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Response to the reviews of “SuperflexPy 1.2.1: An open source 1 
Python framework for building, testing and improving conceptual 2 
hydrological models.” 3 

We thank the two reviewers and the Editor for their careful reading of the manuscript. Their 4 
additional insightful feedback and suggestions have helped us further improve the manuscript and 5 
address remaining issues. 6 

In the remainder of this document, the original comments by the reviewers are in typeset in blue 7 
and italics font and our replies are typeset in black font. The two reviewers are referred to as PK 8 
(Dr. Philipp Kraft) and AR2 (Anonymous Referee #2). 9 

  10 
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Response to comments by the Editor (Dr. Andrew Wickert) 11 

Dear authors, 12 

Thank you for your diligent revisions. After carefully reviewing both referee reports, as well as 13 
your response to the referees, I agree with them about some significant additional improvements 14 
that the manuscript will require prior to consideration for publication in GMD. Referee 1 has 15 
several substantial concerns, and Referee 2 suggests minor revisions but does have one major 16 
concern regarding the focus on transport vs. its apparent non-implementation in the current 17 
version of your code base. 18 

I look forward to seeing a revised manuscript following your work to address these comments. 19 

We thank the Editor and the reviewers for acknowledging our effort in improving the manuscript 20 
addressing most of their earlier comments, which in particular helped us clarify the contribution 21 
of SuperflexPy and place it in a better context in relation to other hydrological models.  22 

We appreciate the additional reviewers’ comments, which we address in this document.   23 
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Response to comments by PK (Dr. Philip Kraft) 24 

The manuscript has been improved in several areas, but especially the mathematical description 25 
needs improvement.  26 

We thank the reviewer for a very careful review of the manuscript and for multiple detailed 27 
comments, all of them with clear technical merit. Motivated by the reviewer’s comments on 28 
numerical aspects, we have made several enhancements to increase the functionality of 29 
SuperflexPy and better demonstrate its capabilities. In particular, we have implemented: (i) a new 30 
numerical approximator implementing the Runge-Kutta 4 method (within the constraints of the 31 
"constant-within-timestep" approximation of fluxes explained in point PK.2), (ii) a new root 32 
finder implementing a Newton-bisection method that uses the analytical derivatives of the fluxes. 33 

We appreciate the interest of the reviewer in numerical aspects of hydrological modelling and, 34 
consequently, of SuperflexPy. As authors, we of course also share these interests, and have 35 
historically pursued some of them in previous publications. We have responded to all technical 36 
questions below, explaining the organization of SuperflexPy numerical implementation, how it is 37 
intended to operate and have provided a clearer description of its assumptions and limitations. 38 
This is certainly an important improvement to the presentation. 39 

With that in mind, we now also note, both here and in the manuscript itself, that SuperflexPy is 40 
"primarily" intended for experimentation with the conceptual model structure, with "secondary" 41 
options to experiment with the numerical implementation. This choice is in line with the target 42 
audience of the paper (general hydrological/environmental modelers), as explained in point 43 
PK.11. For these reasons, in order to keep the manuscript focused, we have opted to preserve the 44 
overall balance of the presentation which focuses on these conceptual modelling aspects and their 45 
software implementation, and have avoided adding a large amount of numerical detail, which as 46 
we note below generally follows the recommendations from previous publications.  47 

Further, some questions raised by the reviewer have prompted us to reflect more deeply on the 48 
assumptions made in "practical" numerical approximations. That is a large research topic in its 49 
own right – and while related to it is nonetheless distinct from the current paper, which focuses 50 
on the software implementation of a flexible structure model. As such, several of these questions  51 
deserve a separate study where they can be investigated – and reviewed – in appropriate depth. It 52 
would be an injustice to these questions to be tacked in somewhere in this paper, and presenting 53 
them without a suitably detailed (and therefore length) context could cause confusion to readers 54 
without the technical background of the reviewer. We hope the reviewer appreciates this 55 
perspective. In any case we once again thank the reviewer for eliciting these clarifications and 56 
reflection, which we agree and hope will reduce the potential for reader confusion. We also hope 57 
they can lead to follow up studies focused more specifically on numerical implementations. 58 

We should also add here that we agree with the reviewer on the need for a better description and 59 
illustration (in Figure 12, now 13 in the re-submitted manuscript) of how SuperflexPy is 60 
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integrated into the ecosystem of modern online software management tools, and on the need for 61 
the UML diagram to be included in the main text (Figure 12 in the re-submitted manuscript). Our 62 
responses to all these issues are provided below. 63 

MP1 and MP2:  64 

PK.1: The discussion issue (MP1, PK1.1) has been solved in the revision and the manuscript has 65 
been much improved, both by toning down the introduction and by expanding section 5. The same 66 
applies to MP2.  67 

We thank the reviewer for acknowledging our effort in improving the paper with respect to these 68 
points. 69 

PK.2: MP3: This issue is not solved sufficiently and needs improvement prior to publication.  70 

We agree that numerical aspects are very important in a hydrological modelling software. For this 71 
reason, SuperflexPy is designed to provide a balance of efficiency and flexibility in the selection 72 
of numerical solvers within the constraints imposed by the assumed model architecture (DAG). 73 
We agree with the reviewer that some of these ideas were not so clear in the previous submission 74 
- therefore we take the opportunity to clarify them here and in the revised manuscript. 75 

Before moving to the specific comments, we describe in a consolidated way the numerics of 76 
SuperflexPy and their relationship to the DAG assumption as well as additional approximations. 77 

Our design of SuperflexPy is oriented towards facilitating experimentation with the conceptual 78 
model structure, including the number and connectivity of storage elements, the shape and 79 
parameterization of constitutive functions, spatial discretization, and so forth. For pragmatic 80 
reasons, we have made some assumptions in the numerical approximation that, while robust in 81 
their own right, do limit to some extent the numerical flexibility of the framework and have some 82 
implications when techniques such as adaptive time stepping are used. We thank the reviewer for 83 
identifying several of these limitations. Note also that these choices are based on our previous 84 
research publications and general experience with flexible modelling frameworks, which 85 
included detailed testing of multiple numerical algorithms (notably Clark & Kavetski, 2010; 86 
Kavetski & Clark, 2010). These earlier studies have indicated that the implicit Euler scheme with 87 
fixed time step is a robust choice for general hydrological modelling, which is the application that 88 
SuperflexPy is designed for. Nevertheless, SuperflexPy does offer some flexibility in the choice 89 
of numerical solvers, within the restrictions explained below.  90 

SuperflexPy requires the conceptual model architecture to be defined as a directional acyclic 91 
graph (DAG), which implies some restrictions in the coupling of equations. If the model structure 92 
is not a DAG, then the model structure must be transformed in a DAG, e.g., by encapsulating the 93 
part of the structure that contains feedbacks into a self-contained new element. This is already 94 
discussed in section 5.2 of the paper and section 5.2 of the documentation. 95 
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Model structures without feedbacks (i.e., DAGs) offer several practical advantages, as already 96 
elaborated in Section 5.1.1 of the paper. From the numerical perspective, such models lend 97 
themselves to the simple "one-element-at-a-time" numerical solution approach, which reduces the 98 
solution of an ODE system to the solution of a sequence of multiple scalar ODEs. Note that, if 99 
the model structure is a DAG, the "one-element-at-a-time" approach per se does not introduce 100 
additional numerical errors. 101 

However, within the "one-element-at-a-time" approach, we make the (additional) numerical 102 
approximation that the input fluxes into each element are constant within the model time step t∆ . 103 
This approximation is consistent with the typical format of hydrological data, such as rainfall, 104 
PET, etc, which are tabulated in discrete steps (e.g., daily, hourly, etc). However, in our case we 105 
also apply this approximation to internal fluxes. This pragmatic approximation enables a further 106 
simplification of the solution procedure, because the output flux from each element becomes a 107 
scalar value - however it comes at the cost of introducing additional first-order discretization 108 
error, because the variation of internal fluxes within the time step t∆  is ignored.  109 

These first order approximations do not impact on time stepping schemes that are first order 110 
anyway (e.g., explicit/implicit Euler) and, which, at a given time step, use a single value of input 111 
fluxes to estimate a single value of output fluxes. The lack of impact on first order schemes is an 112 
appealing practical point because these time stepping schemes methods are commonly used in 113 
hydrological models and indeed are recommended for their general robustness (e.g., Kavetski & 114 
Clark, 2010). However, second and higher order time stepping schemes, as well as (adaptive) 115 
substepping schemes are impacted – because these approaches require input flux values at 116 
intermediate points within the time step. The impact of additional errors will reduce the overall 117 
accuracy back to first order (with respect to the full exact solution). However, they would not 118 
introduce any instabilities and indeed would still permit the advantages of adaptive time stepping 119 
in terms of facilitating convergence of the nonlinear root finder (connecting to reviewer's specific 120 
comment in point PK.6). 121 

For completeness, we should also note that the "constant-within-timestep" approximation of 122 
fluxes is not per se a direct requirement for the "one-element-at-a-time" strategy (nor of the DAG 123 
assumption). Potentially, each element could output fluxes that vary within the time step t∆ , 124 
allowing for a reduction (or even elimination) of these additional flux averaging errors. A more 125 
general implementation of SuperflexPy could adopt a different format for the fluxes – for 126 
example, using (instead of a single number) a look-up array of values, a function, or another data 127 
structure that allows for “time queries”, etc. This approach would (potentially) re-enable higher 128 
order schemes and adaptive time stepping schemes to reach their formal asymptotic order of 129 
accuracy. However, we have not pursued these options in the current version of SuperflexPy, 130 
because the asymptotic order of accuracy (i.e., the order of accuracy as 0t∆ → ) is far from the 131 
main concern when hydrological models are applied with input data resolution as course as daily. 132 
Moreover, for say a Runge Kutta 4 solver to achieve genuine 4th order accuracy would require a 133 
4th order approximation of the rainfall and PET time series, which as such as impossible with 134 
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practical data. For these and other reasons we favour the current numerical implementation based 135 
on the fixed step implicit Euler scheme, - indeed this implementation was used in all previous 136 
SUPERFLEX-F90 case studies. 137 

In summary, the numerical implementation within SuperflexPy has the following characteristics: 138 

• If each element is solved using a non-adaptive first order method (e.g., implicit Euler 139 
without substepping), then no additional approximation error is introduced; an 140 
explanation is given in point PK.7. 141 

• If an element is solved using a higher order method and/or an adaptive-step method, then 142 
its outputs are averaged over the time step before they are used as the inputs to a 143 
downstream element, which does introduce additional numerical approximation error. As 144 
noted by the reviewer, this error will not be "seen" by the adaptive time stepping. This 145 
limitation does not affect stability but impacts on the overall accuracy (truncation error). 146 

Therefore, the SuperflexPy user can still employ adaptive time stepping and higher order 147 
methods, albeit within the stated limitations. We agree these points are pertinent and were not 148 
sufficiently clear in the previous response RC1.8 and in section 5.2 (“Sequential solution of the 149 
elements”) of the documentation. We have now added a brief description of these issues in 150 
section 4.3 of the paper and section 5.2 of the documentation. 151 

We now respond to the specific points raised. 152 

PK.3: RC1.4: Still unclear why the term numerical approximator and not integrator or solver is 153 
used (as in the math-lit), but an improvement is available.  154 

Our implementation of SuperflexPy proposes a specific architecture for the (numerical) solution 155 
of the ODEs, which considers two functionally distinct procedures, named the "numerical 156 
approximator" and the "root finder". 157 

The “numerical approximator” routine, which is an instance of the abstract class 158 
NumericalApproximator, is responsible for creating a discrete approximation of the 159 
differential equation. For example, when using implicit Euler, the numerical approximator 160 
routine ImplicitEulerPython transforms the differential equation  161 
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where 1tS +  and tS  is the state of the reservoir at the end and beginning of the time step, 165 
respectively; P  is the precipitation over the time step and k  and α  are parameters.  166 

The "root finder" routine, which is an instance of the class RootFinder, is then responsible for 167 
finding the value of 1tS +  such as 1f ( ) 0tS + = . For example, SuperflexPy offers the root solver 168 
PegasusPython, which implements the Pegasus algorithm. 169 

The separation of the overall ODE solution into these two components simplifies the 170 
implementation of new ODE solvers by allowing cleaner re-use of existing procedures. For 171 
example, a numerical approximator can be used with a different root finders with no changes to 172 
its code. In addition, the same root finder could be used with different numerical approximators. 173 

Section 5.1.1 and 5.1.2 of the documentation indicate how to implement new numerical 174 
approximators and root finders by extending the abstract classes NumericalApproximator 175 
and RootFinder. When such architecture is adopted, the new code needed reduces to the 176 
definition of the algebraic approximation of the ODE (for the numerical approximator) and to the 177 
implementation of the algorithm for finding its solution (for the root finder) – i.e., avoiding the 178 
need to implement all the (considerable) auxiliary code that is needed to actually solve the ODE 179 
(e.g., looping in time, interfacing for the ODEsElement, etc.). 180 

In terms of the choice of specific names "numerical approximator" and "root finder", we agree 181 
that many potential alternatives could be possible. However, note that the numerical 182 
approximator on its own does not actually solve or integrate the differential equation. For this 183 
reason we prefer to not use the terms "solver" or "integrator", which in our experience have a 184 
different meaning in the literature. Potentially, the name “integrator” could be assigned to the 185 
combined usage of “numerical approximator” and “root finder” to solve the differential equation, 186 
but in our opinion this is not really necessary and would just complicate the nomenclature. 187 

As part of the manuscript revisions, we have enhanced section 4.3 of the paper and have 188 
restructured section 5.1 of the documentation. In particular the new section 5.1.3 explains how to 189 
implement a numerical solver for the ODEs from scratch, i.e. bypassing the numerical 190 
approximator and the root finder architecture and interfacing directly with the ODEsElement. 191 

PK.4: RC1.5: This was not meant as an implementation question: In cases of rapid, non-linear 192 
changes (eg Power-Law-Equation with an exponent > 4), implicit solvers often fail to converge 193 
for a specific time step – even A-stable solvers like the implicit Euler. Complex solvers (eg. RKF 194 
45, CVODE and many others) use an adaptive time stepping scheme, which is, as the authors 195 
explain in their answer to RC1.8, not suitable for SuperFlexPy. This is important information and 196 
should be mentioned in the section 4.3  197 

For clarity, the original question (RC1.5) was:  198 
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“What happens if the root finding procedure does not converge? Flexible time stepping or 199 
does the implementation stop with an exception? Typically happens with fast snowmelt or 200 
power law equations with a large exponent.” 201 

And our reply was: 202 

“We agree this is an important point. In the Python implementation, we raise an 203 
exception; when using Numba, we return None because Numba does not support 204 
exceptions. In both cases user notices the problem (either the simulation crashes or the 205 
result is plenty of None values).” 206 

We apologize for having mis-understood this question. The wording “does the implementation 207 
stop with an exception?” suggested to us it was a question about the behavior of the 208 
implementation.  209 

We are aware that, in some situations, numerical solvers may fail to converge for a given time 210 
step size. As noted by the reviewer, adaptive time stepping in such cases would reduce the step 211 
size and attempt the step again. 212 

In SuperflexPy, if the implemented fixed-step solvers (implicit or explicit Euler) fail to converge 213 
they do not fall back on other solvers (e.g., reducing the time step or changing the solver 214 
algorithm) but simply fail (i.e., raise an exception in the Python implementation or return None 215 
in the Numba implementation). 216 

However we should add that the "one-element-at-a-time" strategy employed in SuperflexPy (see 217 
PK.2) enables the use of robust solvers that operate on a single ODE at a time. In such cases, the 218 
root finder also operates on a single algebraic equation at a time. Moreover, SuperflexPy 219 
proposes root finders that implement bracketing methods, which are guaranteed to converge (to a 220 
tolerance within the common constraints of floating point arithmetic) as long as the initial 221 
solution bounds are known. The bounds of the solution can be constructed from the reservoir 222 
equations and are provided by the flux methods. For example, the storage cannot be negative and 223 
cannot exceed the current storage plus all the input. In our experience with the earlier 224 
SUPERFLEX-F90, this setup achieves a robust numerical behavior. 225 

Furthermore, as now clarified in PK.2, SuperflexPy users can develop adaptive time stepping 226 
schemes for the single elements with the "constant-flux-within-a-timestep" limitations already 227 
discussed earlier in point PK.2. For this reason, it is also possible to overcome convergence 228 
problems by employing adaptive time stepping to the solution of the single equations. 229 

We have reflected these points in the updated manuscript (section 5.1.5) and documentation 230 
(section 5.1).  231 
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PK.5: RC1.6: Reference is provided now, but the properties of the algorithm should be stated in 232 
the supplemental material (limits and speed of convergance). The algorithm is not explained or 233 
just described as a mixture of regula falsi with the secant method.  234 

We have now added the following content to the Documentation (Section 5.1): 235 

The Pegasus algorithm is a bracket-based nonlinear solver similar to the well-known 236 
Regula Falsi algorithm. It employs a re-scaling of function values at the bracket endpoints 237 
to accelerate convergence for strongly curved functions. The authors of the paper (Dowell 238 
& Jarratt, 1972) claim that the algorithm exhibit superior asymptotic convergence 239 
properties to other modified linear methods. 240 

The reference (Dowell & Jarratt, 1972) provides a complete algorithmic description of the 241 
Pegasus root finder. The algorithm is implemented exactly as described in the reference; hence, 242 
we prefer to avoid duplication of this content. 243 

PK.6: RC1.7: After careful reading of Supl-Section 5.1, I cannot find the information from this 244 
answer. The need for smoothing when using the implicit solver must be mentioned as a one-liner 245 
in the main text.  246 

For clarity, the original question (RC1.7) was:  247 

How do the solvers deal with discontinuous or not continuously differentiable flux 248 
equations? The problem is described by Knoben et al 2019’s MARRMoT Paper, Ch. 2.4 249 
(https://doi.org/10.5194/gmd-12-2463-2019) - it is the reason why I gave up mimicking 250 
exisiting models with CMF. 251 

And our reply was: 252 

This is a pertinent point. Generally speaking the SuperflexPy philosophy is to use smooth 253 
flux functions. This may include applying smoothing to otherwise discontinuous 254 
formulations – please see previous publications such as Kavetski and Kuczera (2007). 255 

That said, if a user wanted to perform modelling experiments with discontinuous flux 256 
functions, the framework enables to do so. The EE solver can work with non-smooth RHS 257 
of the differential equations, whereas the IE solver requires smooth equations. Users 258 
could also integrate in SuperflexPy their own solvers with more specialized techniques for 259 
non-smooth problems. 260 

These points will be noted briefly in the revised paper and documentation. 261 

This aspect is now clarified in the supplementary material, section 5.1 262 

The suggestion to use smooth methods is indeed mentioned in section 5.1 263 
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“SuperflexPy provides two built-in numerical approximators (implicit and explicit Euler) 264 
and a root finder (Pegasus method). These methods are best suited when dealing with 265 
smooth flux functions. If a user wants to experiment with discontinuous flux 266 
functions, other ODE solution algorithms should be considered.” 267 

However, note that the use of non-smooth flux functions could cause convergence problems only 268 
if the root finder does not maintain brackets on the solution– e.g., in the classic Newton-Raphson 269 
root finder. Technically speaking non-smooth flux functions can also be used when the root 270 
finder is implemented using a bracketing algorithm such as bisection or Pegasus (e.g., Press et al., 271 
1992). Indeed, this is another robustness benefit of the "one-element-at-a-time" strategy. 272 

On the other hand, we still recommend smoothing the flux functions because jump discontinuities 273 
in these functions can cause mass balance discrepancies (essentially depending on which side of 274 
the jump discontinuity is used to calculate the fluxes). We have cited the work of Kavetski and 275 
Kuczera (2007) which provide a broader motivation for smoothing the constitutive functions. 276 

We have now mentioned the preference for the usage of smooth flux functions also in the paper, 277 
section 4.3 and elaborated more in the documentation, section 5.1. 278 

PK.7: RC1.8: My concerns about numerical errors by the operator split are explained in the 279 
answer to the reviewers (RC1.8), but have not made it in the manuscript – neither in the main text 280 
nor in the supplemental material. In fact, both m/s and supplement are plainly wrong: m/s l. 514 281 
suggest a free choice for the selected numerical solver and the supplement mat 5.1 suggests RK-282 
solvers as an additional (not yet used) choice. However, RC1.8 explains me (but not the readers), 283 
that only single step Euler solvers are suitable to solve the system as other solvers would 284 
introduce the need for a formal integration of the fluxes over the (outer) timestep: 285 

“When fixed-step solvers are used, this "one-element-at-a-time" strategy is equivalent to 286 
applying the same (fixed-step) solver to the entire ODE system simultaneously (i.e., no additional 287 
approximation error is introduced). “ (from answer to RC1.8)  288 

This section needs to make it in the main text of the manuscript, together with a reference for the 289 
claim. 290 

We agree that information on these numerical issues is pertinent, and have added it to the main 291 
text. The new content includes material from all points listed thus far. 292 

The information provided in the reply to RC1.8 is already present in the documentation. For 293 
clarity, we report here our reply, highlighting in bold the parts that have already been copied in 294 
the documentation in section 5.2, titled “Sequential solution of the elements”: 295 

“The SuperflexPy framework is built on a model representation that maps to a 296 
directional acyclic graph. Model elements are solved sequentially from upstream to 297 
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downstream, with the output from each element being used as input to its 298 
downstream elements. 299 

When fixed-step solvers are used, this "one-element-at-a-time" strategy is equivalent 300 
to applying the same (fixed-step) solver to the entire ODE system simultaneously 301 
(i.e., no additional approximation error is introduced). This is one of the pragmatic 302 
reasons we favor the fixed-step implicit Euler scheme. 303 

When the solvers use internal substepping, then the "one-element-at-a-time" 304 
strategy does introduce additional approximation error. This additional 305 
approximation error is due to treating the fluxes as constant over the time step, 306 
whereas the exact solution would have varying fluxes within the time step. However, 307 
in most practical applications, this "uniform flux" approximation is already applied 308 
to the meteorological inputs (rainfall and PET), hence applying it to internal fluxes 309 
does not represent a large additional approximation. 310 

The option to solve the system of equation jointly would avoid the "constant flux" 311 
approximation for the internal fluxes (but not for the meteorological one). However, the 312 
gain in accuracy is expected to be small and come at the expense of a considerable 313 
computational effort and additional code complexity. 314 

We agree these details are pertinent – they will be explained in the Documentation and a 315 
cross-reference will be added to the Paper. 316 

If individual elements have multiple outgoing fluxes (e.g., streamflow and 317 
evapotranspiration), these are calculated simultaneously by solvers such as IE, and there 318 
is no need to specify an order for how such outgoing fluxes are calculated (it is however 319 
necessary if EE is used).” 320 

Next, we elaborate on the following statement: 321 

“When fixed-step solvers are used, this "one-element-at-a-time" strategy is equivalent to 322 
applying the same (fixed-step) solver to the entire ODE system simultaneously (i.e., no 323 
additional approximation error is introduced)” 324 

In this case, the solution of upstream elements does not require the solution of the downstream 325 
elements. Technically speaking, the Jacobian matrix associated with the system of equations is 326 
lower triangular. Hence, the solution can proceed from upstream to downstream elements with no 327 
further approximation or iteration needed.  328 

As a quick example, consider the system of ODEs for model M4, which has 2 reservoir elements, 329 
UR and FR (section 3.1 of the paper). When discretized using the implicit Euler (IE) scheme, the 330 
following system of nonlinear algebraic equations is obtained: 331 
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where the unknowns are (UR)
1tS +  and (FR)

1tS + , i.e., the storages in element 1 (UR) and element 2 (FR) 333 

respectively (note that (UR)
1tS +  is a function of (UR)

1tS + ). 334 

Equation 1 contains unknown 1, and equation 2 contains both unknowns 1 and 2. Hence the 335 
system of equations (more precisely, its Jacobian matrix) is lower triangular, and can be solved 336 
using forward elimination: solve equation 1 for unknown 1, and then solve equation 2 for 337 
unknown 2 (keeping unknown 1 fixed).  338 

These arguments generalize quite trivially when more than two reservoirs are present. 339 
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  340 

It can be seen that no additional approximations are introduced when solving equations one at a 341 
time starting from unknown 1 and finishing with unknown N. 342 

Note also that this analysis is distinct from the assumption that the fluxes are constant over the 343 
time step (see point PK.2). 344 

Section 5.2 of the documentation is now titled “Sequential solution of the elements and numerical 345 
approximations”. This aspect is also mentioned in section 4.3 of the paper. 346 

PK.8: RK-solvers of nth order use n-1 (or more) substeps to predict the final state at the output 347 
timestep by fitting an nth-order polynom into these substeps. Using the flux at Y(t, S(t)) or Y(t+1, 348 
S(t+1)) is not the correct number, as the solver calculates the ODE between these timesteps and 349 
introduces an uncaught numerical error into the system.  350 

We now provide a new numerical approximator that implements the Runge Kutta 4 (RK4) 351 
algorithm. Note that, however, due to the "constant-within-timestep" approximation (refer to 352 
PK.2), input fluxes to the element are treated as constant; output fluxes, on the other hand, can be 353 
calculated with intermediate states, when solving the differential equation of the element. 354 
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PK.9: While the user is free to use any Jacobian-free root finder, the choice of the ODE-solver is 355 
(obviously) limited to implicit and explicit Euler methods (PECE methods might also an 356 
alternative). There is no interface to calculate the Jacobian matrix of an Element, hence Newton-357 
like root finding algorithms are not suitable.  358 

The lack of facility to communicate the Jacobian of an element was indeed a limitation of the 359 
previous version of SuperflexPy. As part of the revision, and motivated by the reviewer 360 
comment, we have generalized the implementation of the flux function methods to accommodate 361 
the analytical calculation of the derivatives of the fluxes with respect to the state. These values 362 
are then propagated by the numerical approximators and are provided to the root finder. In turn, 363 
this enables the root finder to use algorithms that employ analytical derivatives, such as the 364 
classic Newton-Raphson. We have provided a new root finder NewtonPython that uses 365 
derivatives unless the resulting root jumps out of the brackets, in which case a bisection step is 366 
employed (see Press et al., 1992 for the principles of this algorithm).  367 

For generality, this new functionality is implemented as "optional": if the user implements a new 368 
flux function but does not wish to derive and implement analytical derivatives, they can specify 369 
None as the value and then use a derivative-free root finder such as Pegasus. 370 

Note also that the derivatives can be calculated numerically by the root finder itself as part of its 371 
internal approximations – this option is trivially available to any root finder but can be 372 
computationally expensive and according to the numerical literature is seldom beneficial when 373 
solving scalar equations. 374 

We have updated the documentation (chapters 5, 8 and 10) to reflect this enhancement in the 375 
SuperflexPy framework. 376 

PK.10: The freedom of the solver choice is quite limited by the use of the sequential solution of 377 
the DAG approach – this is of course valid, but should be made explicit.  378 

The new section 5.1.3 of the documentation shows how to implement new solvers “from scratch” 379 
within the limitations stated in PK.2.  380 

MP4:  381 

PK.11: The classical structure of scientific writing is of course not directly fitting with a model 382 
description paper. However, I would see the choice of math, programming language and design 383 
principles rather as the methods of a model implementation and the resulting code and use 384 
examples as the results section. The new, frequent links to other sections, are a poor surrogate 385 
for a cleaner structure but are an improvement over the original manuscript. 386 

As noted in the previous round of reviews, the paper has been organized to cater to two distinct 387 
audiences: 388 
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• general hydrological/environmental modelers with interest in the capabilities and usage 389 
patterns of the software; 390 

• specialist researchers with interest in technical implementation details. 391 

Meeting the expectations of these two audiences requires some compromises. Our choice has 392 
been to progress from simple aspects accessible to the broader audience to more specialized 393 
aspects requiring a stronger technical background in numerical computation and software design. 394 

We appreciate that a specialist reader may prefer a different presentation structure, but putting 395 
highly technical details first could easily confuse readers without a specialist background. With 396 
that in mind, we do appreciate the reviewer feedback that the revision has been an improvement 397 
over the original manuscript. 398 

Additional issues:  399 

Section 4.2:  400 

PK.12: The m/s mentions 8 times the object oriented design of the implementation and but does 401 
not feature the object oriented design choices at a prominent place. The UML-diagram is now 402 
hidden in the last section of the supplemental material. The UML-like diagram should be moved 403 
to the main text in section 4.2, as it is essential for the understanding of the object oriented 404 
design. Now section 4.2 lists, how the OO-design helps to accomplish certain goals, but we, as 405 
the readers, can only guess what that OO-design is.  406 

We fully agree with this comment. The UML diagram has been integrated in section 4.2. 407 

PK.13 [the comment has been re-formatted to facilitate its reading]: Fig 12: I am familiar with 408 
most services and software mentioned in Fig 12 (except binder), however, I had a hard time to 409 
understand it.  410 

1. Mixing cloud services like github, binder, zenodo, and read the docs with a file format 411 
(Jupyter-Notebooks) on an equal level does not help to understand any of these services.  412 

2. Having the developer and the user as the same person (symbol) complicates the 413 
understanding with the blue and black lines.  414 

3. The authors state, that explaining the ecosystem around SuperflexPy is important – while 415 
I do not follow the premise, explaining the services is possibly better done with text. But if 416 
the ecosystem is important enough for a large figure in the main text (while omitting the 417 
UML-Diagram), then the importance should be highlighted throughout the paper, as the 418 
object oriented design is. I still recommend to delete this figure.  419 

4. If the authors are absolutely sure, this figure is needed, they need to  420 
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a. redraw the figure using two persons and kicking out Jupyter-Notebooks (as they 421 
are not a web service themself) and test the figure with friends from the intended 422 
audience 423 

b. explain the figure in much more detail and the role of every mentioned service 424 
therein, and 425 

c. introduce throughout the paper the importance of a webservice ecosystem for 426 
modern model development (eg. mention in section 1.2, practical criteria).  427 

5. However, as of now, this figure is hardly explained, and someone who is not familiar with 428 
these services will not profit from it. Even worse, the figure in its current state is prone to 429 
misunderstandings and does a disservice to the paper. Moving the figure as is to the 430 
supplement material does not solve the issues mentioned above.  431 

We believe that a brief description of the "ecosystem" of web services is important for general 432 
users in the hydrological community, who in our experience are often not up-to-date with many 433 
of these web services/tools. Figure 12 is intended to help readers navigate the way SuperflexPy is 434 
integrated into this broader ecosystem. That said, we agree with several points made by the 435 
reviewer regarding some technical inaccuracies/confusions in the way Figure 12 was presented, 436 
and have made the following changes to the figure: 437 

• Removed Jupyter as it is indeed a file format not a web service 438 
• Distinguished the "user" from the "developer" 439 
• Distinguished automated steps (dashed lines) from “manual” steps (continuous lines) 440 

Moreover, as suggested by the reviewer, we have enhanced the main text to motivate the 441 
importance of a deployment pipeline and of using web services in the introduction of the paper 442 
(lines 179-181). 443 

A succinct explanation of the tools and their roles depicted in Figure 12 can be found in the main 444 
text Section 5.1.3 445 

Figure 12 shows the online software management tools that are used to develop and 446 
deploy SuperflexPy. The framework itself, including source code, documentation, 447 
examples, etc., is hosted on GitHub. Automated workflows are then used to create new 448 
releases (PyPI), get DOIs for the software releases (Zenodo), host the documentation 449 
(ReadTheDocs), and run the examples (Jupyter and Binder).  450 

A more detailed explanation is provided in the documentation Chapter 2, which shows already 451 
the same picture and explains, with greater detail, the role of the services (Binder was missing 452 
and has been now added) 453 
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The source code, documentation, and examples are part of the official repository of 454 
SuperflexPy hosted on GitHub. A user who wishes to read the source code and/or modify 455 
any aspect of SuperflexPy (source code, documentation, and examples) can do it using 456 
GitHub. 457 

New releases of the software are available from the official Python Package Index (PyPI), 458 
where SuperflexPy has a dedicated page. [link to the PyPI page] 459 

The documentation builds automatically from the source folder on GitHub and is 460 
published online in Read the Docs. [link to the documentation] 461 

Examples are available on GitHub as Jupyter notebooks. These examples can be 462 
visualized statically or run in a sandbox environment (see Examples for further details). 463 
[Link to a page in the documentation that lists the examples and links to GitHub and 464 
Binder] 465 

We thank the reviewer for their feedback on this important usability aspect, which is now 466 
presented in a clearer and technically more sound way. 467 

PK.14: Jansen et al (2020) reference: This is unpublished work, and I as a reviewer am unable to 468 
check the content of this reference and review its role in the paper. The author’s claim about its 469 
content might be wrong. As such, the reference needs to be removed. If a public preprint had 470 
been cited, this problem would not exist. 471 

The reference in question is the following one: 472 

Jansen, K. F., Teuling, A. J., Craig, J. R., Dal Molin, M., Knoben, W. J. M., Parajka, J., Vis, 473 
M., and Melsen, L. A.: Mimicry of a conceptual hydrological model (HBV): What’s in a 474 
name?, Water Resources Research, n/a, e2020WR029143, 475 
https://doi.org/10.1029/2020WR029143, 2021. 476 

That paper is not unpublished work - it was accepted before the previous revision of the 477 
SuperflexPy manuscript was re-submitted, and the reference given was (and still is) for the 478 
accepted paper.  479 

We checked that the doi is working properly, so that the Reviewer can certainly access it if they 480 
wish. We understand that the "n/a" may have caused some confusion, and have corrected it. 481 
  482 

https://doi.org/10.1029/2020WR029143
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Response to comments by AR2 483 

AR2.1: The authors have done a commendable job addressing the detailed comments of the 484 
reviews. While there was quite a bit of "pushback" with respect to reviewer suggestions for 485 
including more rigorous comparisons with existing frameworks and inclusion of more 486 
implementation details, I found their arguments for resisting these recommendations for the most 487 
part convincing, and they have done an effective job addressing the spirit of these comments 488 
without (for instance) over-duplicating the contents of the software documentation or getting 489 
pulled into the details of an exhaustive model intercomparison. As such, I recommend acceptance 490 
subject to (very) minor revision. 491 

We thank the reviewer for their recognition of our effort in improving the paper and for their 492 
appreciation of our reasoning against some earlier proposed changes (where those would have 493 
been impractical within the scope of the current paper). 494 

Major comment: 495 

AR2.2: I still have a bit of concern with the undue apparent stress on transport simulation 496 
capabilities which are *not present in the existing model*. This is highlighted as a key "realm" in 497 
the application scope (line 193 of marked up revision), at line 203, and elsewhere.  498 

This concern could be mitigated by revising line 193 to "Extendibility for future applications, 499 
e.g., isotope or pesticide transport modelling". Any hydrological model can technically be 500 
extended to support transport, and it is by no means clear that SuperFlexPy is more extendible 501 
than others (without explicitly demonstrating it).  502 

We appreciate the concern of the reviewer. As part of the revisions, to avoid an inadvertent 503 
"undue stress" on this concept, we have checked every mention of "transport simulation" in the 504 
context of SuperflexPy to ensure it clearly refers to extendibility for future applications (thus 505 
addressing the reviewer concerns) rather than a currently available feature. References to 506 
transport simulation in general hydrological modelling contexts (rather than in SuperflexPy-507 
specific contexts) were kept as is, as they indeed provide the motivation to support future 508 
extendibility. 509 

We list below all the sentences in the paper where modelling of transport processes or chemistry 510 
is mentioned (only here, in order to maintain a correspondence between question and answer, line 511 
numbers refer to the marked up version that the reviewers refers to) to clarify our actions: 512 

1. Line 89  513 
“However, their application extends to the simulation of other environmental 514 
variables such as groundwater levels (e.g., Seibert and McDonnell, 2002) and soil 515 
moisture (e.g., Matgen et al., 2012), as well as water chemistry (e.g., Bertuzzo et 516 
al., 2013; Ammann et al., 2020).”  517 
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This sentence is about the general areas of application of hydrological models, not about 518 
SuperflexPy. Therefore, the sentence was kept as is. 519 
 520 

2. Line 189  521 
“In terms of application scope of a flexible framework for conceptual hydrological 522 
modeling, we focus on the following “realms”: [...] Substance transport modelling, 523 
including water isotopes, pesticides, etc”.  524 

We have changed to “Support or extendibility for future applications, e.g. substance 525 
transport modelling, including water isotopes, pesticides, etc.”, as proposed by the 526 
reviewer. Note that this is a general statement for flexible frameworks.  527 
 528 

3. Line 195  529 
“In terms of software implementation, we consider the following practical criteria: 530 
[…] 2. Ease of modification and extension. Even a comprehensive software 531 
implementation will eventually require extension. For example, a modeling 532 
framework intended to simulate streamflow may require extension to simulate 533 
water chemistry.”  534 

This sentence refers to the desired property that a flexible framework should be easy to 535 
modify and extend – and mentions the simulation of transport processes as an example of 536 
possible future extension. SuperflexPy is designed with this requirement in mind (i.e., of 537 
being easy to modify and extend). Therefore, no change has been made – indeed by 538 
definition an example of future extension should be something not implemented in the 539 
current code. 540 
 541 

4. Line 231  542 
“The original Fortran implementation of SUPERFLEX, hereafter referred to as 543 
SUPERFLEX-F90, has been used in a series of case studies over the last decade, 544 
[…] inclusion of pesticide/substance transport (e.g. Ammann et al., 2020).”  545 

This sentence refers to past applications of SUPERFLEX-F90, which does in fact include 546 
a substance transport module.  Note that SUPERFLEX-F90 is a different implementation 547 
that as such is unrelated to SuperflexPy. Therefore, the sentence is factually correct and 548 
was kept as is. 549 
 550 

5. Line 722  551 
“The capability to simulate multiple fluxes and states is intended to support the 552 
extension of SuperflexPy to new modelling scenarios. Several such scenarios may 553 
be of interest, including the transport of chemical substances (e.g., Fenicia et al., 554 
2010; Ammann et al., 2020) […]”.  555 

The sentence lists possible applications where “the capability to simulate multiple fluxes 556 
and states” may be useful. The general ability to simulate multiple fluxes and states does 557 
not imply that specific modelling contexts where such one of the applications is 558 
simulating transport processes does not implies that this is readily available.  559 
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We already have remarked this concept also in the following paragraph (line 730)  560 
“While the current examples in SuperflexPy do not include all the cases listed 561 
above, […]” 562 

We have changed the sentence to “support the future extension” (i.e., adding the word 563 
“future”) to put emphasis, on the fact that this feature is not yet implemented. 564 

These changes address the remaining confusion regarding "what is" vs. "what is not" supported, 565 
and clearly state that transport simulation is currently not supported. 566 

Minor comments: (line numbers refers to marked up manuscript) 567 

AR2.3: line 200- "modifications and extensions"-->"modification and extension" 568 

Thank you – change implemented. 569 

AR2.4: line 217- remove "or even impossible" 570 

Thank you – change implemented. 571 

AR2.5: line 244- "highlighted implementation choices" - such as? This is very vague. If you are 572 
going to note that SuperFlexPy will address these limitations, you have to state what they are. 573 

We agree this was vague. We have clarified on line 207 that this mainly refers to the use of a 574 
"master template" from which specific model structures are derived. Note that subsequent Tables 575 
1 and 2 provide a detailed summary of differences, which are moreover discussed in the text in 576 
section 5.1. 577 

AR2.6: line 383- The value of the stand alone statement "All SuperFlexPy componets are..." is 578 
unclear (as is the connection to the previous paragraph). What does it mean to be "characterized 579 
by" a state or parameter? 580 

This sentence introduces that SuperflexPy components have states and parameters. We have 581 
changed “characterized by” to “have” for clarity. 582 

AR2.7: line 409- "More specifically" ->"Specifically" 583 

Thank you – change implemented. 584 

AR2.8: references- some cleanup of the references is needed w.r.t. inconsistent capitalization, 585 
etc. 586 

Thank you for noticing this - we have now fixed all issues we could spot. 587 
  588 
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