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Abstract 10 

Catchment-scale hydrological models are widely used to represent and improve our understanding of 

hydrological processes, and to support operational water resources management. Conceptual models, 

which approximate catchment dynamics using relatively simple storage and routing elements, offer an 

attractive compromise in terms of predictive accuracy, computational demands, and amenability to 

interpretation. This paper introduces SuperflexPy, an open-source Python framework implementing the 15 

SUPERFLEX principles (Fenicia et al., 2011) for building conceptual hydrological models from generic 

components, with a high degree of control over all aspects of model specification. SuperflexPy can be 

used to build models of a wide range of spatial complexity, ranging from simple lumped models (e.g. a 

reservoir) to spatially distributed configurations (e.g. nested sub-catchments), with the ability to 

customize all individual model components. SuperflexPy is a Python package, enabling modelers to 20 

exploit the full potential of the framework without the need for separate software installations, and making 

it easier to use and interface with existing Python code for model deployment. This paper presents the 

general architecture of SuperflexPy, discusses the software design and implementation choices, and 

illustrates its usage to build conceptual models of varying degrees of complexity. The illustration includes 

the usage of existing SuperflexPy model elements, as well as their extension to implement new 25 

functionality. Comprehensive documentation is available online and provided as supplementary material 

to this paper. SuperflexPy is available as open-source code, and can be used by the hydrological 

community to investigate improved process representations, for model comparison, and for operational 

work. 
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1 Introduction 

1.1 Conceptual hydrological models 

Catchment-scale hydrological models are widely used to predict catchment behavior under natural and 

human-impacted conditions, as well as to represent and improve our understanding of internal catchment 

functioning (e.g. Beven, 1989). For example, catchment models underlie projections of climate change 80 

impact on groundwater recharge and streamflow (e.g., Eckhardt and Ulbrich, 2003), are used as tools for 

hypothesis testing to identify dominant hydrological processes (e.g., Clark et al., 2011b; Hrachowitz et 

al., 2014; Wrede et al., 2015), and are used to inform agricultural practices such as irrigation scheduling 

(e.g., McInerney et al., 2018) and pesticide application (e.g., Moser et al., 2018; Ammann et al., 2020). 

The typical use of hydrological models is to simulate or forecast the streamflow response (runoff) of a 85 

catchment to rainfall forcing; for this reason they are often referred to as rainfall-runoff models (e.g., 

Moradkhani and Sorooshian, 2009). However, their application extends to the simulation of other 

environmental variables such as groundwater levels (e.g., Seibert and McDonnell, 2002) and soil moisture 

(e.g., Matgen et al., 2012), as well as water chemistry (e.g., Bertuzzo et al., 2013; Ammann et al., 2020). 

An important class of catchment models are “process based” models, which attempt to explicitly describe 90 

the cascade of processes transforming catchment inputs (e.g. precipitation) into outputs (e.g. streamflow). 

These models are an appealing choice due to their broad physical underpinnings, as well as their ability 

to represent internal catchment processes and potential for predicting catchment responses under changing 

environmental conditions. Process based models can be classified according to the nature of their 

constitutive equations (e.g. conceptual or physically based) and their spatial resolution (e.g. lumped or 95 

distributed) (e.g., Refsgaard, 1996). 

Conceptual models, where catchment dynamics are approximated using relatively simple storage and 

routing elements (e.g. Fenicia et al., 2011), are common in practice because they offer an attractive 

compromise in terms of predictive accuracy, computational demands, and amenability to interpretation. 

Common conceptual models include TopModel (Beven and Kirkby, 1979), HBV (Lindstrom et al., 1997), 100 

GR4J (Perrin et al., 2003), and HyMod (Boyle, 2001). 

In terms of spatial resolution, conceptual models can be applied in a lumped configuration (treating the 

entire catchment as a single unit) if the interest is in modeling integrated catchment outputs (e.g. 

streamflow at the catchment outlet). Alternatively, distributed configurations can be used if the interest is 

in modeling hydrological behavior at internal locations (e.g., sub-catchments). In such distributed setups, 105 

the catchment is subdivided into spatial elements such as sub-catchments (e.g., Feyen et al., 2008; Lerat 

et al., 2012), Hydrological Response Units (HRUs) (e.g., Arnold et al., 1998; Fenicia et al., 2016; Dal 

Molin et al., 2020), or grids (e.g., Samaniego et al., 2010). A common strategy for developing distributed 
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conceptual models is to represent individual landscape elements using independent (non-interacting) 

lumped models, and then obtain total catchment outflow by aggregating the outflows from these 110 

individual models, potentially incorporating flow routing elements to represent routing delays. This 

strategy is often referred to as “semi-distributed” modelling (e.g., Boyle et al., 2001), and typically 

employs discretization based on principles of “hydrological similarity” (e.g., Sivapalan et al., 1987); 

HRU-based discretization is particularly common (e.g., Leavesley, 1984). In many applications, semi-

distributed modelling achieves good predictive ability – while greatly simplifying model representation 115 

and reducing computational demands compared to fully-integrated 2D/3D distributed models such as 

Parflow (Maxwell, 2013) or Mike She (Refsgaard and Storm, 1995), which typically use much smaller 

landscape elements and explicitly model lateral exchanges. For the purposes of this presentation, we 

consider semi-distributed modelling to be a special case of distributed modelling. 

1.2 Hydrological model structure and flexible modeling frameworks 120 

The selection of model structure has preoccupied researchers and practitioners since the early days of 

hydrological modelling (e.g., Ibbitt and O’Donnell, 1971; Moore and Clarke, 1981; Jakeman and 

Hornberger, 1993). Although in principle the physical laws governing hydrological processes are the 

same everywhere, the diversity of catchment conditions in terms of topography, soil, geology, vegetation, 

and anthropogenic influence results in remarkably different manifestations of these physical laws at the 125 

catchment scale. These local differences, also termed “uniqueness of place” (Beven, 2000), considerably 

limit our ability to develop generalizable hydrological hypotheses (e.g., Wagener et al., 2007). 

Model structure selection has motivated multiple research directions, including the search for a single 

model structure that achieves good prediction across all catchments (the “fixed” model paradigm), and 

the search for model structures best suited for specific locations and/or environmental conditions (the 130 

“flexible” model paradigm). Whether in search of a single model or multiple models, model selection 

necessarily relies on a process of model development, comparison, and refinement. Approaches to 

formalize this process include the top-down approach (e.g. Sivapalan et al., 2003), the system 

identification approach (e.g Young, 1998), and the method of multiple working hypotheses (e.g., Clark 

et al., 2011a). These approaches are not mutually exclusive, as the notion of comparing multiple model 135 

representations is ubiquitous in model development and empirical science in general. 

The process of model development, comparison, and refinement can be facilitated using flexible modeling 

frameworks, which enable hydrologists to hypothesize, implement, and (eventually) test and refine 

different model structures. Flexible frameworks have themselves developed along multiple directions 

according to their intended scopes of application. For example, GEOframe-NewAge (Formetta et al., 140 

2014), SUMMA (Clark et al., 2015), and CHM (Marsh et al., 2020) focus on the realm of physically 
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based models. The CAPTAIN toolbox (Young et al., 2009) is a general toolkit for time series analysis. 

Machine learning frameworks such as scikit-learn (Pedregosa et al., 2011) and PyTorch (Paszke et al., 

2019) can be used to construct data driven models. 

In this paper, we focus on flexible frameworks intended for conceptual hydrological modeling. Examples 145 

of such frameworks include FUSE (Clark et al., 2008), SUPERFLEX (Fenicia et al., 2011), CMF (Kraft 

et al., 2011), PERSiST (Futter et al., 2014), ECHSE (Kneis, 2015), MARRMoT (Knoben et al., 2019), 

and RAVEN (Craig et al., 2020). 

When discussing a mathematical model, it is relevant to distinguish its conceptual principles from its 

software implementation. In the hydrological literature, modelling concepts and their software 150 

implementation have been presented both jointly and separately. For example, the original FUSE 

publication (Clark et al., 2008) introduced the modelling concepts, while subsequent work (Vitolo et al., 

2016) provided an R implementation. The original SUPERFLEX publications  presented the modelling 

principles (Fenicia et al., 2011) and demonstrated its capabilities (Kavetski and Fenicia, 2011); while 

Fortran and Matlab  implementations were developed as part of research work (e.g., David et al., 2019), 155 

these implementations have not been published or made available as standalone products. In contrast, 

some models, (e.g., MARRMoT) have been presented with a publication describing both the theoretical 

principles and the software implementation. 

A software implementation should fulfill the intended goals of the flexible framework, in particular 

supporting the envisaged flexibility in terms of processes representation, spatial distribution, numerical 160 

solution methods, etc. The software implementation should also be accessible to users in terms of ease of 

installation, operation, eventual extension, etc. Existing frameworks approach these conceptual and 

practical requirements with different priorities, e.g., focusing on selected modelling objectives (e.g., 

model mimicry) and/or limiting the range of applications (e.g., only to lumped setups), in order to simplify 

the model formulation and operation. 165 

In terms of application scope of a flexible framework for conceptual hydrological modeling, we focus on 

the following “realms”:  

1. Lumped models; 

2. Distributed setups, including simulation of sub-catchments and flows/processes at internal points; 

3. Substance transport modelling, including water isotopes, pesticides, etc.; 170 

4.3.Ability to reproduce existing models, when necessary.  

4. Support or extendibility for future applications, e.g. substance transport modelling, including 

water isotopes, pesticides, etc.; 
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In terms of software implementation, we consider the following practical criteria: 

1. Ease of use, including installation, learning, and operation. Interoperability with external software, 175 

for example for model calibration and uncertainty analysis, is of obvious relevance because 

hydrological models are often used as parts of larger-scale projects and operations. 

2. Ease of modificationsmodification and extensionsextension. Even a comprehensive software 

implementation will eventually require extension. For example, a modeling framework intended 

to simulate streamflow may require extension to simulate water chemistry. Another type of 180 

modification might be a switch to a numerical implementation better suited for parallel computing, 

etc. 

3. Computational efficiency. Hydrological model applications, especially including calibration and 

uncertainty quantification, may require thousands or even millions of model runs. 

4. Connection to the ecosystem of modern online tools to facilitate model usability by both 185 

researchers and practitioners. This includes online documentation (with examples and demos), 

and automatic workflows for unit testing, continuous integration and deployment.  

These criteria are challenging or even impossible to meet simultaneously. Hence, implementing a flexible 

framework entails juggling multiple obvious and less obvious tradeoffs. For example, the intended 

flexibility of a framework may come at the expense of ease of use, similar to how computer languages 190 

have varying degrees of abstraction from the hardware behavior. Implementing a practical flexible 

framework therefore requires careful code design, experimentation, and inevitably, some compromises. 

This work pursues the flexible framework objectives defined above by building upon the concept of 

SUPERFLEX (Fenicia et al., 2011; Kavetski and Fenicia, 2011; Fenicia et al., 2014; Fenicia et al., 2016). 

A key attractive feature of SUPERFLEX as a modelling concept is the fine “granularity”, i.e., the degree 195 

of flexibility, of model structures it can support, which enables systematic and detailed hypothesis testing 

(Fenicia et al., 2011). For example, the hydrologist should have the ability to select and combine 

individual model elements (e.g., reservoirs, lag functions, etc.), as well as to build customized elements. 

The development of the proposed framework capitalizes on the authors’ collective experience in 

hydrological model design and application. The original Fortran implementation of SUPERFLEX,  200 

hereafter referred to as SUPERFLEX-F90, has been used in a series of case studies over the last decade, 

ranging from lumped model implementations (e.g., Kavetski and Fenicia, 2011; Fenicia et al., 2014), to 

distributed setups (e.g. Fenicia et al., 2016; Dal Molin et al., 2020), interpretation in the context of 

fieldwork insights (e.g., Wrede et al., 2015), large scale model intercomparisons (e.g., van Esse et al., 

2013), and the inclusion of pesticide/substance transport (e.g. Ammann et al., 2020). The earlier Flex 205 

framework was used in studies exploring the use of multivariate data to refine the model structure (e.g., 
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Fenicia et al., 2006, 2008). The modelling framework FUSE was used for a range of experiments in 

process representation (e.g., Clark et al., 2011b), data analysis (e.g., Henn et al., 2018), and numerical 

solution (e.g., Clark and Kavetski, 2010; Kavetski and Clark, 2010). The SUMMA framework 

represented an application of flexible modelling principles to physically based modelling. These 210 

applications have highlighted the versatility of the SUPERFLEX principles, and of flexible modelling 

approaches in general, to solve increasingly complex modelling problems – but have also highlighted 

implementation choices that limit the effectiveness and range of application of current software. (e.g., the 

usage of a “master template” from which specific model structures are derived). This work provides a 

new implementation of SUPERFLEX that addresses many of these limitations. 215 

1.3 Aims 

This paper introduces SuperflexPy, which is a new open-source Python software implementation of the 

SUPERFLEX principles for conceptual hydrological model development. Particular attention is given to 

the challenges of implementing a framework that achieves the flexibility envisaged by SUPERFLEX and 

flexible frameworks in general. Our objectives are as follows: 220 

1. Present SuperflexPy and its basic building blocks (components): elements, units, nodes, and 

network; 

2. Illustrate how SuperflexPy can help hydrologists implement a conceptual model structure at the 

desired level of internal complexity and spatial resolution – including recreating existing models 

and developing new models; 225 

3. Provide a broad discussion of the hydrological modelling software implementation challenges and 

of how SuperflexPy contributes to the toolkits available to the hydrological community. 

The paper is organized as follows. Section 2 describes the SuperflexPy architecture and building blocks, 

and provides a short demo (aims 1 and 2). Section 3 illustrates selected applications of the framework, 

including the setup of SUPERFLEX configurations used in earlier case studies and the use SuperflexPy 230 

to create new elements (aim 2). Section 4 provides more technical SuperflexPy details, useful for 

understanding the usage and general potential of the framework (aim 1). Section 5 discusses 

SUPERFLEX design choices in the context of existing flexible frameworks, including current limitations 

and future developments (aim 3). Finally, Section 6 provides a brief overall summary and conclusions. 

The examples presented in the paper are generally intended to provide the intuition and reasoning behind 235 

SuperflexPy. The model documentation provides detailed information and use instructions. The 

documentation is available and maintained online (refer to “code availability” section); references from 
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the paper to the documentation point to the static PDF version provided as supplementary material to this 

paper. 

2 Description of SuperflexPy 240 

2.1 General organization 

The SuperflexPy framework has a hierarchical organization with four nested levels: “element”, “unit”, 

“node”, and “network”, collectively referred as “components”. These components are shown in Figure 1 

and described below. Further practical details are provided in Chapter 4 of the supplementary material: 

1. Element (Figure 1a). This level represents the basic model building block and is used to create 245 

reservoirs, lag functions, and connections. An element can be used to represent an entire 

catchment, or, more commonly, a specific hydrological process or response mechanism within 

the catchment. 

The reservoir element is used to conceptualize processes involving the storage and release of 

water and other fluxes. It is described mathematically by ordinary differential equations (ODEs), 250 

  S

d ( )
( ), ( );

d

t
t t

t


S
g S X θ   (1) 

  Y( ) ( ), ( );t t tY g S X θ   (2) 

where S  are the state variables (e.g., water storages), X  are the inputs (e.g., precipitation), Y  

are the outputs (e.g., streamflow), and Sg  and Yg  are specified constitutive functions (e.g., 

storage-discharge relationships). 255 

In most conceptual models, reservoir elements have a single state variable (representing water 

storage); multiple state variables can be accommodated if necessary (e.g., to keep track of snow 

and liquid water separately).  Mathematically, a multistate reservoir can be represented by a 

system of differential equations of the form of equations (1) and (2).  

The solution of equation (1) is usually obtained numerically using external numerical procedures 260 

referred to as “numerical approximators” (see Section 4.3). 

The lag function element is used to represent delays in the transmission of the fluxes (e.g., 

routing). It is described mathematically by a convolution integral, 

 H H0
( ) ( ) ( ; ) ( ) ( ; ) d

T
t t t t      Y X g θX gθ     (3) 
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where *  denotes the convolution operator, X  is the input (e.g., water flux), Hg  is the impulse 265 

response function, and T  is the time of influence of  Hg  (i.e. the maximum lag). 

There is a general mathematical correspondence between reservoirs and lag functions (e.g., 

Nash, 1957). SuperflexPy users can select the element specification best suited to their specific 

context. 

The connection element is used to connect two or more elements whenever a direct connection 270 

is not possible. For example, connection elements are used when a flux needs to be split among 

multiple elements downstream (splitter), or, vice versa, when multiple fluxes need to be 

aggregated (junction). A particular type of connection is represented by the “transparent” 

element, which simply outputs the same fluxes it receives as inputs, and is used to facilitate the 

connection between elements (see description of unit below). 275 

All connection elements are stateless and can be represented mathematically as follows, 

  C( ) ( );t tY g X θ   (4) 

where Cg  describes the connectivity between input fluxes and output fluxes, and θ  represents 

connectivity parameters (if any). 

2. Unit (Figure 1b). A unit is a collection of multiple connected elements, and is generally intended 280 

to implement a lumped catchment model or an HRU in a distributed model. Multiple reservoir 

and lag function elements within a unit can be connected to each other, either directly (one-to-

one connections), or using connection elements such as splitters and junctions (when a single 

element is connected to multiple elements). The multiple elements within a unit are arranged in 

layers, with the following restrictions: (i) feedback loops between the elements are not allowed 285 

and (ii) elements can be connected only if they belong to two consecutive layers. Fluxes 

between elements in nonconsecutive layers are passed using transparent elements. The concept 

of layers will be elaborated and illustrated in Section 5.1.1; see also Section 4.2 of the 

supplementary material. In technical terms, the structure formed by the elements must be a 

directional acyclic graph (DAG). The motivation and implications of these design choices on 290 

model generality and computational efficiency are elaborated in Sections 5.1.1 and 5.2. 

3. Node (Figure 1c). A node is a collection of multiple units that operate in parallel. In the context 

of distributed models, the node can be used to represent a single catchment and the units can be 

used to represent multiple landscape elements or HRUs within the catchment. Each unit within a 

node is characterized by a weight, which typically represents its area fraction or, more generally, 295 

its contribution to the total outflow of the node. The weights are used to combine the output 
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fluxes from the units into the total output flux of the node. Another important attribute of a node 

is its “area”, which is used when multiple nodes are combined into a network (see below). 

4. Network (Figure 1d). A network connects multiple nodes into a tree structure, and is typically 

intended to develop a distributed model that generates predictions at internal sub-catchment 300 

locations (e.g. to reflect a nested catchment setup). The network routes the fluxes from upstream 

nodes (leaves of the tree) to the final downstream node (root of the tree). Routing delays in the 

river network can be simulated by feeding node outputs into lag function elements. The area of 

each node is used to determine its contribution to the total outflow of the network. Only a single 

network can be used in a given SuperflexPy model. 305 

The hierarchical organization of SuperflexPy makes the effort required to configure it to a new problem 

proportional to the problem complexity. In particular, many common model setups can be constructed 

without necessarily using all levels listed above, thus reducing configuration effort. Some representative 

examples are given below: 

 Level 1 is sufficient to create single-element models, e.g., a single-reservoir model or a unit 310 

hydrograph model (e.g. Kirchner, 2009); 

 Level 2 is sufficient to create a lumped model structure, such as GR4J (Perrin et al., 2003) or 

Hymod (Boyle, 2001); 

 Level 3 is sufficient create a distributed model that represents spatial heterogeneity but generates 

predictions only at the catchment outlet (e.g. Beven and Kirkby, 1979; Gao et al., 2014; Nijzink 315 

et al., 2016); 

 Level 4 is needed only in models that generate predictions at interior points, such as SWAT 

(Arnold et al., 2012), GEOframe-NewAge (Formetta et al., 2014), and distributed SUPERFLEX 

applications (e.g. Fenicia et al., 2016; Dal Molin et al., 2020). 

Examples of SuperflexPy models implemented at Levels 2 and 4 are given later in Section 3. Note that 320 

the association of specific SuperflexPy components to specific hydrological entities, e.g., the use of units 

for HRUs and nodes for sub-catchments, is not intended as a rigid prescription. Other association choices 

may be favored by the modeler depending on the required model structure and spatial connectivity. 

The clarity of visual model representation is particularly important in flexible frameworks because they 

can generate many subtly different configurations (e.g., Bancheri et al., 2019). The model schematics in 325 

this paper indicate explicitly every element, including reservoirs, lag functions, and junctions (e.g., Figure 

1). 
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From a software design prospective, SuperflexPy embraces the object-oriented paradigm (e.g., Meyer, 

1988). All framework components are represented by objects that can operate either alone or together, 

interacting with each other and with external libraries (e.g. for calibration) through defined interfaces. 330 

More details are provided in Section 4.2. 

All SuperflexPy components are characterized byhave states and/or parameters, which are controlled 

programmatically using dedicated methods (refer to Section 4.1). 

2.2 A simple illustration of SuperflexPy: creating a new model from existing components 

This section illustrates the key steps needed to configure and run a hydrological model using the 335 

SuperflexPy framework. The illustration presents a distributed model intended to represent a catchment 

with 2 HRUs and 3 sub-catchments. The model structure is shown in Figure 1d. The catchment is 

represented using a network, the sub-catchments are represented using nodes, and the HRUs are 

represented using units. Two distinct HRU-specific model structures are specified, and are implemented 

using elements. The corresponding SuperflexPy code is shown in Figure 2. An extended version of this 340 

demo is provided in Section 6.5 of the supplementary material. 

In this example, an implementation of the necessary elements with SuperflexPy already exists; therefore, 

the elements only need to be imported. The case where the model structure requires elements for which 

an implementation is not yet available is considered in Section 2.3. More complex setups are described 

in Section 3 and in the supplementary material. 345 

We start by importing the model components required by the model structure, namely the elements 

(LinearReservoir and HalfTriangularLag), unit, node, and network. The numerical 

approximator ImplicitEulerPython and root finder PegasusPython needed to solve the 

ODEs associated with the reservoir elements are also imported (see Section 4.3 for details). The import 

operation is shown in Lines 1-7. 350 

The imported components are then initialized, which entails specifying the model structure (connectivity 

between model components) and the initial values of parameters and states. The initialization sequence 

starts with the numerical procedures (Lines 10-11) and proceeds from the lowest-level components 

(elements) to the highest-level component (network). 

More specificallySpecifically: 355 

L1. An element is initialized by specifying its parameters, states, and, where relevant, the numerical 

solver (Lines 14-16). Each element is given an identifier (id) for subsequent use, as shown on 

Line 23. 
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L2. A unit is initialized by specifying the elements that compose it and the identifier (Lines 19-20). 

As noted earlier in Section 2.1, the connectivity between elements is defined by conceptualizing 360 

the unit as a succession of layers that contain the elements. More complex examples are given in 

Section 3. The parameters and states of elements can be changed after initialization using the 

methods set_parameters and set_states of the containing units. This operation is shown 

on Line 23 for the LinearReservoir element. 

L3. A node is initialized by specifying the units that compose it, their contribution (weight) to the node 365 

output, the influence area of the node (here, the area of the sub-catchment), and the identifier 

(Lines 26-28).  

L4. The network is initialized by specifying the nodes that compose it and their connectivity, called 

topology (Line 31). The connectivity is defined indicating, for each node, the node downstream 

of it. A network identifier is not specified (as only a single network can be used). 370 

The next step is to set the model inputs and time step. Lines 34-36 show how the inputs are assigned 

directly to the nodes, enabling the model to receive spatially varying rainfall and PET. The time step is 

set on Line 39 (variable time steps are also supported, see Section 4.5.1 of the supplementary material). 

The model can now be run by calling the get_output method of the highest-level component, as shown 

on Line 42. 375 

Note that all input quantities provided to SuperflexPy, including fluxes, time step length, parameters, 

states, areas, etc., must have consistent units. To reduce model code complexity and execution overhead, 

we take the perspective that unit checks represent pre-processing and are best handled by the user 

according to their own preferences and standards. Output fluxes have the same (assumed) units as input 

fluxes, e.g., if precipitation is in mm/h, then streamflow is also in mm/h, etc. 380 

2.3 Creating new model components with SuperflexPy 

We now consider the case where the intended model structure has components beyond those already 

available in SuperflexPy.  

New model components can be created by extending existing SuperflexPy components. To this end, 

SuperflexPy provides a library of built-in high-level components that can be extended to achieve the 385 

desired functionality. We anticipate that the SuperflexPy components most likely to require extension are 

the elements, where new constitutive functions may be required in reservoir elements and new weight 

functions may be required in lag function elements. In contrast, it is less likely that unit, node, and network 

functionalities would require extension. 
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The extension of existing SuperflexPy elements takes advantage of the object-oriented paradigm 390 

underlying the SuperflexPy software design. The inheritance principle, one of the core concepts of the 

object-oriented paradigm, allows the user to construct new components by “inheriting” most of the 

functionalities (methods) from existing classes. Separate implementation is then required only for 

methods where the new model differences are to be introduced. This approach reduces substantially the 

amount of coding required to implement a new model component.  395 

A detailed example of this procedure is given in Section 3.2, which shows how to implement a reservoir 

with a new storage-discharge relationship. More examples are provided in Chapters 8 and 9 of the 

supplementary material. 

3 Examples of building hydrological models using SuperflexPy 

This section provides more detailed examples of using SuperflexPy to implement hydrological models, 400 

including the use of built-in elements and the creation of new elements. We follow a progression from 

simple to complex. Section 3.1 shows  the implementation of model M4, a lumped model built solely 

from reservoir elements and used in the original SUPERFLEX case study (Kavetski and Fenicia, 2011). 

Section 3.2 shows how to define a new element with a different storage-discharge relationship for one of 

the reservoirs of M4. Section 3.3 shows the implementation of a distributed model from a recent 405 

application of SUPERFLEX in the Thur catchment (Dal Molin et al., 2020). 

Compared to the demo in Section 2.2, which was intended to give a general sense of model building with 

SuperflexPy, the examples in this section represent "realistic" applications of SuperflexPy, including 

setting up a spatially distributed model with multiple HRUs and more complex model structure. Further 

technical details and additional examples, including the implementation of popular conceptual models 410 

(e.g., GR4J, HYMOD), are provided in the supplementary material (chapters 8-11). 

3.1 Implementing SUPERFLEX configuration M4 

M4 is a simple lumped model presented in Kavetski and Fenicia (2011). As shown in Figure 3, M4 

comprises two reservoirs connected in series: an “unsaturated” reservoir (UR) intended to represent the 

partitioning of precipitation between evaporation and runoff, and a “fast” reservoir (FR) intended to 415 

represent subsequent streamflow generation mechanisms.  

UR partitions precipitation (UR)P  into a portion that enters the UR storage and eventually evaporates 

through flux (UR)
AE , and a portion (UR)Q  that is directed to the downstream FR reservoir: 
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where 420 
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In equations (6)-(8), (UR)
maxS  and (UR)  are model parameters. The quantity (UR)m  is used to approximate a 

“smooth” threshold behavior; we typically fix (UR) 0.01m  . 425 

FR is a power-law reservoir, 
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with the storage-discharge relationship given by 

  
(FR)

(FR) (FR) (FR)Q k S


   (10) 

where (FR)k  and (FR)  are model parameters. 430 

The inflow (FR)P  is given by the outflow from UR, i.e., U(FR) ( R)P Q . 

M4 is a lumped model with multiple elements, and hence can be implemented using SuperflexPy levels 

L1 and L2 (element and unit, see Section 2.1). Figure 4 shows the code needed to implement M4. The 

numerical procedures are imported and initialized on Lines 1-2 and 7-8 respectively. Similar to the model 

described in Section 2.2, the two model elements (UR and FR) are already implemented. Hence, the user 435 

only needs to import the elements (Lines 1-3) and initialize their parameters (Lines 7-13). Next, the unit 

is imported (Line 4) and initialized to contain the two reservoirs (Line 15). The model configuration is 

then complete. 

The loading of input data from text file(s), databases, etc. is separate from the configuration of 

SuperflexPy, and can be carried out using any suitable Python library or function. In this example, we use 440 

Numpy to read time series of precipitation and PET from a text file, as shown in Lines 17-18. The 

corresponding SuperflexPy inputs are set using these Numpy arrays, as shown on Line 20. Further 

practical details on input-output are provided in Section 4.5.5 of the supplementary material.  

The model can now be run with the given input data to produce the model outputs, as shown on Line 23. 

The outputs contain streamflow time series in the form of Numpy arrays. 445 
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3.2 Changing the equations of the fast reservoir in M4 

Suppose the modeler wishes to modify model M4 by changing the storage-discharge equation of the fast 

reservoir given in equation (10) to a new relationship 

 
 
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where (FR)k , (FR) , and (FR)b  are model parameters.  450 

An element with this storage-discharge relationship has not been implemented in SuperflexPy yet (as of 

version 1.2.13.0). The following sections give two approaches for creating such an element. 

3.2.1 General approach for creating a new reservoir with SuperflexPy 

The general approach for creating a new reservoir in SuperflexPy is to define a new class that inherits 

most of its functionality (methods) from the class ODEsElement. This operation is illustrated in the 455 

code snippet in Figure 5 (see Section 8.1 of the supplementary material for full details). The new class 

must override the following methods: 

 __init__: constructor of the class. Its main purpose is to invoke the constructor of the parent 

class (Lines 5-6) and to point to the method used to calculate the fluxes, 

here,_fluxes_function_python (see also Section 4.3, which illustrates the efficiency 460 

benefits of using Numba-optimized methods for calculating the fluxes); 

 set_input: takes the input fluxes in a predefined order (here, just precipitation) and assigns 

them a key (Line 15) that is then used when setting up and solving the model equations; 

 get_output: invokes the functionalities implemented by the ODEsElement to solve the 

element equation over the entire simulation (all time steps). Lines 20-22 get the current state of 465 

the reservoir, invoke the ODE solver, and set the state to its final value. Lines 24-28 get the output 

flux arrays from the numerical approximator (see Section 4.3). Line 30 returns a list with the 

output of the element (here, the streamflow); 

 _fluxes_function_python: calculates the fluxes and (optionally) their derivatives with 

respect to the state for a given state, inputs, and parameters. Line 36 implements the vector version 470 

while LineLines 38-41 implements the scalar version. Both versions are needed by the numerical 

approximator (see Section 4.3; further practical details are provided in Section 8.1 of the 

supplementary material). 

The new element NewFastReservoir is now defined and can be used in the “new” version of M4, 

in lieu of the previous element PowerReservoir. The Object-Oriented features of Python are very 475 



 

Page 17 of 56 

useful here to enable the new class NewFastReservoir to inherit most of the methods from the base 

class ODEsElement. Otherwise, in addition to the methods listed above, we would have needed to 

implement many other methods, e.g., for interfacing with numerical solvers, for setting element 

parameters and states, etc. 

3.2.2 Simplified approach for creating a new reservoir element (from an existing element) 480 

The same new reservoir element can be implemented in a simpler way by noting that 

NewFastReservoir differs from PowerReservoir solely in the definition of the outflow equation. 

This difference affects only one of the four methods implemented in Figure 5, namely 

_fluxes_function_python. A simpler implementation of NewFastReservoir can be 

therefore achieved by inheriting this class directly from class PowerReservoir rather than from class 485 

ODEsElement. The code in Figure 6 illustrates this approach and implements only the method 

_fluxes_function_python. All other methods are inherited from class PowerReservoir. 

Note that this simplified implementation is a consequence of the required modification being relatively 

minor, i.e., a change solely in the constitutive function equation. More complex modifications, such as 

the inclusion/exclusion of input/output fluxes (e.g. inclusion of evapotranspiration into the 490 

PowerReservoir), would require the general implementation approach described in Section 3.2.1. 

3.3 Implementing a distributed model 

This section illustrates the implementation of an HRU-based, distributed hydrological model, intended to 

simulate streamflow in a nested catchment. This implementation requires the entire workflow illustrated 

in Section 2.2. The example is provided by model M02, developed in Dal Molin et al. (2020) to provide 495 

streamflow predictions at 10 sub-catchments of the Thur catchment in Switzerland (Figure 7a). 

Each sub-catchment receives its own forcing, namely precipitation, potential evapotranspiration, and 

temperature. Two HRU types are defined based on geology: consolidated and unconsolidated formations 

(Figure 7b). Both HRU types are characterized by the same model structure, which is shown in Figure 8. 

This HRU model structure differs from model structure M4 (section 3.1) in the following additional 500 

elements: (i) a “snow” reservoir, WR, which controls the partition of incoming precipitation between 

rainfall and snowfall based on temperature, (ii) a lag function between UR and FR, and (iii) a “slow” 

reservoir, SR, which acts in parallel to FR and is controlled by the same equations as FR but with different 

parameter values.  
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Similar to the simpler previous example in Section 3.1, this "lumped" model structure is implemented as 505 

a unit. However, a key difference is that in the previous example the unit represented the entire system, 

whereas here it is part of a more complex system.  

Given the spatial organization of the model, nodes are used to represent sub-catchments and units are 

used to implement HRU types. Note that the sub-catchments may share (one or more) HRU types, which 

in SuperflexPy translates into the nodes sharing (one or more) units. The network level is used to connect 510 

multiple nodes, and enables predictions at internal catchment locations. Figure 10 shows the SuperflexPy 

representation of the spatial organization shown in Figure 7. 

We start by implementing the units. As seen in Figure 8, the HRU model structure has elements operating 

in parallel and, therefore, requires the use of connections. Figure 9 shows how the HRU model structure 

is “translated” into a SuperflexPy unit. Recall, from Section 2.1, that elements can be connected only if 515 

they belong to two consecutive layers, which implies that “gaps” in the structure must be filled using 

transparent elements, which output the same fluxes they receive as inputs. Splitters and junctions are 

used to divide and merge the fluxes to implement the parallel flow paths. 

Comparing Figure 8 with Figure 9, we see how the HRUs structure has been implemented within 

SuperflexPy. The following implementation aspects are noted: 520 

1. The incoming precipitation is partitioned into rainfall and snowfall. This partitioning is done 

internally in the WR element. The SuperflexPy implementation of WR takes care of two processes: 

(i) partitioning of precipitation into rainfall and snowfall; and (ii) simulation of snow processes 

(accumulation and melting). The output of WR is, logically, the sum of rainfall and snowmelt. 

Alternatively, a (new) splitter element could have been defined to partition the fluxes between UR 525 

(rainfall) and WR (snowfall) based on temperature.  

2. WR, as currently implemented, does not receive as input the potential evapotranspiration (PET), 

which is needed by the downstream element UR. Therefore, the transfer of PET values to the UR 

element is implemented using a separate path composed by three elements, labelled "upper 

splitter", "upper transparent", and "upper junction" (Figure 9). This choice simplifies the interface 530 

of element WR at the expense of a somewhat more complicated model structure with additional 

elements. 

3. The parallel part of the structure is composed by two elements on one branch (lag and FR) and 

only one element on the other branch (SR). To satisfy the requirement of not having “gaps” in the 

unit structure, a transparent element (“lower transparent”) is added after the SR. 535 
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The code to setup this model is detailed in Figure 11. Similar to the earlier example in Section 2.2, the 

user initializes and connects all model components, proceeding sequentially from the lowest level 

(elements) to the highest level (network). The procedure can be summarized as follows: 

1. Lines 10-29: Initialize the elements needed for the lumped model structures used in the HRUs; 

2. Lines 32-39: Initialize the units used to represent the HRUs, linking all the elements; 540 

3. Lines 42-51: Initialize the nodes used to represent the sub-catchments. Both units are assigned to 

9 nodes; the Mosnang sub-catchment contains a single HRU and hence only a single unit is 

assigned to the corresponding node (Line 49). 

4. Lines 54-60: Connect the nodes using a network. The topology of the network is defined by 

indicating, for each node, the downstream one. 545 

The network runs the nodes from upstream to downstream, collects their outputs, and routes them to the 

outlet. Customized routing functions can be implemented, as shown in Section 9.1 of the supplementary 

material. The output of the network is a Python dictionary, with keys given by the node identifiers and 

values given by the list of Numpy arrays representing the time series of output fluxes over the simulation 

period. 550 

4 Implementation details of SuperflexPy 

This section presents additional technical details of SuperflexPy needed to understand better some aspects 

of the functioning of the framework. A more detailed and practical description is provided in the 

supplementary material. 

4.1 Parameters and states 555 

All SuperflexPy components can have parameters and states. Parameters specify component 

characteristics, whereas states keep track of the component history. States and parameters are set as part 

of initializing the model components, and can be manipulated using get and set methods provided by 

the framework at all levels of its hierarchy (see the example in Section 2.2). 

The parameters can be either constant or variable in time. Constant parameters represent the most 560 

common set up of hydrological models. In conceptual hydrological modelling, time-varying parameters 

have been proposed to represent ”deterministic” system variability (e.g. seasonality, Westra et al., 2014) 

and/or “stochastic” system variability (e.g., Kuczera et al., 2006; Reichert and Mieleitner, 2009; Renard 

et al., 2011); see also earlier work in data-based mechanistic modelling (e.g., Young, 2000). 
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4.2 Modular design following the Object-Oriented paradigm 565 

As noted in Section 2.1, SuperflexPy embraces the object-oriented paradigm (e.g. Meyer, 1988), which 

is widely used in general software and is increasingly adopted in scientific software.  

Figure 12 shows the unified modeling language (UML) class diagram of SuperflexPy. The schematic 

illustrates the classes underlying the core framework (i.e., the base classes that define SuperflexPy 

architecture), but excludes, for simplicity, the specific implementations of components and numerical 570 

routines. All the classes in the diagram can be extended to implement customized components; for 

example, a reservoir can be implemented by extending the class ODEsElement, a splitter can be 

implemented by extending the class ParameterizedElement, a node with a particular routing 

mechanism can be implemented by extending the class Node, etc. 

The object-oriented design provides several advantages in the context of SuperflexPy: 575 

 The inheritance principle enables the creation of new classes by extending existing ones. 

Inheritance reduces drastically the amount of new code that needs to be generated to implement a 

new model component (see example in Section 3.2); 

 Changes to a class (e.g. a component) and the creation of new classes can be carried out in isolation 

from the rest of the code, as long as the interfaces between classes are respected; 580 

 When creating a model, only the necessary objects need to be initialized and used. This principle 

makes the model configuration effort roughly proportional to required model complexity, i.e., 

simple model structures can be constructed from the minimal set of required components; 

 Objects retain their history (states), which can be accessed post-run to undertake model analysis 

and/or subsequent computation; 585 

 The modular nature of objects facilitates the development and testing of new code. 

These benefits make it easier to achieve clean and maintainable code, which is essential for any practical 

modelling framework. 

4.3 Numerical solution of ODEs 

The mass balance of reservoir elements is described using ordinary differential equations (ODEs), which 590 

are typically solved (approximately) using numerical time-stepping algorithms. Many such algorithms 

have been described in the numerical methods literature, e.g. Euler methods, Runge-Kutta methods, etc. 

(e.g., Butcher and Goodwin, 2008). 

SuperflexPy separates the formulation of model equations from the solution of these equations. More 

specificallySpecifically, flux equations are defined internally as methods of the elements (as shown in 595 
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Section 3.2), while the numerical algorithm to solve the ODEs is specified externally (to the element) by 

defining, creating a so-called “numerical approximator”. The numerical approximator is a procedure, 

which constructs a numerical approximation of the differential equation(s) controlling the element. If the 

numerical approximator implements an implicit time stepping scheme, it will generally require an 

auxiliary “root finder”, which is a procedure that solves nonlinear algebraic equation(s).class specific to 600 

this task. The separation of equations and solvers in the model specification enables the modeler, within 

some restrictions, to select the numerical method without making any changes to the governing model 

equations. Further details are provided in Section (see section 5.12 of the supplementary material.). That 

said, given SuperflexPy primary emphasis on enabling hydrologists to experiment with flexible 

conceptual model structures, numerical flexibility is given a relatively lower level of priority and the 605 

choice of numerical architecture of the framework is largely driven by findings of previous studies (see 

below). 

SuperflexPy conceptualizes the solution of its mass balance ODEs as a two-step process: (1) construct a 

discrete-time numerical approximation of the ODEs (e.g., using Euler time stepping schemes), and (2) 

when an implicit time stepping scheme is used, solve the associated nonlinear algebraic equation(s). The 610 

procedures used for these tasks are referred to as the “numerical approximator” and the “root finder”, 

respectively. This distinction helps achieve better software modularization, disentangling the choice of 

the numerical approximator and of the root finder. 

Currently, SuperflexPy provides twothree built-in numerical approximators, namely the fixed-step 

implicit and explicit Euler time stepping schemes (e.g., Clark and Kavetski, 2010). The implicit Euler 615 

equations and Runge Kutta 4. Two built-in root finders are solved usingprovided, namely the Pegasus 

root finderalgorithm (Dowell and Jarratt, 1972) and a hybrid Newton-bisection algorithm (Press et al., 

1992). Additional numerical routines are currently being developed. To avoid mass balance 

discontinuities, as well as to ensure better numerical stability and faster convergence, we recommend 

using smooth flux functions (e.g., Kavetski and Kuczera, 2007). . 620 

An additional approximation is employed within SuperflexPy, namely that all model fluxes are constant 

within the model time step. This approximation is consistent with the typical format of hydrological data, 

such as rainfall, PET, etc, which are tabulated in discrete steps (e.g., daily, hourly, etc), but is applied not 

only to the forcing data but also to all internal fluxes. As such, this pragmatic approximation enables a 

further simplification of the solution procedure, because the output flux from each element becomes a 625 

scalar value (per time step). Note that first order time stepping schemes, which we recommend for 

SuperflexPy, themselves make exactly the same assumption and are hence not impacted. However, higher 

order time stepping schemes and adaptive substepping schemes would be impacted by additional first-
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order discretization error, because the variation of internal fluxes within the model time step is ignored. 

Further details about this pragmatic approximation are provided in section 5.2 of the supplementary 630 

material. 

The user can implement additional numerical algorithms, either by coding them directly or by interfacing 

with external code (e.g. ODE solvers from SciPy). Detailed instructions are provided in section 5.1 of the 

supplementary material, which also includes a description of how to implement a numerical solver "from 

scratch", bypassing of the current numerical approximator / root finder architecture. 635 

As detailed next in Section 4.4, the choice of numerical implementation, and its compatibility with 

optimizing compilers, may have a strong impact on the overall computational speed of the model. 

4.4 Computational efficiency and language choice 

Computational efficiency is a key requirement of a practical modelling framework. Model calibration via 

parameter optimization is a common computationally demanding task required by most hydrological 640 

models, typically requiring hundreds or thousands of model runs. Moreover, conceptual hydrological 

models are often used in Monte Carlo uncertainty quantification, with comparable or even larger 

computational cost (up to millions of model runs in some cases). 

The choice of programming language inevitably requires trade-offs between computational efficiency and 

ease of use. The choice of Python for SuperflexPy was motivated by the attraction of a flexible and widely 645 

used scripting language in conjunction with two efficient numerical libraries: Numpy (Walt et al., 2011) 

and Numba (Lam et al., 2015). Numpy provides highly efficient arrays for vectorized operations (i.e. 

elementwise operations between arrays). Numba provides a “just-in-time compiler” that compiles (at 

runtime) a Python method into machine code that interacts efficiently with Numpy arrays.  

The combined use of Numpy and Numba is particularly effective when solving ODEs, where the 650 

numerical algorithm performs element-wise sequential operations. The built-in SuperflexPy approaches 

for solving ODEs are compatible with such numerical infrastructure, and therefore enable fast 

computation times. Note that switching to ODEs solvers that do not take advantage of such libraries might 

dramatically increase the model runtime.  

Numba offers drastic computational speed ups compared to native Python; our experimentation suggests 655 

runtime reductions by factors of up to 30. However, a drawback of Numba is the requirement to compile 

the code each time it is executed (run). For a lumped model composed of a few reservoirs, the Numba 

compilation time is of the order of a few seconds. Therefore, Numba will outperform Python when the 

simulation is long (e.g. multiple years of hourly data) and/or when the model needs to be run a large 

number of times. For example, as a broad illustration of runtimes on a standard laptop, calibration of a 660 
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HYMOD-like SuperflexPy model to observed daily data, requiring 1000’s of model runs each with 1000 

time steps, takes a few seconds with the Numba implementation compared to a couple of minutes with 

native Python execution. Note that here we refer to the runtime of the SuperflexPy model itself, and 

exclude the runtime of the calibration tool procedures; more details on benchmarking are given in section 

5.3 of the supplementary material. Examples of interoperability of SuperflexPy with external libraries for 665 

model calibration (e.g., SPOTPY, Houska et al., 2015) are given in chapter 14 of the supplementary 

material. 

4.5 Ability to represent multiple fluxes and states 

SuperflexPy can operate with multiple fluxes and state variables. In particular, connection elements, units, 

nodes, and the network can accommodate an arbitrarily large number of fluxes. The use of multiple fluxes 670 

has been already shown in the model structure described in section 3.3, where the upper_splitter 

handles three different variables (precipitation, temperature, and PET). Additional examples are provided 

in the supplementary material (e.g., chapters 10, 11). 

The capability to simulate multiple fluxes and states is intended to support the future extension of 

SuperflexPy to new modelling scenarios. Several such scenarios may be of interest, including the 675 

transport of chemical substances (e.g., Fenicia et al., 2010; Ammann et al., 2020), the interaction between 

frozen and liquid water in a snow element (e.g., Jansen et al., 2021),  interactions in the 

saturated/unsaturated soil zones (e.g., Seibert et al., 2003), and so forth. 

While the current examples in SuperflexPy do not include all the cases listed above, the framework 

architecture anticipates the need for more general simulation functionality, and has been designed to 680 

support extension to accommodate such multi-state processes. 

5 Discussion 

5.1 Balancing functionality, scope, and usability in a flexible model implementation 

A software implementation that maximizes flexibility and usability is challenging to achieve, because 

flexible modelling functionality may increase configuration effort and computational cost. Existing 685 

flexible frameworks have approached this tradeoff with different priorities, based on their respective 

modelling objectives and paradigms.  

The following sections offer a brief discussion of the design choices made by SuperflexPy in the context 

of selected existing frameworks with a similar scope. The discussion makes use of Table 1 and Table 2, 

which summarize key design choices related to usability and simulation capabilities respectively. 690 
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5.1.1 Structural flexibility 

Structural flexibility refers to the flexibility in how elements can be connected to compose the structure 

of the model (i.e., of the unit, following SuperflexPy’sSuperflexPy terminology). This consideration 

applies both to lumped and distributed models; the flexibility in specifying the spatial organization of the 

model is considered separately in Section 5.1.2. 695 

Some flexible frameworks are implemented using a master structure that incorporates all supported model 

configurations. In these implementations, the user can choose the flux equation(s) (e.g., FUSE, 

SUPERFLEX-F90) and/or activate/deactivate specific elements (e.g., SUPERFLEX-F90), but cannot 

change the overall connectivity of model elements. To the extent that the master structure is sufficiently 

general, it may not unduly restrict the practical usage of the framework. 700 

Other frameworks (e.g., MARRMoT) propose a collection of existing conceptual model structures ready 

to use, which have been implemented following the same design rules in order to allow for a fair 

comparison. Such frameworks are typically intended for model intercomparison studies. 

The most general frameworks allow connecting the elements freely without constraints. A distinction can 

be made between frameworks that allow for mutual interactions between the elements (e.g., CMF) and 705 

frameworks that do not allow such interactions (e.g., ECHSE). 

SupeflexPySuperflexPy adopts the latter philosophy, allowing to connect the elements freely within the 

unit but restricting mutual interactions, i.e., constraining the structure to be a DAG (see Section 5.2). 

Moreover, we have chosen to define the DAG as a succession of layers, listing the elements in order from 

upstream to downstream and allowing for parallel flow paths (e.g., see the model structure in Figure 9). 710 

This "list" formulation has been selected in preference to other methods for defining a graph, e.g., 

connectivity matrix, adjacency list, etc., for the following reasons: (i) simplicity/scalability, as the list 

dimension scales linearly with the number of elements, in contrast to the connectivity matrix approach 

where this scaling is quadratic; (ii) arguably better readability, as the elements are listed in the order they 

appear in the DAG; and (iii) it guarantees a graph topology without loops. Note that other popular 715 

modelling tools (e.g., neural networks) adopt this type of formulation. 

5.1.2 Spatial flexibility 

Most frameworks (e.g., CMF, ECHSE, SUPERFLEX-F90, etc.) support multiple types of spatial 

discretization (e.g., lumped, HRUs, sub-catchments, grids, etc.). Some frameworks (e.g., FUSE, 

MARRMoT) support solely lumped models. 720 
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SuperflexPy uses 4 hierarchical levels of components, intended to facilitate the formulation of models 

that range in spatial complexity from a simple lumped model, to a composition of lumped models intended 

for prediction at a single location (e.g. a catchment with several HRUs), and ultimately to a distributed 

model capable of making predictions at multiple internal locations. The use of a hierarchical set of 

components could be contrasted to a framework based solely on the lowest level components, here, 725 

elements. The use of higher level components enables the modeler to capture explicitly the natural 

groupings in the catchment of interest, e.g., sub-catchments, HRUs, etc. 

5.1.3 Usability 

The usability of a framework can be judged according to several aspects.  

The first aspect is how a framework is operated. Some frameworks are standalone and operated through 730 

a graphical interface (e.g., PERSiST) or the command line interface (e.g., SUPERFLEX-F90). Other 

frameworks are designed as libraries that can be called from the user code in a specific programming 

language to initialize, configure and run the model (e.g., CMF, MARRMoT; SUPERFLEX-F90 also 

allows this option when using the source code from Fortran). SuperflexPy is implemented as a Python 

package. Models can be created using a Python script and interfaced easily with external libraries 735 

(examples are provided in chapter 14 of the supplementary material). 

The second aspect is the scope of the framework. Most frameworks (e.g., SUPERFLEX-F90, ECHSE) 

adopt, by design, the philosophy of “one tool per problem” and limit their functionality to the simulation 

of hydrological processes. Other frameworks integrate tools for parameter calibration and sensitivity 

analysis, uncertainty quantification, pre- and post-processing tasks such as input unit checks/conversions, 740 

etc. (e.g., RAVEN, PERSiST). SuperflexPy adopts the first philosophy: it limits its functionality to 

hydrological simulation. 

Finally, documentation is another key aspect in the usability of a framework. Virtually all considered 

frameworks provide such documentation to a varying degree of detail. SuperflexPy documentation is 

available online and explains in detail how to use and further develop the framework. 745 

Figure 13 shows illustrates the online software management tools that are used to develop and deploy 

SuperflexPy. The framework itself, including source code, documentation, examples, etc., is hosted on 

GitHub. Automated workflows (dashed lines in the figure) are then used to create new releases (PyPI), 

get DOIs for the software releases (Zenodo), host the documentation (ReadTheDocs), and run thecreate 

runnable examples (hosted on Binder as Jupyter and Bindernotebooks). From a general user perspective, 750 

this setup improves model accessibility and reproducibility. From a developer and contributor 

perspective, it reduces the effort needed to maintain and extend the framework. 
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5.1.4 Possibility of extension and customization 

Most frameworks have open source code and permissive licenses, making it possible to modify and extend 

their codebase. Within this category, some frameworks are specifically intended to be customized (e.g., 755 

implementing new functionalities) as part of their regular usage without an expectation of “developer-

level” skills (e.g., ECHSE). Other frameworks do not envisage customization in their primary scope, but 

can still be modified by modelers with appropriate programming expertise in consultation with available 

developer guides (e.g., RAVEN). 

Some frameworks have not been released as open source, and the only way to access their codebase for 760 

customization and extension is by contacting their developers (e.g., SUPERFLEX-F90, PERSiST). 

SuperflexPy is designed to facilitate extension and customization as part of its regular usage. New 

components can be created by extending or modifying existing components, as demonstrated in Section 

3.2. 

5.1.5 Computational efficiency 765 

The computational efficiency of a model code, i.e., the time required to run a simulation, depends 

primarily on two aspects, namely the programming language and the numerical algorithms.  

In terms of programming languages, most frameworks have been implemented in C/C++ and Fortran, 

which enable very fast computation. These implementations can be either purely single-language (e.g., 

FUSE, RAVEN), or wrapped within a scripting language to provide a more suitable interface (e.g., CMF). 770 

Amongst the considered existing frameworks, only MARRMoT is implemented entirely in an interpreted 

language (Matlab/Octave).  

In terms of numerical algorithms, a wide range of options are available for solving differential equations. 

Broadly speaking, time stepping algorithms can be classified as implicit or explicit, and may employ fixed 

or adaptive step size. The choice of algorithm and its settings brings tradeoffs between solution accuracy, 775 

algorithm complexity and computational cost. In the context of model development and comparison, it is 

important to separate the specification of model equations from the choice of numerical solution and to 

use robust numerical methods to avoid spurious artefacts (e.g., Kavetski and Clark, 2010). The majority 

of frameworks implement this separation and provide a choice of built-in numerical algorithms. 

SuperflexPy, while written entirely in Python (a nominally "slow" language), makes several 780 

implementation choices to reduce computational costs. These choices include the use of efficient 

numerical libraries (section 4.4) and the solution of the elements in succession (DAG, section 5.2). This 

solution of the elements “one-at-a-time” enables the usage of robust solvers that operate on a single ODE 
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at a time; in such cases, also the root finder operates on a single algebraic equation at a time, reducing the 

computational effort. The choice of numerical algorithm for individual elements is left to the user (section 785 

4.3). The (recommended) built-in approximators include the implicit Euler scheme with fixed step size, 

which offers stability and smoothness benefits valuable in parameter estimation contexts. 

5.2 Current restrictions in model structure specification 

As part of balancing the flexibility, ease of use, and computational performance of SuperflexPy, some 

restrictions have been imposed on the connectivity between model components. 790 

The first restriction is that elements within a unit must form a directional acyclic graph (DAG), with no 

feedback loops from downstream to upstream elements (Section 2.1). This restriction enables the 

numerical solvers to proceed, at each time step, in a single pass from upstream to downstream elements 

and improves the computational performance of the framework. The restriction on internal model 

feedbacks is not expected to be overly limiting when developing conceptual hydrological models, where 795 

the fluxes from a given element typically depend only on the state in that element and not on downstream 

elements. In such systems, flows occur only in one direction, e.g. in model M4 the water flows from UR 

to FR but not vice versa. A counter-example where internal model feedbacks are required is given by the 

bidirectional interaction between surface water and groundwater in the hyporheic zone, where the 

exchange flux (or fluxes) depends on both states. Such interactions can still be modelled in SuperflexPy 800 

by introducing elements that embed feedbacks internally. For example, the hyporheic zone can be 

represented using a two-state reservoir with interacting states (e.g., Seibert et al., 2003). In other words, 

the SuperflexPy restriction on model feedbacks applies to interactions between elements, but not to 

interactions within an element. 

The second restriction, which also applies at the unit level, derives from the decision to define the DAG 805 

as a succession of layers (section 5.1.1). This choice simplifies the model definition in typical use cases, 

when there are many elements with relatively few connections (i.e., the DAG is "sparse" rather than 

"dense"). However, the definition of a DAG as a succession of layers requires the elements to be 

connected directly one to the other, without skipping layers. Hence the need for transparent elements, 

which output the inputs they receive and are used to fill the gaps that arise when two or more parallel 810 

flow paths have a different number of elements. An example of such model configuration is given in 

Figure 9, where a transparent element (labeled “lower_transparent”) is used to fill the gap in layer 7. 

The third restriction is that the topology of a network must represent a tree where any given node can 

connect and transfer fluxes only to a single downstream node (Section 2.1). This restriction has a similar 

motivation to the restriction of a unit structure to a DAG, and allows for a simple and efficient 815 
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computational implementation, which starts from the headwater nodes and proceeds downstream one 

node at a time. Typical distributed conceptual models meet this restriction, for example as illustrated in 

Section 3.3. However, fully integrated distributed models, such as Parflow and Mike-She, do include 

mutual dependencies between spatial elements, e.g., leading to 2D or 3D groundwater flows. Such 

configurations are considered beyond the scope of conceptual distributed models, and therefore are not 820 

currently supported in SuperflexPy. 

5.3 Current usage and future developments 

SuperflexPy is easy to install and run; it is written in pure Python and its dependencies are limited to the 

packages Numpy and Numba (Section 4.4). Installation can be done directly using the package installer 

for Python (pip) and does not require (additional) external libraries. We stress that SuperflexPy is not a 825 

wrapper of earlier SUPERFLEX-F90 code but offers a completely new implementation that is not 

constrained by choices taken in the earlier code versions. 

SuperflexPy has already been used for research applications. Jansen et al. (2021) performed a “model 

mimicry” study where similarities and differences within the HBV family of models were investigated. 

SuperflexPy was used to construct a set of HBV-like models and compare them in terms of the behavior 830 

of individual model components, the impact of numerical implementation, and so forth. A list of 

publications using SuperflexPy is maintained on the documentation website. 

In terms of future developments, we hope that SuperflexPy offers the broader hydrological community a 

versatile new tool for research work and practical applications. Further SuperflexPy developments are 

likely to follow from such work and collaborations, including: (i) expansion of the library of model 835 

components beyond the ones here presented (as shown in the example in Section 3.2), and (ii) more 

fundamental developments in response to future model applications. It is important to highlight that 

SuperflexPy can be used to create and combine new model components, thereby enabling experimentation 

with new model structures and general conceptualizations. The framework, therefore, is not limited to 

components and structures taken from existing models – though such collections could be also produced. 840 

The SuperflexPy model library may grow as new users share their implementations with the community. 

In order to facilitate the use of SuperflexPy, its code is accessible on GitHub with license LGPL-3.0 and 

distributed using the Python package installer PyPI (see the code availability section at the end of this 

paper). The online documentation provides a guide for colleagues interested in contributing to the 

framework (section 2.1 of the supplementary material). 845 
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6 Summary and conclusions 

SuperflexPy is a new Python flexible modelling framework for building conceptual catchment-scale 

hydrological models ranging from lumped to distributed configurations. SuperflexPy offers detailed 

control over each aspect of model configuration, and caters to a wide range of typical conceptual model 

applications. In order to facilitate the model building process, the framework defines its components 850 

(building blocks) at four hierarchical levels, namely element, unit, node, and network. These components 

support conceptual model setups of increasing levels of complexity, including but not limited to: a single 

element model (e.g. a reservoir), a typical lumped model (e.g. a collection of interconnected reservoirs), 

a semi-distributed model designed to provide prediction at a single outlet, and a semi-distributed model 

designed to provide predictions at internal sub-catchments. The construction of a model from components 855 

up to a given hierarchical level does not require specifying components at higher levels, which makes the 

model configuration effort proportional to the complexity of the application and reduces 

configuration/computational overheads. The framework supports multiple states and fluxes in each 

component, which facilitates future extension to applications where such functionality is needed. 

SuperflexPy offers an open source implementation of the SUPERFLEX principles (Fenicia et al., 2011) 860 

that builds on the collective experience of the authors and their colleagues in hydrological model design 

and application. The paper discusses the key design choices made in SuperflexPy, with emphasis on the 

ease of use and interfacing, availability, amenability of extensions, and computational efficiency.  

The use of the SuperflexPy framework is illustrated using two examples that represent typical tasks in 

conceptual hydrological modelling: the implementation of a lumped model to simulate an entire 865 

catchment, and the implementation of a distributed model to simulate a system of multiple sub-catchments 

with spatially varying landscape characteristics. We hope the framework will contribute to ongoing efforts 

in the hydrological modelling community to develop more robust and representative models. The 

framework is open source, available with license LGPL-3.0 on GitHub. 

Code availability 870 

The source code of SuperflexPy, together with documentation and examples, is hosted in the public 

GitHub repository https://github.com/dalmo1991/superflexPy. Github is used for issue-tracking. Package 

releases are distributed using the Python package index https://pypi.org/project/superflexpy. Releases are 

identified using a version number based on Semantic Versioning 2.0.0 and assigned a DOI through 

Zenodo. The release associated with this paper represents version 1.2.13.0 and has DOI 875 

https://doi.org/10.5281/zenodo.46984695235158. Detailed documentation is available through Read the 
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Docs at https://superflexpy.readthedocs.io. The supplementary material to this paper represents a snapshot 

of the documentation at the time reported on the front page. 

SuperflexPy is implemented using Python 3.7 and depends on Numpy (version 1.19) and Numba (version 

0.50). 880 

SuperflexPy is available under the license LGPL-3.0. Users of the framework are invited to share their 

modelling solutions with the community by contributing to the GitHub repository. 
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Figures 1090 

 

 

Figure 1. The four hierarchical levels of SuperflexPy and their respective components. (a) Elements (e.g. 
reservoirs, lags, connections) are used to represent individual hydrological processes / /catchment 
response mechanisms; (b) Units connect multiple elements and are intended to implement lumped 1095 
catchment models; (c) Nodes collect multiple units that operate in parallel representing different landscape 
elements within a catchment; (d) Network connects multiple nodes and is used to represent distributed 
setups. 
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Figure 2. SuperflexPy code implementing the simple illustrative model in Figure 1d. 
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Figure 3. Schematic of model M4 used in the original SUPERFLEX case studies of Kavetski and Fenicia 
(2011). 
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Figure 4. SuperflexPy code implementing model M4 in Figure 3. 
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Figure 5. General approach for implementing a new reservoir element NewFastReservoir by 
extending the class ODEsElement (Section 3.2.1). 
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Figure 6. Simplified approach for implementing the NewFastReservoir by inheriting directly from 
class PowerReservoir (Section 3.2.2). 1125 
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Figure 7. Illustration of catchment discretization used for a distributed application of SuperflexPy in the 1130 
Thur catchment: (a) discretization into sub-catchments and (b) discretization into hydrological response 
units (HRUs) as presented in model M02 in Dal Molin et al. (2020). The panels of this figure were 
originally published in figures 1a and 6 of Dal Molin et al. (2020). The HRU model structure is shown in 
Figure 8. 
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Figure 8. Model structure used to represent the HRUs in model M02 in Dal Molin et al. (2020). Refer to 
Figure 7 for the corresponding HRU discretization of the Thur catchment. 
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Figure 9. SuperflexPy representation of the model structure M02 in Figure 8. 
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Figure 10.  Spatial organization of the SuperflexPy model configuration used to simulate water fluxes in 
the Thur catchment (M02 inDal Molin et al., 2020). The units, used to represent the HRUs, are shown 
using the blue and yellow boxes. The nodes, used to represent the sub-catchments, are shown using the 
green dashed boxes. The group of nodes connected together (green arrows) creates a network.  1150 
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Figure 11. SuperflexPy code implementing the distributed model in Figure 9 and Figure 10. 1155 
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Figure 12. UML class diagram showing the organization of the classes used to represent SuperflexPy 1160 
components. The core framework is presented, excluding the specific implementations of components 
and numerical routines. 
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Figure 13. Organization of the SuperflexPy project, indicating the online software management tools 
used to develop the source code and documentation, release product versions with associated DOIs, and 1165 
provide general open access to all project components. Typical workflow paths for users and developers 
are shown, respectively, in the blue and black lines and font. Dashed lines represent automated workflows. 
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Table 1. Summary of usability characteristics of SuperflexPy in the context of selected flexible frameworks for conceptual hydrological modeling.* 

 Availability Distribution 
and 

installation 

Documentation Interface 
and setup 

I/O format for 
settings and data 

Possibility of 
customization 

Built-in calibration 
and uncertainty 

analysis 
SuperflexPy Open source Python package Available Python 

package. 
Python script 
to setup 

Direct I/O with Python. 
No binding to particular 
formats 

Possible with 
moderate 
programming 
expertise 

Not present 

FUSE (Fortran) 
(2008) 

Exe or code, 
by request 
from 
authors 

Standalone 
exe/code 

Comments in 
code (limited) 

Executable 
with/without 
GUI, or 
Fortran subs. 
Setup files 

Structured text files Possible but not 
supported 
systematically 

Some versions are 
coupled with 
optimization and 
MCMC sampling tools  

SUPERFLEX-F90 
(2011) 

Exe or code, 
by request 
from 
authors 

Standalone exe Comments in 
code (limited) 

CLI or DLL or 
Fortran subs. 
Setup files 

Structured text files Possible but not 
supported 
systematically 

Not present  

CMF 
(2011) 

Open source Python 
package. Code 
compilation for 
enhancements 

Available 
 

Python 
package. 
Python script 
to setup. GUI 
only for 
lumped 
models 

Direct I/O with Python. 
No binding to particular 
formats 

Customization using 
C++. Possibility with 
Python under 
development 

No. Developers 
recommend to use the 
SPOTpy package from 
the same group 

PERSiST 
(2014) 

Exe/webapp 
after 
registration 

Standalone 
executable or 
webapp 

Exists. Not public 
at the moment 

Desktop app 
or webapp. 
Setup files or 
GUI 

Structured text files 
and XMLs 

Possible but not 
supported 
systematically 

Incorporates MCMC 
toolkit 

ECHSE 
(2015) 

Open source R package to 
generate C 
code that has 
to be compiled 

Available CLI. Setup 
through text 
file or CLI 
 

Delimited text files 
 

Possible with 
moderate 
programming 
expertise 

Not present  

MARRMoT 
(2019) 

Open source Matlab/Octave 
package 

Available Collection of 
scripts and 
functions. 
Setup with 
script. 

Direct I/O with 
Matlab/Octave. No 
binding to particular 
formats 

Possible with 
moderate 
programming 
expertise 

Not present  
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RAVEN 
(2020) 

Open source Standalone 
executable. 
May require 
NetCDF 

Available Executable 
without GUI. 
Setup files 

Structured text files Possible but requires 
developer-level 
expertise. 
Instructions in the 
documentation 

DDS optimization. 
Reports model 
performance metrics 
usable by external 
software 

 1170 
*This information was collated based on published information. A brief informal review was provided by the framework authorsdevelopers. 
 
Abbreviations: exe = binary executable, subs = subroutines, GUI = graphical user interface, CLI = command line interface, DLL = dynamic link 
library, MCMC = Monte Carlo Markov Chain, DDS = Dynamic Dimensioned Search  
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Table 2. Summary of simulation capabilities of SuperflexPy in the context of selected flexible frameworks for conceptual hydrological modeling.* 1175 

 Structural flexibility Spatial flexibility Hydrological 
processes 

Numerical solution 
options 

Pre and post 
processing 

Programming 
language 

SuperflexPy Components can be 
connected freely 

Lumped; semi-
distributed 

Water fluxes; 
Designed to handle 
multiple fluxes 

Fixed step implicit 
and explicit Euler. 
Possibility to use 
custom solvers 

Not available Python 

FUSE (Fortran) 
(2008) 

Master structure; 
components selected 
for each model decision 

Lumped Water fluxes Implicit, semi-implicit, 
explicit schemes; 
fixed and adaptive 
step solvers 

Not available Fortran 

SUPERFLEX-F90 
(2011) 

Master structure; 
components can be 
turned on/off 

Lumped; semi-
distributed 

Water fluxes; 
transport 
processes 

Fixed step implicit 
and explicit Euler 

Not available Fortran 

CMF 
(2011) 

Components can be 
connected freely 

Lumped; semi-
distributed; fully-
distributed 

Water fluxes; 
transport 
processes 

Implicit and explicit 
schemes; single or 
multistep solvers 

Calculation 
methods for PET 

Python wrapping of 
C++ code 

PERSiST 
(2014) 

Components can be 
connected freely 

Semi-distributed Water fluxes; 
designed to be 
coupled with 
transport models 
(INCA) 

Implemented as a 
series of first order 
difference equations 

PET calculated 
internally 

C++ 

ECHSE 
(2015) 

Components can be 
connected freely 

Lumped; semi-
distributed; grids 

Water fluxes; 
transport 
processes 

To be implemented 
by user when defining 
the components 

Not available C++; R package to 
generate C++ code 

MARRMoT 
(2019) 

Library of model 
structures. Possibility to 
combine different 
components 

Lumped Water fluxes Fixed step implicit 
and explicit Euler. 
Possibility to use 
custom solvers 

Not available Matlab/Octave 

RAVEN 
(2020) 

Components can be 
connected freely 

Grids; 
subbasin/HRUs; 
triangulated 
irregular network 

Water fluxes; 
transport 
processes 

Ordered series, Euler, 
and 
predictor/corrector 
global methods; local 
methods at process 
level 

Calculation and 
interpolation 
(spatial and 
temporal) of 
derived fluxes and 
other variables 

C++ 

 
*This information was collated based on published information. A brief informal review was provided by the framework authorsdevelopers. 


