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Abstract. Atmospheric inversion approaches are expected to play a critical role in future observation-based

monitoring systems for surface fluxes of greenhouse gas (GHG), pollutants and other trace gases. In the

past decade, the research community has developed various inversion softwares, mainly using variational

or ensemble Bayesian optimization methods, with various assumptions on uncertainty structures and prior

information and with various atmospheric chemistry-transport models. Each of them can assimilate some5

or all of the available observation streams for its domain area of interest: flask samples, in-situ measure-

ments or satellite observations. Although referenced in peer-reviewed publications and usually accessible

across the research community, most systems are not at the level of transparency, flexibility and accessibility

needed to provide the scientific community and policy makers with a comprehensive and robust view of

the uncertainties associated with the inverse estimation of GHG and reactive species fluxes. Furthermore,10
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their development, usually carried out by individual research institutes, may in the future not keep pace with

the increasing scientific needs and technical possibilities. We present here a Community Inversion Frame-

work (CIF) to help rationalize development efforts and leverage the strengths of individual inversion systems

into a comprehensive framework. The CIF is primarily a programming protocol to allow various inversion

bricks to be exchanged among researchers. In practice, the ensemble of bricks makes a flexible, transparent5

and open-source python-based tool to estimate the fluxes of various GHGs and reactive species both at the

global and regional scales. It will allow running different atmospheric transport models, different observation

streams and different data assimilation approaches. This adaptability will allow a comprehensive assessment

of uncertainty in a fully consistent framework. We present here the main structure and functionalities of the

system, and demonstrate how it operates in a simple academic case.10

1 Introduction

The role of greenhouse gases (GHGs) in climate change has motivated an exceptional effort over the last cou-

ple of decades to densify the observations of GHGs around the world (Ciais et al., 2014): from the ground,

e.g., with the European Integrated Carbon Observation System (ICOS, https://www.icos-cp.eu/), from mo-

bile platforms (e.g., from aircrafts, or balloons equipped with Aircore sampling; Filges et al., 2016; Karion15

et al., 2010), and from space (e.g., Crisp et al., 2018; Janssens-Maenhout et al., 2020), despite occasional

budgetary difficulties (Houweling et al., 2012). These observations quantify the effect of exchange between

the surface and the atmosphere on GHG concentrations (e.g., Ramonet et al., 2020) and can thus be used

to determine the surface fluxes of GHGs through the inversion of atmospheric chemistry and transport (e.g.,

Peylin et al., 2013; Houweling et al., 2017). Alongside improved observation capabilities, national and inter-20

national initiatives pave the way towards an operational use of atmospheric inversions to support emissions

reporting to the United Nations Framework Convention on Climate Change (UNFCCC; e.g., Say et al.,

2016; Henne et al., 2016; Bergamaschi et al., 2018a; Janssens-Maenhout et al., 2020, or the EU projects

CHE – CO2 Human emissions; che-project.eu – or VERIFY – verify.lsce.ipsl.fr).

In the past, research groups have developed various atmospheric inversion systems based on different25

techniques and atmospheric transport models, targeting specific trace gases or types of observations, and at

various spatial and temporal scales, according to the particular scientific objectives of the study. All these

systems have their own strengths and weaknesses and help explore the range of systematic uncertainty in

the surface to atmosphere fluxes. Inter-comparison exercises are regularly conducted to assess the strengths

and weaknesses of various inversion systems (e.g., Gurney et al., 2003; Peylin et al., 2013; Locatelli et al.,30

2013; Babenhauserheide et al., 2015; Brunner et al., 2017; Bergamaschi et al., 2018b; Chevallier et al., 2019;

Crowell et al., 2019; Monteil et al., 2019; Schuh et al., 2019; Saunois et al., 2020). Inter-comparisons also

provide an assessment of the systematic uncertainty on final flux estimates induced by the variety of options
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and choices in different inversion systems. However, although the inversion systems are referenced in peer-

reviewed literature, and are usually accessible to the research community, they are typically not at the level

of transparency, documentation, flexibility and accessibility required to provide both the scientific commu-

nity and policy makers with a comprehensive and robust view of the uncertainties associated with the inverse

estimation of trace gases (primarily GHGs and reactive species) fluxes. In particular, the differences between5

inversion systems (such as the atmospheric transport model, prior and observation space uncertainties, and

inversion algorithm) make comparing their results particularly challenging, even when they are applied to the

same problem. Moreover, research inversion systems are so far not ready for operational use, and their devel-

opment, usually carried out by individual research institutes or limited consortia, may not keep pace with the

scientific and technical needs to come, such as those linked to the increasing availability of high resolution10

satellite GHG and reactive species observations (Janssens-Maenhout et al., 2020). A unified system, as a

community platform running multiple transport models, with diverse inversion methods, would provide new

possibilities to effectively and comprehensively assess GHG and various reactive species budgets, trends, and

their uncertainties and quantify limitations and development needs related to different approaches, all which

is needed in order to properly support emission reporting. Collaborative efforts towards unified systems are15

already happening in other data assimilation communities, with, e.g., the Object-Oriented Prediction System

(OOPS; coordinated by the European Centre for Medium-range Weather Forecast, UK), or the Joint Effort

for Data Integration (led by UCAR/JCSDA; www.jcsda.org/jcsda-project-jedi). The Data Assimilation Re-

search Testbed (DART; Anderson et al., 2009) is also an example of collective effort proposing common data

assimilation scripts for diverse applications (e.g., Earth system, or reactive species inversions; Gaubert et al.20

2020). The Community Inversion Framework (CIF) is an initiative by members of the GHG atmospheric in-

version community to bring together the different inversion systems used in the community, and is supported

by the European Commission H2020 project VERIFY. The CIF will also support operational applications

of atmospheric inversions in the CoCO2 project (coco2-project.eu), that will design an operational inversion

system based on OOPS and interfaced with the research community through the CIF.25

Despite their differences in methodology, application and implementation, almost all inversion systems

rely on the same conceptual and practical bases: in particular, they use model-observation mismatches in a

statistical optimization framework (most of the time based on Bayes’ Theorem), and numerical atmospheric

tracer transport and chemistry models to simulate mixing ratios of GHGs and trace gases based on surface

fluxes. The objectives of the CIF are to develop a consistent input/model interface, to pool development30

efforts, and to have an inversion tool that is well-documented, open-source, and ready for implementation

in an operational framework. The CIF is designed to be a flexible and transparent tool to estimate the fluxes

of different GHGs (e.g. carbon dioxide CO2, methane CH4, nitrous oxide N2O, or halocarbons) and other

species, such as reactive species (e.g. CO, NO2, HCHO), based on atmospheric measurements. In partic-

ular, although primarily designed for GHGs applications, the CIF is based on a general structure that will35
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allow applications to air quality data assimilation. It is also designed to run at any spatial and temporal

scales and with different atmospheric (chemistry-)transport models (global and regional, Eulerian and La-

grangian), with various observation data streams (ground-based, remote sensing, etc.), and a variety of data

assimilation techniques (variational, analytical, ensemble methods, etc.). It will be possible to run it on mul-

tiple computing environments and corresponding set-ups and tutorials will be well documented. Community5

development will help in tackling the challenges in set-up and running, and accelerate adoption of the tool

into wider use. One of the main foreseen advantages of the CIF is the capability to quantify and compare

the errors due to the modelling of atmospheric transport and the errors due to the choice of a given inversion

approach and set-up to solve a specific problem, in a fully consistent framework. The CIF will provide a

common platform for quickly developing and testing new inversion techniques with several transport mod-10

els, and it is hoped that with the combined community effort, it will be continuously improved and revised,

keeping it state-of-the-art.

In the present paper, we lay out the basis of the CIF, giving details on its underlying principles and

overall implementation. The proof-of-concept focuses on the implementation of several inversion methods,

illustrated with a test case. We will dedicate a future paper to the evaluation of the system on a real-life15

problem with a number of interfaced atmospheric (chemistry-)transport models. At the time of writing the

present article, the following models are interfaced with the CIF: the Global Circulation Models LMDZ

(Chevallier et al., 2005) and TM5 (Krol et al., 2005; van der Laan-Luijkx et al., 2017), the regional chemistry-

transport Eulerian model CHIMERE (Fortems-Cheiney et al., 2021) and the Lagrangian particle dispersion

models FLEXPART (Pisso et al., 2019) and STILT (Trusilova et al., 2010). For the sake of simplicity, we20

refer to all types of (chemistry-)transport models generically as CTMs in the following. In Section 2, we

describe the general theoretical framework for atmospheric inversions and how the CIF will include the

theory in a flexible and general way. In Section 3, the practical implementation of the general design rules is

explained, with details on the python implementation of the CIF. In Section 4, we demonstrate the capabilities

of the CIF in a simple test case, applying various inversion techniques in parallel.25

2 General principle

The version of the CIF presented here is implemented around Bayesian data assimilation methods with

Gaussian assumptions, which constitute the main framework used in the atmospheric inversion systems for

GHG fluxes and other trace gases (e.g., Enting, 2002; Bocquet et al., 2015). However, some studies have

proposed possible extensions to more general probability density functions beyond the classical Gaussian30

case (e.g., truncated Gaussian densities, log-normal distributions, etc.; Michalak and Kitanidis, 2005; Berga-

maschi et al., 2010; Miller et al., 2014; Zammit-Mangion et al., 2015; Lunt et al., 2016; Miller et al., 2019).

Therefore, we propose here a general and flexible structure for our system that will be independent of limiting
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assumptions, as described in Sect 2.3, to allow future extensions to more general theoretical frameworks. In

the following, mathematical formulas are written following notations based on Ide et al. (1997) and Rayner

et al. (2019). We present the theoretical basis and several inversion methods that are implemented in the CIF

as demonstrators.

2.1 General Bayesian data assimilation framework5

The Bayesian approach consists in estimating the following conditional probability density function (pdf):

pa(x) = p(x | yo−H(xb),xb)∝ p(yo−H(x) | x) pb(x) (1)

with x the target vector, pa(x) the posterior distribution of the target vector, pb(x) the prior knowledge of

the target vector, characterized by its mode xb, yo the observation vector gathering all observations imple-

mented in the inversion andH the observation operator linking the target vector to the observation vector. In10

the following, we also refer to X and Y as the target and observation spaces, respectively, from where the

target and observation vectors are sampled. Classically, for atmospheric inversions, the observation vector yo

includes ground-based measurements of trace gases mixing ratios on fixed or mobile platforms, and remote

sensing observations such as satellite observations. The target vector x includes the variables to be optimized

by the inversion; it includes the main variables of interest, such as the surface fluxes, but also variables related15

to atmospheric chemical sources and sinks, background concentrations in the case of limited-area transport

models, model parameters, etc., which are required to make the inversion physically consistent. The obser-

vation operator H mainly includes the computation of atmospheric transport and chemistry (if relevant) by

numerical (chemistry-)transport models. These can be of various types: e.g., global transport models (e.g.,

LMDZ, Chevallier et al. 2010; TM5, Houweling et al. 2014; GEOS-Chem, van der Laan-Luijkx et al. 2017;20

Liu et al. 2015; Palmer et al. 2019; Feng et al. 2017; NICAM, Niwa et al. 2017), regional Eulerian chemistry-

transport models (e.g., CHIMERE, Broquet et al. 2011; Fortems-Cheiney et al. 2021; WRF-CHEM, Zheng

et al. 2018; COSMO-GHG, Kuhlmann et al. 2019; LOTOS-EUROS, Curier et al. 2012) or Lagrangian par-

ticle dispersion models (e.g., FLEXPART, Thompson and Stohl 2014; STILT, Bagley et al. 2017; Brioude

et al. 2013; Trusilova et al. 2010). It also includes pre- and post-processing operations required to project25

the target vector to a format compatible with the model input and the model outputs to the observation vec-

tor; these operations can be the applications of e.g., averaging kernels in the case of satellite operations, or

interpolation of the target vector to higher resolution model inputs.

As errors in inversion systems come from a large variety of independent causes superimposing on each

other, it is often assumed that the most relevant way of representing the distributions in Eq. (1) is to assume30

prior and observation spaces to be normal distributions, noted N (·, ·) below, the first argument representing

the average of the distribution and the second argument the covariance matrix. In addition, when assuming

that the distributions in the state vector space and the observation space are independent from each other, and
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that errors in the observation and the state vector spaces have Gaussian, unbiased distributions, it is possible

mathematically derive the Bayes theorem and to represent the distributions of Eq. (1) as follows:


pb(x) ∼ N (xb, B)

p
(
yo−H(xb)

)
∼ N (0, R)

pa(x) ∼ N (xa, A)

(2)

with B and A the prior and posterior covariance matrix of uncertainties in the target vector, xb and xa the

prior and posterior target vectors and R the covariance matrix of uncertainties in the observation vector and5

the observation operator.

The assumption that errors are unbiased, which makes it possible to write normal distributions in Eq. (1)

with means xb, 0 and xa respectively, is needed to simplify the formulation of the Bayesian problem in

atmospheric inversions. Neglecting error biases have known impacts on inversion results (e.g., Masarie

et al., 2011); they can be accounted for online as an unknown to be solved by the inversion (e.g., Zammit-10

Mangion et al., 2021), but are often treated offline from the inversion, either through pre-processing of inputs

or post-processing of outputs.

2.2 Computation modes in the CIF

The present version of the CIF includes three main categories of inversion methods: 1) analytical, i.e. alge-

braic solution of the unbiased Gaussian Bayesian problem, 2) ensemble methods with the Ensemble Square15

Root Filter (EnSRF), and 3) variational with two examples of minimizing algorithms (M1QN3 and CON-

GRAD). Other types of data assimilation methods (e.g. direct sampling of probability density functions

through Monte Carlo approaches) are also used by the community. The choice of implementing the three

aforementioned methods first is motivated by their dominant use, and because these three use very different

approaches for solving the Bayesian inversion problem: that is, with/without random sampling of probability20

distributions, and with/without the use of the adjoint of the observation operator. The adjoint of the observa-

tion operator, notedH∗, is built following the mathematical definition of the adjoint; heuristically, it operates

backwards compared to the observation operator (e.g., Errico, 1997) in the sense that it determines the sen-

sitivity to inputs (e.g. fluxes) given an incremental perturbation to outputs (e.g. concentrations). In addition

to the mentioned data assimilation methods, the CIF also includes the possibility to run forward simulations25

and to test the adjoint and the tangent linear of the observation operator for given inversion configurations. In

the following we call all inversion methods and other types of computation in the CIF "computation modes".

With these computation modes implemented in a flexible and general manner, it is anticipated that other

inversion methods could be easily added to the CIF in the future (see Sect. 2.3).
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2.2.1 Data assimilation methods

Analytical inversions

Analytical inversions compute the algebraic solution of the Gaussian Bayesian problem when it is linear

and are used extensively at all scales (e.g., Stohl et al., 2009; Turner and Jacob, 2015; Kopacz et al., 2009;

Bousquet et al., 2011; Wang et al., 2018; Palmer et al., 2006). When the observation operator is linear, H5

equals its Jacobian matrix H, and conversely its adjointH∗ is the transpose of the Jacobian HT. In that case,

xa and A can be explicitly written as matrix products. There are two equivalent formulations of the matrix

products for the solution of the problem (e.g., Tarantola and Valette, 1982):

 xa = xb + K(yo−Hxb)

A = B−KHB
or

 xa = xb + (HTR−1H + B−1)−1HTR−1(yo−Hxb)

A = (HTR−1H + B−1)−1
(3)

with K the Kalman gain matrix: K = BHT(R + HBHT)−110

Analytical inversions can also be used on slightly non-linear problems, by linearizing the observation

operator around a given reference point using the tangent linear of the observation operator. It formulates as

follows:

H(xb + δx)≈H(xb) + dHxb(δx) =H(xb) + Hxbδx (4)

with δx a small deviation from xb within a domain where the linear assumption is valid, dHxb the tangent-15

linear ofH at xb and Hxb the Jacobian matrix ofH at xb.

Then Eq. (3) can be easily adapted by replacing (yo−Hxb) by (yo−H(xb)) and H by Hxb .

The computation of an analytical inversion faces two main computational limitations. First, the matrix H

representing the observation operatorH must be built explicitly. This can be done either column by column,

in the so-called response function method, or row by row, in the so-called footprint method. The two ap-20

proaches require dim(X ), the dimension of the target space and dim(Y), the dimension of the observation

space, independent simulations respectively. In the response function method, each column is built by com-

puting {dHxb(δxi) \ ∀δxi ∈ Bχ} with Bχ the canonical basis of the target space. For a given increment δxi,

the corresponding column gives the sensitivity of observations to changes in the corresponding component

of the target space. In the footprint method, each row is built by computing
{
H∗xb(δyi) \ ∀δyi ∈ BY

}
with25

BY the canonical basis of the observation space. For a given perturbation of δyi of a component of the

observation vector, the corresponding row of H gives the sensitivity of the inputs to that perturbation.

Depending on the number of available observations or the size of the target vector, one of the two is

preferred to limit the number of observation operator computations to be carried out explicitly. When the di-

mension of the target vector is relatively small, the response function is generally preferred, and conversely,30
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when the observation vector is small, the footprint approach is preferred. The type of transport model used

to compute the matrix H also plays a role in the choice of the approach: for Eulerian models, the response

function approach is preferred for multiple reasons: (i) their adjoint is often much more costly than their

forward, (ii) the adjoint may not be available for some models or is difficult to generate, and (iii) the compu-

tation time of the forward is constant no matter how numerous the observations; for Lagrangian models, the5

footprint approach is preferred as they often compute backward transport simulations for each observation,

allowing a straightforward computation of the adjoint (Seibert and Frank, 2004). In both cases, the explicit

construction of the matrix H requires numerous independent simulations, which can be an insurmountable

computational challenge.

The second obstacle consists in that the computation of the Kalman gain matrix in Eq. (3) (left) requires10

inverting a matrix of the dimension of the observation space, dim(Y), while for the other formulation (Eq. (3)

right) the matrix is of dimension dim(X ), the dimension of the target space. If the dimensions of both the

observation and the target spaces are very high, as in many inversion applications, the explicit computa-

tion of Eq. (3) with matrix products and inverses is not computationally feasible. For this reason, smart

adaptations of the inversion framework (including approximations and numerical solvers) are often neces-15

sary to tackle problems even when they are linear; in the following, we choose to elaborate on some of the

most frequent approaches used in the atmospheric inversion community: the variational approach and one

ensemble method, the Ensemble Square Root Filter (EnSRF). Less frequently, intermediate adaptations of

the analytical inversion also include sequential applications (e.g., Michalak, 2008; Bruhwiler et al., 2005;

Brunner et al., 2012), that are a compromise between tackling the above-mentioned computational obstacles20

while maintaining the simplicity of the analytical inversion; however, such sequential analytical inversions

are limited to specific linear and simple cases.

Ensemble methods

Ensemble methods are commonly used to tackle high-dimensional problems and to approximately charac-

terize the optimal solution. In ensemble methods, such as Ensemble Kalman filters (EnKFs) or smoothers25

(e.g., Whitaker and Hamill, 2002; Peters et al., 2005; Zupanski et al., 2007; Zupanski, 2005; Feng et al.,

2009; Chatterjee et al., 2012), the issue of high dimensions in the system of Eq. (3) is avoided using the two

following main procedures:

– observations are first assimilated sequentially in the system to reduce the dimension of the observation

space, making it possible to explicitly compute matrix products and inverses, and thus propagating in-30

formation from the target space to the observation space; the overall inversion period is processed

incrementally using a smaller running assimilation window including a manageable number of obser-

vations; intermediate inversions are solved on the smaller running window that is gradually moved
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from the beginning to the end of the overall data assimilation window; the running assimilation win-

dow with so-called analysis and forecast steps introduces complex technical challenges to rigorously

propagate errors from one iteration of the running window to the next one; moreover, the sequential

assimilation of observations is valid only under the assumption that observations errors are not cor-

related between assimilation windows, which may prove incorrect for high-density data sets, but is5

an assumption also done in, e.g., variational inversions. For very dense observations, such as datasets

from new-generation high-resolution satellites, the sequential assimilation of observations may not be

sufficient, or at least methods may be needed to make the observation errors between sequential assim-

ilation windows independent, for example by applying a whitening transformation to the observations

to form a new set with uncorrelated errors as suggested by Tippett et al. (2003).The challenge is exac-10

erbated for long-lived species such as CO2, for which assimilation windows must be long enough to

maintain the propagation of information on the fluxes on long distances through transport; propagating

a covariance matrix from assimilation windows to assimilation windows as accurate as possible could

in principle limit the later issue, as suggested in Kang et al. (2011, 2012), but could still prove hard to

apply in very high resolution problems.15

– the posterior distribution at a given step of the filter is then characterized explicitly by applying Eq. (1)

on each member of the ensemble; the new intermediate posterior distribution is then sampled and

propagated to the next data assimilation window.

In the atmospheric inversion community, another ensemble method is widely used, based on the Carbon-

Tracker system (Peters et al., 2005), which uses an Ensemble Square Root Filter (EnSRF; Whitaker and20

Hamill, 2002). In that approach, the observations are split using running data assimilation windows as for

other ensemble methods, but instead of directly characterizing the posterior distribution from the ensemble,

the statistics of the ensemble is used to solve the analytical equation, Eq. (3), approximately. Thus, the En-

SRF method is less general as EnKFs methods, as it relies on the Gaussian assumption, as well as limited

non-linearity in the inversion problem, but proves very efficient at computing an approximated solution of25

the inversion problem. Matrix products in Eq. (3) involving the target vector covariance matrix B (HBHT

and BHT) are approximated by reducing the space of uncertainties to a low-rank representation; this is done

in practice by using a Monte Carlo ensemble of possible target vectors sampling the distribution N (xb,B);

with such an approximation, matrix products can be written as follows:
HBHT ' 1

N − 1
(H(x1), H(x2), . . . , H(xN )) . (H(x1), H(x2), . . . , H(xN ))

T

BHT ' 1

N − 1
(x1, x2, . . . , xN ) . (H(x1), H(x2), . . . , H(xN ))T

(5)30

where N is the size of the ensemble.

From there, Eq. (1) is solved analytically by replacing HBHT and BHT by their respective approxima-

tions.
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By using random sampling, ensemble methods are able to approximate large dimensional matrices at a

reduced cost without using the adjoint of the observation operator (see variational inversion below) that

can be challenging to implement. Small ensembles generally cause the posterior ensemble to collapse, i.e.,

the posterior distribution is dominated by one or a very small number of members, which does not allow

for a reliable assessment of the posterior uncertainties (Morzfeld et al., 2017); moreover, small ensembles5

introduce spuriousness in the posterior uncertainties, with irrealistic correlations being artificially generated..

In the EnSRF, small ensembles rather cause a misrepresentation of uncertainty structures, which limits the

accuracy of the computed solution, and may require fixes as described in, e.g., Bocquet (2011). In any

case, the level of approximation necessary for this approach to work is strongly different for each problem,

which requires preliminary studies before consistent application. In particular, the so-called localization of10

the ensemble can be used to improve the consistency of the inversion outputs (e.g., Zupanski et al., 2007;

Babenhauserheide et al., 2015).

In the current version, only the EnSRF approach is implemented in the CIF. One should note that the

EnSRF, as a direct approximation of the analytical solution, can be very sensitive to non-linearity in the

observation operator (e.g., Tolk et al., 2011). It can generally cope only with slight non-linearity over the15

assimilation window, thus, the assimilation window length has to be chosen appropriately, contrary to other

ensemble methods which are usually not sensitive to non-linearity.

Variational inversions

Variational inversions use the fact that finding the mode of the posterior Gaussian distribution pa(x)∼
N (xa, A) in Eq. (2) is equivalent to finding the minimum xa of the cost function J :20

J(x) =
1

2
(x−xb)TB−1(x−xb) +

1

2
(yo−H(x))TR−1(yo−H(x)) (6)

In variational inversions, the minimum of the cost function in Eq. (6) is numerically estimated iteratively

using quasi-Newtonian algorithms based on the gradient of the cost function:

∇Jx = B−1 .(x−xb) +H∗
(
R−1 . (yo−H(x))

)
(7)

Quasi-Newtonian methods are a group of algorithms designed to compute the minimum of a function25

iteratively. It should be noted that in high-dimension problems, it can take a very large number of iterations

to reach the minimum of the cost function J , forcing the user to stop the algorithm before convergence, thus

reaching only an approximation of xa; in addition, iterative algorithms can reach local minima without ever

reaching the global minimum, making it essential to thoroughly verify variational inversion results; this can

happen in non-linear cases, but also, due to numerical artefacts, in linear cases (some points in the cost func-30

tion have gradients so close to zero that the algorithm sees them as convergence points, whereas the unique
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global minimum is somewhere else). In the community, examples of quasi-Newtonian algorithms commonly

used are the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (Zheng et al., 2018; Bousserez et al.,

2015), M1QN3 (Gilbert and Lemaréchal, 1989), and the CONGRAD algorithm (applicable only to linear

or linearized problems; Fisher, 1998; Chevallier et al., 2005) based on the Lanczos method, which iter-

ates to find the eigenvalues and eigenvectors of the Hessian matrix, which is then used (in a single step) to5

calculate the analysis vector, xa. In general, quasi-Newtonian methods require an initial regularization, or

"pre-conditioning" of x, the vector to be optimized, for better efficiency. In atmospheric inversions, such a

regularization is generally made by optimizing χ= B−1/2 .(x−xb) instead of x; we note A the regulariza-

tion space: χ ∈ A. This transformation translates in Eq. (6) and (7) as follows:

 Jχ = 1
2χ

Tχ+ 1
2 (yo−H(B1/2 .χ+ xb))TR−1(yo−H(B1/2 .χ+ xb))

∇Jχ = χ + B1/2 .H∗
(
R−1 .(yo−H(B1/2 .χ+ xb))

) (8)10

Solving Eq. (6) and (7) in the target vector space or Eq. (8) in the regularization space is mathematically

fully equivalent, but the solution in the regularization space is often reached in fewer iterations. Moreover,

in the regularization space, one can force the algorithm to focus on the main modes of the target vector

space by filtering the smallest eigenvalues of the matrix B. This reduces the dimension of χ and accelerates

further the rate of convergence, although the solution of the reduced problem is only an approximation of the15

solution of the full problem. In the following we thus prefer calling the "regularization space" the "reduction

space". The link between the two can be written as follows:

χfull = QΛ−1/2 (x−xb)

χreduced = Q′Λ′
−1/2

(x−xb)
(9)

with B1/2 = QΛ1/2QT, Q and Λ being the matrices of the eigenvector and the matrix of the correspond-

ing eigenvalues of the matrix B. Q′ and Λ′ are the reduced matrices of eigenvalues and eigenvectors with a20

given number of dominant eigenvalues.

Overall, variational inversions are a numerical approximation to the solution of the inversion problem:

they involve the gradient of the cost function in Eq. (7) and require to run forward and adjoint simulations

iteratively (e.g., Meirink et al., 2008; Bergamaschi et al., 2010; Houweling et al., 2016, 2014; Fortems-

Cheiney et al., 2021; Chevallier et al., 2010, 2005; Thompson and Stohl, 2014; Monteil and Scholze, 2019;25

Wang et al., 2019).

The variational formulation does not require calculation of complex matrix products and inversions, con-

trary to the analytical inversion, and is thus not limited by vector dimensions. Still, the inverses of the

uncertainty matrices B and R need to be computed, potentially prohibiting the use of very large and/or com-
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plex general matrices; this challenge is often overcome by reducing B and R to manageable combinations

of simple matrices (e.g., Kronecker products of simple shape covariance matrices; see Sect. 2.3.1).

When the observation operator is linear, the posterior uncertainty matrix A is equal to the inverse of

the Hessian matrix at the minimum of the cost function. In most cases the Hessian cannot be computed

explicitly, because of memory limitations, which is a major drawback of variational inversions. But some5

variational algorithms such as CONGRAD provide a coarse approximation of the Hessian: in the case of

CONGRAD based on the Lanczos method, leading eigenvectors of the Hessian can be computed, together

with their eigenvalues (Fisher, 1998). The approximation of the posterior uncertainty matrix A in the case

of CONGRAD reads as follows:

A =Hess(J)−1xa ≈VT
xaΛ−1xa Vxa (10)10

with Vxa the dominant eigenvectors of the Hessian matrix at the point xa and Λxa the matrix of the

dominant eigenvalues of the Hessian matrix. Please note that the dominant eigenvalues of the Hessian matrix

correspond to components with low posterior uncertainties in A.

Another approach to quantify the posterior uncertainty matrix A, valid for both linear and non-linear

cases, is to carry out a Monte Carlo ensemble of independent inversions with sampled prior vectors from the15

prior distribution N (xb,B) (e.g., Liu et al., 2017). An ensemble of posterior vectors are inferred and used

to compute the posterior matrix as follows:

A≈ 1

N − 1
(xa

1−xa
ref , xa

2−xa
ref , . . . xa

N −xa
ref) . (x

a
1−xa

ref , xa
2−xa

ref , . . . xa
N −xT ) (11)

with N the size of the Monte Carlo ensemble, xa
i the posterior vector corresponding to the prior xb

i of the

Monte Carlo ensemble and xa
ref the average over sampled posterior vectors.20

2.2.2 Auxiliary computation modes

Forward simulations

Forward simulations simply use the observation operator to compute simulated observation equivalents. It

reads as:

(xb, yo) → H(xb) (12)25

This mode is used to make quick comparisons between observations and simulations to check for incon-

sistencies before running a full inversion. It is also used by the analytical inversion mode to build response

functions.
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Test of the adjoint

The test of the adjoint is a crucial diagnostic for any inversion system making use of the adjoint of the

observation operator. Such a test is typically required after making any edits to the code (to the forward

observation operator or its adjoint) before running an inversion. Coding an adjoint is prone to errors and even

small errors can have significant impacts on the computation of the gradient of the cost function in Eq. (7).5

Thus, one needs to make sure that the adjoint rigorously corresponds to the forward. This test consists in

checking the definition of the mathematical adjoint of the observation operator. It writes as follows for a

given target vector x and incremental target perturbation δx:

< dHx(δx) | dHx(δx) >=< δx | (H∗ ◦ dHx)(δx) > (13)

dHx(δx) is the linearization of the observation operator H at the point x for a given increment δx; it is10

computed with the tangent linear model, which is the numerical adaptation of dHx(δx). Then, (H∗ ◦ dHx)(δx)

is calculated with the adjoint of the tangent-linear ofH at the point x.

In practice, the two terms of the equation are rarely exactly equal. Nevertheless, the difference should

never exceed a few times the machine epsilon. Besides, Eq. (13) should be verified for any given target

vector and increment. In practice, it is not possible to explicitly verify all possible combinations; but as the15

result of the test is highly sensitive to any error in the code, it is assumed that a few typical couples (x, δx)

are sufficient to certify the validity of the adjoint.

2.3 Identification of common elementary transformations

2.3.1 General purpose operations

Each inversion algorithm and computation mode mentioned above can be decomposed into a pipeline of20

elementary transformations. These transformations are listed in Tab. 1 and include: the observation operator

and its adjoint (their matrix representations in linear cases), matrix products with target and observation

error covariance matrices and corresponding adjoints, and random sampling of normal distributions. To

limit redundancy in the CIF as much as possible, these elementary transformations are included in the CIF

as generic transformation blocks on the same conceptual level. Overall, the decomposition of computation25

modes presently implemented in the CIF into elementary transformations leads to the structure in Fig. 1.

Avoiding redundancy makes the maintenance of the code much easier, and provides a clear framework

for extensions to other inversion methods or features. For instance, inverse methods based on probability

density functions other than normal distributions could be easily implemented by updating the random en-

semble generator, or by implementing new cost functions representing non-Gaussian distributions, while30

keeping the remaining code unmodified. In particular, non-Gaussian cost functions still rely on the compu-
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tation of the observation operator. New combinations of elementary transformations can also directly lead

to new methods. For instance, ensemble variational inversion (e.g., Bousserez and Henze, 2018) is a direct

combination of the available variational pipeline and the random sampling pipeline. Inversions estimating

hyper-parameters through maximum-likelihood or hierarchical Bayesian techniques (e.g., Michalak et al.,

2005; Berchet et al., 2014; Ganesan et al., 2014) could be integrated in the CIF by adapting the Gaussian5

cost function and by implementing a corresponding computation pipeline.

The complexity of the selected elementary transformations spans a wide range, from one-line straightfor-

ward codes to computationally expensive and complex code implementation. In small dimensional and/or

linear problems, the computation of the observation operator using its Jacobian and matrix products may

be computationally expensive, but is in principle rather straightforward to implement. For non-linear and/or10

high-dimensional problems, these transformations require simplifications and numerous intermediate steps.

For instance, applying matrix products to the error covariance matrix R and B and computing their inverse

is easy in small dimensions, but can be limiting in high dimensional problems. For that reason, the error

covariance matrices are often reduced to particular decompositions; for instance, the error covariance matrix

on the target vector B is often written as a Kronecker product of multiple spatial and/or temporal covariance15

matrices of lower dimensions, making matrix products manageable (e.g., Chevallier et al., 2005; Meirink

et al., 2008; Yadav and Michalak, 2013).

In any case, the observation operator (see details in Sect. 2.3.2) appears as the center piece of any inversion

method.

2.3.2 Observation operator20

The observation operator is a key component of all inversion methods. It links the target space to the ob-

servation space, and conversely, its adjoint links the observation space to the target space. To do so, the

observation operator projects its inputs through various intermediate spaces to the outputs. As atmospheric

inversions need a representation of the atmospheric transport (and chemistry if relevant) to link the target

vector (including surface fluxes, atmospheric sources and sinks, initial and boundary conditions for limited25

domains and time-windows, etc.) to the observation vector (including some form of atmospheric concentra-

tion measurements), the observation operator is built around a given CTM in most cases: Eq. (14) illustrates

the various projections in the common case.

x
ΠF

X−−→ f
ΠF

F−−→ inputs model−−−→ outputs
ΠM

C−−−→ c
ΠY

M−−−→ H(x) (14)

with f the target vector projected at the CTM’s resolution (includes fluxes, but also other types of inputs30

required by the CTM), c the raw outputs extracted from the run of the CTM’s executable (in general 4-

dimensional concentration fields). Π operators are intermediate projectors: ΠF
X projects the target vector at
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the spatial and temporal resolutions of the CTM’s inputs, ΠFF dumps the input vector in files usable by the

CTM’s executable, ΠM
C reads the CTM’s outputs, ΠYM reprojects the raw outputs at the observation vector

resolution (mostly the temporal resolution as the model and the observation worlds do not follow the same

time line).

The targeted structure of the CIF should allow a full flexibility of observation operators, from the straight-5

forward widely-used decomposition detailed in Eq. (14) to more elaborated approaches including multiple

transport models and/or complex super-observations (e.g., in Bréon et al., 2015; Staufer et al., 2016, authors

implemented differences between observation sites and time in the observation vector instead of observations

from individual sites in order to focus on spatial/temporal gradients, thus allowing to limit the influence of

background concentrations in the computation of local fluxes) and hyper-parameters (e.g., emission factors10

and model parameters used to produce emission maps; Rayner et al., 2010; Asefi-Najafabady et al., 2014).

Therefore, the observation operator is designed as a pipeline of elementary interchangeable transformations

with standardized input and output formats such that:

H=H1 ◦H2 ◦ · · · ◦HN (15)

In such a formalism, all intermediate transformations have the same conceptual level in the code. They15

are functions ranging from spatial reprojection, to temporal interpolations, to more complex operations such

as the reconstruction of satellite total columns from concentrations simulated at individual levels in the

transport model. In the CIF, all these transformations have the same input and output structure and, thus,

their order can be changed seamlessly to execute a given configuration. Please note that the commutative

property of elementary transformations as pieces of code does not guarantee the commutative property of20

the corresponding physical operators.

Such a transformation-based design allows us to rigorously separate transformations and thus to imple-

ment and test their respective adjoints more easily. Once adjoints for each individual operation are imple-

mented, the construction of the general adjoint is straightforward by reversing the order of forward opera-

tions:25

H∗ =H∗N ◦H∗N−1 ◦ · · · ◦H∗1 (16)

Fig. 2 shows an example of a typically targeted observation operator. Operators from Eq. (14) are reported

for the illustration. It includes two numerical models chained with each other; they can be for instance a

coarse global CTM and a finer resolution regional CTM, such as in Rödenbeck et al. (2009) or Belikov et al.

(2016). The system applies a series of transformations to the target vector, including spatial deaggregation for30

the optimization of emissions by regions, sector deaggregation to separate different activity sectors, reprojec-

tion to the CTM’s resolution (a simple interpolation of mass-conserving regridding is available so far, with
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regular and irregular domains), application of temporal profiles (which is critical in air quality and anthro-

pogenic CO2 applications), unit conversions to the required inputs for the CTMs. On the observation vector

side, observations can span multiple model time-steps, requiring posterior temporal averages, etc. In the case

of super-observations (satellites retrievals, images, spatial gradients, etc.) in the observation vector, it is often

necessary to combine multiple simulated point observations in given grid cells and time stamps into a single5

super-observation, to limit redundant observations, hence the size of the observation vector, but also to limit

representativeness issues. Super-observations are commonly used in the case for satellite observations being

compared to all the model levels above a given location; concentration gradients comparing observations

at different time and locations (see e.g., Bréon et al., 2015; Staufer et al., 2016) are another example of

observation aggregation to reduce representativeness errors; isotopic ratios are also super-observations as10

they require to simulate separate isotopologues and recombine them after the simulation (as done in e.g.,

van der Velde et al., 2018; Peters et al., 2018). The case of Fig. 2 also include background concentrations

in the target vector: a background is often used to fix some biases in initial and lateral concentrations in

limited-area models, and in observations (mostly satellites); the background variables are processed at the

very end of the pipe when re-constructing the observations vector.15

The mathematical formalism of Eq. (15) and (16) suggests that transformations are necessarily computed

in a serialized way, thus limiting applications to simple target variables upstream the transport model. How-

ever, each elementary transformation handles components of the inputs it is concerned with, leaving the

rest identical and forwarding it to later transformations. Typically, it does not actually limit applications to

simple target variables upstream the CTM. For instance, in the case of target variables optimizing biases20

in the observations, the corresponding components of the target vector x are forwarded unchanged by all

transformations in Fig. 2 until the very last operation, where they are used for the final comparison to the

observation vector.

3 Practical implementation

3.1 General rules25

The Community Inversion Framework project follows the organisation scheme of Fig. 3. A centralized web-

site is available at community-inversion.eu. The website includes all information given in the present paper,

as well as further documentation details, practical installation instructions, tutorials and examples of possible

set-ups. To foster the collaborative dynamics of our project, all scripts and codes are available in open-access

on a GitLab server at git.nilu.no/VERIFY/CIF, where updates are published regularly. The frozen version30

of the code, documentation and data used for the present publication is available in Berchet et al. (2020).

The repository includes the documentation, sources for the CTMs implemented in the CIF, as well as the

Python library pyCIF. Our project is distributed as an open-source project under the CeCILL-C licence of
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the French law (cecill.info). The license grants full rights for the users to use, modify and redistribute the

original version of the CIF, conditional to the obligation to make their modifications available to the com-

munity and to properly acknowledge the original authors of the code. The authors of modifications own

intellectual property of their modifications, but under the same governing open license. Software that may

be built around the CIF in the future can have different licensing, but all parts of the code originating from5

the CIF will be governed by the original CeCILL-C license, hence must remain open source. Similarly, some

constituting pieces of the CIF can be adapted from other softwares governed by other licenses and simply

interfaced to the CIF (e.g., transport models, minimizing algorithms, etc.); in that case, the corresponding

softwares keep their original license and their use and distribution in the CIF is subject to authorization by

their owners (although open distribution and integration in the standard version of the CIF is encouraged).10

This is the case of the CONGRAD and M1QN3 algorithms which are used as minimizing algorithms in the

variational inversions of the demonstration case in Sect. 4. The M1QN3 algorithm is distributed under the

GNU General Public License, whereas CONGRAD is owned by ECMWF and is not open source; the later

was interfaced with the CIF but is not openly distributed.

The pyCIF library, written in Python 3, is the practical embodiment of the CIF project. All theoreti-15

cal operations described in Sect. 2 are computed by this module. It includes inversion computations, pre-

and post-processing of CTM inputs and outputs, as well as target and observation vector reprojections,

aggregation, etc., as written in Eq. (15). Python coding standards follow the community standards PEP-8

(python.org/dev/peps/pep-0008/).

Test cases (including the ones presented in Sect. 4) are distributed alongside the CIF codes and scripts. To20

foster portability and dissemination, a dedicated Docker image is distributed with pyCIF, providing a stable

environment to run the system and enabling full reproducibility of the results from one machine to the other.

3.2 Plugin-based implementation

To reflect the theoretical flexibility required in the computation of various inversion methods and observation

operators, we made the choice of implementing pyCIF following an abstract structure with a variety of so-25

called Python plugins, which are dynamically constructed and inter-connected depending on the set-up.

3.2.1 Objects and classes in pyCIF

General classes of objects emerge from the definition of the abstract structure of the inversion framework.

These classes are defined by the data and metadata they carry, as well as by the methods they include and

their interaction with other classes. The main classes are the following:30

– computation modes: forward computations, the test of the adjoint, variational inversions, EnSRF and

analytical inversions are available (see details in Sect. 2.2);
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– models: interfaces to CTMs; includes generation of input files, executing the code and post-processing

outputs; included are a Gaussian model described in Sect. 4 for the demonstration of the system,

as well as CHIMERE, LMDZ, FLEXPART, TM5, and STILT, all of which will be described in a

dedicated future publication;

– platforms: deal with specific configurations on different clusters; it includes a standard platform as5

well as two supercomputers where the CIF was tested;

– target vectors: store and apply operations related to the target vector, including spatial and temporal

aggregation, deaggregation, regularization of the target vector;

– observation vectors: store and apply operations related to the observation vector, including application

of observation errors;10

– observation operators: drive CTMs and apply elementary operations between the control and observa-

tion vectors;

– transformations: elementary operations used to build the observation operator; includes temporal av-

eraging or deaggregating of the target and observation vectors, projection of the target vector at the

model input resolution, etc.;15

– data vectors: store all information on inputs for pyCIF; this vector is used by the observation and target

vector classes to build themselves;

– minimizers: algorithms used to minimize cost functions, including M1QN3 and CONGRAD algo-

rithms so far;

– simulators: cost functions to minimize in variational inversions; only includes the standard Gaussian20

cost function so far;

– domains: store information about the CTM’s grid, including coordinates of grid cell centers and cor-

ners, vertical levels, etc.;

– fluxes, fields, meteo-data: fetch, read and write different formats of inputs for CTMs (surface fluxes,

3D fields and meteorological fields respectively); so far includes only inputs specific to included25

CTMs, but will ultimately include standard data streams, such as widely used emission inventories

or meteorological fields such as those from ECMWF;

– measurements: fetch, read and write different types of observation data streams; only include the

World Data Center for Greenhouse Gases so far (https://gaw.kishou.go.jp/), but classical data providers

such as ICOS (icos-cp.eu) or ObsPack (Masarie et al., 2014) will also be implemented in the CIF;30
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satellite products, in particular the formatting of averaging kernels and other metadata, should also be

included in the CIF in the near future as they play a growing role in the community.

Details on metadata and operations for each class are given in Supplements, Tab. S1. Our objective was

to design a code that is fully recursive in the sense that modifying some instance of a class does not require

to update other classes calling or being called by the modified class. Thus, each class is built so that it5

only needs internal data, as well as data from the execution level just before and after it, in order to avoid

complex dependencies while allowing proper recursive behaviour in building the transformation pipe. For

instance, the observation operator applies a pipe of transformations from the target vector to the observation

vector. Some transformations will use the model class to run the model, or the domain class to carry out

reprojections, or the target vector to aggregate/deaggregate target dimensions, etc. Despite the many complex10

transformations carried out under the umbrella of the observation operator, only the sub-transformations of

the pipe are accessible at the observation operator level, which do not have to directly carry information

about e.g., the model or other classes required at sub-levels. This makes the practical code of the observation

operator much simpler and as easy to read as possible.

3.2.2 Automatic construction of the execution pipe15

To translate the principle scheme of Fig. 1, pyCIF is not built in a sequential rigid manner. Plugins are

interconnected dynamically at the initializing step of pyCIF depending on the chosen set-up (see Sect. 3.3

for details on the way to configure the CIF). The main strength of such a programming structure is the

independence of all objects in pyCIF. They can be implemented separately in a clean manner. The developer

only needs to specify what other objects are required to run the one being developed and pyCIF makes the20

links to the rest. It avoids unexpected impacts elsewhere in the code when modifying or implementing a

feature in the system. In the following, we call this top-down relationship in the code a dependency.

For each plugin required in the configuration (primarily the computation mode), pyCIF initializes cor-

responding objects following simple rules. Following dependencies detailed in Tab. S1, for every object

to initialize, pyCIF will fetch and initialize required plugins and attach them to the original plugin. If the25

required plugin is explicitly defined in the configuration, pyCIF will fetch this one. In some cases, some

plugins can be built on default dependencies, which do not need to be defined explicitly in the configuration

file. In that case, the required plugin can be retrieved using default plugin dependencies specified in the code

itself and not needed in the configuration.

For instance, in the call graph in Fig. 1, "variational" (inversion) is a "computation mode" object in pyCIF.30

To execute, it requires a "minimizer" object (CONGRAD, M1QN3, etc.) that is initialized and attached to it.

The minimizer requires a "simulator" object (the cost function) that itself will call functions in the "control
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vector" object and the "observation operator" object. Then the "observation operator" will initialize a pipeline

of transformations including running the "model", and so on and so forth.

3.3 Definition of configurations in the CIF

In practice, pyCIF is configured using a YAML configuration file (yaml.org). This file format was primarily

chosen for its flexibility and intuitive implementation of hierarchical parameters. In the YAML language,5

key words are specified with associated values by the user. Indentations indicate sub-levels of parameters,

which makes it a consistent tool with the coding language python.

To set-up a pyCIF computation, the user needs to define the computation mode and all related require-

ments in the YAML configuration file. Every plugin has mandatory and optional arguments. The absence of

one mandatory argument raises an error at initialization. Optional arguments are replaced by corresponding10

default values if not specified. Examples of YAML configuration files used to carry out the demonstration

cases are given in Supplement Section S3.

4 Demonstration case

In the following we describe a demonstration case based on a simple implementation of a Gaussian plume

dispersion model and simple inversion set-ups. The purpose of this demonstration case is a proof-of-concept15

of the CIF, with various inversion methods. We comment and compare inversion set-ups and methods for

the purpose of the exercise, but conclusions are not made to be generalized to any inversion case study due

to the simplicity of our example. The test application with a simple Gaussian plume model allows users

to quickly carry out the test cases themselves, even on desktop computers, to familiarize themselves with

the system. Nevertheless, the Gaussian plume model is not only relevant for teaching purposes, but also20

for real applications, as it is used in many inversion studies from the scale of industrial sites with in-situ

fixed or mobile measurements (e.g., Kumar et al., 2020; Foster-Wittig et al., 2015; Ars et al., 2017) to the

larger scales with satellite measurements to optimize individual clusters of industrial or urban emissions

(e.g., Nassar et al., 2017; Wang et al., 2020). Other models implemented in the CIF will be presented in a

future paper evaluating the differences when using different transport models with all other elements of the25

configuration identical. The purpose of such an evaluation is to produce a rigorous inter-comparison exercise

identifying the effect of transport errors in inversion systems.

4.1 Gaussian plume model

Gaussian plume models approximate real turbulent transport by a stable average Gaussian state (Hanna et al.,

1982). Such models are not always suitable to compare with continuous measurements but can be adapted30

when using observations averaged over time. In the following, we consider the Gaussian plume assumption

20

yaml.org


to be valid for comparing to hourly averaged observations. A simple application of the Gaussian plume

model was implemented in the CIF as a testing and training utility. It is computationally easy to run, even on

desktop computers. It includes the most basic Gaussian plume equations. In that application, concentrations

C at location (x0, y0, z0) downwind from a source of intensity f at (x1, y1, z1) are given by:

C(x0, y0, z0) =
f

2π . σy . σz . ū
exp

(
− y

2

σ2
y

)
. exp

(
− z

2

σ2
z

)
(17)5

with



σz = a . xb

σy = |465.11628× x . tan(0.017653293 (c− d . lnx))|
x = <

u

ū
| v(source, receptor) >

y = (
u

ū
× v(source, receptor) )

(18)

x is the downwind distance between the source and receptor points along the wind axis, y is the distance

between the wind axis and the receptor point; ,v(source, receptor) is the vector linking the source and the receptor

point. z is the difference between the source and the receptor altitudes. u is the vectoral wind speed, with ū10

is the average wind speed in the domain of simulation. < · | · > and ( ·× · ) depict the scalar and the vector

products respectively. (a,b,c,d) are parameters depending on the Pasquill-Gifford atmospheric vertical sta-

bility classes. There are 7 Pasquill-Gifford stability classes, from A extremely unstable (mostly in summer

during the afternoon) to G very stable (occurring mostly during nighttime in winter). As the purpose of the

demonstration case is primarily to work on coarsely realistic concentration fields, with a computational cost15

as low as possible, our implementation of the Gaussian plume model does not include any representation of

particle reflection on the ground or on the top of the planetary boundary layer.

To illustrate atmospheric inversions, we use a grid of point surface fluxes to simulate concentrations using

the Gaussian plume equation. Thus, the concentration at a given point and time t is the sum of Gaussian

plume contributions from all individual grid points:20

C(x0, y0, z0, t) =
∑

(x1, y1, z1)∈ grid

f(x1, y1, z1, t)

2π . σy(t) . σz(t) . ū(t)
exp

(
− y2

σy(t)2

)
exp

(
− z2

σz(t)2

)
=

∑
(x1, y1, z1)∈ grid

H(x1, y1, z1, t)× f(x1, y1, z1, t)

= H(t) . f(t)

(19)

21



This formulation highlights the linear relationship between concentrations and fluxes. As the concen-

trations can be expressed as a matrix product, the computation of the adjoint of the Gaussian model is

straightforward and does not require extra developments:

δf(x1, y1, z1, t) =
∑

(x0, y0, z0)∈ obs

δC(x0, y0, z0, t)
2π σy(t)σz(t) ū(t)

exp

(
− y2

σy(t)2

)
exp

(
− z2

σz(t)2

)
= H(t)T .C(t)

(20)

For the purpose of our demonstration cases, meteorological conditions (wind speed, wind direction, and5

stability class) are randomly generated for the simulation time-window. Fixed seeds are selected for the

generation of random conditions in order to make them reproducible.

4.2 Configuration

4.2.1 Modelling set-up

Cases discussed in Sect. 4.3 are based on the Gaussian model computed on a domain of 2.5× 2 km2 with a10

grid of 18×12 grid cells. Surface point sources are located at the center of corresponding grid cells, with flux

intensities as represented in Fig. 4. Five virtual measurement sites are randomly located in the domain with

randomly selected altitudes above ground level as shown in Fig. 4. The inversion time-window spans a period

of five days with hourly observations and meteorological forcing conditions. Meteorological conditions are

a combination of a wind speed, a wind direction and a stability class applicable to the whole simulation15

domain for each hour. The three parameters are generated randomly for the period, without respect for

realistic relatively smooth transitions in weed speed and direction and stability class.

Truth observations are generated by running the Gaussian model in forward mode with known fluxes

defined as the sum of prior fluxes f (used later in the inversions) in Eq. (21) and an arbitrary perturbation as

defined in Eq. (22), and illustrated in Fig. 4 (left and right respectively).20
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δf = 0.2× f0 .
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(22)

with f0 an arbitrary reference flux, and scaling lengths σ1
x, σ2

x, σ3
x, σ1

y , σ2
y , σ3

y equals 500, 1000, 200, 1000,

1000 and 300 m respectively. Reference fluxes and perturbations are constant over time.

A random noise of 1% of the standard deviation of the forward simulations was added to the truth observa-25

tions to generate measurements. Please note that the perturbation of the fluxes is generated using an explicit

formula and not a random perturbation with a given covariance matrix. We discuss results with different

possible target vectors and covariance matrices.
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4.2.2 Inversion set-ups

The objective of our test case is to prove that our system enables users to easily compare the behaviour of

different inversion methods in various configurations. To do so, we conduct three sets of four inversions

for the demonstration of our system. Each set includes one analytical inversion, one EnSRF-based inversion

and two variational inversions based on M1QN3 and CONGRAD minimization algorithms respectively. The5

sequential aspect of the EnSRF is not implemented in the CIF, hence the comparison with the other inversion

methods only includes the random sampling of the target vector distribution to solve Eq. (5).

The three sets of inversions differ by the dimension of the target vector and the spatial correlations of

errors. The first set uses a target vector based on a grid of 3× 3 pixels-aggregated regions or "bands" inde-

pendent from each other i.e. with no spatial error correlations. The target vectors of the second and third sets10

are defined at the grid cell’s resolution with horizontal isotropic error correlations, following an exponential

decay with a horizontal scale of 500 m and 200000 m respectively; the latter case is used to demonstrate

that the implementation of correlation lengths is correct as very long correlations are equivalent to having

only one spatial scaling factor in the target vector. For all inversion set-ups, the target vectors are defined as

constant over time, i.e., only one coefficient per spatial dimension is optimized for the 5 days × 24 hours,15

computed by the model. In all set-ups, the magnitude of the observation noise used to generate "true" obser-

vations is chosen as observation errors in the matrix R for consistency. In all cases, the diagonal terms of

the B matrix are set to 100%.

To assess the sensitivity of each set-up to the allocated computational resources, we computed the EnSRF

and the two variational inversions with varying numbers of simulations N . In the case of the EnSRF, N20

simply depicts the size of the Monte Carlo ensemble. For variational inversions, each step i.e each compu-

tation of the cost function and its gradient requires one forward simulation and one adjoint simulation. The

Gaussian model is a simple auto-adjoint model, which makes the adjoint simulations as long as the forward

one. Therefore, N is equal to twice the number of computations of the cost function (one for the forward

and one for the adjoint) in the minimization algorithm. Note that in many real application cases, the adjoint25

of a CTM is more costly than the forward, reducing the number of iterations possible in N times the cost

of a forward. Indeed, despite the adjoint being mathematically as expensive as the forward, in practice, the

computation of adjoint operations often requires the re-computation of intermediate forward computations,

therefore increasing the computational burden of the adjoint model. More precisely, users and developers

of adjoint transport models choose the number of forward re-computations to be carried out, based on a30

space-speed trade off: by saving all forward intermediate states, the adjoint is as costly as the forward, but

the disk space burden can be extremely challenging to manage, thus increasing the overall computation time

in return.
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4.3 Results and discussion

In the following, we present detailed figures for the test case at the pixel resolution with a correlation length

of 500 m. For the sake of readability, figures for other test cases are grouped in Sect. S2 of the Supplement.

Posterior increments are presented in Fig. 5. Observation locations and heights are reported for informa-

tion. The color scale of flux increments is the same as in Fig. 4 which represent the true "increments" to be5

retrieved. In Fig. 8, we present the evolution of the cost function of Eq. (6) depending on the number of sim-

ulations used for each inversion method for the three demonstration cases (see details on the corresponding

number of simulations of each inversion methods in Sect. 4.2.2). The x-axis has been cropped at the origin

as the EnSRF value for small sizes of random ensembles diverges to infinity.

In the case with the target vector aggregated on groups of pixels, all inversion methods converge towards10

a very similar solution. In this case, the posterior increments reproduce the overall structure of the truth-

prior difference, with one local minimum in the center of the domain. However, the aggregated target vector

results in too coarse patterns which are not representative of the actual true-prior difference. In the case

with the target vector at the grid’s resolution with spatial correlations of 500 m, all methods capture well the

true-prior difference structure. However, posterior increments are rather noisy compared to the truth. This15

is due to the spatial correlations being inconsistent with the smooth perturbation with fixed length scales

in Eq. (22). Correlations help smoothing the posterior fluxes but not perfectly consistently with the truth.

For the case with the target vector at the grid’s resolution with spatial correlations of 200000 m, all methods

converge towards a very smooth and similar solution, consistently with what is expected with a very long

correlation length. However, they do not converge towards the same solution, probably because a larger20

number of iterations/members would be needed to fully converge.

In all cases, CONGRAD converges at a faster pace than the other two methods and, after a limited num-

ber of iterations, the convergence rate is close to zero, suggesting additional simulations do not provide

significant additional information to CONGRAD (although additional iterations bring new constraints on

the posterior uncertainty matrix).25

Overall, CONGRAD appears to be the most cost-efficient algorithm to estimate the analytical solution

in the case of a linear inversion in our very simple demonstration case. Though not as efficient, the EnSRF

method can approximate the analytical solution at a reduced cost. By design, its computation can easily be

parallelized, which can allow a faster computation than CONGRAD when computational resources are avail-

able in parallel. M1QN3 proves not as efficient as its CONGRAD counterpart, but contrary to CONGRAD,30

it can accommodate non-linear cases.

The reduction of uncertainties and posterior uncertainty matrices are shown in Fig. 6 and 7, and equivalents

in Supplement. Regarding posterior uncertainties, CONGRAD proves relatively efficient to approximate

the analytical solution, especially at the pixel resolution. The variational inversion with Monte Carlo and
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M1QN3 computations and the inversion with EnSRF are much noisier. Approximating posterior matrices

requires a large number of Monte Carlo members and proves very challenging in real-world applications.

5 Conclusions

We have introduced here a new generic inversion framework that aims at merging existing inversion systems

together, in order to share development and maintenance efforts and to foster collaboration on inversion5

studies. It has been implemented in a way that is fully independent from the inversion configuration: from

the application scales, from the species of interest, from the CTM used, from the assumptions for data

assimilation, as well as from the practical operations and transformations applied to the data in pre- and post-

processing stages. This framework will prevent redundant developments from participating research groups

and will allow for a very diverse range of applications within the same system. New developments will be10

made in an efficient manner with limited risks of unexpected side effects, and thanks to the generic structure

of the code, specific developments for a given application can be directly applied to other applications.

For instance, new inversion methods implemented in the CIF can be directly tested with various transport

models. With modern inversion methods moving towards an hybrid paradigm of variational and ensemble

methods, the flexibility of the CIF will be a valuable asset as abstract methods can be easily mixed with each15

other.

We have presented the first version of this Community Inversion Framework (CIF) alongside with its

python-dedicated library pyCIF. As a first step, analytical inversions, variational inversions with M1QN3 and

CONGRAD, and EnSRF have been implemented to demonstrate the general applicability of the CIF. The

four inversion techniques were tested here on a test case with a Gaussian plume model and with observations20

generated from known "true" fluxes. The impact of spatial correlations and of spatial aggregation, which

drive the shape of the control vectors used in this scientific community, has been illustrated. The analytical

inversion is the most accurate approach to retrieve the true fluxes, as expected, followed by variational

inversions with the CONGRAD algorithm in our simple linear case. In our simple case, EnSRF and M1QN3

generally take longer to converge towards the true pattern of the fluxes, even though EnSRF inversions have25

the advantage to be fully parallelizable, in contrast to variational inversions, that are sequential by design

and therefore harder to parallelize (e.g., Chevallier, 2013).

The next step of the CIF is the implementation of a large variety of CTMs. The implementation of new

CTMs already interfaced with other inversion systems should not bring particular conceptual challenges as

all interface operations are already written in their original inversion system; in most cases, re-arranging30

existing routines is sufficient to interface a model to the CIF. One particular challenge concerns I/O opti-

mizations: the generation of inputs and the processing of outputs can be time consuming and in some very

heavy applications require specific numerical and coding optimizations. The very general formalism of the
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CIF may hamper the ability of applying these particular optimizations for some models. Best efforts will

have to be deployed to take full advantage of advanced I/O and data manipulation libraries in python to limit

this weakness.

CHIMERE, LMDz, TM5, FLEXPART, and STILT have already been implemented and a sequel paper

will evaluate and compare their behaviour in similar inversion set-ups. COSMO-GHG and WRF-CHEM are5

also planned to be implemented in the near future to widen the developer/user community of the system. The

use of various CTMs in identical inversion configurations (inversion method, observation and target vector,

consistent interface, etc.) will allow extensive assessments of transport errors in inversions. Despite many

past efforts put in inter-comparison exercises, such a level of inter-comparability has never been reached and

will be a natural by-product of the CIF in the future. In addition, comparing posterior uncertainties from10

different inversion methods and set-ups will make it possible to fully assess the consistency of different

inversion results.

The flexibility of the CIF allows very complex operations to be included easily. They include the use of

satellite observations, that will be evaluated in a future paper, inversions using observations of isotopic ratios

and optimizing both surface fluxes and source signatures (Thanwerdas et al., 2021). In addition, even though15

greenhouse gas studies have been the main motivation behind the development of the CIF, the system will

also be tested for multi-species inversions including air pollutants.

Code and data availability. The codes, documentation pages (including installation instructions and tutorials) and demon-

stration data used in the present paper are registered under the following DOI: 10.5281/zenodo.4322372 (Berchet et al.,
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Table 1. Elementary operations required for each data assimilation method. An = Analytical inversion; EnKF = Ensemble

Kalman filter; Var = Variational; Fwd = Forward simulation; AdTest = Test of the adjoint. We note X and Y the target

and observation spaces respectively, A the regularization space in the minimization algorithm of variational inversions;

the (·)∗ symbol depicts the adjoint of corresponding spaces.

Data assimilation method

Elementary operation Mathematical formulation An EnKF Var Fwd AdTest

Forward observation operator
X → Y

x → H(x) or Hx
X X X X X

Adjoint observation operator
Y∗ → X ∗

δy → H∗(δy) or HT δy
X X X

Normalisation of the observation increments
Y∗ → Y∗

δy → R−1δy
X

Regularization of the target space
A → X

χ → x = B1/2χ+xb
X

Adjoint of the target space regularization
X ∗ → A∗

δx → δχ ≡ B1/2δx
X

Target space sampling
X ×X 2 → XN

(x, B) → (x1, x2, . . . , xN )
X
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Figure 1. Call structure of the CIF.
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Figure 2. Observation operator structure. Emissions are processed from the target vector to generate model inputs,

as well as other inputs, no optimized by the inversion; in this example, some background for the simulations is also

optimized by the inversion and is added to simulations at the end of the pipeline just before stacking outputs to the

observation vector format.
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Figure 3. Organisation of the Community Inversion Framework.
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Figure 4. (left) Prior fluxes and observation sites. (right) Perturbation from the prior used to generate "true" observations.

Observation sites are shown as circles coloured according to their height in meters above ground level (m a.g.l.). Fluxes

are reported in arbitrary units (a.u.)
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Figure 5. Posterior increments for analytical, EnSRF, variational with CONGRAD and variational with M1QN3 (from

top to bottom, left to right) for an inversion set-up at the pixel resolution with horizontal correlation length of 500 m.
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Figure 6. Uncertainty reduction for analytical, EnSRF, variational with CONGRAD and variational with M1QN3 (from

top to bottom, left to right) with the same set-up as in Fig. 5.
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Figure 7. Prior (left) and posterior (middle and right) uncertainty matrices for analytical, EnSRF, variational with CON-

GRAD and variational with M1QN3 (from top to bottom, middle and right columns), with the same set-up as in Fig. 5.

All matrices are reported with unitless values, i.e., a "1" on the diagonal corresponds to a 100% uncertainty.
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Figure 8. Cost function evaluation for varying numbers of computed simulations for analytical (red), EnSRF (green),

variational with CONGRAD (orange) and variational with M1QN3 (blue) methods. (top) inversion set-up with aggre-

gated regions of 3 pixels × 3 pixels ; (middle) inversion set-up at the pixel resolution with horizontal correlation length

of 500 m; (bottom) inversion set-up at the pixel resolution with horizontal correlation length of 200000 m.
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