
Page 1 of 20

Response to the reviews of “SuperflexPy 1.2.1: An open source 1
Python framework for building, testing and improving conceptual 2
hydrological models.” 3

We thank the two reviewers and the Editor for their careful reading of the manuscript. Their 4
additional insightful feedback and suggestions have helped us further improve the manuscript and 5
address remaining issues. 6

In the remainder of this document, the original comments by the reviewers are in typeset in blue 7
and italics font and our replies are typeset in black font. The two reviewers are referred to as PK 8
(Dr. Philipp Kraft) and AR2 (Anonymous Referee #2). 9

 10

Page 2 of 20

Response to comments by the Editor (Dr. Andrew Wickert) 11

Dear authors, 12

Thank you for your diligent revisions. After carefully reviewing both referee reports, as well as 13
your response to the referees, I agree with them about some significant additional improvements 14
that the manuscript will require prior to consideration for publication in GMD. Referee 1 has 15
several substantial concerns, and Referee 2 suggests minor revisions but does have one major 16
concern regarding the focus on transport vs. its apparent non-implementation in the current 17
version of your code base. 18

I look forward to seeing a revised manuscript following your work to address these comments. 19

We thank the Editor and the reviewers for acknowledging our effort in improving the manuscript 20
addressing most of their earlier comments, which in particular helped us clarify the contribution 21
of SuperflexPy and place it in a better context in relation to other hydrological models. 22

We appreciate the additional reviewers’ comments, which we address in this document. 23

Page 3 of 20

Response to comments by PK (Dr. Philip Kraft) 24

The manuscript has been improved in several areas, but especially the mathematical description 25
needs improvement. 26

We thank the reviewer for a very careful review of the manuscript and for multiple detailed 27
comments, all of them with clear technical merit. Motivated by the reviewer’s comments on 28
numerical aspects, we have made several enhancements to increase the functionality of 29
SuperflexPy and better demonstrate its capabilities. In particular, we have implemented: (i) a new 30
numerical approximator implementing the Runge-Kutta 4 method (within the constraints of the 31
"constant-within-timestep" approximation of fluxes explained in point PK.2), (ii) a new root 32
finder implementing a Newton-bisection method that uses the analytical derivatives of the fluxes. 33

We appreciate the interest of the reviewer in numerical aspects of hydrological modelling and, 34
consequently, of SuperflexPy. As authors, we of course also share these interests, and have 35
historically pursued some of them in previous publications. We have responded to all technical 36
questions below, explaining the organization of SuperflexPy numerical implementation, how it is 37
intended to operate and have provided a clearer description of its assumptions and limitations. 38
This is certainly an important improvement to the presentation. 39

With that in mind, we now also note, both here and in the manuscript itself, that SuperflexPy is 40
"primarily" intended for experimentation with the conceptual model structure, with "secondary" 41
options to experiment with the numerical implementation. This choice is in line with the target 42
audience of the paper (general hydrological/environmental modelers), as explained in point 43
PK.11. For these reasons, in order to keep the manuscript focused, we have opted to preserve the 44
overall balance of the presentation which focuses on these conceptual modelling aspects and their 45
software implementation, and have avoided adding a large amount of numerical detail, which as 46
we note below generally follows the recommendations from previous publications. 47

Further, some questions raised by the reviewer have prompted us to reflect more deeply on the 48
assumptions made in "practical" numerical approximations. That is a large research topic in its 49
own right – and while related to it is nonetheless distinct from the current paper, which focuses 50
on the software implementation of a flexible structure model. As such, several of these questions 51
deserve a separate study where they can be investigated – and reviewed – in appropriate depth. It 52
would be an injustice to these questions to be tacked in somewhere in this paper, and presenting 53
them without a suitably detailed (and therefore length) context could cause confusion to readers 54
without the technical background of the reviewer. We hope the reviewer appreciates this 55
perspective. In any case we once again thank the reviewer for eliciting these clarifications and 56
reflection, which we agree and hope will reduce the potential for reader confusion. We also hope 57
they can lead to follow up studies focused more specifically on numerical implementations. 58

We should also add here that we agree with the reviewer on the need for a better description and 59
illustration (in Figure 12, now 13 in the re-submitted manuscript) of how SuperflexPy is 60

Page 4 of 20

integrated into the ecosystem of modern online software management tools, and on the need for 61
the UML diagram to be included in the main text (Figure 12 in the re-submitted manuscript). Our 62
responses to all these issues are provided below. 63

MP1 and MP2: 64

PK.1: The discussion issue (MP1, PK1.1) has been solved in the revision and the manuscript has 65
been much improved, both by toning down the introduction and by expanding section 5. The same 66
applies to MP2. 67

We thank the reviewer for acknowledging our effort in improving the paper with respect to these 68
points. 69

PK.2: MP3: This issue is not solved sufficiently and needs improvement prior to publication. 70

We agree that numerical aspects are very important in a hydrological modelling software. For this 71
reason, SuperflexPy is designed to provide a balance of efficiency and flexibility in the selection 72
of numerical solvers within the constraints imposed by the assumed model architecture (DAG). 73
We agree with the reviewer that some of these ideas were not so clear in the previous submission 74
- therefore we take the opportunity to clarify them here and in the revised manuscript. 75

Before moving to the specific comments, we describe in a consolidated way the numerics of 76
SuperflexPy and their relationship to the DAG assumption as well as additional approximations. 77

Our design of SuperflexPy is oriented towards facilitating experimentation with the conceptual 78
model structure, including the number and connectivity of storage elements, the shape and 79
parameterization of constitutive functions, spatial discretization, and so forth. For pragmatic 80
reasons, we have made some assumptions in the numerical approximation that, while robust in 81
their own right, do limit to some extent the numerical flexibility of the framework and have some 82
implications when techniques such as adaptive time stepping are used. We thank the reviewer for 83
identifying several of these limitations. Note also that these choices are based on our previous 84
research publications and general experience with flexible modelling frameworks, which 85
included detailed testing of multiple numerical algorithms (notably Clark & Kavetski, 2010; 86
Kavetski & Clark, 2010). These earlier studies have indicated that the implicit Euler scheme with 87
fixed time step is a robust choice for general hydrological modelling, which is the application that 88
SuperflexPy is designed for. Nevertheless, SuperflexPy does offer some flexibility in the choice 89
of numerical solvers, within the restrictions explained below. 90

SuperflexPy requires the conceptual model architecture to be defined as a directional acyclic 91
graph (DAG), which implies some restrictions in the coupling of equations. If the model structure 92
is not a DAG, then the model structure must be transformed in a DAG, e.g., by encapsulating the 93
part of the structure that contains feedbacks into a self-contained new element. This is already 94
discussed in section 5.2 of the paper and section 5.2 of the documentation. 95

Page 5 of 20

Model structures without feedbacks (i.e., DAGs) offer several practical advantages, as already 96
elaborated in Section 5.1.1 of the paper. From the numerical perspective, such models lend 97
themselves to the simple "one-element-at-a-time" numerical solution approach, which reduces the 98
solution of an ODE system to the solution of a sequence of multiple scalar ODEs. Note that, if 99
the model structure is a DAG, the "one-element-at-a-time" approach per se does not introduce 100
additional numerical errors. 101

However, within the "one-element-at-a-time" approach, we make the (additional) numerical 102
approximation that the input fluxes into each element are constant within the model time step t∆ . 103
This approximation is consistent with the typical format of hydrological data, such as rainfall, 104
PET, etc, which are tabulated in discrete steps (e.g., daily, hourly, etc). However, in our case we 105
also apply this approximation to internal fluxes. This pragmatic approximation enables a further 106
simplification of the solution procedure, because the output flux from each element becomes a 107
scalar value - however it comes at the cost of introducing additional first-order discretization 108
error, because the variation of internal fluxes within the time step t∆ is ignored. 109

These first order approximations do not impact on time stepping schemes that are first order 110
anyway (e.g., explicit/implicit Euler) and, which, at a given time step, use a single value of input 111
fluxes to estimate a single value of output fluxes. The lack of impact on first order schemes is an 112
appealing practical point because these time stepping schemes methods are commonly used in 113
hydrological models and indeed are recommended for their general robustness (e.g., Kavetski & 114
Clark, 2010). However, second and higher order time stepping schemes, as well as (adaptive) 115
substepping schemes are impacted – because these approaches require input flux values at 116
intermediate points within the time step. The impact of additional errors will reduce the overall 117
accuracy back to first order (with respect to the full exact solution). However, they would not 118
introduce any instabilities and indeed would still permit the advantages of adaptive time stepping 119
in terms of facilitating convergence of the nonlinear root finder (connecting to reviewer's specific 120
comment in point PK.6). 121

For completeness, we should also note that the "constant-within-timestep" approximation of 122
fluxes is not per se a direct requirement for the "one-element-at-a-time" strategy (nor of the DAG 123
assumption). Potentially, each element could output fluxes that vary within the time step t∆ , 124
allowing for a reduction (or even elimination) of these additional flux averaging errors. A more 125
general implementation of SuperflexPy could adopt a different format for the fluxes – for 126
example, using (instead of a single number) a look-up array of values, a function, or another data 127
structure that allows for “time queries”, etc. This approach would (potentially) re-enable higher 128
order schemes and adaptive time stepping schemes to reach their formal asymptotic order of 129
accuracy. However, we have not pursued these options in the current version of SuperflexPy, 130
because the asymptotic order of accuracy (i.e., the order of accuracy as 0t∆ →) is far from the 131
main concern when hydrological models are applied with input data resolution as course as daily. 132
Moreover, for say a Runge Kutta 4 solver to achieve genuine 4th order accuracy would require a 133
4th order approximation of the rainfall and PET time series, which as such as impossible with 134

Page 6 of 20

practical data. For these and other reasons we favour the current numerical implementation based 135
on the fixed step implicit Euler scheme, - indeed this implementation was used in all previous 136
SUPERFLEX-F90 case studies. 137

In summary, the numerical implementation within SuperflexPy has the following characteristics: 138

• If each element is solved using a non-adaptive first order method (e.g., implicit Euler 139
without substepping), then no additional approximation error is introduced; an 140
explanation is given in point PK.7. 141

• If an element is solved using a higher order method and/or an adaptive-step method, then 142
its outputs are averaged over the time step before they are used as the inputs to a 143
downstream element, which does introduce additional numerical approximation error. As 144
noted by the reviewer, this error will not be "seen" by the adaptive time stepping. This 145
limitation does not affect stability but impacts on the overall accuracy (truncation error). 146

Therefore, the SuperflexPy user can still employ adaptive time stepping and higher order 147
methods, albeit within the stated limitations. We agree these points are pertinent and were not 148
sufficiently clear in the previous response RC1.8 and in section 5.2 (“Sequential solution of the 149
elements”) of the documentation. We have now added a brief description of these issues in 150
section 4.3 of the paper and section 5.2 of the documentation. 151

We now respond to the specific points raised. 152

PK.3: RC1.4: Still unclear why the term numerical approximator and not integrator or solver is 153
used (as in the math-lit), but an improvement is available. 154

Our implementation of SuperflexPy proposes a specific architecture for the (numerical) solution 155
of the ODEs, which considers two functionally distinct procedures, named the "numerical 156
approximator" and the "root finder". 157

The “numerical approximator” routine, which is an instance of the abstract class 158
NumericalApproximator, is responsible for creating a discrete approximation of the 159
differential equation. For example, when using implicit Euler, the numerical approximator 160
routine ImplicitEulerPython transforms the differential equation 161

 d
d
S P kS
t

α= − 162

into the algebraic function 163

 1
1 1f)(t t

t t
S PS S kS

t
α+

+ += − +
∆
− 164

Page 7 of 20

where 1tS + and tS is the state of the reservoir at the end and beginning of the time step, 165
respectively; P is the precipitation over the time step and k and α are parameters. 166

The "root finder" routine, which is an instance of the class RootFinder, is then responsible for 167
finding the value of 1tS + such as 1f () 0tS + = . For example, SuperflexPy offers the root solver 168
PegasusPython, which implements the Pegasus algorithm. 169

The separation of the overall ODE solution into these two components simplifies the 170
implementation of new ODE solvers by allowing cleaner re-use of existing procedures. For 171
example, a numerical approximator can be used with a different root finders with no changes to 172
its code. In addition, the same root finder could be used with different numerical approximators. 173

Section 5.1.1 and 5.1.2 of the documentation indicate how to implement new numerical 174
approximators and root finders by extending the abstract classes NumericalApproximator 175
and RootFinder. When such architecture is adopted, the new code needed reduces to the 176
definition of the algebraic approximation of the ODE (for the numerical approximator) and to the 177
implementation of the algorithm for finding its solution (for the root finder) – i.e., avoiding the 178
need to implement all the (considerable) auxiliary code that is needed to actually solve the ODE 179
(e.g., looping in time, interfacing for the ODEsElement, etc.). 180

In terms of the choice of specific names "numerical approximator" and "root finder", we agree 181
that many potential alternatives could be possible. However, note that the numerical 182
approximator on its own does not actually solve or integrate the differential equation. For this 183
reason we prefer to not use the terms "solver" or "integrator", which in our experience have a 184
different meaning in the literature. Potentially, the name “integrator” could be assigned to the 185
combined usage of “numerical approximator” and “root finder” to solve the differential equation, 186
but in our opinion this is not really necessary and would just complicate the nomenclature. 187

As part of the manuscript revisions, we have enhanced section 4.3 of the paper and have 188
restructured section 5.1 of the documentation. In particular the new section 5.1.3 explains how to 189
implement a numerical solver for the ODEs from scratch, i.e. bypassing the numerical 190
approximator and the root finder architecture and interfacing directly with the ODEsElement. 191

PK.4: RC1.5: This was not meant as an implementation question: In cases of rapid, non-linear 192
changes (eg Power-Law-Equation with an exponent > 4), implicit solvers often fail to converge 193
for a specific time step – even A-stable solvers like the implicit Euler. Complex solvers (eg. RKF 194
45, CVODE and many others) use an adaptive time stepping scheme, which is, as the authors 195
explain in their answer to RC1.8, not suitable for SuperFlexPy. This is important information and 196
should be mentioned in the section 4.3 197

For clarity, the original question (RC1.5) was: 198

Page 8 of 20

“What happens if the root finding procedure does not converge? Flexible time stepping or 199
does the implementation stop with an exception? Typically happens with fast snowmelt or 200
power law equations with a large exponent.” 201

And our reply was: 202

“We agree this is an important point. In the Python implementation, we raise an 203
exception; when using Numba, we return None because Numba does not support 204
exceptions. In both cases user notices the problem (either the simulation crashes or the 205
result is plenty of None values).” 206

We apologize for having mis-understood this question. The wording “does the implementation 207
stop with an exception?” suggested to us it was a question about the behavior of the 208
implementation. 209

We are aware that, in some situations, numerical solvers may fail to converge for a given time 210
step size. As noted by the reviewer, adaptive time stepping in such cases would reduce the step 211
size and attempt the step again. 212

In SuperflexPy, if the implemented fixed-step solvers (implicit or explicit Euler) fail to converge 213
they do not fall back on other solvers (e.g., reducing the time step or changing the solver 214
algorithm) but simply fail (i.e., raise an exception in the Python implementation or return None 215
in the Numba implementation). 216

However we should add that the "one-element-at-a-time" strategy employed in SuperflexPy (see 217
PK.2) enables the use of robust solvers that operate on a single ODE at a time. In such cases, the 218
root finder also operates on a single algebraic equation at a time. Moreover, SuperflexPy 219
proposes root finders that implement bracketing methods, which are guaranteed to converge (to a 220
tolerance within the common constraints of floating point arithmetic) as long as the initial 221
solution bounds are known. The bounds of the solution can be constructed from the reservoir 222
equations and are provided by the flux methods. For example, the storage cannot be negative and 223
cannot exceed the current storage plus all the input. In our experience with the earlier 224
SUPERFLEX-F90, this setup achieves a robust numerical behavior. 225

Furthermore, as now clarified in PK.2, SuperflexPy users can develop adaptive time stepping 226
schemes for the single elements with the "constant-flux-within-a-timestep" limitations already 227
discussed earlier in point PK.2. For this reason, it is also possible to overcome convergence 228
problems by employing adaptive time stepping to the solution of the single equations. 229

We have reflected these points in the updated manuscript (section 5.1.5) and documentation 230
(section 5.1). 231

Page 9 of 20

PK.5: RC1.6: Reference is provided now, but the properties of the algorithm should be stated in 232
the supplemental material (limits and speed of convergance). The algorithm is not explained or 233
just described as a mixture of regula falsi with the secant method. 234

We have now added the following content to the Documentation (Section 5.1): 235

The Pegasus algorithm is a bracket-based nonlinear solver similar to the well-known 236
Regula Falsi algorithm. It employs a re-scaling of function values at the bracket endpoints 237
to accelerate convergence for strongly curved functions. The authors of the paper (Dowell 238
& Jarratt, 1972) claim that the algorithm exhibit superior asymptotic convergence 239
properties to other modified linear methods. 240

The reference (Dowell & Jarratt, 1972) provides a complete algorithmic description of the 241
Pegasus root finder. The algorithm is implemented exactly as described in the reference; hence, 242
we prefer to avoid duplication of this content. 243

PK.6: RC1.7: After careful reading of Supl-Section 5.1, I cannot find the information from this 244
answer. The need for smoothing when using the implicit solver must be mentioned as a one-liner 245
in the main text. 246

For clarity, the original question (RC1.7) was: 247

How do the solvers deal with discontinuous or not continuously differentiable flux 248
equations? The problem is described by Knoben et al 2019’s MARRMoT Paper, Ch. 2.4 249
(https://doi.org/10.5194/gmd-12-2463-2019) - it is the reason why I gave up mimicking 250
exisiting models with CMF. 251

And our reply was: 252

This is a pertinent point. Generally speaking the SuperflexPy philosophy is to use smooth 253
flux functions. This may include applying smoothing to otherwise discontinuous 254
formulations – please see previous publications such as Kavetski and Kuczera (2007). 255

That said, if a user wanted to perform modelling experiments with discontinuous flux 256
functions, the framework enables to do so. The EE solver can work with non-smooth RHS 257
of the differential equations, whereas the IE solver requires smooth equations. Users 258
could also integrate in SuperflexPy their own solvers with more specialized techniques for 259
non-smooth problems. 260

These points will be noted briefly in the revised paper and documentation. 261

This aspect is now clarified in the supplementary material, section 5.1 262

The suggestion to use smooth methods is indeed mentioned in section 5.1 263

Page 10 of 20

“SuperflexPy provides two built-in numerical approximators (implicit and explicit Euler) 264
and a root finder (Pegasus method). These methods are best suited when dealing with 265
smooth flux functions. If a user wants to experiment with discontinuous flux 266
functions, other ODE solution algorithms should be considered.” 267

However, note that the use of non-smooth flux functions could cause convergence problems only 268
if the root finder does not maintain brackets on the solution– e.g., in the classic Newton-Raphson 269
root finder. Technically speaking non-smooth flux functions can also be used when the root 270
finder is implemented using a bracketing algorithm such as bisection or Pegasus (e.g., Press et al., 271
1992). Indeed, this is another robustness benefit of the "one-element-at-a-time" strategy. 272

On the other hand, we still recommend smoothing the flux functions because jump discontinuities 273
in these functions can cause mass balance discrepancies (essentially depending on which side of 274
the jump discontinuity is used to calculate the fluxes). We have cited the work of Kavetski and 275
Kuczera (2007) which provide a broader motivation for smoothing the constitutive functions. 276

We have now mentioned the preference for the usage of smooth flux functions also in the paper, 277
section 4.3 and elaborated more in the documentation, section 5.1. 278

PK.7: RC1.8: My concerns about numerical errors by the operator split are explained in the 279
answer to the reviewers (RC1.8), but have not made it in the manuscript – neither in the main text 280
nor in the supplemental material. In fact, both m/s and supplement are plainly wrong: m/s l. 514 281
suggest a free choice for the selected numerical solver and the supplement mat 5.1 suggests RK-282
solvers as an additional (not yet used) choice. However, RC1.8 explains me (but not the readers), 283
that only single step Euler solvers are suitable to solve the system as other solvers would 284
introduce the need for a formal integration of the fluxes over the (outer) timestep: 285

“When fixed-step solvers are used, this "one-element-at-a-time" strategy is equivalent to 286
applying the same (fixed-step) solver to the entire ODE system simultaneously (i.e., no additional 287
approximation error is introduced). “ (from answer to RC1.8) 288

This section needs to make it in the main text of the manuscript, together with a reference for the 289
claim. 290

We agree that information on these numerical issues is pertinent, and have added it to the main 291
text. The new content includes material from all points listed thus far. 292

The information provided in the reply to RC1.8 is already present in the documentation. For 293
clarity, we report here our reply, highlighting in bold the parts that have already been copied in 294
the documentation in section 5.2, titled “Sequential solution of the elements”: 295

“The SuperflexPy framework is built on a model representation that maps to a 296
directional acyclic graph. Model elements are solved sequentially from upstream to 297

Page 11 of 20

downstream, with the output from each element being used as input to its 298
downstream elements. 299

When fixed-step solvers are used, this "one-element-at-a-time" strategy is equivalent 300
to applying the same (fixed-step) solver to the entire ODE system simultaneously 301
(i.e., no additional approximation error is introduced). This is one of the pragmatic 302
reasons we favor the fixed-step implicit Euler scheme. 303

When the solvers use internal substepping, then the "one-element-at-a-time" 304
strategy does introduce additional approximation error. This additional 305
approximation error is due to treating the fluxes as constant over the time step, 306
whereas the exact solution would have varying fluxes within the time step. However, 307
in most practical applications, this "uniform flux" approximation is already applied 308
to the meteorological inputs (rainfall and PET), hence applying it to internal fluxes 309
does not represent a large additional approximation. 310

The option to solve the system of equation jointly would avoid the "constant flux" 311
approximation for the internal fluxes (but not for the meteorological one). However, the 312
gain in accuracy is expected to be small and come at the expense of a considerable 313
computational effort and additional code complexity. 314

We agree these details are pertinent – they will be explained in the Documentation and a 315
cross-reference will be added to the Paper. 316

If individual elements have multiple outgoing fluxes (e.g., streamflow and 317
evapotranspiration), these are calculated simultaneously by solvers such as IE, and there 318
is no need to specify an order for how such outgoing fluxes are calculated (it is however 319
necessary if EE is used).” 320

Next, we elaborate on the following statement: 321

“When fixed-step solvers are used, this "one-element-at-a-time" strategy is equivalent to 322
applying the same (fixed-step) solver to the entire ODE system simultaneously (i.e., no 323
additional approximation error is introduced)” 324

In this case, the solution of upstream elements does not require the solution of the downstream 325
elements. Technically speaking, the Jacobian matrix associated with the system of equations is 326
lower triangular. Hence, the solution can proceed from upstream to downstream elements with no 327
further approximation or iteration needed. 328

As a quick example, consider the system of ODEs for model M4, which has 2 reservoir elements, 329
UR and FR (section 3.1 of the paper). When discretized using the implicit Euler (IE) scheme, the 330
following system of nonlinear algebraic equations is obtained: 331

Page 12 of 20

() ()

() ()

(UR)

(UR) (FR)

(UR) (UR)(UR) (UR)
1 (UR)1

P 1(UR) (UR)
1

(FR) (FR)
(UR) (FR) (FR)1

1 1

..... equation 1 (element 1, UR)

..... equation 2 (element 2, FR

1

)

tt t
t

t

t t
t t

SS S P E
m

P
m

P k

S
t S

S S S S
t

β

β α

++
+

+

+
+ +

= −
∆

 +− −
 +
 −

=
∆

−

 332

where the unknowns are (UR)
1tS + and (FR)

1tS + , i.e., the storages in element 1 (UR) and element 2 (FR) 333

respectively (note that (UR)
1tS + is a function of (UR)

1tS +). 334

Equation 1 contains unknown 1, and equation 2 contains both unknowns 1 and 2. Hence the 335
system of equations (more precisely, its Jacobian matrix) is lower triangular, and can be solved 336
using forward elimination: solve equation 1 for unknown 1, and then solve equation 2 for 337
unknown 2 (keeping unknown 1 fixed). 338

These arguments generalize quite trivially when more than two reservoirs are present. 339

1 1

2 1 2

3 1 2 3

1 2 3

f () 0
f (,) 0
f (, ,) 0

f (, , ,...) 0N N

S
S S
S S S

S S S S

=
 = =

=

 340

It can be seen that no additional approximations are introduced when solving equations one at a 341
time starting from unknown 1 and finishing with unknown N. 342

Note also that this analysis is distinct from the assumption that the fluxes are constant over the 343
time step (see point PK.2). 344

Section 5.2 of the documentation is now titled “Sequential solution of the elements and numerical 345
approximations”. This aspect is also mentioned in section 4.3 of the paper. 346

PK.8: RK-solvers of nth order use n-1 (or more) substeps to predict the final state at the output 347
timestep by fitting an nth-order polynom into these substeps. Using the flux at Y(t, S(t)) or Y(t+1, 348
S(t+1)) is not the correct number, as the solver calculates the ODE between these timesteps and 349
introduces an uncaught numerical error into the system. 350

We now provide a new numerical approximator that implements the Runge Kutta 4 (RK4) 351
algorithm. Note that, however, due to the "constant-within-timestep" approximation (refer to 352
PK.2), input fluxes to the element are treated as constant; output fluxes, on the other hand, can be 353
calculated with intermediate states, when solving the differential equation of the element. 354

Page 13 of 20

PK.9: While the user is free to use any Jacobian-free root finder, the choice of the ODE-solver is 355
(obviously) limited to implicit and explicit Euler methods (PECE methods might also an 356
alternative). There is no interface to calculate the Jacobian matrix of an Element, hence Newton-357
like root finding algorithms are not suitable. 358

The lack of facility to communicate the Jacobian of an element was indeed a limitation of the 359
previous version of SuperflexPy. As part of the revision, and motivated by the reviewer 360
comment, we have generalized the implementation of the flux function methods to accommodate 361
the analytical calculation of the derivatives of the fluxes with respect to the state. These values 362
are then propagated by the numerical approximators and are provided to the root finder. In turn, 363
this enables the root finder to use algorithms that employ analytical derivatives, such as the 364
classic Newton-Raphson. We have provided a new root finder NewtonPython that uses 365
derivatives unless the resulting root jumps out of the brackets, in which case a bisection step is 366
employed (see Press et al., 1992 for the principles of this algorithm). 367

For generality, this new functionality is implemented as "optional": if the user implements a new 368
flux function but does not wish to derive and implement analytical derivatives, they can specify 369
None as the value and then use a derivative-free root finder such as Pegasus. 370

Note also that the derivatives can be calculated numerically by the root finder itself as part of its 371
internal approximations – this option is trivially available to any root finder but can be 372
computationally expensive and according to the numerical literature is seldom beneficial when 373
solving scalar equations. 374

We have updated the documentation (chapters 5, 8 and 10) to reflect this enhancement in the 375
SuperflexPy framework. 376

PK.10: The freedom of the solver choice is quite limited by the use of the sequential solution of 377
the DAG approach – this is of course valid, but should be made explicit. 378

The new section 5.1.3 of the documentation shows how to implement new solvers “from scratch” 379
within the limitations stated in PK.2. 380

MP4: 381

PK.11: The classical structure of scientific writing is of course not directly fitting with a model 382
description paper. However, I would see the choice of math, programming language and design 383
principles rather as the methods of a model implementation and the resulting code and use 384
examples as the results section. The new, frequent links to other sections, are a poor surrogate 385
for a cleaner structure but are an improvement over the original manuscript. 386

As noted in the previous round of reviews, the paper has been organized to cater to two distinct 387
audiences: 388

Page 14 of 20

• general hydrological/environmental modelers with interest in the capabilities and usage 389
patterns of the software; 390

• specialist researchers with interest in technical implementation details. 391

Meeting the expectations of these two audiences requires some compromises. Our choice has 392
been to progress from simple aspects accessible to the broader audience to more specialized 393
aspects requiring a stronger technical background in numerical computation and software design. 394

We appreciate that a specialist reader may prefer a different presentation structure, but putting 395
highly technical details first could easily confuse readers without a specialist background. With 396
that in mind, we do appreciate the reviewer feedback that the revision has been an improvement 397
over the original manuscript. 398

Additional issues: 399

Section 4.2: 400

PK.12: The m/s mentions 8 times the object oriented design of the implementation and but does 401
not feature the object oriented design choices at a prominent place. The UML-diagram is now 402
hidden in the last section of the supplemental material. The UML-like diagram should be moved 403
to the main text in section 4.2, as it is essential for the understanding of the object oriented 404
design. Now section 4.2 lists, how the OO-design helps to accomplish certain goals, but we, as 405
the readers, can only guess what that OO-design is. 406

We fully agree with this comment. The UML diagram has been integrated in section 4.2. 407

PK.13 [the comment has been re-formatted to facilitate its reading]: Fig 12: I am familiar with 408
most services and software mentioned in Fig 12 (except binder), however, I had a hard time to 409
understand it. 410

1. Mixing cloud services like github, binder, zenodo, and read the docs with a file format 411
(Jupyter-Notebooks) on an equal level does not help to understand any of these services. 412

2. Having the developer and the user as the same person (symbol) complicates the 413
understanding with the blue and black lines. 414

3. The authors state, that explaining the ecosystem around SuperflexPy is important – while 415
I do not follow the premise, explaining the services is possibly better done with text. But if 416
the ecosystem is important enough for a large figure in the main text (while omitting the 417
UML-Diagram), then the importance should be highlighted throughout the paper, as the 418
object oriented design is. I still recommend to delete this figure. 419

4. If the authors are absolutely sure, this figure is needed, they need to 420

Page 15 of 20

a. redraw the figure using two persons and kicking out Jupyter-Notebooks (as they 421
are not a web service themself) and test the figure with friends from the intended 422
audience 423

b. explain the figure in much more detail and the role of every mentioned service 424
therein, and 425

c. introduce throughout the paper the importance of a webservice ecosystem for 426
modern model development (eg. mention in section 1.2, practical criteria). 427

5. However, as of now, this figure is hardly explained, and someone who is not familiar with 428
these services will not profit from it. Even worse, the figure in its current state is prone to 429
misunderstandings and does a disservice to the paper. Moving the figure as is to the 430
supplement material does not solve the issues mentioned above. 431

We believe that a brief description of the "ecosystem" of web services is important for general 432
users in the hydrological community, who in our experience are often not up-to-date with many 433
of these web services/tools. Figure 12 is intended to help readers navigate the way SuperflexPy is 434
integrated into this broader ecosystem. That said, we agree with several points made by the 435
reviewer regarding some technical inaccuracies/confusions in the way Figure 12 was presented, 436
and have made the following changes to the figure: 437

• Removed Jupyter as it is indeed a file format not a web service 438
• Distinguished the "user" from the "developer" 439
• Distinguished automated steps (dashed lines) from “manual” steps (continuous lines) 440

Moreover, as suggested by the reviewer, we have enhanced the main text to motivate the 441
importance of a deployment pipeline and of using web services in the introduction of the paper 442
(lines 179-181). 443

A succinct explanation of the tools and their roles depicted in Figure 12 can be found in the main 444
text Section 5.1.3 445

Figure 12 shows the online software management tools that are used to develop and 446
deploy SuperflexPy. The framework itself, including source code, documentation, 447
examples, etc., is hosted on GitHub. Automated workflows are then used to create new 448
releases (PyPI), get DOIs for the software releases (Zenodo), host the documentation 449
(ReadTheDocs), and run the examples (Jupyter and Binder). 450

A more detailed explanation is provided in the documentation Chapter 2, which shows already 451
the same picture and explains, with greater detail, the role of the services (Binder was missing 452
and has been now added) 453

Page 16 of 20

The source code, documentation, and examples are part of the official repository of 454
SuperflexPy hosted on GitHub. A user who wishes to read the source code and/or modify 455
any aspect of SuperflexPy (source code, documentation, and examples) can do it using 456
GitHub. 457

New releases of the software are available from the official Python Package Index (PyPI), 458
where SuperflexPy has a dedicated page. [link to the PyPI page] 459

The documentation builds automatically from the source folder on GitHub and is 460
published online in Read the Docs. [link to the documentation] 461

Examples are available on GitHub as Jupyter notebooks. These examples can be 462
visualized statically or run in a sandbox environment (see Examples for further details). 463
[Link to a page in the documentation that lists the examples and links to GitHub and 464
Binder] 465

We thank the reviewer for their feedback on this important usability aspect, which is now 466
presented in a clearer and technically more sound way. 467

PK.14: Jansen et al (2020) reference: This is unpublished work, and I as a reviewer am unable to 468
check the content of this reference and review its role in the paper. The author’s claim about its 469
content might be wrong. As such, the reference needs to be removed. If a public preprint had 470
been cited, this problem would not exist. 471

The reference in question is the following one: 472

Jansen, K. F., Teuling, A. J., Craig, J. R., Dal Molin, M., Knoben, W. J. M., Parajka, J., Vis, 473
M., and Melsen, L. A.: Mimicry of a conceptual hydrological model (HBV): What’s in a 474
name?, Water Resources Research, n/a, e2020WR029143, 475
https://doi.org/10.1029/2020WR029143, 2021. 476

That paper is not unpublished work - it was accepted before the previous revision of the 477
SuperflexPy manuscript was re-submitted, and the reference given was (and still is) for the 478
accepted paper. 479

We checked that the doi is working properly, so that the Reviewer can certainly access it if they 480
wish. We understand that the "n/a" may have caused some confusion, and have corrected it. 481
 482

https://doi.org/10.1029/2020WR029143

Page 17 of 20

Response to comments by AR2 483

AR2.1: The authors have done a commendable job addressing the detailed comments of the 484
reviews. While there was quite a bit of "pushback" with respect to reviewer suggestions for 485
including more rigorous comparisons with existing frameworks and inclusion of more 486
implementation details, I found their arguments for resisting these recommendations for the most 487
part convincing, and they have done an effective job addressing the spirit of these comments 488
without (for instance) over-duplicating the contents of the software documentation or getting 489
pulled into the details of an exhaustive model intercomparison. As such, I recommend acceptance 490
subject to (very) minor revision. 491

We thank the reviewer for their recognition of our effort in improving the paper and for their 492
appreciation of our reasoning against some earlier proposed changes (where those would have 493
been impractical within the scope of the current paper). 494

Major comment: 495

AR2.2: I still have a bit of concern with the undue apparent stress on transport simulation 496
capabilities which are *not present in the existing model*. This is highlighted as a key "realm" in 497
the application scope (line 193 of marked up revision), at line 203, and elsewhere. 498

This concern could be mitigated by revising line 193 to "Extendibility for future applications, 499
e.g., isotope or pesticide transport modelling". Any hydrological model can technically be 500
extended to support transport, and it is by no means clear that SuperFlexPy is more extendible 501
than others (without explicitly demonstrating it). 502

We appreciate the concern of the reviewer. As part of the revisions, to avoid an inadvertent 503
"undue stress" on this concept, we have checked every mention of "transport simulation" in the 504
context of SuperflexPy to ensure it clearly refers to extendibility for future applications (thus 505
addressing the reviewer concerns) rather than a currently available feature. References to 506
transport simulation in general hydrological modelling contexts (rather than in SuperflexPy-507
specific contexts) were kept as is, as they indeed provide the motivation to support future 508
extendibility. 509

We list below all the sentences in the paper where modelling of transport processes or chemistry 510
is mentioned (only here, in order to maintain a correspondence between question and answer, line 511
numbers refer to the marked up version that the reviewers refers to) to clarify our actions: 512

1. Line 89 513
“However, their application extends to the simulation of other environmental 514
variables such as groundwater levels (e.g., Seibert and McDonnell, 2002) and soil 515
moisture (e.g., Matgen et al., 2012), as well as water chemistry (e.g., Bertuzzo et 516
al., 2013; Ammann et al., 2020).” 517

Page 18 of 20

This sentence is about the general areas of application of hydrological models, not about 518
SuperflexPy. Therefore, the sentence was kept as is. 519
 520

2. Line 189 521
“In terms of application scope of a flexible framework for conceptual hydrological 522
modeling, we focus on the following “realms”: [...] Substance transport modelling, 523
including water isotopes, pesticides, etc”. 524

We have changed to “Support or extendibility for future applications, e.g. substance 525
transport modelling, including water isotopes, pesticides, etc.”, as proposed by the 526
reviewer. Note that this is a general statement for flexible frameworks. 527
 528

3. Line 195 529
“In terms of software implementation, we consider the following practical criteria: 530
[…] 2. Ease of modification and extension. Even a comprehensive software 531
implementation will eventually require extension. For example, a modeling 532
framework intended to simulate streamflow may require extension to simulate 533
water chemistry.” 534

This sentence refers to the desired property that a flexible framework should be easy to 535
modify and extend – and mentions the simulation of transport processes as an example of 536
possible future extension. SuperflexPy is designed with this requirement in mind (i.e., of 537
being easy to modify and extend). Therefore, no change has been made – indeed by 538
definition an example of future extension should be something not implemented in the 539
current code. 540
 541

4. Line 231 542
“The original Fortran implementation of SUPERFLEX, hereafter referred to as 543
SUPERFLEX-F90, has been used in a series of case studies over the last decade, 544
[…] inclusion of pesticide/substance transport (e.g. Ammann et al., 2020).” 545

This sentence refers to past applications of SUPERFLEX-F90, which does in fact include 546
a substance transport module. Note that SUPERFLEX-F90 is a different implementation 547
that as such is unrelated to SuperflexPy. Therefore, the sentence is factually correct and 548
was kept as is. 549
 550

5. Line 722 551
“The capability to simulate multiple fluxes and states is intended to support the 552
extension of SuperflexPy to new modelling scenarios. Several such scenarios may 553
be of interest, including the transport of chemical substances (e.g., Fenicia et al., 554
2010; Ammann et al., 2020) […]”. 555

The sentence lists possible applications where “the capability to simulate multiple fluxes 556
and states” may be useful. The general ability to simulate multiple fluxes and states does 557
not imply that specific modelling contexts where such one of the applications is 558
simulating transport processes does not implies that this is readily available. 559

Page 19 of 20

We already have remarked this concept also in the following paragraph (line 730) 560
“While the current examples in SuperflexPy do not include all the cases listed 561
above, […]” 562

We have changed the sentence to “support the future extension” (i.e., adding the word 563
“future”) to put emphasis, on the fact that this feature is not yet implemented. 564

These changes address the remaining confusion regarding "what is" vs. "what is not" supported, 565
and clearly state that transport simulation is currently not supported. 566

Minor comments: (line numbers refers to marked up manuscript) 567

AR2.3: line 200- "modifications and extensions"-->"modification and extension" 568

Thank you – change implemented. 569

AR2.4: line 217- remove "or even impossible" 570

Thank you – change implemented. 571

AR2.5: line 244- "highlighted implementation choices" - such as? This is very vague. If you are 572
going to note that SuperFlexPy will address these limitations, you have to state what they are. 573

We agree this was vague. We have clarified on line 207 that this mainly refers to the use of a 574
"master template" from which specific model structures are derived. Note that subsequent Tables 575
1 and 2 provide a detailed summary of differences, which are moreover discussed in the text in 576
section 5.1. 577

AR2.6: line 383- The value of the stand alone statement "All SuperFlexPy componets are..." is 578
unclear (as is the connection to the previous paragraph). What does it mean to be "characterized 579
by" a state or parameter? 580

This sentence introduces that SuperflexPy components have states and parameters. We have 581
changed “characterized by” to “have” for clarity. 582

AR2.7: line 409- "More specifically" ->"Specifically" 583

Thank you – change implemented. 584

AR2.8: references- some cleanup of the references is needed w.r.t. inconsistent capitalization, 585
etc. 586

Thank you for noticing this - we have now fixed all issues we could spot. 587
 588

Page 20 of 20

References 589

Clark, M. P., & Kavetski, D. (2010). Ancient numerical daemons of conceptual hydrological 590
modeling: 1. Fidelity and efficiency of time stepping schemes. Water Resources 591
Research, 46(10). 592
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009WR008894 593

Dowell, M., & Jarratt, P. (1972). The “Pegasus” method for computing the root of an equation. 594
BIT Numerical Mathematics, 12(4), 503-508. https://doi.org/10.1007/BF01932959 595

Kavetski, D., & Clark, M. P. (2010). Ancient numerical daemons of conceptual hydrological 596
modeling: 2. Impact of time stepping schemes on model analysis and prediction. Water 597
Resources Research, 46(10). 598
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009WR008896 599

Press, W. H., Teukolsky, S. A., Flannery, B. P., & Vetterling, W. T. (1992). Numerical recipes in 600
Fortran 77: volume 1, volume 1 of Fortran numerical recipes: the art of scientific 601
computing: Cambridge university press. 602

 603

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009WR008894
https://doi.org/10.1007/BF01932959
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009WR008896

	Response to comments by the Editor (Dr. Andrew Wickert)
	Response to comments by PK (Dr. Philip Kraft)
	Response to comments by AR2
	References

