elif approximation.architecture == 'python':
16 self._fluxes = [self._fluxes_function_python]
17

18 # METHODS FOR THE USER
19

20 def set_input(self, input):
21

22 self.input = {'P': input[0]}
23

24 def get_output(self, solve=True):
25

26 if solve:
27 self._solver_states = [self._states[self._prefix_states + 'S0']]
28 self._solve_differential_equation()
29

30 # Update the state
31 self.set_states({self._prefix_states + 'S0': self.state_array[-1, 0]})
32

33 fluxes = self._num_app.get_fluxes(fluxes=self._fluxes_python, # I can use
→˓the python method since it is fast

34 S=self.state_array,
35 S0=self._solver_states,
36 dt=self._dt,
37 **self.input,
38 **{k[len(self._prefix_parameters):]: self._

→˓parameters[k] for k in self._parameters},
39 )
40

41 return [- fluxes[0][1]]
42

43 # PROTECTED METHODS
44

45 @staticmethod
46 def _fluxes_function_python(S, S0, ind, P, k, alpha, dt):
47

48 if ind is None:
49 return (
50 [
51 P,
52 - k * S**alpha,
53 ],
54 0.0,
55 S0 + P * dt
56 )
57 else:
58 return (
59 [
60 P[ind],
61 - k[ind] * S**alpha[ind],
62 ],
63 0.0,
64 S0 + P[ind] * dt[ind]
65 )
66

(continues on next page)
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67 @staticmethod
68 @nb.jit('Tuple((UniTuple(f8, 2), f8, f8))(optional(f8), f8, i4, f8[:], f8[:],

→˓f8[:], f8[:])',
69 nopython=True)
70 def _fluxes_function_numba(S, S0, ind, P, k, alpha, dt):
71

72 return (
73 (
74 P[ind],
75 - k[ind] * S**alpha[ind],
76 ),
77 0.0,
78 S0 + P[ind] * dt[ind]

10.1.3 Model initialization

Now that all elements are implemented, we can put them together to build the model structure. For details refer to
How to build a model with SuperflexPy.

First, we initialize all elements.

1 root_finder = PegasusPython()
2 numeric_approximator = ImplicitEulerPython(root_finder=root_finder)
3

4 ur = UnsaturatedReservoir(
5 parameters={'Smax': 50.0, 'Ce': 1.0, 'm': 0.01, 'beta': 2.0},
6 states={'S0': 25.0},
7 approximation=numeric_approximator,
8 id='UR'
9 )

10

11 fr = PowerReservoir(
12 parameters={'k': 0.1, 'alpha': 1.0},
13 states={'S0': 10.0},
14 approximation=numeric_approximator,
15 id='FR'
16 )

Next, the elements can be put together to create a Unit that reflects the structure presented in the figure.

1 model = Unit(
2 layers=[
3 [ur],
4 [fr]
5 ],
6 id='M4'
7 )

10.2 GR4J

GR4J is a widely used conceptual hydrological model introduced in the article

Perrin, C., Michel, C., and Andréassian, V.: Improvement of a parsimonious model for streamflow
simulation, Journal of Hydrology, 279, 275-289, https://doi.org/10.1016/S0022-1694(03)00225-7, 2003.
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The solution adopted here follows the “continuous state-space representation” presented in

Santos, L., Thirel, G., and Perrin, C.: Continuous state-space representation of a bucket-type rainfall-
runoff model: a case study with the GR4 model using state-space GR4 (version 1.0), Geosci. Model
Dev., 11, 1591-1605, 10.5194/gmd-11-1591-2018, 2018.

10.2.1 Design of the model structure

The figure shows, on the left, the model structure as presented in Perrin et al., 2003; on the right, the adaptation to
SuperflexPy is shown.

The potential evaporation and the precipitation are “filtered” by an interception element, which sets the smallest of the
two fluxes to zero and the largest of the fluxes to the difference between the two.

if 𝑃 > 𝐸POT :

𝑃NET = 𝑃 − 𝐸POT

𝐸NET = 0

else :

𝑃NET = 0

𝐸NET = 𝐸POT − 𝑃

This element is implemented in SuperflexPy using the “interception filter”.

After the interception filter, the SuperflexPy implementation starts to differ from the original. In the original imple-
mentation of GR4J, the precipitation is split between a part 𝑃s that flows into the production store and the remaining
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part 𝑃b that bypasses the reservoir. 𝑃s and 𝑃b are both functions of the state of the reservoir

𝑃s = 𝑃NET

(︂
1−

(︂
𝑆UR

𝑥1

)︂𝛼)︂
𝑃b = 𝑃NET

(︂
𝑆UR

𝑥1

)︂𝛼

When we implement this part of the model in SuperflexPy, these two fluxes cannot be calculated before solving the
reservoir (due to the representation of the Unit as a succession of layers).

To solve this problem, in the SuperflexPy implementation of GR4J, all precipitation (and not only 𝑃s) flows into an
element that incorporates the production store. This element takes care of dividing the precipitation internally, while
solving the differential equation

d𝑆UR

d𝑡
= 𝑃NET

(︂
1−

(︂
𝑆UR

𝑥1

)︂𝛼)︂
− 𝐸NET

(︂
2
𝑆UR

𝑥1
−

(︂
𝑆UR

𝑥1

)︂𝛼)︂
− 𝑥1−𝛽

1

(𝛽 − 1)
𝜈𝛽−1𝑆𝛽

UR

where the first term is the precipitation 𝑃𝑠, the second term is the actual evaporation, and the third term represents the
output of the reservoir, which here corresponds to “percolation”.

Once the reservoir is solved (i.e. the values of 𝑆UR that solve the discretized differential equation are found), the
element outputs the sum of percolation and bypassing precipitation (𝑃𝑏).

The flux is then divided between two lag functions (referred to as “unit hydrographs” and abbreviated UH): 90% of the
flux goes to UH1 and 10% goes to UH2. In this part of the model structure the correspondence between the elements
of GR4J and their SuperflexPy implementation is quite clear.

The output of UH1 provides the input of the routing store, that is a reservoir controlled by the differential equation

d𝑆RR

d𝑡
= 𝑄UH1 −

𝑥1−𝛾
3

(𝛾 − 1)
𝑆𝛾

RR − 𝑥2

𝑥𝜔
3

𝑆𝜔
RR

where the second term is the output of the reservoir and the last is a gain/loss term (called 𝑄RF).

The gain/loss term 𝑄RF, which is a function of the state 𝑆RR of the reservoir, is also subtracted from the output of
UH2. In SuperflexPy, this operation cannot be done in the same unit layer as the solution of the routing store, and
instead it is done afterwards. For this reason, the SuperflexPy implementation of GR4J has an additional element
(called “flux aggregator”) that collects (through a junction element) the output of the routing store, the gain/loss term,
and the output of UH2. The flux aggregator then computes the outflow of the model using the equation

𝑄 = 𝑄RR +max(0;𝑄UH2 −𝑄RF)

10.2.2 Elements creation

We now show the code to implement the elements designed in the previous section. Instruction on how to use the
framework to build new elements can be found in the page Expand SuperflexPy: build customized elements.

Note that some elements have already been implemented (refer to the page List of currently implemented elements)
and, therefore, the modeller does not need to implement them, as shown in this section.

Interception

The interception filter can be implemented by extending the class BaseElement
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1 class InterceptionFilter(BaseElement):
2

3 _num_upstream = 1
4 _num_downstream = 1
5

6 def set_input(self, input):
7

8 self.input = {}
9 self.input['PET'] = input[0]

10 self.input['P'] = input[1]
11

12 def get_output(self, solve=True):
13

14 remove = np.minimum(self.input['PET'], self.input['P'])
15

16 return [self.input['PET'] - remove, self.input['P'] - remove]

Production store

The production store is controlled by a differential equation and, therefore, can be constructed by extending the class
ODEsElement

1 class ProductionStore(ODEsElement):
2

3 def __init__(self, parameters, states, approximation, id):
4

5 ODEsElement.__init__(self,
6 parameters=parameters,
7 states=states,
8 approximation=approximation,
9 id=id)

10

11 self._fluxes_python = [self._flux_function_python]
12

13 if approximation.architecture == 'numba':
14 self._fluxes = [self._flux_function_numba]
15 elif approximation.architecture == 'python':
16 self._fluxes = [self._flux_function_python]
17

18 def set_input(self, input):
19

20 self.input = {}
21 self.input['PET'] = input[0]
22 self.input['P'] = input[1]
23

24 def get_output(self, solve=True):
25

26 if solve:
27 # Solve the differential equation
28 self._solver_states = [self._states[self._prefix_states + 'S0']]
29 self._solve_differential_equation()
30

31 # Update the states
32 self.set_states({self._prefix_states + 'S0': self.state_array[-1, 0]})
33

34 fluxes = self._num_app.get_fluxes(fluxes=self._fluxes_python,

(continues on next page)
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35 S=self.state_array,
36 S0=self._solver_states,
37 dt=self._dt,
38 **self.input,
39 **{k[len(self._prefix_parameters):]: self._

→˓parameters[k] for k in self._parameters},
40 )
41

42 Pn_minus_Ps = self.input['P'] - fluxes[0][0]
43 Perc = - fluxes[0][2]
44 return [Pn_minus_Ps + Perc]
45

46 def get_aet(self):
47

48 try:
49 S = self.state_array
50 except AttributeError:
51 message = '{}get_aet method has to be run after running '.format(self._

→˓error_message)
52 message += 'the model using the method get_output'
53 raise AttributeError(message)
54

55 fluxes = self._num_app.get_fluxes(fluxes=self._fluxes_python,
56 S=S,
57 S0=self._solver_states,
58 dt=self._dt,
59 **self.input,
60 **{k[len(self._prefix_parameters):]: self._

→˓parameters[k] for k in self._parameters},
61 )
62

63 return [- fluxes[0][1]]
64

65 @staticmethod
66 def _flux_function_python(S, S0, ind, P, x1, alpha, beta, ni, PET, dt):
67

68 if ind is None:
69 return(
70 [
71 P * (1 - (S / x1)**alpha), # Ps
72 - PET * (2 * (S / x1) - (S / x1)**alpha), # Evaporation
73 - ((x1**(1 - beta)) / ((beta - 1))) * (ni**(beta - 1)) *

→˓(S**beta) # Perc
74 ],
75 0.0,
76 S0 + P * (1 - (S / x1)**alpha) * dt
77 )
78 else:
79 return(
80 [
81 P[ind] * (1 - (S / x1[ind])**alpha[ind]), # Ps
82 - PET[ind] * (2 * (S / x1[ind]) - (S / x1[ind])**alpha[ind]), #

→˓Evaporation
83 - ((x1[ind]**(1 - beta[ind])) / ((beta[ind] - 1))) *

→˓(ni[ind]**(beta[ind] - 1)) * (S**beta[ind]) # Perc
84 ],
85 0.0,

(continues on next page)
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86 S0 + P[ind] * (1 - (S / x1[ind])**alpha[ind]) * dt[ind]
87 )
88

89 @staticmethod
90 @nb.jit('Tuple((UniTuple(f8, 3), f8, f8))(optional(f8), f8, i4, f8[:], f8[:],

→˓f8[:], f8[:], f8[:], f8[:], f8[:])',
91 nopython=True)
92 def _flux_function_numba(S, S0, ind, P, x1, alpha, beta, ni, PET, dt):
93

94 return(
95 (
96 P[ind] * (1 - (S / x1[ind])**alpha[ind]), # Ps
97 - PET[ind] * (2 * (S / x1[ind]) - (S / x1[ind])**alpha[ind]), #

→˓Evaporation
98 - ((x1[ind]**(1 - beta[ind])) / ((beta[ind] - 1))) *

→˓(ni[ind]**(beta[ind] - 1)) * (S**beta[ind]) # Perc
99 ),

100 0.0,
101 S0 + P[ind] * (1 - (S / x1[ind])**alpha[ind]) * dt[ind]
102 )

Unit hydrographs

The unit hydrographs are an extension of the LagElement, and can be implemented as follows

1 class UnitHydrograph1(LagElement):
2

3 def __init__(self, parameters, states, id):
4

5 LagElement.__init__(self, parameters, states, id)
6

7 def _build_weight(self, lag_time):
8

9 weight = []
10

11 for t in lag_time:
12 array_length = np.ceil(t)
13 w_i = []
14 for i in range(int(array_length)):
15 w_i.append(self._calculate_lag_area(i + 1, t)
16 - self._calculate_lag_area(i, t))
17 weight.append(np.array(w_i))
18

19 return weight
20

21 @staticmethod
22 def _calculate_lag_area(bin, len):
23 if bin <= 0:
24 value = 0
25 elif bin < len:
26 value = (bin / len)**2.5
27 else:
28 value = 1
29 return value
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1 class UnitHydrograph2(LagElement):
2

3 def __init__(self, parameters, states, id):
4

5 LagElement.__init__(self, parameters, states, id)
6

7 def _build_weight(self, lag_time):
8

9 weight = []
10

11 for t in lag_time:
12 array_length = np.ceil(t)
13 w_i = []
14 for i in range(int(array_length)):
15 w_i.append(self._calculate_lag_area(i + 1, t)
16 - self._calculate_lag_area(i, t))
17 weight.append(np.array(w_i))
18

19 return weight
20

21 @staticmethod
22 def _calculate_lag_area(bin, len):
23 half_len = len / 2
24 if bin <= 0:
25 value = 0
26 elif bin < half_len:
27 value = 0.5 * (bin / half_len)**2.5
28 elif bin < len:
29 value = 1 - 0.5 * (2 - bin / half_len)**2.5
30 else:
31 value = 1
32 return value

Routing store

The routing store is an ODEsElement

1 class RoutingStore(ODEsElement):
2

3 def __init__(self, parameters, states, approximation, id):
4

5 ODEsElement.__init__(self,
6 parameters=parameters,
7 states=states,
8 approximation=approximation,
9 id=id)

10

11 self._fluxes_python = [self._flux_function_python]
12

13 if approximation.architecture == 'numba':
14 self._fluxes = [self._flux_function_numba]
15 elif approximation.architecture == 'python':
16 self._fluxes = [self._flux_function_python]
17

18 def set_input(self, input):
19

(continues on next page)
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20 self.input = {}
21 self.input['P'] = input[0]
22

23 def get_output(self, solve=True):
24

25 if solve:
26 # Solve the differential equation
27 self._solver_states = [self._states[self._prefix_states + 'S0']]
28 self._solve_differential_equation()
29

30 # Update the states
31 self.set_states({self._prefix_states + 'S0': self.state_array[-1, 0]})
32

33 fluxes = self._num_app.get_fluxes(fluxes=self._fluxes_python,
34 S=self.state_array,
35 S0=self._solver_states,
36 dt=self._dt,
37 **self.input,
38 **{k[len(self._prefix_parameters):]: self._

→˓parameters[k] for k in self._parameters},
39 )
40

41 Qr = - fluxes[0][1]
42 F = -fluxes[0][2]
43

44 return [Qr, F]
45

46 @staticmethod
47 def _flux_function_python(S, S0, ind, P, x2, x3, gamma, omega, dt):
48

49 if ind is None:
50 return(
51 [
52 P, # P
53 - ((x3**(1 - gamma)) / ((gamma - 1))) * (S**gamma), # Qr
54 - (x2 * (S / x3)**omega), # F
55 ],
56 0.0,
57 S0 + P * dt
58 )
59 else:
60 return(
61 [
62 P[ind], # P
63 - ((x3[ind]**(1 - gamma[ind])) / ((gamma[ind] - 1))) *

→˓(S**gamma[ind]), # Qr
64 - (x2[ind] * (S / x3[ind])**omega[ind]), # F
65 ],
66 0.0,
67 S0 + P[ind] * dt[ind]
68 )
69

70 @staticmethod
71 @nb.jit('Tuple((UniTuple(f8, 3), f8, f8))(optional(f8), f8, i4, f8[:], f8[:],

→˓f8[:], f8[:], f8[:], f8[:])',
72 nopython=True)
73 def _flux_function_numba(S, S0, ind, P, x2, x3, gamma, omega, dt):

(continues on next page)
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74

75 return(
76 (
77 P[ind], # P
78 - ((x3[ind]**(1 - gamma[ind])) / ((gamma[ind] - 1))) *

→˓(S**gamma[ind]), # Qr
79 - (x2[ind] * (S / x3[ind])**omega[ind]), # F
80 ),
81 0.0,
82 S0 + P[ind] * dt[ind]
83 )

Flux aggregator

The flux aggregator can be implemented by extending a BaseElement

1 class FluxAggregator(BaseElement):
2

3 _num_downstream = 1
4 _num_upstream = 1
5

6 def set_input(self, input):
7

8 self.input = {}
9 self.input['Qr'] = input[0]

10 self.input['F'] = input[1]
11 self.input['Q2_out'] = input[2]
12

13 def get_output(self, solve=True):
14

15 return [self.input['Qr']
16 + np.maximum(0, self.input['Q2_out'] - self.input['F'])]

10.2.3 Model initialization

Now that all elements are implemented, we can combine them to build the model structure. For details refer to How
to build a model with SuperflexPy.

First, we initialize all elements.

1 x1, x2, x3, x4 = (50.0, 0.1, 20.0, 3.5)
2

3 root_finder = PegasusPython() # Use the default parameters
4 numerical_approximation = ImplicitEulerPython(root_finder)
5

6 interception_filter = InterceptionFilter(id='ir')
7

8 production_store = ProductionStore(parameters={'x1': x1, 'alpha': 2.0,
9 'beta': 5.0, 'ni': 4/9},

10 states={'S0': 10.0},
11 approximation=numerical_approximation,
12 id='ps')
13

14 splitter = Splitter(weight=[[0.9], [0.1]],

(continues on next page)
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15 direction=[[0], [0]],
16 id='spl')
17

18 unit_hydrograph_1 = UnitHydrograph1(parameters={'lag-time': x4},
19 states={'lag': None},
20 id='uh1')
21

22 unit_hydrograph_2 = UnitHydrograph2(parameters={'lag-time': 2*x4},
23 states={'lag': None},
24 id='uh2')
25

26 routing_store = RoutingStore(parameters={'x2': x2, 'x3': x3,
27 'gamma': 5.0, 'omega': 3.5},
28 states={'S0': 10.0},
29 approximation=numerical_approximation,
30 id='rs')
31

32 transparent = Transparent(id='tr')
33

34 junction = Junction(direction=[[0, None], # First output
35 [1, None], # Second output
36 [None, 0]], # Third output
37 id='jun')
38

39 flux_aggregator = FluxAggregator(id='fa')

The elements are then put together to define a Unit that reflects the GR4J structure presented in the figure.

1 model = Unit(layers=[[interception_filter],
2 [production_store],
3 [splitter],
4 [unit_hydrograph_1, unit_hydrograph_2],
5 [routing_store, transparent],
6 [junction],
7 [flux_aggregator]],
8 id='model')

10.3 HYMOD

HYMOD is another widely used conceptual hydrological model. It was first published in

Boyle, D. P. (2001). Multicriteria calibration of hydrologic models, The University of Arizona. Link

The solution proposed here follows the model structure presented in

Wagener, T., Boyle, D. P., Lees, M. J., Wheater, H. S., Gupta, H. V., and Sorooshian, S.: A framework
for development and application of hydrological models, Hydrol. Earth Syst. Sci., 5, 13–26, https:
//doi.org/10.5194/hess-5-13-2001, 2001.
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10.3.1 Design of the structure

HYMOD comprises three groups of reservoirs intended to represent, respectively, the upper zone (soil dynamics),
channel routing (surface runoff), and lower zone (subsurface flow).

As can be seen in the figure, the original structure of HYMOD already meets the design constrains of SuperflexPy (it
does not contains feedbacks between elements). Therefore HYMOD can be implemented in SuperflexPy in a more
straightforward way than GR4J.

The first element (upper zone) is a reservoir intended to represent streamflow generation processes and evaporation. It
is controlled by the differential equation

𝑆 =
𝑆UR

𝑆max

d𝑆UR

d𝑡
= 𝑃 − 𝐸 − 𝑃

(︁
1−

(︀
1− 𝑆

)︀𝛽)︁
where the first term is the precipitation input, the second term is the actual evaporation (which is equal to the potential
evaporation as long as there is sufficient storage in the reservoir), and the third term is the outflow from the reservoir.

The outflow from the reservoir is then split between the channel routing (3 reservoirs) and the lower zone (1 reservoir).
All these elements are represented by linear reservoirs controlled by the differential equation

d𝑆
d𝑡

= 𝑃 − 𝑘𝑆
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where the first term is the input (here, the outflow from the upstream element) and the second term represents the
outflow from the reservoir.

Channel routing and lower zone differ from each other in the number of reservoirs used (3 in the first case and 1 in the
second), and in the value of the parameter 𝑘, which controls the outflow rate. Based on intended model operation, 𝑘
should have a larger value for channel routing because this element is intended to represent faster processes.

The outputs of these two flowpaths are collected by a junction, which generates the final model output.

Comparing the two panels in the figure, the only difference is the presence of the two transparent elements that are
needed to fill the “gaps” that, otherwise, will be present in the structure (see Unit).

10.3.2 Elements creation

We now show the code to implement the elements designed in the previous section. Instruction on how to use the
framework to build new elements can be found in the page Expand SuperflexPy: build customized elements.

Note that some elements have already been implemented (refer to the page List of currently implemented elements)
and, therefore, the modeller does not need to implement them, as shown in this section.

Upper zone

The code used to simulate the upper zone present a change in the equation used to calculate the actual evaporation. In
the original version (Wagener et al., 2001) the equation is “described” in the text

The actual evapotranspiration is equal to the potential value if sufficient soil moisture is available; oth-
erwise it is equal to the available soil moisture content.

which translates to the equation

if 𝑆 > 0 :

𝐸 = 𝐸POT

else :

𝐸 = 0

Note that this solution is not smooth and the resulting sharp threshold can cause some computational problems. A
smooth version of this equation is given by

𝑆 =
𝑆UR

𝑆max

𝐸 = 𝐸POT

(︂
𝑆(1 +𝑚)

𝑆 +𝑚

)︂
The upper zone reservoir can be implemented by extending the class ODEsElement.

1 class UpperZone(ODEsElement):
2

3 def __init__(self, parameters, states, approximation, id):
4

5 ODEsElement.__init__(self,
6 parameters=parameters,
7 states=states,
8 approximation=approximation,
9 id=id)

10

11 self._fluxes_python = [self._fluxes_function_python]

(continues on next page)
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12

13 if approximation.architecture == 'numba':
14 self._fluxes = [self._fluxes_function_numba]
15 elif approximation.architecture == 'python':
16 self._fluxes = [self._fluxes_function_python]
17

18 def set_input(self, input):
19

20 self.input = {'P': input[0],
21 'PET': input[1]}
22

23 def get_output(self, solve=True):
24

25 if solve:
26 self._solver_states = [self._states[self._prefix_states + 'S0']]
27

28 self._solve_differential_equation()
29

30 # Update the state
31 self.set_states({self._prefix_states + 'S0': self.state_array[-1, 0]})
32

33 fluxes = self._num_app.get_fluxes(fluxes=self._fluxes_python,
34 S=self.state_array,
35 S0=self._solver_states,
36 dt=self._dt,
37 **self.input,
38 **{k[len(self._prefix_parameters):]: self._

→˓parameters[k] for k in self._parameters},
39 )
40 return [-fluxes[0][2]]
41

42 def get_AET(self):
43

44 try:
45 S = self.state_array
46 except AttributeError:
47 message = '{}get_aet method has to be run after running '.format(self._

→˓error_message)
48 message += 'the model using the method get_output'
49 raise AttributeError(message)
50

51 fluxes = self._num_app.get_fluxes(fluxes=self._fluxes_python,
52 S=S,
53 S0=self._solver_states,
54 dt=self._dt,
55 **self.input,
56 **{k[len(self._prefix_parameters):]: self._

→˓parameters[k] for k in self._parameters},
57 )
58 return [- fluxes[0][1]]
59

60 # PROTECTED METHODS
61

62 @staticmethod
63 def _fluxes_function_python(S, S0, ind, P, Smax, m, beta, PET, dt):
64

65 if ind is None:
(continues on next page)
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66 return (
67 [
68 P,
69 - PET * ((S / Smax) * (1 + m)) / ((S / Smax) + m),
70 - P * (1 - (1 - (S / Smax))**beta),
71 ],
72 0.0,
73 S0 + P * dt
74 )
75 else:
76 return (
77 [
78 P[ind],
79 - PET[ind] * ((S / Smax[ind]) * (1 + m[ind])) / ((S / Smax[ind])

→˓+ m[ind]),
80 - P[ind] * (1 - (1 - (S / Smax[ind]))**beta[ind]),
81 ],
82 0.0,
83 S0 + P[ind] * dt[ind]
84 )
85

86 @staticmethod
87 @nb.jit('Tuple((UniTuple(f8, 3), f8, f8))(optional(f8), f8, i4, f8[:], f8[:],

→˓f8[:], f8[:], f8[:], f8[:])',
88 nopython=True)
89 def _fluxes_function_numba(S, S0, ind, P, Smax, m, beta, PET, dt):
90

91 return (
92 (
93 P[ind],
94 - PET[ind] * ((S / Smax[ind]) * (1 + m[ind])) / ((S / Smax[ind]) +

→˓m[ind]),
95 - P[ind] * (1 - (1 - (S / Smax[ind]))**beta[ind]),
96 ),
97 0.0,
98 S0 + P[ind] * dt[ind]
99 )

Channel routing and lower zone

The elements representing channel routing and lower zone are all linear reservoirs that can be implemented by extend-
ing the class ODEsElement.

1 class LinearReservoir(ODEsElement):
2

3 def __init__(self, parameters, states, approximation, id):
4

5 ODEsElement.__init__(self,
6 parameters=parameters,
7 states=states,
8 approximation=approximation,
9 id=id)

10

11 self._fluxes_python = [self._fluxes_function_python] # Used by get fluxes,
→˓regardless of the architecture

(continues on next page)
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12

13 if approximation.architecture == 'numba':
14 self._fluxes = [self._fluxes_function_numba]
15 elif approximation.architecture == 'python':
16 self._fluxes = [self._fluxes_function_python]
17

18 # METHODS FOR THE USER
19

20 def set_input(self, input):
21

22 self.input = {'P': input[0]}
23

24 def get_output(self, solve=True):
25

26 if solve:
27 self._solver_states = [self._states[self._prefix_states + 'S0']]
28 self._solve_differential_equation()
29

30 # Update the state
31 self.set_states({self._prefix_states + 'S0': self.state_array[-1, 0]})
32

33 fluxes = self._num_app.get_fluxes(fluxes=self._fluxes_python, # I can use
→˓the python method since it is fast

34 S=self.state_array,
35 S0=self._solver_states,
36 dt=self._dt,
37 **self.input,
38 **{k[len(self._prefix_parameters):]: self._

→˓parameters[k] for k in self._parameters},
39 )
40 return [- fluxes[0][1]]
41

42 # PROTECTED METHODS
43

44 @staticmethod
45 def _fluxes_function_python(S, S0, ind, P, k, dt):
46

47 if ind is None:
48 return (
49 [
50 P,
51 - k * S,
52 ],
53 0.0,
54 S0 + P * dt
55 )
56 else:
57 return (
58 [
59 P[ind],
60 - k[ind] * S,
61 ],
62 0.0,
63 S0 + P[ind] * dt[ind]
64 )
65

66 @staticmethod
(continues on next page)
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67 @nb.jit('Tuple((UniTuple(f8, 2), f8, f8))(optional(f8), f8, i4, f8[:], f8[:],
→˓f8[:])',

68 nopython=True)
69 def _fluxes_function_numba(S, S0, ind, P, k, dt):
70

71 return (
72 (
73 P[ind],
74 - k[ind] * S,
75 ),
76 0.0,
77 S0 + P[ind] * dt[ind]
78 )

10.3.3 Model initialization

Now that all elements are implemented, we can combine them to build the HYMOD model structure. For details refer
to How to build a model with SuperflexPy.

First, we initialize all elements.

1 root_finder = PegasusPython() # Use the default parameters
2 numerical_approximation = ImplicitEulerPython(root_finder)
3

4 upper_zone = UpperZone(parameters={'Smax': 50.0, 'm': 0.01, 'beta': 2.0},
5 states={'S0': 10.0},
6 approximation=numerical_approximation,
7 id='uz')
8

9 splitter = Splitter(weight=[[0.6], [0.4]],
10 direction=[[0], [0]],
11 id='spl')
12

13 channel_routing_1 = LinearReservoir(parameters={'k': 0.1},
14 states={'S0': 10.0},
15 approximation=numerical_approximation,
16 id='cr1')
17

18 channel_routing_2 = LinearReservoir(parameters={'k': 0.1},
19 states={'S0': 10.0},
20 approximation=numerical_approximation,
21 id='cr2')
22

23 channel_routing_3 = LinearReservoir(parameters={'k': 0.1},
24 states={'S0': 10.0},
25 approximation=numerical_approximation,
26 id='cr3')
27

28 lower_zone = LinearReservoir(parameters={'k': 0.1},
29 states={'S0': 10.0},
30 approximation=numerical_approximation,
31 id='lz')
32

33 transparent_1 = Transparent(id='tr1')
34

(continues on next page)
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35 transparent_2 = Transparent(id='tr2')
36

37 junction = Junction(direction=[[0, 0]], # First output
38 id='jun')

The elements are now combined to define a Unit that reflects the structure shown in the figure.

1 model = Unit(layers=[[upper_zone],
2 [splitter],
3 [channel_routing_1, lower_zone],
4 [channel_routing_2, transparent_1],
5 [channel_routing_3, transparent_2],
6 [junction]],
7 id='model')
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CASE STUDIES

This page describes the model configurations used in publications.

11.1 Dal Molin et al., 2020, HESS

This section describes the implementation of the semi-distributed hydrological model M02 presented in the article:

Dal Molin, M., Schirmer, M., Zappa, M., and Fenicia, F.: Understanding dominant controls on stream-
flow spatial variability to set up a semi-distributed hydrological model: the case study of the Thur
catchment, Hydrol. Earth Syst. Sci., 24, 1319–1345, https://doi.org/10.5194/hess-24-1319-2020, 2020.

In this application, the Thur catchment is divided into 10 subcatchments and 2 hydrological response units (HRUs).
Please refer to the article for the details; here we only show the SuperflexPy code needed to reproduce the model from
the publication.

11.1.1 Model structure

The two HRUs are represented using the same model structure, shown in the figure.

This model structure is similar to HYMOD; its implementation using SuperflexPy is presented next.
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Note that, in this model implementation, temperature is treated as an input. Inputs are assigned to the element in the
first layer of the unit and then the model structure propagates these inputs through all the elements until they reach
the element where they are actually needed. Consequently, all the elements upstream have to be able to handle (i.e. to
input and output) that input.

In this model, the choice of temperature as input is convenient because temperature is required by the element appear-
ing first in the model structure.

In other cases, an alternative solution would have been to design the snow reservoir such that the temperature is one
of its state variables. This solution would be preferable if the snow reservoir is not the first element of the structure,
given that temperature is not an input commonly used by other elements.

The discretization of the Thur catchment into units (HRUs) and nodes (subcatchments) is represented in the figure
below.
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11.1.2 Initializing the elements

All elements required for this model structure are already available in SuperflexPy. Therefore they just need to be
imported.

1 from superflexpy.implementation.elements.thur_model_hess import SnowReservoir,
→˓UnsaturatedReservoir, HalfTriangularLag, PowerReservoir

2 from superflexpy.implementation.elements.structure_elements import Transparent,
→˓Junction, Splitter

3 from superflexpy.implementation.computation.pegasus_root_finding import PegasusPython
4 from superflexpy.implementation.computation.implicit_euler import ImplicitEulerPython

Elements are then initialized, defining the initial state and parameter values.

1 solver = PegasusPython()
2 approximator = ImplicitEulerPython(root_finder=solver)
3

4 upper_splitter = Splitter(
5 direction=[

(continues on next page)
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6 [0, 1, None], # P and T go to the snow reservoir
7 [2, None, None] # PET goes to the transparent element
8 ],
9 weight=[

10 [1.0, 1.0, 0.0],
11 [0.0, 0.0, 1.0]
12 ],
13 id='upper-splitter'
14 )
15

16 snow = SnowReservoir(
17 parameters={'t0': 0.0, 'k': 0.01, 'm': 2.0},
18 states={'S0': 0.0},
19 approximation=approximator,
20 id='snow'
21 )
22

23 upper_transparent = Transparent(
24 id='upper-transparent'
25 )
26

27 upper_junction = Junction(
28 direction=[
29 [0, None],
30 [None, 0]
31 ],
32 id='upper-junction'
33 )
34

35 unsaturated = UnsaturatedReservoir(
36 parameters={'Smax': 50.0, 'Ce': 1.0, 'm': 0.01, 'beta': 2.0},
37 states={'S0': 10.0},
38 approximation=approximator,
39 id='unsaturated'
40 )
41

42 lower_splitter = Splitter(
43 direction=[
44 [0],
45 [0]
46 ],
47 weight=[
48 [0.3], # Portion to slow reservoir
49 [0.7] # Portion to fast reservoir
50 ],
51 id='lower-splitter'
52 )
53

54 lag_fun = HalfTriangularLag(
55 parameters={'lag-time': 2.0},
56 states={'lag': None},
57 id='lag-fun'
58 )
59

60 fast = PowerReservoir(
61 parameters={'k': 0.01, 'alpha': 3.0},
62 states={'S0': 0.0},

(continues on next page)
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63 approximation=approximator,
64 id='fast'
65 )
66

67 slow = PowerReservoir(
68 parameters={'k': 1e-4, 'alpha': 1.0},
69 states={'S0': 0.0},
70 approximation=approximator,
71 id='slow'
72 )
73

74 lower_transparent = Transparent(
75 id='lower-transparent'
76 )
77

78 lower_junction = Junction(
79 direction=[
80 [0, 0]
81 ],
82 id='lower-junction'
83 )

11.1.3 Initializing the HRUs structure

We now define the two units that represent the HRUs.

1 consolidated = Unit(
2 layers=[
3 [upper_splitter],
4 [snow, upper_transparent],
5 [upper_junction],
6 [unsaturated],
7 [lower_splitter],
8 [slow, lag_fun],
9 [lower_transparent, fast],

10 [lower_junction],
11 ],
12 id='consolidated'
13 )
14

15 unconsolidated = Unit(
16 layers=[
17 [upper_splitter],
18 [snow, upper_transparent],
19 [upper_junction],
20 [unsaturated],
21 [lower_splitter],
22 [slow, lag_fun],
23 [lower_transparent, fast],
24 [lower_junction],
25 ],
26 id='unconsolidated'
27 )
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11.1.4 Initializing the catchments

We now assign the units (HRUs) to the nodes (catchments).

1 andelfingen = Node(
2 units=[consolidated, unconsolidated],
3 weights=[0.24, 0.76],
4 area=403.3,
5 id='andelfingen'
6 )
7

8 appenzell = Node(
9 units=[consolidated, unconsolidated],

10 weights=[0.92, 0.08],
11 area=74.4,
12 id='appenzell'
13 )
14

15 frauenfeld = Node(
16 units=[consolidated, unconsolidated],
17 weights=[0.49, 0.51],
18 area=134.4,
19 id='frauenfeld'
20 )
21

22 halden = Node(
23 units=[consolidated, unconsolidated],
24 weights=[0.34, 0.66],
25 area=314.3,
26 id='halden'
27 )
28

29 herisau = Node(
30 units=[consolidated, unconsolidated],
31 weights=[0.88, 0.12],
32 area=16.7,
33 id='herisau'
34 )
35

36 jonschwil = Node(
37 units=[consolidated, unconsolidated],
38 weights=[0.9, 0.1],
39 area=401.6,
40 id='jonschwil'
41 )
42

43 mogelsberg = Node(
44 units=[consolidated, unconsolidated],
45 weights=[0.92, 0.08],
46 area=88.1,
47 id='mogelsberg'
48 )
49

50 mosnang = Node(
51 units=[consolidated],
52 weights=[1.0],
53 area=3.1,
54 id='mosnang'

(continues on next page)
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55 )
56

57 stgallen = Node(
58 units=[consolidated, unconsolidated],
59 weights=[0.87, 0.13],
60 area=186.6,
61 id='stgallen'
62 )
63

64 waengi = Node(
65 units=[consolidated, unconsolidated],
66 weights=[0.63, 0.37],
67 area=78.9,
68 id='waengi'
69 )

Note that all nodes incorporate the information about their area, which is used by the network to calculate their
contribution to the total outflow.

There is no requirement for a node to contain all units. If a unit is not present in a node (e.g. unconsolidated in
Mosnang, line 50), it is simply omitted from the node initialization.

11.1.5 Initializing the network

The last step consists in creating the network that connects all the nodes previously initialized.

1 thur_catchment = Network(
2 nodes=[
3 andelfingen,
4 appenzell,
5 frauenfeld,
6 halden,
7 herisau,
8 jonschwil,
9 mogelsberg,

10 mosnang,
11 stgallen,
12 waengi,
13 ],
14 topography={
15 'andelfingen': None,
16 'appenzell': 'stgallen',
17 'frauenfeld': 'andelfingen',
18 'halden': 'andelfingen',
19 'herisau': 'halden',
20 'jonschwil': 'halden',
21 'mogelsberg': 'jonschwil',
22 'mosnang': 'jonschwil',
23 'stgallen': 'halden',
24 'waengi': 'frauenfeld',
25 }
26 )
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11.1.6 Running the model

We can now run the model.

The first step is to assign the input fluxes to the single nodes (catchments). For this we assume that the
data is available as a Pandas DataFrame, and that the columns are named P_name_of_the_catchment,
T_name_of_the_catchment, and PET_name_of_the_catchment.

The inputs can be set using a for loop

1 for cat, cat_name in zip(catchments, catchments_names):
2 cat.set_input([
3 df['P_{}'.format(cat_name)].values,
4 df['T_{}'.format(cat_name)].values,
5 df['PET_{}'.format(cat_name)].values,
6 ])

Finally, we set the model time step size. This can be done directly at the network level, which automatically sets the
time step size to all lower-level model components.

1 thur_catchment.set_timestep(1.0)

We now run the model and access its output

1 output = thur_catchment.get_output()
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SUPERFLEXPY IN THE SCIENTIFIC LITERATURE

This page lists the scientific publications presenting SuperflexPy or using it in specific applications.

12.1 Publications on SuperflexPy

• Dal Molin, M., Kavetski, D., and Fenicia, F.: SuperflexPy: an open source framework for building, testing
and improving conceptual hydrological models, Geosci. Model Dev., in preparation, 2020.

12.2 Publications using SuperflexPy

• Jansen, K. F., Teuling, A.J., Craig, J. R., Dal Molin, M., Knoben, W. J. M., Parajka, J., Vis, M., and Melsen,
L. A.: Mimicry of a conceptual hydrological model (HBV): what’s in a name?, Environ. Modell. Softw.,
under review, 2020.
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THIRTEEN

SHARING MODEL CONFIGURATIONS

The ultimate goal of SuperflexPy is to facilitate collaboration between research groups, and to help compare and
improve modelling solutions. To this end, users can share model configurations that can be imported and run by other
users. Note that, models built with SuperflexPy are Python objects that, once initialized, can be imported in other
scripts.

A user who wishes to share their model configuration with the community can create a Python script (with a mean-
ingful name) that initializes the model (without running it) and “upload” it to the GitHub repository in the folder
superflexpy/implementation/models/. This can be done as follows (1) forking the SuperflexPy reposi-
tory, (2) adding the script to the local fork of the repository, and (3) making a pull request to the original repository
(see Software organization and contribution for further details). The contributed code will be checked, and assuming
all checks are passed,incorporated in the following release of SuperflexPy and, therefore, other users will be able to
import it.

The user will maintain authorship on the contributed code, which will be released with the same License of Super-
flexPy. It is good practice to add to the contributions also some tests (see Automated testing) to assess the correctness.

13.1 Practical example with M4

We illustrate of how to distribute SuperflexPy models to colleagues using as an example the model Model M4 from
Kavetski and Fenicia, WRR, 2011.

First, we create the file m4_sf_2011.py that contains the code to initialize the model

1 from superflexpy.implementation.computation.pegasus_root_finding import PegasusPython
2 from superflexpy.implementation.computation.implicit_euler import ImplicitEulerPython
3 from superflexpy.implementation.elements.hbv import UnsaturatedReservoir,

→˓PowerReservoir
4 from superflexpy.framework.unit import Unit
5

6 root_finder = PegasusPython()
7 numeric_approximator = ImplicitEulerPython(root_finder=root_finder)
8

9 ur = UnsaturatedReservoir(
10 parameters={'Smax': 50.0, 'Ce': 1.0, 'm': 0.01, 'beta': 2.0},
11 states={'S0': 25.0},
12 approximation=numeric_approximator,
13 id='UR'
14 )
15

16 fr = PowerReservoir(
17 parameters={'k': 0.1, 'alpha': 1.0},
18 states={'S0': 10.0},

(continues on next page)
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19 approximation=numeric_approximator,
20 id='FR'
21 )
22

23 model = Unit(
24 layers=[
25 [ur],
26 [fr]
27 ],
28 id='M4'
29 )

Then we incorporate it into the SuperflexPy repository in the folder superflexpy/implementation/models/
following the procedure illustrated in the previous section (fork, change, and pull request).

Once the next release of SuperflexPy is available, the M4 model implementation will be available in the updated
installed package and can be imported by general users for their own application, as shown below.

1 from superflexpy.implementation.models.m4_sf_2011 import model
2

3 model.set_input([P, E])
4 model.set_timestep(1.0)
5 model.reset_states()
6

7 output = model.get_output()

13.2 Sharing models “privately” with other users

Model configurations can be shared “privately” between research groups without waiting for a new release of the
framework.

This can be done by creating a my_new_model.py file that initializes the model and then sharing the file “privately”
with other users.

The recipients of the new file can then save the file in their computer and use local importing. Assuming that the script
that the recipients use to run the model is in the same folder as the file initializing the model, the recipients will use
the model as follows

1 from .my_new_model import model
2

3 model.set_input([P, E])
4 model.set_timestep(1.0)
5 model.reset_states()
6

7 output = model.get_output()

Note the local import in line 1.

As we believe in the F.A.I.R. principles, we encourage modelers to share their models with the whole community.

13.3 Dumping objects with Pickle

Python offers the module Pickle to serialize objects to binary files. This approach enables the distribution of binary
files, but has the disadvantage of lacking transparency in the model structure.
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FOURTEEN

INTERFACING SUPERFLEXPY WITH OTHER FRAMEWORKS

SuperflexPy does not integrate tools for calibration or uncertainty analysis. In this page we show an example on how
a model built with SuperflexPy can be interfaced with other tools to perform this task.

14.1 SuperflexPy + SPOTPY

Attention: This example is for illustration purposes only, does not represent a recommendation towards the use
of SPOTPY or of the specific calibration algorithm proposed.

SPOTPY is a Python framework for calibration, uncertainty, and sensitivity analysis.

A model can be interfaced with SPOTPY by defining a class that wraps the model and implements the following
methods:

• __init__: initializes the class, defining some attributes;

• parameters: returns the parameters considered in the analysis (note that they may not be all the parameters
used by the SuperflexPy model but only the ones that we want to vary in the analysis);

• simulation: returns the output of the simulation;

• evaluation: returns the observed output;

• objectivefunction: defines the objective function to use to evaluate the simulation results.

14.1.1 __init__

1 import spotpy
2

3 class spotpy_model(object):
4

5 def __init__(self, model, inputs, dt, observations, parameters, parameter_names,
→˓output_index):

6

7 self._model = model
8 self._model.set_input(inputs)
9 self._model.set_timestep(dt)

10

11 self._parameters = parameters
12 self._parameter_names = parameter_names

(continues on next page)
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(continued from previous page)

13 self._observarions = observations
14 self._output_index = output_index

The class is initialized defining the SuperflexPy model that is used. The model, which can be any SuperflexPy
component (from reservoir to network), must be initialized before; this class sets only the inputs and the dt.

Other variables necessary to initialize the class are:

• parameters and parameters_names, which define the parameters considered in the calibration; the first
is a list of spotpy.parameter objects, the second is a list of the names of the SuperflexPy parameters;

• observations, which is an array of observed output values;

• output_index, which is the index of the output flux to be considered when evaluating the SuperflexPy
simulation (this is particularly important in the case of multiple output fluxes, e.g. chemistry)

14.1.2 parameters

1 def parameters(self):
2 return spotpy.parameter.generate(self._parameters)

The method generates a new parameter set using SPOTPY functionalities.

14.1.3 simulation

1 def simulation(self, parameters):
2

3 named_parameters = {}
4 for p_name, p in zip(self._parameter_names, parameters):
5 named_parameters[p_name] = p
6

7 self._model.set_parameters(named_parameters)
8 self._model.reset_states()
9 output = self._model.get_output()

10

11 return output[self._output_index]

The method sets the parameters (lines 3-7), resets the states to their initial value (line 8), runs the SuperflexPy model
(line 9), and returns the the output flux for the evaluation (line 11).

14.1.4 evaluation

1 def evaluation(self):
2 return self._observarions

The method returns the observed flux, used to evaluate the model.

14.1.5 objectivefunction
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1 def objectivefunction(self, simulation, evaluation):
2

3 obj_fun = spotpy.objectivefunctions.nashsutcliffe(evaluation=evaluation,
4 simulation=simulation)
5

6 return obj_fun

The method defines the objective function used to evaluate the model. In this case, the Nash-Sutcliffe efficiency is
used.

14.1.6 Example of use

We now show how to exploit the implementation above to calibrate a lumped model composed by 2 reservoirs.

First, we initialize the SuperflexPy model. This is done with the following code (see How to build a model with
SuperflexPy for more details on how to set-up a model).

1 from superflexpy.implementation.computation.implicit_euler import ImplicitEulerPython
2 from superflexpy.implementation.computation.pegasus_root_finding import PegasusPython
3 from superflexpy.implementation.elements.hbv import PowerReservoir
4 from superflexpy.framework.unit import Unit
5

6 root_finder = PegasusPython()
7 num_app = ImplicitEulerPython(root_finder=root_finder)
8

9 reservoir_1 = PowerReservoir(parameters={'k': 0.1, 'alpha': 2.0},
10 states={'S0': 10.0},
11 approximation=num_app,
12 id='FR1')
13 reservoir_2 = PowerReservoir(parameters={'k': 0.5, 'alpha': 1.0},
14 states={'S0': 10.0},
15 approximation=num_app,
16 id='FR2')
17

18 hyd_mod = Unit(layers=[[reservoir_1],
19 [reservoir_2]],
20 id='model')

Then, we initialize an instance of the spotpy_model class

1 spotpy_hyd_mod = spotpy_model(
2 model=hyd_mod,
3 inputs=[P],
4 dt=1.0,
5 observations=Q_obs,
6 parameters=[
7 spotpy.parameter.Uniform('model_FR1_k', 1e-4, 1e-1),
8 spotpy.parameter.Uniform('model_FR2_k', 1e-3, 1.0),
9 ],

10 parameter_names=['model_FR1_k', 'model_FR2_k'],
11 output_index=0
12 )

P and Q_obs in lines 3 and 5 are arrays of precipitation (input) and observed streamflow. In this example, we calibrate
only 2 parameters (model_FR1_k and model_FR2_k) out of the 4 parameters of the SuperflexPy model.

Now we can perform the calibration
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1 sampler = spotpy.algorithms.sceua(spotpy_hyd_mod, dbname='calibration', dbformat='csv
→˓')

2 sampler.sample(repetitions=5000)
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EXAMPLES

The following examples are available as Jupyter notebooks, and can be either visualized on GitHub or run in a sandbox
environment.

• Run a simple model visualize - run

• Calibrate a model visualize - run

• Initialize a single element model visualize - run

• Initialize a single unit model: visualize - run

• Initialize a simple node model: visualize - run

• Initialize a complete (network) model: visualize - run

• Create a new reservoir: visualize - run

• Replicate GR4J: visualize - run

• Replicate Hymod: visualize - run

• Replicate M02 in Dal Molin et al., HESS, 2020: visualize - run

• Replicate M4 in Kavetski and Fenicia, WRR, 2011: visualize - run

• Modify M4 in Kavetski and Fenicia, WRR, 2011: visualize - run
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CHAPTER

SIXTEEN

AUTOMATED TESTING

Current testing of Superflex consists of validating its numerical results against the original implementation of Super-
flex. This testing is done for selected model configurations, and sets of parameters and inputs.

This testing strategy implicitly checks auxiliary methods (e.g. setting parameters and states, retrieving the internal
fluxes of the model, setting inputs and getting outputs, etc.).

The testing code is contained in folder test/ and uses the Python module unittest. The folder contains
reference_results/ (so far only from Superflex) and unittest/ containing the scripts that run the tests.

Current testing covers:

• Correct functionality of specific elements (reservoirs and lag functions) that are implemented in Superflex (e.g.
01_FR.py, 02_UR.py);

• Correct functionality of multiple elements in a unit (e.g. 03_UR_FR.py, 04_UR_FR_SR.py);

• Correct functionality of multiple units in a node (e.g. 05_2HRUs.py);

• Correct functionality of multiple nodes inside a network (e.g. 06_3Cats_2HRUs.py);

• Correct functionality of auxiliary methods (implicit testing, i.e. in case of malfunctioning errors propagate to
the results).

Current testing does not cover:

• Elements for which numerical results are not available (e.g. some components of GR4J);

• Usage of the Explicit Euler solver;

• Edge cases (e.g. extreme values of parameters and states)

Users contributing new elements of SuperflexPy should provide reference results and the code that tests them (includ-
ing input data and model parameter values).

As the SuperflexPy framework continues to develop, additional facilities for unit-testing and integrated-testing will be
employed.

16.1 Automation

Any push of new code to any branch on the github repository will trigger automatic testing based on the scripts
contained in the folder test/unittest.
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CHAPTER

SEVENTEEN

LICENSE

GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates
the terms and conditions of version 3 of the GNU General Public
License, supplemented by the additional permissions listed below.

0. Additional Definitions.

As used herein, "this License" refers to version 3 of the GNU Lesser
General Public License, and the "GNU GPL" refers to version 3 of the GNU
General Public License.

"The Library" refers to a covered work governed by this License,
other than an Application or a Combined Work as defined below.

An "Application" is any work that makes use of an interface provided
by the Library, but which is not otherwise based on the Library.
Defining a subclass of a class defined by the Library is deemed a mode
of using an interface provided by the Library.

A "Combined Work" is a work produced by combining or linking an
Application with the Library. The particular version of the Library
with which the Combined Work was made is also called the "Linked
Version".

The "Minimal Corresponding Source" for a Combined Work means the
Corresponding Source for the Combined Work, excluding any source code
for portions of the Combined Work that, considered in isolation, are
based on the Application, and not on the Linked Version.

The "Corresponding Application Code" for a Combined Work means the
object code and/or source code for the Application, including any data
and utility programs needed for reproducing the Combined Work from the
Application, but excluding the System Libraries of the Combined Work.

1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License
(continues on next page)
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(continued from previous page)

without being bound by section 3 of the GNU GPL.

2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a
facility refers to a function or data to be supplied by an Application
that uses the facility (other than as an argument passed when the
facility is invoked), then you may convey a copy of the modified
version:

a) under this License, provided that you make a good faith effort to
ensure that, in the event an Application does not supply the
function or data, the facility still operates, and performs
whatever part of its purpose remains meaningful, or

b) under the GNU GPL, with none of the additional permissions of
this License applicable to that copy.

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from
a header file that is part of the Library. You may convey such object
code under terms of your choice, provided that, if the incorporated
material is not limited to numerical parameters, data structure
layouts and accessors, or small macros, inline functions and templates
(ten or fewer lines in length), you do both of the following:

a) Give prominent notice with each copy of the object code that the
Library is used in it and that the Library and its use are
covered by this License.

b) Accompany the object code with a copy of the GNU GPL and this license
document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that,
taken together, effectively do not restrict modification of the
portions of the Library contained in the Combined Work and reverse
engineering for debugging such modifications, if you also do each of
the following:

a) Give prominent notice with each copy of the Combined Work that
the Library is used in it and that the Library and its use are
covered by this License.

b) Accompany the Combined Work with a copy of the GNU GPL and this license
document.

c) For a Combined Work that displays copyright notices during
execution, include the copyright notice for the Library among
these notices, as well as a reference directing the user to the
copies of the GNU GPL and this license document.

d) Do one of the following:

0) Convey the Minimal Corresponding Source under the terms of this
(continues on next page)
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License, and the Corresponding Application Code in a form
suitable for, and under terms that permit, the user to
recombine or relink the Application with a modified version of
the Linked Version to produce a modified Combined Work, in the
manner specified by section 6 of the GNU GPL for conveying
Corresponding Source.

1) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (a) uses at run time
a copy of the Library already present on the user's computer
system, and (b) will operate properly with a modified version
of the Library that is interface-compatible with the Linked
Version.

e) Provide Installation Information, but only if you would otherwise
be required to provide such information under section 6 of the
GNU GPL, and only to the extent that such information is
necessary to install and execute a modified version of the
Combined Work produced by recombining or relinking the
Application with a modified version of the Linked Version. (If
you use option 4d0, the Installation Information must accompany
the Minimal Corresponding Source and Corresponding Application
Code. If you use option 4d1, you must provide the Installation
Information in the manner specified by section 6 of the GNU GPL
for conveying Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the
Library side by side in a single library together with other library
facilities that are not Applications and are not covered by this
License, and convey such a combined library under terms of your
choice, if you do both of the following:

a) Accompany the combined library with a copy of the same work based
on the Library, uncombined with any other library facilities,
conveyed under the terms of this License.

b) Give prominent notice with the combined library that part of it
is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions
of the GNU Lesser General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the
Library as you received it specifies that a certain numbered version
of the GNU Lesser General Public License "or any later version"
applies to it, you have the option of following the terms and
conditions either of that published version or of any later version
published by the Free Software Foundation. If the Library as you
received it does not specify a version number of the GNU Lesser
General Public License, you may choose any version of the GNU Lesser

(continues on next page)
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(continued from previous page)

General Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide
whether future versions of the GNU Lesser General Public License shall
apply, that proxy's public statement of acceptance of any version is
permanent authorization for you to choose that version for the
Library.
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CHANGE LOG

18.1 Version 1.2.0

18.1.1 Major changes to existing components

• The abbreviation of “differential equation” changes, in the code, from dif_eq to diff_eq. This change
regards variables names, both in the methods arguments and implementation.

• The class FastReservoir has been changed to PowerReservoir. No changes in the functionality of the
class.

18.1.2 Minor changes

• Testing improved.

18.2 Version 1.1.0

18.2.1 Major changes to existing components

• Form this version, SuperflexPy is released under license LGPL. For details, read License

18.2.2 Minor changes to existing components

• Bug fix on the solution of the differential equations of the reservoirs. The calculation of the maximum storage
was not correct.

18.3 Version 1.0.0

Version 1.0.0 represents the first mature release of SuperflexPy. Many aspects have changed since earlier 0.x releases
both in terms of code organization and conceptualization of the framework. Models built with versions 0.x are not
compatible with this version and with the following releases.
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18.3.1 Major changes to existing components

• New numerical solver structure for elements controlled by ordinary differential equations (ODEs). A new
component, the NumericaApproximator is introduced; its task it to get the fluxes from the elements and
construct an approximation of the ODEs. In the previous release of the framework the approximation was hard
coded in the element implementation.

• ODEsElement have now to implement the methods _fluxes and _fluxes_python instead of
_differential_equation

• Added the possibility for nodes and units to have local states and parameters. To this end, some internal func-
tionalities for finding the element given the id have been changed to account for the presence of states and
parameters at a level higher then the elements.

18.3.2 Minor changes to existing components

• Added implicit or explicit check at initialization of units, nodes, and network that the components that they
contain are of the right type (e.g. a node must contain units)

• Some minor changes to the RootFinder to accommodate the new numerical implementation.

• Added Numba implementation of GR4J elements

18.3.3 New code

• Added hymod elements
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