

Page 1 of 56

SuperflexPy 1.2.13.0: An open source Python framework for building,
testing and improving conceptual hydrological models

Marco Dal Molin1,2, Dmitri Kavetski1,3,4, Fabrizio Fenicia1
1 Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland 5
2 Centre of Hydrogeology and Geothermics (CHYN), University of Neuchâtel, Neuchâtel, Switzerland
3 School of Civil, Environmental and Mining Engineering, University of Adelaide, SA, Australia
4 Civil, Surveying and Environmental Engineering, University of Newcastle, NSW, Australia

Correspondence to: Fabrizio Fenicia (fabrizio.fenicia@eawag.ch)

Abstract 10

Catchment-scale hydrological models are widely used to represent and improve our understanding of

hydrological processes, and to support operational water resources management. Conceptual models,

which approximate catchment dynamics using relatively simple storage and routing elements, offer an

attractive compromise in terms of predictive accuracy, computational demands, and amenability to

interpretation. This paper introduces SuperflexPy, an open-source Python framework implementing the 15

SUPERFLEX principles (Fenicia et al., 2011) for building conceptual hydrological models from generic

components, with a high degree of control over all aspects of model specification. SuperflexPy can be

used to build models of a wide range of spatial complexity, ranging from simple lumped models (e.g. a

reservoir) to spatially distributed configurations (e.g. nested sub-catchments), with the ability to

customize all individual model components. SuperflexPy is a Python package, enabling modelers to 20

exploit the full potential of the framework without the need for separate software installations, and making

it easier to use and interface with existing Python code for model deployment. This paper presents the

general architecture of SuperflexPy, discusses the software design and implementation choices, and

illustrates its usage to build conceptual models of varying degrees of complexity. The illustration includes

the usage of existing SuperflexPy model elements, as well as their extension to implement new 25

functionality. Comprehensive documentation is available online and provided as supplementary material

to this paper. SuperflexPy is available as open-source code, and can be used by the hydrological

community to investigate improved process representations, for model comparison, and for operational

work.

 30

Page 2 of 56

Table of Contents

1 Introduction ... 4 35

1.1 Conceptual hydrological models ... 4
1.2 Hydrological model structure and flexible modeling frameworks .. 5
1.3 Aims ... 8

2 Description of SuperflexPy ... 9

2.1 General organization .. 9 40
2.2 A simple illustration of SuperflexPy: creating a new model from existing components 12
2.3 Creating new model components with SuperflexPy .. 13

3 Examples of building hydrological models using SuperflexPy ... 14

3.1 Implementing SUPERFLEX configuration M4 .. 14
3.2 Changing the equations of the fast reservoir in M4 ... 16 45

3.2.1 General approach for creating a new reservoir with SuperflexPy...................................... 16

3.2.2 Simplified approach for creating a new reservoir element (from an existing element) 17

3.3 Implementing a distributed model ... 17
4 Implementation details of SuperflexPy ... 19

4.1 Parameters and states ... 19 50
4.2 Modular design following the Object-Oriented paradigm... 20
4.3 Numerical solution of ODEs ... 20
4.4 Computational efficiency and language choice ... 22
4.5 Ability to represent multiple fluxes and states .. 23

5 Discussion .. 23 55

5.1 Balancing functionality, scope, and usability in a flexible model implementation 23
5.1.1 Structural flexibility ... 24

5.1.2 Spatial flexibility .. 24

5.1.3 Usability ... 25

5.1.4 Possibility of extension and customization .. 26 60

5.1.5 Computational efficiency ... 26

5.2 Current restrictions in model structure specification ... 27
5.3 Current usage and future developments .. 28

6 Summary and conclusions ... 29

Code availability .. 29 65

Author contributions .. 30

Competing interests .. 30

Acknowledgements .. 30

Financial support .. 30

References .. 30 70

Figures .. 35

Page 3 of 56

75

Page 4 of 56

1 Introduction

1.1 Conceptual hydrological models

Catchment-scale hydrological models are widely used to predict catchment behavior under natural and

human-impacted conditions, as well as to represent and improve our understanding of internal catchment

functioning (e.g. Beven, 1989). For example, catchment models underlie projections of climate change 80

impact on groundwater recharge and streamflow (e.g., Eckhardt and Ulbrich, 2003), are used as tools for

hypothesis testing to identify dominant hydrological processes (e.g., Clark et al., 2011b; Hrachowitz et

al., 2014; Wrede et al., 2015), and are used to inform agricultural practices such as irrigation scheduling

(e.g., McInerney et al., 2018) and pesticide application (e.g., Moser et al., 2018; Ammann et al., 2020).

The typical use of hydrological models is to simulate or forecast the streamflow response (runoff) of a 85

catchment to rainfall forcing; for this reason they are often referred to as rainfall-runoff models (e.g.,

Moradkhani and Sorooshian, 2009). However, their application extends to the simulation of other

environmental variables such as groundwater levels (e.g., Seibert and McDonnell, 2002) and soil moisture

(e.g., Matgen et al., 2012), as well as water chemistry (e.g., Bertuzzo et al., 2013; Ammann et al., 2020).

An important class of catchment models are “process based” models, which attempt to explicitly describe 90

the cascade of processes transforming catchment inputs (e.g. precipitation) into outputs (e.g. streamflow).

These models are an appealing choice due to their broad physical underpinnings, as well as their ability

to represent internal catchment processes and potential for predicting catchment responses under changing

environmental conditions. Process based models can be classified according to the nature of their

constitutive equations (e.g. conceptual or physically based) and their spatial resolution (e.g. lumped or 95

distributed) (e.g., Refsgaard, 1996).

Conceptual models, where catchment dynamics are approximated using relatively simple storage and

routing elements (e.g. Fenicia et al., 2011), are common in practice because they offer an attractive

compromise in terms of predictive accuracy, computational demands, and amenability to interpretation.

Common conceptual models include TopModel (Beven and Kirkby, 1979), HBV (Lindstrom et al., 1997), 100

GR4J (Perrin et al., 2003), and HyMod (Boyle, 2001).

In terms of spatial resolution, conceptual models can be applied in a lumped configuration (treating the

entire catchment as a single unit) if the interest is in modeling integrated catchment outputs (e.g.

streamflow at the catchment outlet). Alternatively, distributed configurations can be used if the interest is

in modeling hydrological behavior at internal locations (e.g., sub-catchments). In such distributed setups, 105

the catchment is subdivided into spatial elements such as sub-catchments (e.g., Feyen et al., 2008; Lerat

et al., 2012), Hydrological Response Units (HRUs) (e.g., Arnold et al., 1998; Fenicia et al., 2016; Dal

Molin et al., 2020), or grids (e.g., Samaniego et al., 2010). A common strategy for developing distributed

Page 5 of 56

conceptual models is to represent individual landscape elements using independent (non-interacting)

lumped models, and then obtain total catchment outflow by aggregating the outflows from these 110

individual models, potentially incorporating flow routing elements to represent routing delays. This

strategy is often referred to as “semi-distributed” modelling (e.g., Boyle et al., 2001), and typically

employs discretization based on principles of “hydrological similarity” (e.g., Sivapalan et al., 1987);

HRU-based discretization is particularly common (e.g., Leavesley, 1984). In many applications, semi-

distributed modelling achieves good predictive ability – while greatly simplifying model representation 115

and reducing computational demands compared to fully-integrated 2D/3D distributed models such as

Parflow (Maxwell, 2013) or Mike She (Refsgaard and Storm, 1995), which typically use much smaller

landscape elements and explicitly model lateral exchanges. For the purposes of this presentation, we

consider semi-distributed modelling to be a special case of distributed modelling.

1.2 Hydrological model structure and flexible modeling frameworks 120

The selection of model structure has preoccupied researchers and practitioners since the early days of

hydrological modelling (e.g., Ibbitt and O’Donnell, 1971; Moore and Clarke, 1981; Jakeman and

Hornberger, 1993). Although in principle the physical laws governing hydrological processes are the

same everywhere, the diversity of catchment conditions in terms of topography, soil, geology, vegetation,

and anthropogenic influence results in remarkably different manifestations of these physical laws at the 125

catchment scale. These local differences, also termed “uniqueness of place” (Beven, 2000), considerably

limit our ability to develop generalizable hydrological hypotheses (e.g., Wagener et al., 2007).

Model structure selection has motivated multiple research directions, including the search for a single

model structure that achieves good prediction across all catchments (the “fixed” model paradigm), and

the search for model structures best suited for specific locations and/or environmental conditions (the 130

“flexible” model paradigm). Whether in search of a single model or multiple models, model selection

necessarily relies on a process of model development, comparison, and refinement. Approaches to

formalize this process include the top-down approach (e.g. Sivapalan et al., 2003), the system

identification approach (e.g Young, 1998), and the method of multiple working hypotheses (e.g., Clark

et al., 2011a). These approaches are not mutually exclusive, as the notion of comparing multiple model 135

representations is ubiquitous in model development and empirical science in general.

The process of model development, comparison, and refinement can be facilitated using flexible modeling

frameworks, which enable hydrologists to hypothesize, implement, and (eventually) test and refine

different model structures. Flexible frameworks have themselves developed along multiple directions

according to their intended scopes of application. For example, GEOframe-NewAge (Formetta et al., 140

2014), SUMMA (Clark et al., 2015), and CHM (Marsh et al., 2020) focus on the realm of physically

Page 6 of 56

based models. The CAPTAIN toolbox (Young et al., 2009) is a general toolkit for time series analysis.

Machine learning frameworks such as scikit-learn (Pedregosa et al., 2011) and PyTorch (Paszke et al.,

2019) can be used to construct data driven models.

In this paper, we focus on flexible frameworks intended for conceptual hydrological modeling. Examples 145

of such frameworks include FUSE (Clark et al., 2008), SUPERFLEX (Fenicia et al., 2011), CMF (Kraft

et al., 2011), PERSiST (Futter et al., 2014), ECHSE (Kneis, 2015), MARRMoT (Knoben et al., 2019),

and RAVEN (Craig et al., 2020).

When discussing a mathematical model, it is relevant to distinguish its conceptual principles from its

software implementation. In the hydrological literature, modelling concepts and their software 150

implementation have been presented both jointly and separately. For example, the original FUSE

publication (Clark et al., 2008) introduced the modelling concepts, while subsequent work (Vitolo et al.,

2016) provided an R implementation. The original SUPERFLEX publications presented the modelling

principles (Fenicia et al., 2011) and demonstrated its capabilities (Kavetski and Fenicia, 2011); while

Fortran and Matlab implementations were developed as part of research work (e.g., David et al., 2019), 155

these implementations have not been published or made available as standalone products. In contrast,

some models, (e.g., MARRMoT) have been presented with a publication describing both the theoretical

principles and the software implementation.

A software implementation should fulfill the intended goals of the flexible framework, in particular

supporting the envisaged flexibility in terms of processes representation, spatial distribution, numerical 160

solution methods, etc. The software implementation should also be accessible to users in terms of ease of

installation, operation, eventual extension, etc. Existing frameworks approach these conceptual and

practical requirements with different priorities, e.g., focusing on selected modelling objectives (e.g.,

model mimicry) and/or limiting the range of applications (e.g., only to lumped setups), in order to simplify

the model formulation and operation. 165

In terms of application scope of a flexible framework for conceptual hydrological modeling, we focus on

the following “realms”:

1. Lumped models;

2. Distributed setups, including simulation of sub-catchments and flows/processes at internal points;

3. Substance transport modelling, including water isotopes, pesticides, etc.; 170

4.3.Ability to reproduce existing models, when necessary.

4. Support or extendibility for future applications, e.g. substance transport modelling, including

water isotopes, pesticides, etc.;

Page 7 of 56

In terms of software implementation, we consider the following practical criteria:

1. Ease of use, including installation, learning, and operation. Interoperability with external software, 175

for example for model calibration and uncertainty analysis, is of obvious relevance because

hydrological models are often used as parts of larger-scale projects and operations.

2. Ease of modificationsmodification and extensionsextension. Even a comprehensive software

implementation will eventually require extension. For example, a modeling framework intended

to simulate streamflow may require extension to simulate water chemistry. Another type of 180

modification might be a switch to a numerical implementation better suited for parallel computing,

etc.

3. Computational efficiency. Hydrological model applications, especially including calibration and

uncertainty quantification, may require thousands or even millions of model runs.

4. Connection to the ecosystem of modern online tools to facilitate model usability by both 185

researchers and practitioners. This includes online documentation (with examples and demos),

and automatic workflows for unit testing, continuous integration and deployment.

These criteria are challenging or even impossible to meet simultaneously. Hence, implementing a flexible

framework entails juggling multiple obvious and less obvious tradeoffs. For example, the intended

flexibility of a framework may come at the expense of ease of use, similar to how computer languages 190

have varying degrees of abstraction from the hardware behavior. Implementing a practical flexible

framework therefore requires careful code design, experimentation, and inevitably, some compromises.

This work pursues the flexible framework objectives defined above by building upon the concept of

SUPERFLEX (Fenicia et al., 2011; Kavetski and Fenicia, 2011; Fenicia et al., 2014; Fenicia et al., 2016).

A key attractive feature of SUPERFLEX as a modelling concept is the fine “granularity”, i.e., the degree 195

of flexibility, of model structures it can support, which enables systematic and detailed hypothesis testing

(Fenicia et al., 2011). For example, the hydrologist should have the ability to select and combine

individual model elements (e.g., reservoirs, lag functions, etc.), as well as to build customized elements.

The development of the proposed framework capitalizes on the authors’ collective experience in

hydrological model design and application. The original Fortran implementation of SUPERFLEX, 200

hereafter referred to as SUPERFLEX-F90, has been used in a series of case studies over the last decade,

ranging from lumped model implementations (e.g., Kavetski and Fenicia, 2011; Fenicia et al., 2014), to

distributed setups (e.g. Fenicia et al., 2016; Dal Molin et al., 2020), interpretation in the context of

fieldwork insights (e.g., Wrede et al., 2015), large scale model intercomparisons (e.g., van Esse et al.,

2013), and the inclusion of pesticide/substance transport (e.g. Ammann et al., 2020). The earlier Flex 205

framework was used in studies exploring the use of multivariate data to refine the model structure (e.g.,

Page 8 of 56

Fenicia et al., 2006, 2008). The modelling framework FUSE was used for a range of experiments in

process representation (e.g., Clark et al., 2011b), data analysis (e.g., Henn et al., 2018), and numerical

solution (e.g., Clark and Kavetski, 2010; Kavetski and Clark, 2010). The SUMMA framework

represented an application of flexible modelling principles to physically based modelling. These 210

applications have highlighted the versatility of the SUPERFLEX principles, and of flexible modelling

approaches in general, to solve increasingly complex modelling problems – but have also highlighted

implementation choices that limit the effectiveness and range of application of current software. (e.g., the

usage of a “master template” from which specific model structures are derived). This work provides a

new implementation of SUPERFLEX that addresses many of these limitations. 215

1.3 Aims

This paper introduces SuperflexPy, which is a new open-source Python software implementation of the

SUPERFLEX principles for conceptual hydrological model development. Particular attention is given to

the challenges of implementing a framework that achieves the flexibility envisaged by SUPERFLEX and

flexible frameworks in general. Our objectives are as follows: 220

1. Present SuperflexPy and its basic building blocks (components): elements, units, nodes, and

network;

2. Illustrate how SuperflexPy can help hydrologists implement a conceptual model structure at the

desired level of internal complexity and spatial resolution – including recreating existing models

and developing new models; 225

3. Provide a broad discussion of the hydrological modelling software implementation challenges and

of how SuperflexPy contributes to the toolkits available to the hydrological community.

The paper is organized as follows. Section 2 describes the SuperflexPy architecture and building blocks,

and provides a short demo (aims 1 and 2). Section 3 illustrates selected applications of the framework,

including the setup of SUPERFLEX configurations used in earlier case studies and the use SuperflexPy 230

to create new elements (aim 2). Section 4 provides more technical SuperflexPy details, useful for

understanding the usage and general potential of the framework (aim 1). Section 5 discusses

SUPERFLEX design choices in the context of existing flexible frameworks, including current limitations

and future developments (aim 3). Finally, Section 6 provides a brief overall summary and conclusions.

The examples presented in the paper are generally intended to provide the intuition and reasoning behind 235

SuperflexPy. The model documentation provides detailed information and use instructions. The

documentation is available and maintained online (refer to “code availability” section); references from

Page 9 of 56

the paper to the documentation point to the static PDF version provided as supplementary material to this

paper.

2 Description of SuperflexPy 240

2.1 General organization

The SuperflexPy framework has a hierarchical organization with four nested levels: “element”, “unit”,

“node”, and “network”, collectively referred as “components”. These components are shown in Figure 1

and described below. Further practical details are provided in Chapter 4 of the supplementary material:

1. Element (Figure 1a). This level represents the basic model building block and is used to create 245

reservoirs, lag functions, and connections. An element can be used to represent an entire

catchment, or, more commonly, a specific hydrological process or response mechanism within

the catchment.

The reservoir element is used to conceptualize processes involving the storage and release of

water and other fluxes. It is described mathematically by ordinary differential equations (ODEs), 250

  S

d ()
(), ();

d

t
t t

t


S
g S X θ (1)

  Y() (), ();t t tY g S X θ (2)

where S are the state variables (e.g., water storages), X are the inputs (e.g., precipitation), Y

are the outputs (e.g., streamflow), and Sg and Yg are specified constitutive functions (e.g.,

storage-discharge relationships). 255

In most conceptual models, reservoir elements have a single state variable (representing water

storage); multiple state variables can be accommodated if necessary (e.g., to keep track of snow

and liquid water separately). Mathematically, a multistate reservoir can be represented by a

system of differential equations of the form of equations (1) and (2).

The solution of equation (1) is usually obtained numerically using external numerical procedures 260

referred to as “numerical approximators” (see Section 4.3).

The lag function element is used to represent delays in the transmission of the fluxes (e.g.,

routing). It is described mathematically by a convolution integral,

 H H0
() () (;) () (;) d

T
t t t t      Y X g θX gθ   (3)

Page 10 of 56

where * denotes the convolution operator, X is the input (e.g., water flux), Hg is the impulse 265

response function, and T is the time of influence of Hg (i.e. the maximum lag).

There is a general mathematical correspondence between reservoirs and lag functions (e.g.,

Nash, 1957). SuperflexPy users can select the element specification best suited to their specific

context.

The connection element is used to connect two or more elements whenever a direct connection 270

is not possible. For example, connection elements are used when a flux needs to be split among

multiple elements downstream (splitter), or, vice versa, when multiple fluxes need to be

aggregated (junction). A particular type of connection is represented by the “transparent”

element, which simply outputs the same fluxes it receives as inputs, and is used to facilitate the

connection between elements (see description of unit below). 275

All connection elements are stateless and can be represented mathematically as follows,

  C() ();t tY g X θ (4)

where Cg describes the connectivity between input fluxes and output fluxes, and θ represents

connectivity parameters (if any).

2. Unit (Figure 1b). A unit is a collection of multiple connected elements, and is generally intended 280

to implement a lumped catchment model or an HRU in a distributed model. Multiple reservoir

and lag function elements within a unit can be connected to each other, either directly (one-to-

one connections), or using connection elements such as splitters and junctions (when a single

element is connected to multiple elements). The multiple elements within a unit are arranged in

layers, with the following restrictions: (i) feedback loops between the elements are not allowed 285

and (ii) elements can be connected only if they belong to two consecutive layers. Fluxes

between elements in nonconsecutive layers are passed using transparent elements. The concept

of layers will be elaborated and illustrated in Section 5.1.1; see also Section 4.2 of the

supplementary material. In technical terms, the structure formed by the elements must be a

directional acyclic graph (DAG). The motivation and implications of these design choices on 290

model generality and computational efficiency are elaborated in Sections 5.1.1 and 5.2.

3. Node (Figure 1c). A node is a collection of multiple units that operate in parallel. In the context

of distributed models, the node can be used to represent a single catchment and the units can be

used to represent multiple landscape elements or HRUs within the catchment. Each unit within a

node is characterized by a weight, which typically represents its area fraction or, more generally, 295

its contribution to the total outflow of the node. The weights are used to combine the output

Page 11 of 56

fluxes from the units into the total output flux of the node. Another important attribute of a node

is its “area”, which is used when multiple nodes are combined into a network (see below).

4. Network (Figure 1d). A network connects multiple nodes into a tree structure, and is typically

intended to develop a distributed model that generates predictions at internal sub-catchment 300

locations (e.g. to reflect a nested catchment setup). The network routes the fluxes from upstream

nodes (leaves of the tree) to the final downstream node (root of the tree). Routing delays in the

river network can be simulated by feeding node outputs into lag function elements. The area of

each node is used to determine its contribution to the total outflow of the network. Only a single

network can be used in a given SuperflexPy model. 305

The hierarchical organization of SuperflexPy makes the effort required to configure it to a new problem

proportional to the problem complexity. In particular, many common model setups can be constructed

without necessarily using all levels listed above, thus reducing configuration effort. Some representative

examples are given below:

 Level 1 is sufficient to create single-element models, e.g., a single-reservoir model or a unit 310

hydrograph model (e.g. Kirchner, 2009);

 Level 2 is sufficient to create a lumped model structure, such as GR4J (Perrin et al., 2003) or

Hymod (Boyle, 2001);

 Level 3 is sufficient create a distributed model that represents spatial heterogeneity but generates

predictions only at the catchment outlet (e.g. Beven and Kirkby, 1979; Gao et al., 2014; Nijzink 315

et al., 2016);

 Level 4 is needed only in models that generate predictions at interior points, such as SWAT

(Arnold et al., 2012), GEOframe-NewAge (Formetta et al., 2014), and distributed SUPERFLEX

applications (e.g. Fenicia et al., 2016; Dal Molin et al., 2020).

Examples of SuperflexPy models implemented at Levels 2 and 4 are given later in Section 3. Note that 320

the association of specific SuperflexPy components to specific hydrological entities, e.g., the use of units

for HRUs and nodes for sub-catchments, is not intended as a rigid prescription. Other association choices

may be favored by the modeler depending on the required model structure and spatial connectivity.

The clarity of visual model representation is particularly important in flexible frameworks because they

can generate many subtly different configurations (e.g., Bancheri et al., 2019). The model schematics in 325

this paper indicate explicitly every element, including reservoirs, lag functions, and junctions (e.g., Figure

1).

Page 12 of 56

From a software design prospective, SuperflexPy embraces the object-oriented paradigm (e.g., Meyer,

1988). All framework components are represented by objects that can operate either alone or together,

interacting with each other and with external libraries (e.g. for calibration) through defined interfaces. 330

More details are provided in Section 4.2.

All SuperflexPy components are characterized byhave states and/or parameters, which are controlled

programmatically using dedicated methods (refer to Section 4.1).

2.2 A simple illustration of SuperflexPy: creating a new model from existing components

This section illustrates the key steps needed to configure and run a hydrological model using the 335

SuperflexPy framework. The illustration presents a distributed model intended to represent a catchment

with 2 HRUs and 3 sub-catchments. The model structure is shown in Figure 1d. The catchment is

represented using a network, the sub-catchments are represented using nodes, and the HRUs are

represented using units. Two distinct HRU-specific model structures are specified, and are implemented

using elements. The corresponding SuperflexPy code is shown in Figure 2. An extended version of this 340

demo is provided in Section 6.5 of the supplementary material.

In this example, an implementation of the necessary elements with SuperflexPy already exists; therefore,

the elements only need to be imported. The case where the model structure requires elements for which

an implementation is not yet available is considered in Section 2.3. More complex setups are described

in Section 3 and in the supplementary material. 345

We start by importing the model components required by the model structure, namely the elements

(LinearReservoir and HalfTriangularLag), unit, node, and network. The numerical

approximator ImplicitEulerPython and root finder PegasusPython needed to solve the

ODEs associated with the reservoir elements are also imported (see Section 4.3 for details). The import

operation is shown in Lines 1-7. 350

The imported components are then initialized, which entails specifying the model structure (connectivity

between model components) and the initial values of parameters and states. The initialization sequence

starts with the numerical procedures (Lines 10-11) and proceeds from the lowest-level components

(elements) to the highest-level component (network).

More specificallySpecifically: 355

L1. An element is initialized by specifying its parameters, states, and, where relevant, the numerical

solver (Lines 14-16). Each element is given an identifier (id) for subsequent use, as shown on

Line 23.

Page 13 of 56

L2. A unit is initialized by specifying the elements that compose it and the identifier (Lines 19-20).

As noted earlier in Section 2.1, the connectivity between elements is defined by conceptualizing 360

the unit as a succession of layers that contain the elements. More complex examples are given in

Section 3. The parameters and states of elements can be changed after initialization using the

methods set_parameters and set_states of the containing units. This operation is shown

on Line 23 for the LinearReservoir element.

L3. A node is initialized by specifying the units that compose it, their contribution (weight) to the node 365

output, the influence area of the node (here, the area of the sub-catchment), and the identifier

(Lines 26-28).

L4. The network is initialized by specifying the nodes that compose it and their connectivity, called

topology (Line 31). The connectivity is defined indicating, for each node, the node downstream

of it. A network identifier is not specified (as only a single network can be used). 370

The next step is to set the model inputs and time step. Lines 34-36 show how the inputs are assigned

directly to the nodes, enabling the model to receive spatially varying rainfall and PET. The time step is

set on Line 39 (variable time steps are also supported, see Section 4.5.1 of the supplementary material).

The model can now be run by calling the get_output method of the highest-level component, as shown

on Line 42. 375

Note that all input quantities provided to SuperflexPy, including fluxes, time step length, parameters,

states, areas, etc., must have consistent units. To reduce model code complexity and execution overhead,

we take the perspective that unit checks represent pre-processing and are best handled by the user

according to their own preferences and standards. Output fluxes have the same (assumed) units as input

fluxes, e.g., if precipitation is in mm/h, then streamflow is also in mm/h, etc. 380

2.3 Creating new model components with SuperflexPy

We now consider the case where the intended model structure has components beyond those already

available in SuperflexPy.

New model components can be created by extending existing SuperflexPy components. To this end,

SuperflexPy provides a library of built-in high-level components that can be extended to achieve the 385

desired functionality. We anticipate that the SuperflexPy components most likely to require extension are

the elements, where new constitutive functions may be required in reservoir elements and new weight

functions may be required in lag function elements. In contrast, it is less likely that unit, node, and network

functionalities would require extension.

Page 14 of 56

The extension of existing SuperflexPy elements takes advantage of the object-oriented paradigm 390

underlying the SuperflexPy software design. The inheritance principle, one of the core concepts of the

object-oriented paradigm, allows the user to construct new components by “inheriting” most of the

functionalities (methods) from existing classes. Separate implementation is then required only for

methods where the new model differences are to be introduced. This approach reduces substantially the

amount of coding required to implement a new model component. 395

A detailed example of this procedure is given in Section 3.2, which shows how to implement a reservoir

with a new storage-discharge relationship. More examples are provided in Chapters 8 and 9 of the

supplementary material.

3 Examples of building hydrological models using SuperflexPy

This section provides more detailed examples of using SuperflexPy to implement hydrological models, 400

including the use of built-in elements and the creation of new elements. We follow a progression from

simple to complex. Section 3.1 shows the implementation of model M4, a lumped model built solely

from reservoir elements and used in the original SUPERFLEX case study (Kavetski and Fenicia, 2011).

Section 3.2 shows how to define a new element with a different storage-discharge relationship for one of

the reservoirs of M4. Section 3.3 shows the implementation of a distributed model from a recent 405

application of SUPERFLEX in the Thur catchment (Dal Molin et al., 2020).

Compared to the demo in Section 2.2, which was intended to give a general sense of model building with

SuperflexPy, the examples in this section represent "realistic" applications of SuperflexPy, including

setting up a spatially distributed model with multiple HRUs and more complex model structure. Further

technical details and additional examples, including the implementation of popular conceptual models 410

(e.g., GR4J, HYMOD), are provided in the supplementary material (chapters 8-11).

3.1 Implementing SUPERFLEX configuration M4

M4 is a simple lumped model presented in Kavetski and Fenicia (2011). As shown in Figure 3, M4

comprises two reservoirs connected in series: an “unsaturated” reservoir (UR) intended to represent the

partitioning of precipitation between evaporation and runoff, and a “fast” reservoir (FR) intended to 415

represent subsequent streamflow generation mechanisms.

UR partitions precipitation (UR)P into a portion that enters the UR storage and eventually evaporates

through flux (UR)
AE , and a portion (UR)Q that is directed to the downstream FR reservoir:

(UR)

(UR) (UR) (UR)
A

d

d

S
P E Q

t
   (5)

Page 15 of 56

where 420

(UR)

(UR)
(UR)
max

S

S
S  (6)

  
(UR)

(UR) (UR) (UR)SQ P


  (7)

  (UR) (UR)

(UR) (UR)
A P (U(UR) R)

1 m
E

S

S
E

m


 


 (8)

In equations (6)-(8), (UR)
maxS and (UR) are model parameters. The quantity (UR)m is used to approximate a

“smooth” threshold behavior; we typically fix (UR) 0.01m  . 425

FR is a power-law reservoir,

(FR)

(FR) (FR)d

d
P Q

t

S
  (9)

with the storage-discharge relationship given by

  
(FR)

(FR) (FR) (FR)Q k S


 (10)

where (FR)k and (FR) are model parameters. 430

The inflow (FR)P is given by the outflow from UR, i.e., U(FR) (R)P Q .

M4 is a lumped model with multiple elements, and hence can be implemented using SuperflexPy levels

L1 and L2 (element and unit, see Section 2.1). Figure 4 shows the code needed to implement M4. The

numerical procedures are imported and initialized on Lines 1-2 and 7-8 respectively. Similar to the model

described in Section 2.2, the two model elements (UR and FR) are already implemented. Hence, the user 435

only needs to import the elements (Lines 1-3) and initialize their parameters (Lines 7-13). Next, the unit

is imported (Line 4) and initialized to contain the two reservoirs (Line 15). The model configuration is

then complete.

The loading of input data from text file(s), databases, etc. is separate from the configuration of

SuperflexPy, and can be carried out using any suitable Python library or function. In this example, we use 440

Numpy to read time series of precipitation and PET from a text file, as shown in Lines 17-18. The

corresponding SuperflexPy inputs are set using these Numpy arrays, as shown on Line 20. Further

practical details on input-output are provided in Section 4.5.5 of the supplementary material.

The model can now be run with the given input data to produce the model outputs, as shown on Line 23.

The outputs contain streamflow time series in the form of Numpy arrays. 445

Page 16 of 56

3.2 Changing the equations of the fast reservoir in M4

Suppose the modeler wishes to modify model M4 by changing the storage-discharge equation of the fast

reservoir given in equation (10) to a new relationship

 

(FR)
(FR) (FR)

(FR)
(FR) (FR)

S
Q

k

S b






 (11)

where (FR)k , (FR) , and (FR)b are model parameters. 450

An element with this storage-discharge relationship has not been implemented in SuperflexPy yet (as of

version 1.2.13.0). The following sections give two approaches for creating such an element.

3.2.1 General approach for creating a new reservoir with SuperflexPy

The general approach for creating a new reservoir in SuperflexPy is to define a new class that inherits

most of its functionality (methods) from the class ODEsElement. This operation is illustrated in the 455

code snippet in Figure 5 (see Section 8.1 of the supplementary material for full details). The new class

must override the following methods:

 __init__: constructor of the class. Its main purpose is to invoke the constructor of the parent

class (Lines 5-6) and to point to the method used to calculate the fluxes,

here,_fluxes_function_python (see also Section 4.3, which illustrates the efficiency 460

benefits of using Numba-optimized methods for calculating the fluxes);

 set_input: takes the input fluxes in a predefined order (here, just precipitation) and assigns

them a key (Line 15) that is then used when setting up and solving the model equations;

 get_output: invokes the functionalities implemented by the ODEsElement to solve the

element equation over the entire simulation (all time steps). Lines 20-22 get the current state of 465

the reservoir, invoke the ODE solver, and set the state to its final value. Lines 24-28 get the output

flux arrays from the numerical approximator (see Section 4.3). Line 30 returns a list with the

output of the element (here, the streamflow);

 _fluxes_function_python: calculates the fluxes and (optionally) their derivatives with

respect to the state for a given state, inputs, and parameters. Line 36 implements the vector version 470

while LineLines 38-41 implements the scalar version. Both versions are needed by the numerical

approximator (see Section 4.3; further practical details are provided in Section 8.1 of the

supplementary material).

The new element NewFastReservoir is now defined and can be used in the “new” version of M4,

in lieu of the previous element PowerReservoir. The Object-Oriented features of Python are very 475

Page 17 of 56

useful here to enable the new class NewFastReservoir to inherit most of the methods from the base

class ODEsElement. Otherwise, in addition to the methods listed above, we would have needed to

implement many other methods, e.g., for interfacing with numerical solvers, for setting element

parameters and states, etc.

3.2.2 Simplified approach for creating a new reservoir element (from an existing element) 480

The same new reservoir element can be implemented in a simpler way by noting that

NewFastReservoir differs from PowerReservoir solely in the definition of the outflow equation.

This difference affects only one of the four methods implemented in Figure 5, namely

_fluxes_function_python. A simpler implementation of NewFastReservoir can be

therefore achieved by inheriting this class directly from class PowerReservoir rather than from class 485

ODEsElement. The code in Figure 6 illustrates this approach and implements only the method

_fluxes_function_python. All other methods are inherited from class PowerReservoir.

Note that this simplified implementation is a consequence of the required modification being relatively

minor, i.e., a change solely in the constitutive function equation. More complex modifications, such as

the inclusion/exclusion of input/output fluxes (e.g. inclusion of evapotranspiration into the 490

PowerReservoir), would require the general implementation approach described in Section 3.2.1.

3.3 Implementing a distributed model

This section illustrates the implementation of an HRU-based, distributed hydrological model, intended to

simulate streamflow in a nested catchment. This implementation requires the entire workflow illustrated

in Section 2.2. The example is provided by model M02, developed in Dal Molin et al. (2020) to provide 495

streamflow predictions at 10 sub-catchments of the Thur catchment in Switzerland (Figure 7a).

Each sub-catchment receives its own forcing, namely precipitation, potential evapotranspiration, and

temperature. Two HRU types are defined based on geology: consolidated and unconsolidated formations

(Figure 7b). Both HRU types are characterized by the same model structure, which is shown in Figure 8.

This HRU model structure differs from model structure M4 (section 3.1) in the following additional 500

elements: (i) a “snow” reservoir, WR, which controls the partition of incoming precipitation between

rainfall and snowfall based on temperature, (ii) a lag function between UR and FR, and (iii) a “slow”

reservoir, SR, which acts in parallel to FR and is controlled by the same equations as FR but with different

parameter values.

Page 18 of 56

Similar to the simpler previous example in Section 3.1, this "lumped" model structure is implemented as 505

a unit. However, a key difference is that in the previous example the unit represented the entire system,

whereas here it is part of a more complex system.

Given the spatial organization of the model, nodes are used to represent sub-catchments and units are

used to implement HRU types. Note that the sub-catchments may share (one or more) HRU types, which

in SuperflexPy translates into the nodes sharing (one or more) units. The network level is used to connect 510

multiple nodes, and enables predictions at internal catchment locations. Figure 10 shows the SuperflexPy

representation of the spatial organization shown in Figure 7.

We start by implementing the units. As seen in Figure 8, the HRU model structure has elements operating

in parallel and, therefore, requires the use of connections. Figure 9 shows how the HRU model structure

is “translated” into a SuperflexPy unit. Recall, from Section 2.1, that elements can be connected only if 515

they belong to two consecutive layers, which implies that “gaps” in the structure must be filled using

transparent elements, which output the same fluxes they receive as inputs. Splitters and junctions are

used to divide and merge the fluxes to implement the parallel flow paths.

Comparing Figure 8 with Figure 9, we see how the HRUs structure has been implemented within

SuperflexPy. The following implementation aspects are noted: 520

1. The incoming precipitation is partitioned into rainfall and snowfall. This partitioning is done

internally in the WR element. The SuperflexPy implementation of WR takes care of two processes:

(i) partitioning of precipitation into rainfall and snowfall; and (ii) simulation of snow processes

(accumulation and melting). The output of WR is, logically, the sum of rainfall and snowmelt.

Alternatively, a (new) splitter element could have been defined to partition the fluxes between UR 525

(rainfall) and WR (snowfall) based on temperature.

2. WR, as currently implemented, does not receive as input the potential evapotranspiration (PET),

which is needed by the downstream element UR. Therefore, the transfer of PET values to the UR

element is implemented using a separate path composed by three elements, labelled "upper

splitter", "upper transparent", and "upper junction" (Figure 9). This choice simplifies the interface 530

of element WR at the expense of a somewhat more complicated model structure with additional

elements.

3. The parallel part of the structure is composed by two elements on one branch (lag and FR) and

only one element on the other branch (SR). To satisfy the requirement of not having “gaps” in the

unit structure, a transparent element (“lower transparent”) is added after the SR. 535

Page 19 of 56

The code to setup this model is detailed in Figure 11. Similar to the earlier example in Section 2.2, the

user initializes and connects all model components, proceeding sequentially from the lowest level

(elements) to the highest level (network). The procedure can be summarized as follows:

1. Lines 10-29: Initialize the elements needed for the lumped model structures used in the HRUs;

2. Lines 32-39: Initialize the units used to represent the HRUs, linking all the elements; 540

3. Lines 42-51: Initialize the nodes used to represent the sub-catchments. Both units are assigned to

9 nodes; the Mosnang sub-catchment contains a single HRU and hence only a single unit is

assigned to the corresponding node (Line 49).

4. Lines 54-60: Connect the nodes using a network. The topology of the network is defined by

indicating, for each node, the downstream one. 545

The network runs the nodes from upstream to downstream, collects their outputs, and routes them to the

outlet. Customized routing functions can be implemented, as shown in Section 9.1 of the supplementary

material. The output of the network is a Python dictionary, with keys given by the node identifiers and

values given by the list of Numpy arrays representing the time series of output fluxes over the simulation

period. 550

4 Implementation details of SuperflexPy

This section presents additional technical details of SuperflexPy needed to understand better some aspects

of the functioning of the framework. A more detailed and practical description is provided in the

supplementary material.

4.1 Parameters and states 555

All SuperflexPy components can have parameters and states. Parameters specify component

characteristics, whereas states keep track of the component history. States and parameters are set as part

of initializing the model components, and can be manipulated using get and set methods provided by

the framework at all levels of its hierarchy (see the example in Section 2.2).

The parameters can be either constant or variable in time. Constant parameters represent the most 560

common set up of hydrological models. In conceptual hydrological modelling, time-varying parameters

have been proposed to represent ”deterministic” system variability (e.g. seasonality, Westra et al., 2014)

and/or “stochastic” system variability (e.g., Kuczera et al., 2006; Reichert and Mieleitner, 2009; Renard

et al., 2011); see also earlier work in data-based mechanistic modelling (e.g., Young, 2000).

Page 20 of 56

4.2 Modular design following the Object-Oriented paradigm 565

As noted in Section 2.1, SuperflexPy embraces the object-oriented paradigm (e.g. Meyer, 1988), which

is widely used in general software and is increasingly adopted in scientific software.

Figure 12 shows the unified modeling language (UML) class diagram of SuperflexPy. The schematic

illustrates the classes underlying the core framework (i.e., the base classes that define SuperflexPy

architecture), but excludes, for simplicity, the specific implementations of components and numerical 570

routines. All the classes in the diagram can be extended to implement customized components; for

example, a reservoir can be implemented by extending the class ODEsElement, a splitter can be

implemented by extending the class ParameterizedElement, a node with a particular routing

mechanism can be implemented by extending the class Node, etc.

The object-oriented design provides several advantages in the context of SuperflexPy: 575

 The inheritance principle enables the creation of new classes by extending existing ones.

Inheritance reduces drastically the amount of new code that needs to be generated to implement a

new model component (see example in Section 3.2);

 Changes to a class (e.g. a component) and the creation of new classes can be carried out in isolation

from the rest of the code, as long as the interfaces between classes are respected; 580

 When creating a model, only the necessary objects need to be initialized and used. This principle

makes the model configuration effort roughly proportional to required model complexity, i.e.,

simple model structures can be constructed from the minimal set of required components;

 Objects retain their history (states), which can be accessed post-run to undertake model analysis

and/or subsequent computation; 585

 The modular nature of objects facilitates the development and testing of new code.

These benefits make it easier to achieve clean and maintainable code, which is essential for any practical

modelling framework.

4.3 Numerical solution of ODEs

The mass balance of reservoir elements is described using ordinary differential equations (ODEs), which 590

are typically solved (approximately) using numerical time-stepping algorithms. Many such algorithms

have been described in the numerical methods literature, e.g. Euler methods, Runge-Kutta methods, etc.

(e.g., Butcher and Goodwin, 2008).

SuperflexPy separates the formulation of model equations from the solution of these equations. More

specificallySpecifically, flux equations are defined internally as methods of the elements (as shown in 595

Page 21 of 56

Section 3.2), while the numerical algorithm to solve the ODEs is specified externally (to the element) by

defining, creating a so-called “numerical approximator”. The numerical approximator is a procedure,

which constructs a numerical approximation of the differential equation(s) controlling the element. If the

numerical approximator implements an implicit time stepping scheme, it will generally require an

auxiliary “root finder”, which is a procedure that solves nonlinear algebraic equation(s).class specific to 600

this task. The separation of equations and solvers in the model specification enables the modeler, within

some restrictions, to select the numerical method without making any changes to the governing model

equations. Further details are provided in Section (see section 5.12 of the supplementary material.). That

said, given SuperflexPy primary emphasis on enabling hydrologists to experiment with flexible

conceptual model structures, numerical flexibility is given a relatively lower level of priority and the 605

choice of numerical architecture of the framework is largely driven by findings of previous studies (see

below).

SuperflexPy conceptualizes the solution of its mass balance ODEs as a two-step process: (1) construct a

discrete-time numerical approximation of the ODEs (e.g., using Euler time stepping schemes), and (2)

when an implicit time stepping scheme is used, solve the associated nonlinear algebraic equation(s). The 610

procedures used for these tasks are referred to as the “numerical approximator” and the “root finder”,

respectively. This distinction helps achieve better software modularization, disentangling the choice of

the numerical approximator and of the root finder.

Currently, SuperflexPy provides twothree built-in numerical approximators, namely the fixed-step

implicit and explicit Euler time stepping schemes (e.g., Clark and Kavetski, 2010). The implicit Euler 615

equations and Runge Kutta 4. Two built-in root finders are solved usingprovided, namely the Pegasus

root finderalgorithm (Dowell and Jarratt, 1972) and a hybrid Newton-bisection algorithm (Press et al.,

1992). Additional numerical routines are currently being developed. To avoid mass balance

discontinuities, as well as to ensure better numerical stability and faster convergence, we recommend

using smooth flux functions (e.g., Kavetski and Kuczera, 2007). . 620

An additional approximation is employed within SuperflexPy, namely that all model fluxes are constant

within the model time step. This approximation is consistent with the typical format of hydrological data,

such as rainfall, PET, etc, which are tabulated in discrete steps (e.g., daily, hourly, etc), but is applied not

only to the forcing data but also to all internal fluxes. As such, this pragmatic approximation enables a

further simplification of the solution procedure, because the output flux from each element becomes a 625

scalar value (per time step). Note that first order time stepping schemes, which we recommend for

SuperflexPy, themselves make exactly the same assumption and are hence not impacted. However, higher

order time stepping schemes and adaptive substepping schemes would be impacted by additional first-

Page 22 of 56

order discretization error, because the variation of internal fluxes within the model time step is ignored.

Further details about this pragmatic approximation are provided in section 5.2 of the supplementary 630

material.

The user can implement additional numerical algorithms, either by coding them directly or by interfacing

with external code (e.g. ODE solvers from SciPy). Detailed instructions are provided in section 5.1 of the

supplementary material, which also includes a description of how to implement a numerical solver "from

scratch", bypassing of the current numerical approximator / root finder architecture. 635

As detailed next in Section 4.4, the choice of numerical implementation, and its compatibility with

optimizing compilers, may have a strong impact on the overall computational speed of the model.

4.4 Computational efficiency and language choice

Computational efficiency is a key requirement of a practical modelling framework. Model calibration via

parameter optimization is a common computationally demanding task required by most hydrological 640

models, typically requiring hundreds or thousands of model runs. Moreover, conceptual hydrological

models are often used in Monte Carlo uncertainty quantification, with comparable or even larger

computational cost (up to millions of model runs in some cases).

The choice of programming language inevitably requires trade-offs between computational efficiency and

ease of use. The choice of Python for SuperflexPy was motivated by the attraction of a flexible and widely 645

used scripting language in conjunction with two efficient numerical libraries: Numpy (Walt et al., 2011)

and Numba (Lam et al., 2015). Numpy provides highly efficient arrays for vectorized operations (i.e.

elementwise operations between arrays). Numba provides a “just-in-time compiler” that compiles (at

runtime) a Python method into machine code that interacts efficiently with Numpy arrays.

The combined use of Numpy and Numba is particularly effective when solving ODEs, where the 650

numerical algorithm performs element-wise sequential operations. The built-in SuperflexPy approaches

for solving ODEs are compatible with such numerical infrastructure, and therefore enable fast

computation times. Note that switching to ODEs solvers that do not take advantage of such libraries might

dramatically increase the model runtime.

Numba offers drastic computational speed ups compared to native Python; our experimentation suggests 655

runtime reductions by factors of up to 30. However, a drawback of Numba is the requirement to compile

the code each time it is executed (run). For a lumped model composed of a few reservoirs, the Numba

compilation time is of the order of a few seconds. Therefore, Numba will outperform Python when the

simulation is long (e.g. multiple years of hourly data) and/or when the model needs to be run a large

number of times. For example, as a broad illustration of runtimes on a standard laptop, calibration of a 660

Page 23 of 56

HYMOD-like SuperflexPy model to observed daily data, requiring 1000’s of model runs each with 1000

time steps, takes a few seconds with the Numba implementation compared to a couple of minutes with

native Python execution. Note that here we refer to the runtime of the SuperflexPy model itself, and

exclude the runtime of the calibration tool procedures; more details on benchmarking are given in section

5.3 of the supplementary material. Examples of interoperability of SuperflexPy with external libraries for 665

model calibration (e.g., SPOTPY, Houska et al., 2015) are given in chapter 14 of the supplementary

material.

4.5 Ability to represent multiple fluxes and states

SuperflexPy can operate with multiple fluxes and state variables. In particular, connection elements, units,

nodes, and the network can accommodate an arbitrarily large number of fluxes. The use of multiple fluxes 670

has been already shown in the model structure described in section 3.3, where the upper_splitter

handles three different variables (precipitation, temperature, and PET). Additional examples are provided

in the supplementary material (e.g., chapters 10, 11).

The capability to simulate multiple fluxes and states is intended to support the future extension of

SuperflexPy to new modelling scenarios. Several such scenarios may be of interest, including the 675

transport of chemical substances (e.g., Fenicia et al., 2010; Ammann et al., 2020), the interaction between

frozen and liquid water in a snow element (e.g., Jansen et al., 2021), interactions in the

saturated/unsaturated soil zones (e.g., Seibert et al., 2003), and so forth.

While the current examples in SuperflexPy do not include all the cases listed above, the framework

architecture anticipates the need for more general simulation functionality, and has been designed to 680

support extension to accommodate such multi-state processes.

5 Discussion

5.1 Balancing functionality, scope, and usability in a flexible model implementation

A software implementation that maximizes flexibility and usability is challenging to achieve, because

flexible modelling functionality may increase configuration effort and computational cost. Existing 685

flexible frameworks have approached this tradeoff with different priorities, based on their respective

modelling objectives and paradigms.

The following sections offer a brief discussion of the design choices made by SuperflexPy in the context

of selected existing frameworks with a similar scope. The discussion makes use of Table 1 and Table 2,

which summarize key design choices related to usability and simulation capabilities respectively. 690

Page 24 of 56

5.1.1 Structural flexibility

Structural flexibility refers to the flexibility in how elements can be connected to compose the structure

of the model (i.e., of the unit, following SuperflexPy’sSuperflexPy terminology). This consideration

applies both to lumped and distributed models; the flexibility in specifying the spatial organization of the

model is considered separately in Section 5.1.2. 695

Some flexible frameworks are implemented using a master structure that incorporates all supported model

configurations. In these implementations, the user can choose the flux equation(s) (e.g., FUSE,

SUPERFLEX-F90) and/or activate/deactivate specific elements (e.g., SUPERFLEX-F90), but cannot

change the overall connectivity of model elements. To the extent that the master structure is sufficiently

general, it may not unduly restrict the practical usage of the framework. 700

Other frameworks (e.g., MARRMoT) propose a collection of existing conceptual model structures ready

to use, which have been implemented following the same design rules in order to allow for a fair

comparison. Such frameworks are typically intended for model intercomparison studies.

The most general frameworks allow connecting the elements freely without constraints. A distinction can

be made between frameworks that allow for mutual interactions between the elements (e.g., CMF) and 705

frameworks that do not allow such interactions (e.g., ECHSE).

SupeflexPySuperflexPy adopts the latter philosophy, allowing to connect the elements freely within the

unit but restricting mutual interactions, i.e., constraining the structure to be a DAG (see Section 5.2).

Moreover, we have chosen to define the DAG as a succession of layers, listing the elements in order from

upstream to downstream and allowing for parallel flow paths (e.g., see the model structure in Figure 9). 710

This "list" formulation has been selected in preference to other methods for defining a graph, e.g.,

connectivity matrix, adjacency list, etc., for the following reasons: (i) simplicity/scalability, as the list

dimension scales linearly with the number of elements, in contrast to the connectivity matrix approach

where this scaling is quadratic; (ii) arguably better readability, as the elements are listed in the order they

appear in the DAG; and (iii) it guarantees a graph topology without loops. Note that other popular 715

modelling tools (e.g., neural networks) adopt this type of formulation.

5.1.2 Spatial flexibility

Most frameworks (e.g., CMF, ECHSE, SUPERFLEX-F90, etc.) support multiple types of spatial

discretization (e.g., lumped, HRUs, sub-catchments, grids, etc.). Some frameworks (e.g., FUSE,

MARRMoT) support solely lumped models. 720

Page 25 of 56

SuperflexPy uses 4 hierarchical levels of components, intended to facilitate the formulation of models

that range in spatial complexity from a simple lumped model, to a composition of lumped models intended

for prediction at a single location (e.g. a catchment with several HRUs), and ultimately to a distributed

model capable of making predictions at multiple internal locations. The use of a hierarchical set of

components could be contrasted to a framework based solely on the lowest level components, here, 725

elements. The use of higher level components enables the modeler to capture explicitly the natural

groupings in the catchment of interest, e.g., sub-catchments, HRUs, etc.

5.1.3 Usability

The usability of a framework can be judged according to several aspects.

The first aspect is how a framework is operated. Some frameworks are standalone and operated through 730

a graphical interface (e.g., PERSiST) or the command line interface (e.g., SUPERFLEX-F90). Other

frameworks are designed as libraries that can be called from the user code in a specific programming

language to initialize, configure and run the model (e.g., CMF, MARRMoT; SUPERFLEX-F90 also

allows this option when using the source code from Fortran). SuperflexPy is implemented as a Python

package. Models can be created using a Python script and interfaced easily with external libraries 735

(examples are provided in chapter 14 of the supplementary material).

The second aspect is the scope of the framework. Most frameworks (e.g., SUPERFLEX-F90, ECHSE)

adopt, by design, the philosophy of “one tool per problem” and limit their functionality to the simulation

of hydrological processes. Other frameworks integrate tools for parameter calibration and sensitivity

analysis, uncertainty quantification, pre- and post-processing tasks such as input unit checks/conversions, 740

etc. (e.g., RAVEN, PERSiST). SuperflexPy adopts the first philosophy: it limits its functionality to

hydrological simulation.

Finally, documentation is another key aspect in the usability of a framework. Virtually all considered

frameworks provide such documentation to a varying degree of detail. SuperflexPy documentation is

available online and explains in detail how to use and further develop the framework. 745

Figure 13 shows illustrates the online software management tools that are used to develop and deploy

SuperflexPy. The framework itself, including source code, documentation, examples, etc., is hosted on

GitHub. Automated workflows (dashed lines in the figure) are then used to create new releases (PyPI),

get DOIs for the software releases (Zenodo), host the documentation (ReadTheDocs), and run thecreate

runnable examples (hosted on Binder as Jupyter and Bindernotebooks). From a general user perspective, 750

this setup improves model accessibility and reproducibility. From a developer and contributor

perspective, it reduces the effort needed to maintain and extend the framework.

Page 26 of 56

5.1.4 Possibility of extension and customization

Most frameworks have open source code and permissive licenses, making it possible to modify and extend

their codebase. Within this category, some frameworks are specifically intended to be customized (e.g., 755

implementing new functionalities) as part of their regular usage without an expectation of “developer-

level” skills (e.g., ECHSE). Other frameworks do not envisage customization in their primary scope, but

can still be modified by modelers with appropriate programming expertise in consultation with available

developer guides (e.g., RAVEN).

Some frameworks have not been released as open source, and the only way to access their codebase for 760

customization and extension is by contacting their developers (e.g., SUPERFLEX-F90, PERSiST).

SuperflexPy is designed to facilitate extension and customization as part of its regular usage. New

components can be created by extending or modifying existing components, as demonstrated in Section

3.2.

5.1.5 Computational efficiency 765

The computational efficiency of a model code, i.e., the time required to run a simulation, depends

primarily on two aspects, namely the programming language and the numerical algorithms.

In terms of programming languages, most frameworks have been implemented in C/C++ and Fortran,

which enable very fast computation. These implementations can be either purely single-language (e.g.,

FUSE, RAVEN), or wrapped within a scripting language to provide a more suitable interface (e.g., CMF). 770

Amongst the considered existing frameworks, only MARRMoT is implemented entirely in an interpreted

language (Matlab/Octave).

In terms of numerical algorithms, a wide range of options are available for solving differential equations.

Broadly speaking, time stepping algorithms can be classified as implicit or explicit, and may employ fixed

or adaptive step size. The choice of algorithm and its settings brings tradeoffs between solution accuracy, 775

algorithm complexity and computational cost. In the context of model development and comparison, it is

important to separate the specification of model equations from the choice of numerical solution and to

use robust numerical methods to avoid spurious artefacts (e.g., Kavetski and Clark, 2010). The majority

of frameworks implement this separation and provide a choice of built-in numerical algorithms.

SuperflexPy, while written entirely in Python (a nominally "slow" language), makes several 780

implementation choices to reduce computational costs. These choices include the use of efficient

numerical libraries (section 4.4) and the solution of the elements in succession (DAG, section 5.2). This

solution of the elements “one-at-a-time” enables the usage of robust solvers that operate on a single ODE

Page 27 of 56

at a time; in such cases, also the root finder operates on a single algebraic equation at a time, reducing the

computational effort. The choice of numerical algorithm for individual elements is left to the user (section 785

4.3). The (recommended) built-in approximators include the implicit Euler scheme with fixed step size,

which offers stability and smoothness benefits valuable in parameter estimation contexts.

5.2 Current restrictions in model structure specification

As part of balancing the flexibility, ease of use, and computational performance of SuperflexPy, some

restrictions have been imposed on the connectivity between model components. 790

The first restriction is that elements within a unit must form a directional acyclic graph (DAG), with no

feedback loops from downstream to upstream elements (Section 2.1). This restriction enables the

numerical solvers to proceed, at each time step, in a single pass from upstream to downstream elements

and improves the computational performance of the framework. The restriction on internal model

feedbacks is not expected to be overly limiting when developing conceptual hydrological models, where 795

the fluxes from a given element typically depend only on the state in that element and not on downstream

elements. In such systems, flows occur only in one direction, e.g. in model M4 the water flows from UR

to FR but not vice versa. A counter-example where internal model feedbacks are required is given by the

bidirectional interaction between surface water and groundwater in the hyporheic zone, where the

exchange flux (or fluxes) depends on both states. Such interactions can still be modelled in SuperflexPy 800

by introducing elements that embed feedbacks internally. For example, the hyporheic zone can be

represented using a two-state reservoir with interacting states (e.g., Seibert et al., 2003). In other words,

the SuperflexPy restriction on model feedbacks applies to interactions between elements, but not to

interactions within an element.

The second restriction, which also applies at the unit level, derives from the decision to define the DAG 805

as a succession of layers (section 5.1.1). This choice simplifies the model definition in typical use cases,

when there are many elements with relatively few connections (i.e., the DAG is "sparse" rather than

"dense"). However, the definition of a DAG as a succession of layers requires the elements to be

connected directly one to the other, without skipping layers. Hence the need for transparent elements,

which output the inputs they receive and are used to fill the gaps that arise when two or more parallel 810

flow paths have a different number of elements. An example of such model configuration is given in

Figure 9, where a transparent element (labeled “lower_transparent”) is used to fill the gap in layer 7.

The third restriction is that the topology of a network must represent a tree where any given node can

connect and transfer fluxes only to a single downstream node (Section 2.1). This restriction has a similar

motivation to the restriction of a unit structure to a DAG, and allows for a simple and efficient 815

Page 28 of 56

computational implementation, which starts from the headwater nodes and proceeds downstream one

node at a time. Typical distributed conceptual models meet this restriction, for example as illustrated in

Section 3.3. However, fully integrated distributed models, such as Parflow and Mike-She, do include

mutual dependencies between spatial elements, e.g., leading to 2D or 3D groundwater flows. Such

configurations are considered beyond the scope of conceptual distributed models, and therefore are not 820

currently supported in SuperflexPy.

5.3 Current usage and future developments

SuperflexPy is easy to install and run; it is written in pure Python and its dependencies are limited to the

packages Numpy and Numba (Section 4.4). Installation can be done directly using the package installer

for Python (pip) and does not require (additional) external libraries. We stress that SuperflexPy is not a 825

wrapper of earlier SUPERFLEX-F90 code but offers a completely new implementation that is not

constrained by choices taken in the earlier code versions.

SuperflexPy has already been used for research applications. Jansen et al. (2021) performed a “model

mimicry” study where similarities and differences within the HBV family of models were investigated.

SuperflexPy was used to construct a set of HBV-like models and compare them in terms of the behavior 830

of individual model components, the impact of numerical implementation, and so forth. A list of

publications using SuperflexPy is maintained on the documentation website.

In terms of future developments, we hope that SuperflexPy offers the broader hydrological community a

versatile new tool for research work and practical applications. Further SuperflexPy developments are

likely to follow from such work and collaborations, including: (i) expansion of the library of model 835

components beyond the ones here presented (as shown in the example in Section 3.2), and (ii) more

fundamental developments in response to future model applications. It is important to highlight that

SuperflexPy can be used to create and combine new model components, thereby enabling experimentation

with new model structures and general conceptualizations. The framework, therefore, is not limited to

components and structures taken from existing models – though such collections could be also produced. 840

The SuperflexPy model library may grow as new users share their implementations with the community.

In order to facilitate the use of SuperflexPy, its code is accessible on GitHub with license LGPL-3.0 and

distributed using the Python package installer PyPI (see the code availability section at the end of this

paper). The online documentation provides a guide for colleagues interested in contributing to the

framework (section 2.1 of the supplementary material). 845

Page 29 of 56

6 Summary and conclusions

SuperflexPy is a new Python flexible modelling framework for building conceptual catchment-scale

hydrological models ranging from lumped to distributed configurations. SuperflexPy offers detailed

control over each aspect of model configuration, and caters to a wide range of typical conceptual model

applications. In order to facilitate the model building process, the framework defines its components 850

(building blocks) at four hierarchical levels, namely element, unit, node, and network. These components

support conceptual model setups of increasing levels of complexity, including but not limited to: a single

element model (e.g. a reservoir), a typical lumped model (e.g. a collection of interconnected reservoirs),

a semi-distributed model designed to provide prediction at a single outlet, and a semi-distributed model

designed to provide predictions at internal sub-catchments. The construction of a model from components 855

up to a given hierarchical level does not require specifying components at higher levels, which makes the

model configuration effort proportional to the complexity of the application and reduces

configuration/computational overheads. The framework supports multiple states and fluxes in each

component, which facilitates future extension to applications where such functionality is needed.

SuperflexPy offers an open source implementation of the SUPERFLEX principles (Fenicia et al., 2011) 860

that builds on the collective experience of the authors and their colleagues in hydrological model design

and application. The paper discusses the key design choices made in SuperflexPy, with emphasis on the

ease of use and interfacing, availability, amenability of extensions, and computational efficiency.

The use of the SuperflexPy framework is illustrated using two examples that represent typical tasks in

conceptual hydrological modelling: the implementation of a lumped model to simulate an entire 865

catchment, and the implementation of a distributed model to simulate a system of multiple sub-catchments

with spatially varying landscape characteristics. We hope the framework will contribute to ongoing efforts

in the hydrological modelling community to develop more robust and representative models. The

framework is open source, available with license LGPL-3.0 on GitHub.

Code availability 870

The source code of SuperflexPy, together with documentation and examples, is hosted in the public

GitHub repository https://github.com/dalmo1991/superflexPy. Github is used for issue-tracking. Package

releases are distributed using the Python package index https://pypi.org/project/superflexpy. Releases are

identified using a version number based on Semantic Versioning 2.0.0 and assigned a DOI through

Zenodo. The release associated with this paper represents version 1.2.13.0 and has DOI 875

https://doi.org/10.5281/zenodo.46984695235158. Detailed documentation is available through Read the

Page 30 of 56

Docs at https://superflexpy.readthedocs.io. The supplementary material to this paper represents a snapshot

of the documentation at the time reported on the front page.

SuperflexPy is implemented using Python 3.7 and depends on Numpy (version 1.19) and Numba (version

0.50). 880

SuperflexPy is available under the license LGPL-3.0. Users of the framework are invited to share their

modelling solutions with the community by contributing to the GitHub repository.

Author contributions

All authors contributed to writing the paper. MDM designed, implemented, and documented the Python

package, with input from FF and DK. 885

Competing interests

The authors declare that they have no conflict of interest.

Acknowledgements

We thank Associate Editor Andrew Wickert, Philip Kraft, Riccardo Rigon, and two anonymous reviewers

for their thoughtful and constructive feedback on our manuscript. We are grateful to James Craig, Martyn 890

Futter, David Kneis, Wouter Knoben, and Philip Kraft for providing fast and informative responses that

helped us construct Tables 1 and 2.

Financial support

This research has been supported by the Schweizerischer Nationalfonds zur Förderung der

Wissenschaftlichen Forschung (grant no. 200021_169003). 895

References

Ammann, L., Doppler, T., Stamm, C., Reichert, P., and Fenicia, F.: Characterizing fast herbicide transport in a small
agricultural catchment with conceptual models, Journal of Hydrology, 586, 124812,
https://doi.org/10.1016/j.jhydrol.2020.124812, 2020.

Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large area hydrologic modeling and assessment. Part I: 900
model development, JAWRA Journal of the American Water Resources Association, 34, 73-89, 10.1111/j.1752-
1688.1998.tb05961.x, 1998.

Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., Santhi, C., Harmel, R. D., van
Griensven, A., Van Liew, M. W., Kannan, N., and Jha, M. K.: SWAT: Model Use, Calibration, and Validation, Transactions
of the ASABE, 55, 1491-1508, https://doi.org/10.13031/2013.42256, 2012. 905

Page 31 of 56

Bancheri, M., Serafin, F., and Rigon, R.: The Representation of Hydrological Dynamical Systems Using Extended Petri Nets
(EPN), Water Resources Research, 55, 8895-8921, https://doi.org/10.1029/2019WR025099, 2019.

Bertuzzo, E., Thomet, M., Botter, G., and Rinaldo, A.: Catchment-scale herbicides transport: Theory and application,
Advances in Water Resources, 52, 232-242, https://doi.org/10.1016/j.advwatres.2012.11.007, 2013.

Beven, K.: Changing ideas in hydrology — The case of physically-based models, Journal of Hydrology, 105, 157-172, 910
https://doi.org/10.1016/0022-1694(89)90101-7, 1989.

Beven, K. J., and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology / Un modèle à base
physique de zone d'appel variable de l'hydrologie du bassin versant, Hydrological Sciences Bulletin, 24, 43-69,
10.1080/02626667909491834, 1979.

Beven, K. J.: Uniqueness of place and process representations in hydrological modelling, Hydrol. Earth Syst. Sci., 4, 203-213, 915
10.5194/hess-4-203-2000, 2000.

Boyle, D. P.: Multicriteria calibration of hydrologic models, The University of Arizona., 2001.

Boyle, D. P., Gupta, H. V., Sorooshian, S., Koren, V., Zhang, Z., and Smith, M.: Toward improved streamflow forecasts: value
of semidistributed modeling, Water Resources Research, 37, 2749-2759, 10.1029/2000wr000207, 2001.

Butcher, J. C., and Goodwin, N.: Numerical methods for ordinary differential equations, Wiley Online Library, 2008. 920

Clark, M. P., Slater, A. G., Rupp, D. E., Woods, R. A., Vrugt, J. A., Gupta, H. V., Wagener, T., and Hay, L. E.: Framework
for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models,
Water Resources Research, 44, Artn W00b02 10.1029/2007wr006735, 2008.

Clark, M. P., and Kavetski, D.: Ancient numerical daemons of conceptual hydrological modeling: 1. Fidelity and efficiency of
time stepping schemes, Water Resources Research, 46, https://doi.org/10.1029/2009WR008894, 2010. 925

Clark, M. P., Kavetski, D., and Fenicia, F.: Pursuing the method of multiple working hypotheses for hydrological modeling,
Water Resources Research, 47, Artn W09301 10.1029/2010wr009827, 2011a.

Clark, M. P., McMillan, H. K., Collins, D. B. G., Kavetski, D., and Woods, R. A.: Hydrological field data from a modeller's
perspective: Part 2: process-based evaluation of model hypotheses, Hydrological Processes, 25, 523-543, 10.1002/hyp.7902,
2011b. 930

Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Freer, J. E., Gutmann, E. D., Wood, A.
W., Brekke, L. D., Arnold, J. R., Gochis, D. J., and Rasmussen, R. M.: A unified approach for process-based hydrologic
modeling: 1. Modeling concept, Water Resources Research, 51, 2498-2514, 10.1002/2015wr017198, 2015.

Craig, J. R., Brown, G., Chlumsky, R., Jenkinson, R. W., Jost, G., Lee, K., Mai, J., Serrer, M., Sgro, N., Shafii, M., Snowdon,
A. P., and Tolson, B. A.: Flexible watershed simulation with the Raven hydrological modelling framework, Environ Modell 935
Softw, 129, 104728, https://doi.org/10.1016/j.envsoft.2020.104728, 2020.

Dal Molin, M., Schirmer, M., Zappa, M., and Fenicia, F.: Understanding dominant controls on streamflow spatial variability
to set up a semi-distributed hydrological model: the case study of the Thur catchment, Hydrol. Earth Syst. Sci., 24, 1319-1345,
10.5194/hess-24-1319-2020, 2020.

David, P. C., Oliveira, D. Y., Grison, F., Kobiyama, M., and Chaffe, P. L. B.: Systematic increase in model complexity helps 940
to identify dominant streamflow mechanisms in two small forested basins, Hydrological Sciences Journal, 64, 455-472,
10.1080/02626667.2019.1585858, 2019.

Dowell, M., and Jarratt, P.: The “Pegasus” method for computing the root of an equation, BIT Numerical Mathematics, 12,
503-508, 10.1007/BF01932959, 1972.

Eckhardt, K., and Ulbrich, U.: Potential impacts of climate change on groundwater recharge and streamflow in a central 945
European low mountain range, Journal of Hydrology, 284, 244-252, https://doi.org/10.1016/j.jhydrol.2003.08.005, 2003.

Fenicia, F., Savenije, H. H. G., Matgen, P., and Pfister, L.: Is the groundwater reservoir linear? Learning from data in
hydrological modelling, Hydrol. Earth Syst. Sci., 10, 139-150, 10.5194/hess-10-139-2006, 2006.

Fenicia, F., Savenije, H. H. G., Matgen, P., and Pfister, L.: Understanding catchment behavior through stepwise model concept
improvement, Water Resources Research, 44, https://doi.org/10.1029/2006WR005563, 2008. 950

Fenicia, F., Wrede, S., Kavetski, D., Pfister, L., Hoffmann, L., Savenije, H. H. G., and McDonnell, J. J.: Assessing the impact
of mixing assumptions on the estimation of streamwater mean residence time, Hydrological Processes, 24, 1730-1741,
10.1002/hyp.7595, 2010.

Fenicia, F., Kavetski, D., and Savenije, H. H. G.: Elements of a flexible approach for conceptual hydrological modeling: 1.
Motivation and theoretical development, Water Resources Research, 47, Artn W11510 10.1029/2010wr010174, 2011. 955

Page 32 of 56

Fenicia, F., Kavetski, D., Savenije, H. H. G., Clark, M. P., Schoups, G., Pfister, L., and Freer, J.: Catchment properties,
function, and conceptual model representation: is there a correspondence?, Hydrological Processes, 28, 2451-2467,
10.1002/hyp.9726, 2014.

Fenicia, F., Kavetski, D., Savenije, H. H. G., and Pfister, L.: From spatially variable streamflow to distributed hydrological
models: Analysis of key modeling decisions, Water Resources Research, 52, 954-989, 10.1002/2015wr017398, 2016. 960

Feyen, L., Kalas, M., and Vrugt, J. A.: Semi-distributed parameter optimization and uncertainty assessment for large-scale
streamflow simulation using global optimization/Optimisation de paramètres semi-distribués et évaluation de l'incertitude pour
la simulation de débits à grande échelle par l'utilisation d'une optimisation globale, Hydrological Sciences Journal, 53, 293-
308, 2008.

Formetta, G., Antonello, A., Franceschi, S., David, O., and Rigon, R.: Hydrological modelling with components: A GIS-based 965
open-source framework, Environ Modell Softw, 55, 190-200, https://doi.org/10.1016/j.envsoft.2014.01.019, 2014.

Futter, M. N., Erlandsson, M. A., Butterfield, D., Whitehead, P. G., Oni, S. K., and Wade, A. J.: PERSiST: a flexible rainfall-
runoff modelling toolkit for use with the INCA family of models, Hydrol. Earth Syst. Sci., 18, 855-873, 10.5194/hess-18-855-
2014, 2014.

Gao, H., Hrachowitz, M., Fenicia, F., Gharari, S., and Savenije, H. H. G.: Testing the realism of a topography-driven model 970
(FLEX-Topo) in the nested catchments of the Upper Heihe, China, Hydrol. Earth Syst. Sci., 18, 1895-1915, 10.5194/hess-18-
1895-2014, 2014.

Henn, B., Clark, M. P., Kavetski, D., Newman, A. J., Hughes, M., McGurk, B., and Lundquist, J. D.: Spatiotemporal patterns
of precipitation inferred from streamflow observations across the Sierra Nevada mountain range, Journal of Hydrology, 556,
993-1012, https://doi.org/10.1016/j.jhydrol.2016.08.009, 2018. 975

Houska, T., Kraft, P., Chamorro-Chavez, A., and Breuer, L.: SPOTting Model Parameters Using a Ready-Made Python
Package, PLoS One, 10, e0145180-e0145180, 10.1371/journal.pone.0145180, 2015.

Hrachowitz, M., Fovet, O., Ruiz, L., Euser, T., Gharari, S., Nijzink, R., Freer, J., Savenije, H. H. G., and Gascuel-Odoux, C.:
Process consistency in models: The importance of system signatures, expert knowledge, and process complexity, Water
Resources Research, 50, 7445-7469, 10.1002/2014wr015484, 2014. 980

Ibbitt, R. P., and O’Donnell, T.: Designing conceptual catchment models for automatic fitting methods, IAHS Publication,
101, 462-475, 1971.

Jakeman, A. J., and Hornberger, G. M.: How Much Complexity Is Warranted in a Rainfall-Runoff Model, Water Resources
Research, 29, 2637-2649, Doi 10.1029/93wr00877, 1993.

Jansen, K. F., Teuling, A. J., Craig, J. R., Dal Molin, M., Knoben, W. J. M., Parajka, J., Vis, M., and Melsen, L. A.: Mimicry 985
of a conceptual hydrological model (HBV): What’s in a name?, Water Resources Research, n/a, e2020WR029143,
https://doi.org/10.1029/2020WR029143, 2021.

Kavetski, D., and Kuczera, G.: Model smoothing strategies to remove microscale discontinuities and spurious secondary
optima in objective functions in hydrological calibration, Water Resources Research, 43, Artn W03411
10.1029/2006wr005195, 2007. 990

Kavetski, D., and Clark, M. P.: Ancient numerical daemons of conceptual hydrological modeling: 2. Impact of time stepping
schemes on model analysis and prediction, Water Resources Research, 46, 10.1029/2009wr008896, 2010.

Kavetski, D., and Fenicia, F.: Elements of a flexible approach for conceptual hydrological modeling: 2. Application and
experimental insights, Water Resources Research, 47, Artn W11511 10.1029/2011wr010748, 2011.

Kirchner, J. W.: Catchments as simple dynamical systems: Catchment characterization, rainfall-runoff modeling, and doing 995
hydrology backward, Water Resources Research, 45, Artn W02429 10.1029/2008wr006912, 2009.

Kneis, D.: A lightweight framework for rapid development of object-based hydrological model engines, Environ Modell
Softw, 68, 110-121, https://doi.org/10.1016/j.envsoft.2015.02.009, 2015.

Knoben, W. J. M., Freer, J. E., Fowler, K. J. A., Peel, M. C., and Woods, R. A.: Modular Assessment of Rainfall-Runoff
Models Toolbox (MARRMoT) v1.2: an open-source, extendable framework providing implementations of 46 conceptual 1000
hydrologic models as continuous state-space formulations, Geosci Model Dev, 12, 2463-2480, 10.5194/gmd-12-2463-2019,
2019.

Kraft, P., Vaché, K. B., Frede, H.-G., and Breuer, L.: CMF: A Hydrological Programming Language Extension For Integrated
Catchment Models, Environ Modell Softw, 26, 828-830, https://doi.org/10.1016/j.envsoft.2010.12.009, 2011.

Page 33 of 56

Kuczera, G., Kavetski, D., Franks, S., and Thyer, M.: Towards a Bayesian total error analysis of conceptual rainfall-runoff 1005
models: Characterising model error using storm-dependent parameters, Journal of Hydrology, 331, 161-177,
https://doi.org/10.1016/j.jhydrol.2006.05.010, 2006.

Lam, S. K., Pitrou, A., and Seibert, S.: Numba: a LLVM-based Python JIT compiler, Proceedings of the Second Workshop on
the LLVM Compiler Infrastructure in HPC, Association for Computing Machinery, Austin, Texas, Article 7 pp., 2015.

Leavesley, G. H.: Precipitation-runoff modeling system: User's manual, 4238, US Department of the Interior, 1984. 1010

Lerat, J., Andreassian, V., Perrin, C., Vaze, J., Perraud, J.-M., Ribstein, P., and Loumagne, C.: Do internal flow measurements
improve the calibration of rainfall‐runoff models?, Water Resources Research, 48, 2012.

Lindstrom, G., Johansson, B., Persson, M., Gardelin, M., and Bergstrom, S.: Development and test of the distributed HBV-96
hydrological model, Journal of Hydrology, 201, 272-288, Doi 10.1016/S0022-1694(97)00041-3, 1997.

Marsh, C. B., Pomeroy, J. W., and Wheater, H. S.: The Canadian Hydrological Model (CHM) v1.0: a multi-scale, multi-extent, 1015
variable-complexity hydrological model – design and overview, Geosci. Model Dev., 13, 225-247, 10.5194/gmd-13-225-2020,
2020.

Matgen, P., Fenicia, F., Heitz, S., Plaza, D., de Keyser, R., Pauwels, V. R. N., Wagner, W., and Savenije, H.: Can ASCAT-
derived soil wetness indices reduce predictive uncertainty in well-gauged areas? A comparison with in situ observed soil
moisture in an assimilation application, Advances in Water Resources, 44, 49-65, 1020
https://doi.org/10.1016/j.advwatres.2012.03.022, 2012.

Maxwell, R. M.: A terrain-following grid transform and preconditioner for parallel, large-scale, integrated hydrologic
modeling, Advances in Water Resources, 53, 109-117, https://doi.org/10.1016/j.advwatres.2012.10.001, 2013.

McInerney, D., Thyer, M., Kavetski, D., Githui, F., Thayalakumaran, T., Liu, M., and Kuczera, G.: The Importance of
Spatiotemporal Variability in Irrigation Inputs for Hydrological Modeling of Irrigated Catchments, Water Resources Research, 1025
54, 6792-6821, 10.1029/2017wr022049, 2018.

Meyer, B.: Object-oriented software construction, Prentice hall New York, 1988.

Moore, R. J., and Clarke, R. T.: A distribution function approach to rainfall runoff modeling, Water Resources Research, 17,
1367-1382, 10.1029/WR017i005p01367, 1981.

Moradkhani, H., and Sorooshian, S.: General review of rainfall-runoff modeling: model calibration, data assimilation, and 1030
uncertainty analysis, in: Hydrological modelling and the water cycle, Springer, 1-24, 2009.

Moser, A., Wemyss, D., Scheidegger, R., Fenicia, F., Honti, M., and Stamm, C.: Modelling biocide and herbicide
concentrations in catchments of the Rhine basin, Hydrol. Earth Syst. Sci., 22, 4229-4249, 10.5194/hess-22-4229-2018, 2018.

Nash, J.: The form of the instantaneous unit hydrograph, International Association of Scientific Hydrology, Publ, 3, 114-121,
1957. 1035

Nijzink, R. C., Samaniego, L., Mai, J., Kumar, R., Thober, S., Zink, M., Schäfer, D., Savenije, H. H. G., and Hrachowitz, M.:
The importance of topography-controlled sub-grid process heterogeneity and semi-quantitative prior constraints in distributed
hydrological models, Hydrol. Earth Syst. Sci., 20, 1151-1176, 10.5194/hess-20-1151-2016, 2016.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., and Antiga, L.:
PyTorch: An imperative style, high-performance deep learning library, Advances in Neural Information Processing Systems, 1040
2019, 8024-8035,

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., and
Dubourg, V.: Scikit-learn: Machine learning in Python, the Journal of machine Learning research, 12, 2825-2830, 2011.

Perrin, C., Michel, C., and Andréassian, V.: Improvement of a parsimonious model for streamflow simulation, Journal of
Hydrology, 279, 275-289, https://doi.org/10.1016/S0022-1694(03)00225-7, 2003. 1045

Press, W. H., Teukolsky, S. A., Flannery, B. P., and Vetterling, W. T.: Numerical recipes in Fortran 77: volume 1, volume 1
of Fortran numerical recipes: the art of scientific computing, Cambridge university press, 1992.

Refsgaard, J.: Terminology, Modelling Protocol And Classification of Hydrological Model Codes, in: Distributed
Hydrological Modelling, 17, 1996.

Refsgaard, J. C., and Storm, B.: MIKE SHE, in: Computer Models of Watershed Hydrology, edited by: Singh, V. P., Water 1050
Resources Publications, Colorado, 809-846, 1995.

Reichert, P., and Mieleitner, J.: Analyzing input and structural uncertainty of nonlinear dynamic models with stochastic, time-
dependent parameters, Water Resources Research, 45, 10.1029/2009wr007814, 2009.

Page 34 of 56

Renard, B., Kavetski, D., Leblois, E., Thyer, M., Kuczera, G., and Franks, S. W.: Toward a reliable decomposition of predictive
uncertainty in hydrological modeling: Characterizing rainfall errors using conditional simulation, Water Resources Research, 1055
47, https://doi.org/10.1029/2011WR010643, 2011.

Samaniego, L., Kumar, R., and Attinger, S.: Multiscale parameter regionalization of a grid-based hydrologic model at the
mesoscale, Water Resources Research, 46, 10.1029/2008wr007327, 2010.

Seibert, J., and McDonnell, J. J.: On the dialog between experimentalist and modeler in catchment hydrology: Use of soft data
for multicriteria model calibration, Water Resources Research, 38, 23-21-23-14, 10.1029/2001wr000978, 2002. 1060

Seibert, J., Rodhe, A., and Bishop, K.: Simulating interactions between saturated and unsaturated storage in a conceptual runoff
model, Hydrological Processes, 17, 379-390, 2003.

Sivapalan, M., Beven, K., and Wood, E. F.: On hydrologic similarity: 2. A scaled model of storm runoff production, Water
Resources Research, 23, 2266-2278, https://doi.org/10.1029/WR023i012p02266, 1987.

Sivapalan, M., Blöschl, G., Zhang, L., and Vertessy, R.: Downward approach to hydrological prediction, Hydrological 1065
Processes, 17, 2101-2111, 10.1002/hyp.1425, 2003.

van Esse, W. R., Perrin, C., Booij, M. J., Augustijn, D. C. M., Fenicia, F., Kavetski, D., and Lobligeois, F.: The influence of
conceptual model structure on model performance: a comparative study for 237 French catchments, Hydrology and Earth
System Sciences, 17, 4227-4239, 10.5194/hess-17-4227-2013, 2013.

Vitolo, C., Wells, P., Dobias, M., and Buytaert, W.: fuse: An R package for ensemble Hydrological Modelling, Journal of 1070
Open Source Software, 1, 52, 10.21105/joss.00052, 2016.

Wagener, T., Sivapalan, M., Troch, P., and Woods, R.: Catchment Classification and Hydrologic Similarity, Geography
Compass, 1, 901-931, doi:10.1111/j.1749-8198.2007.00039.x, 2007.

Walt, S. v. d., Colbert, S. C., and Varoquaux, G.: The NumPy Array: A Structure for Efficient Numerical Computation,
Computing in Science & Engineering, 13, 22-30, 10.1109/mcse.2011.37, 2011. 1075

Westra, S., Thyer, M., Leonard, M., Kavetski, D., and Lambert, M.: A strategy for diagnosing and interpreting hydrological
model nonstationarity, Water Resources Research, 50, 5090-5113, 10.1002/2013wr014719, 2014.

Wrede, S., Fenicia, F., Martínez-Carreras, N., Juilleret, J., Hissler, C., Krein, A., Savenije, H. H. G., Uhlenbrook, S., Kavetski,
D., and Pfister, L.: Towards more systematic perceptual model development: a case study using 3 Luxembourgish catchments,
Hydrological Processes, 29, 2731-2750, 10.1002/hyp.10393, 2015. 1080

Young, P.: Data-based mechanistic modelling of environmental, ecological, economic and engineering systems, Environ
Modell Softw, 13, 105-122, https://doi.org/10.1016/S1364-8152(98)00011-5, 1998.

Young, P. C.: Stochastic, dynamic modelling and signal processing: time variable and state dependent parameter estimation,
Nonlinear and nonstationary signal processing, 74-114, 2000.

Young, P. C., Tych, W., and Taylor, C. J.: The Captain Toolbox for Matlab, IFAC Proceedings Volumes, 42, 758-763, 1085
https://doi.org/10.3182/20090706-3-FR-2004.00126, 2009.

Page 35 of 56

Figures 1090

Figure 1. The four hierarchical levels of SuperflexPy and their respective components. (a) Elements (e.g.
reservoirs, lags, connections) are used to represent individual hydrological processes / /catchment
response mechanisms; (b) Units connect multiple elements and are intended to implement lumped 1095
catchment models; (c) Nodes collect multiple units that operate in parallel representing different landscape
elements within a catchment; (d) Network connects multiple nodes and is used to represent distributed
setups.

Page 36 of 56

 1100

Page 37 of 56

Figure 2. SuperflexPy code implementing the simple illustrative model in Figure 1d.

Page 38 of 56

 1105

Figure 3. Schematic of model M4 used in the original SUPERFLEX case studies of Kavetski and Fenicia
(2011).

Page 39 of 56

 1110

Figure 4. SuperflexPy code implementing model M4 in Figure 3.

Page 40 of 56

 1115

Page 41 of 56

Page 42 of 56

Figure 5. General approach for implementing a new reservoir element NewFastReservoir by
extending the class ODEsElement (Section 3.2.1).

 1120

Page 43 of 56

Figure 6. Simplified approach for implementing the NewFastReservoir by inheriting directly from
class PowerReservoir (Section 3.2.2). 1125

Page 44 of 56

Figure 7. Illustration of catchment discretization used for a distributed application of SuperflexPy in the 1130
Thur catchment: (a) discretization into sub-catchments and (b) discretization into hydrological response
units (HRUs) as presented in model M02 in Dal Molin et al. (2020). The panels of this figure were
originally published in figures 1a and 6 of Dal Molin et al. (2020). The HRU model structure is shown in
Figure 8.

 1135

Page 45 of 56

Figure 8. Model structure used to represent the HRUs in model M02 in Dal Molin et al. (2020). Refer to
Figure 7 for the corresponding HRU discretization of the Thur catchment.

 1140

Page 46 of 56

Figure 9. SuperflexPy representation of the model structure M02 in Figure 8.

Page 47 of 56

 1145

Figure 10. Spatial organization of the SuperflexPy model configuration used to simulate water fluxes in
the Thur catchment (M02 inDal Molin et al., 2020). The units, used to represent the HRUs, are shown
using the blue and yellow boxes. The nodes, used to represent the sub-catchments, are shown using the
green dashed boxes. The group of nodes connected together (green arrows) creates a network. 1150

Page 48 of 56

Page 49 of 56

Page 50 of 56

Figure 11. SuperflexPy code implementing the distributed model in Figure 9 and Figure 10. 1155

Page 51 of 56

Page 52 of 56

Figure 12. UML class diagram showing the organization of the classes used to represent SuperflexPy 1160
components. The core framework is presented, excluding the specific implementations of components
and numerical routines.

Page 53 of 56

Figure 13. Organization of the SuperflexPy project, indicating the online software management tools
used to develop the source code and documentation, release product versions with associated DOIs, and 1165
provide general open access to all project components. Typical workflow paths for users and developers
are shown, respectively, in the blue and black lines and font. Dashed lines represent automated workflows.

Page 54 of 56

Table 1. Summary of usability characteristics of SuperflexPy in the context of selected flexible frameworks for conceptual hydrological modeling.*

 Availability Distribution
and

installation

Documentation Interface
and setup

I/O format for
settings and data

Possibility of
customization

Built-in calibration
and uncertainty

analysis
SuperflexPy Open source Python package Available Python

package.
Python script
to setup

Direct I/O with Python.
No binding to particular
formats

Possible with
moderate
programming
expertise

Not present

FUSE (Fortran)
(2008)

Exe or code,
by request
from
authors

Standalone
exe/code

Comments in
code (limited)

Executable
with/without
GUI, or
Fortran subs.
Setup files

Structured text files Possible but not
supported
systematically

Some versions are
coupled with
optimization and
MCMC sampling tools

SUPERFLEX-F90
(2011)

Exe or code,
by request
from
authors

Standalone exe Comments in
code (limited)

CLI or DLL or
Fortran subs.
Setup files

Structured text files Possible but not
supported
systematically

Not present

CMF
(2011)

Open source Python
package. Code
compilation for
enhancements

Available

Python
package.
Python script
to setup. GUI
only for
lumped
models

Direct I/O with Python.
No binding to particular
formats

Customization using
C++. Possibility with
Python under
development

No. Developers
recommend to use the
SPOTpy package from
the same group

PERSiST
(2014)

Exe/webapp
after
registration

Standalone
executable or
webapp

Exists. Not public
at the moment

Desktop app
or webapp.
Setup files or
GUI

Structured text files
and XMLs

Possible but not
supported
systematically

Incorporates MCMC
toolkit

ECHSE
(2015)

Open source R package to
generate C
code that has
to be compiled

Available CLI. Setup
through text
file or CLI

Delimited text files

Possible with
moderate
programming
expertise

Not present

MARRMoT
(2019)

Open source Matlab/Octave
package

Available Collection of
scripts and
functions.
Setup with
script.

Direct I/O with
Matlab/Octave. No
binding to particular
formats

Possible with
moderate
programming
expertise

Not present

Page 55 of 56

RAVEN
(2020)

Open source Standalone
executable.
May require
NetCDF

Available Executable
without GUI.
Setup files

Structured text files Possible but requires
developer-level
expertise.
Instructions in the
documentation

DDS optimization.
Reports model
performance metrics
usable by external
software

 1170
*This information was collated based on published information. A brief informal review was provided by the framework authorsdevelopers.

Abbreviations: exe = binary executable, subs = subroutines, GUI = graphical user interface, CLI = command line interface, DLL = dynamic link
library, MCMC = Monte Carlo Markov Chain, DDS = Dynamic Dimensioned Search

Page 56 of 56

Table 2. Summary of simulation capabilities of SuperflexPy in the context of selected flexible frameworks for conceptual hydrological modeling.* 1175

 Structural flexibility Spatial flexibility Hydrological
processes

Numerical solution
options

Pre and post
processing

Programming
language

SuperflexPy Components can be
connected freely

Lumped; semi-
distributed

Water fluxes;
Designed to handle
multiple fluxes

Fixed step implicit
and explicit Euler.
Possibility to use
custom solvers

Not available Python

FUSE (Fortran)
(2008)

Master structure;
components selected
for each model decision

Lumped Water fluxes Implicit, semi-implicit,
explicit schemes;
fixed and adaptive
step solvers

Not available Fortran

SUPERFLEX-F90
(2011)

Master structure;
components can be
turned on/off

Lumped; semi-
distributed

Water fluxes;
transport
processes

Fixed step implicit
and explicit Euler

Not available Fortran

CMF
(2011)

Components can be
connected freely

Lumped; semi-
distributed; fully-
distributed

Water fluxes;
transport
processes

Implicit and explicit
schemes; single or
multistep solvers

Calculation
methods for PET

Python wrapping of
C++ code

PERSiST
(2014)

Components can be
connected freely

Semi-distributed Water fluxes;
designed to be
coupled with
transport models
(INCA)

Implemented as a
series of first order
difference equations

PET calculated
internally

C++

ECHSE
(2015)

Components can be
connected freely

Lumped; semi-
distributed; grids

Water fluxes;
transport
processes

To be implemented
by user when defining
the components

Not available C++; R package to
generate C++ code

MARRMoT
(2019)

Library of model
structures. Possibility to
combine different
components

Lumped Water fluxes Fixed step implicit
and explicit Euler.
Possibility to use
custom solvers

Not available Matlab/Octave

RAVEN
(2020)

Components can be
connected freely

Grids;
subbasin/HRUs;
triangulated
irregular network

Water fluxes;
transport
processes

Ordered series, Euler,
and
predictor/corrector
global methods; local
methods at process
level

Calculation and
interpolation
(spatial and
temporal) of
derived fluxes and
other variables

C++

*This information was collated based on published information. A brief informal review was provided by the framework authorsdevelopers.

