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Abstract. Atmospheric inversion approaches are expected to play a critical role in future observation-based

monitoring systems for surface
::::
fluxes

:::
of greenhouse gas (GHG)fluxes,

:::::::::
pollutants

:::
and

:::::
other

::::
trace

:::::
gases. In

the past decade, the research community has developed various inversion softwares, mainly using variational

or ensemble Bayesian optimization methods, with various assumptions on uncertainty structures and prior

information and with various atmospheric chemistry-transport models. Each of them can assimilate some5

or all of the available observation streams for its domain area of interest: flask samples, in-situ measure-

ments or satellite observations. Although referenced in peer-reviewed publications and usually accessible

across the research community, most systems are not at the level of transparency, flexibility and accessibility

needed to provide the scientific community and policy makers with a comprehensive and robust view of the

uncertainties associated with the inverse estimation of GHG
:::
and

:::::::
reactive

::::::
species

:
fluxes. Furthermore, their10
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development, usually carried out by individual research institutes, may in the future not keep pace with the

increasing scientific needs and technical possibilities. We present here a Community Inversion Framework

:::::::::
Community

::::::::
Inversion

::::::::::
Framework (CIF) to help rationalize development efforts and leverage the strengths of

individual inversion systems into a comprehensive framework. The CIF is primarily a programming proto-

col to allow various inversion bricks to be exchanged among researchers. In practice, the ensemble of bricks5

makes a flexible, transparent and open-source python-based tool to estimate the fluxes of various GHGs both

at
:::
and

:::::::
reactive

::::::
species

:::::
both

::
at

:::
the

:
global and regional scales. It will allow running different atmospheric

transport models, different observation streams and different data assimilation approaches. This adaptability

will allow a comprehensively
::::::::::::
comprehensive assessment of uncertainty in a fully consistent framework. We

present here the main structure and functionalities of the system, and demonstrate how it operates in a simple10

academic case.

1 Introduction

The role of greenhouse gases (GHGs) in climate change has motivated an exceptional effort over the last cou-

ple of decades to densify the observations of GHGs around the world (Ciais et al., 2014): from the ground,

e.g., with the European Integrated Carbon Observation System (ICOS, https://www.icos-cp.eu/), from mo-15

bile platforms (e.g., from aircrafts, or balloons equipped with Aircore sampling; Filges et al., 2016; Karion

et al., 2010), and from space (e.g., Crisp et al., 2018; Janssens-Maenhout et al., 2020), despite occasional

budgetary difficulties (Houweling et al., 2012). These observations quantify the effect of exchange between

the surface and the atmosphere on GHG concentrations (e.g., Ramonet et al., 2020) and can thus be used

to determine the surface fluxes of GHGs through the inversion of atmospheric chemistry and transport (e.g.,20

Peylin et al., 2013; Houweling et al., 2017). Alongside improved observation capabilities, national and inter-

national initiatives pave the way towards an operational use of atmospheric inversions to support emissions

reporting to the United Nations Framework Convention on Climate Change (UNFCCC; e.g., Say et al.,

2016; Henne et al., 2016; Bergamaschi et al., 2018a; Janssens-Maenhout et al., 2020, or the EU projects

CHE – CO2 Human emissions; che-project.eu – or VERIFY – verify.lsce.ipsl.fr).25

In the past, research groups have developed various atmospheric inversion systems based on different tech-

niques and atmospheric transport models, targeting specific trace gases or types of observations, and at vari-

ous spatial and temporal scales, according to the particular scientific objectives of the study. All these systems

have their own strengths and weaknesses and help explore the range of systematic uncertainty in the surface

to atmosphere fluxes. Inter-comparison exercises are regularly conducted to assess the strengths and weak-30

nesses of various inversion systems (e.g., Locatelli et al., 2013; Monteil et al., 2019; Bergamaschi et al., 2018b; Gurney et al., 2003; Saunois et al., 2020; Babenhauserheide et al., 2015; Peylin et al., 2013; Crowell et al., 2019; Schuh et al., 2019; Brunner et al., 2017; Chevallier et al., 2019)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Gurney et al., 2003; Peylin et al., 2013; Locatelli et al., 2013; Babenhauserheide et al., 2015; Brunner et al., 2017; Bergamaschi et al., 2018b; Chevallier et al., 2019; Crowell et al., 2019; Monteil et al., 2019; Schuh et al., 2019; Saunois et al., 2020)

. Inter-comparisons also provide an assessment of the systematic uncertainty on final flux estimates induced
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by the variety of options and choices in different inversion systems. However, although the inversion sys-

tems are referenced in peer-reviewed literature, and are usually accessible to the research community, they

are typically not at the level of transparency, documentation, flexibility and accessibility required to provide

both the scientific community and policy makers with a comprehensive and robust view of the uncertainties

associated with the inverse estimation of GHG
::::
trace

:::::
gases

::::::::
(primarily

::::::
GHGs

:::
and

:::::::
reactive

:::::::
species)

:
fluxes. In5

particular, the differences between inversion systems (such as the atmospheric transport model, prior and

observation space uncertainties, and inversion algorithm) make comparing their results particularly chal-

lenging, even when they are applied to the same problem. Moreover, research inversion systems are so far

not ready for operational use, and their development, usually carried out by individual research institutes or

limited consortia, may not keep pace with the scientific and technical needs to come, such as those linked10

to the increasing availability of high resolution satellite GHG
:::
and

:::::::
reactive

:::::::
species observations (Janssens-

Maenhout et al., 2020). A unified system
:
,
::
as

::
a
::::::::::
community

::::::::
platform

:::::::
running

:::::::
multiple

::::::::
transport

:::::::
models,

::::
with

::::::
diverse

::::::::
inversion

::::::::
methods, would provide new possibilities to effectively and comprehensively assess

GHG
:::
and

::::::
various

:::::::
reactive

:::::::
species budgets, trends, and their uncertainties and quantify limitations and de-

velopment needs related to different approaches, all which is needed in order to properly support emission15

reporting. Collaborative efforts towards unified systems are already happening in other data assimilation

communities, with, e.g., the Object-Oriented Prediction System (OOPS; coordinated by the European Cen-

tre for Medium-range Weather Forecast, UK), or the
::::
Joint

:::::
Effort

:::
for

::::
Data

:::::::::
Integration

:::
(led

:::
by

:::::::::::::
UCAR/JCSDA;

www.jcsda.org/jcsda-project-jedi
:
).

:::
The

:
Data Assimilation Research Testbed (DART; Anderson et al., 2009)

, dedicated to weather and marine forecasts. The Community Inversion Framework
:
is

::::
also

::
an

::::::::
example

::
of20

::::::::
collective

:::::
effort

::::::::
proposing

::::::::
common

::::
data

::::::::::
assimilation

::::::
scripts

::
for

:::::::
diverse

::::::::::
applications

::::
(e.g.,

:::::
Earth

:::::::
system,

::
or

::::::
reactive

::::::
species

::::::::::
inversions;

:::::::::::::::
Gaubert et al. 2020

::
).

:::
The

::::::::::
Community

::::::::
Inversion

:::::::::
Framework (CIF) is an initiative

by members of the GHG atmospheric inversion community to bring together the different inversion systems

used in the community, and is supported by the European Commission H2020 project VERIFY.
:::
The

::::
CIF

:::
will

:::
also

:::::::
support

::::::::::
operational

::::::::::
applications

::
of

:::::::::::
atmospheric

:::::::::
inversions

::
in

:::
the

:::::::
CoCO2

::::::
project

:
(coco2-project.eu

:
),25

:::
that

::::
will

:::::
design

:::
an

:::::::::
operational

::::::::
inversion

::::::
system

:::::
based

::
on

::::::
OOPS

:::
and

:::::::::
interfaced

:::
with

:::
the

:::::::
research

::::::::::
community

::::::
through

:::
the

::::
CIF.

:

Despite their differences in methodology, application and implementation, almost all inversion systems

rely on the same conceptual and practical bases: in particular, they use model-observation mismatches in a

statistical optimization framework (
::::
most

:::
of

::
the

::::
time

:
based on Bayes’ Theorem), and numerical atmospheric30

tracer transport and chemistry models to simulate mixing ratios of GHGs
:::
and

::::
trace

:::::
gases

:
based on surface

fluxes. The objectives of
::
the

:
CIF are to develop a consistent input/model interface, to pool development

efforts, and to have an inversion tool that is well-documented, open-source, and ready for implementation

in an operational framework. The CIF is designed to be a flexible and transparent tool to estimate the fluxes

of different GHGs (e.g. carbon dioxide CO2, methane CH4, nitrous oxide N2O, or halocarbons) and other35
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species,
::::
such

:::
as

::::::
reactive

::::::
species

::::
(e.g.

::::
CO,

:::::
NO2,

:::::::
HCHO),

:
based on atmospheric measurements.

:
In
:::::::::
particular,

:::::::
although

::::::::
primarily

::::::::
designed

:::
for

:::::
GHGs

:::::::::::
applications,

:::
the

::::
CIF

::
is

:::::
based

::
on

::
a
::::::
general

::::::::
structure

:::
that

::::
will

:::::
allow

::::::::::
applications

::
to

::
air

::::::
quality

::::
data

:::::::::::
assimilation.

:
It is also designed to run at any spatial and temporal scales and

with different atmospheric (chemistry-)transport models (global and regional, Eulerian and Lagrangian),

with various observation data streams (ground-based, remote sensing, etc.), and a variety of data assimi-5

lation techniques (variational, analytical, ensemble methods, etc.). It will be possible to run it on multiple

computing environments and corresponding set-ups and tutorials will be well documented. Community de-

velopment will help in tackling the challenges in set-up and running, and accelerate adoption of the tool into

wider use. One of the main foreseen advantages of the CIF is the capability to quantify and compare the

errors due to the modeling
::::::::
modelling

:
of atmospheric transport and the errors due to the choice of a given10

inversion approach
:::
and

:::::
set-up

:
to solve a specific problem, in a fully consistent framework. The CIF will

provide a common platform for quickly developing and testing new inversion techniques with several trans-

port models, and it is hoped that with the combined community effort, it will be continuously improved and

revised, keeping it state-of-the-art.

In the present paper, we lay out the basis of the CIF, giving details on its underlying principles and overall15

implementation. The proof-of-concept focuses on the implementation of several inversion methods, illus-

trated with a test case. We will dedicate a future paper to the evaluation of the system on a real-life problem

with a number of interfaced atmospheric (chemistry-)transport models. At the time of writing the present

article, the following models are interfaced with the CIF: the Global Circulation Models LMDZ (Chevallier

et al., 2005) and TM5 (Krol et al., 2005; van der Laan-Luijkx et al., 2017), the regional chemistry-transport20

Eulerian model CHIMERE (?)
:::::::::::::::::::::::::
(Fortems-Cheiney et al., 2021) and the Lagrangian Particle Dispersion

::::::
particle

::::::::
dispersion

:
models FLEXPART (Pisso et al., 2019) and STILT (Trusilova et al., 2010). For the sake of sim-

plicity, we refer to all types of (chemistry-)transport models generically as CTMs in the following. In Sec-

tion 2, we describe the general theoretical framework for atmospheric inversions and how the CIF will

include the theory in a flexible and general way. In Section 3, the practical implementation of the general25

design rules is explained, with details on the python implementation of the CIF. In Section 4, we demonstrate

the capabilities of the CIF in a simple test case, applying various inversion techniques in parallel.

2 General principle

The version of the CIF presented here is implemented around Bayesian data assimilation methods with

Gaussian assumptions, which constitute the main framework used in the atmospheric inversion systems for30

GHG fluxes
:::
and

:::::
other

:::::
trace

:::::
gases (e.g., Enting, 2002; Bocquet et al., 2015). However, some studies have

proposed possible extensions to more general probability density functions beyond the classical Gaussian

case (e.g., truncated Gaussian densities, log-normal distributions, etc.; Michalak and Kitanidis, 2005; Berga-
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maschi et al., 2010; Miller et al., 2014; Zammit-Mangion et al., 2015; Lunt et al., 2016; Miller et al., 2019).

Therefore, we propose here a general and flexible structure for our system that will be independent of limiting

assumptions, as described in Sect 2.3, to allow future extensions to more general theoretical frameworks. In

the following, mathematical formulas are written following notations based on Ide et al. (1997) and Rayner

et al. (2019). We present the theoretical basis and several inversion methods that are implemented in the CIF5

as demonstrators.

2.1 General Bayesian data assimilation framework

The Bayesian approach consists in estimating the following conditional probability density function (pdf):

pa(x) = p(x | yo−H(xb),xb)∝ p(yo−H(x) | x) pb(x) (1)

with x the target vector, pa(x) the posterior distribution of the target vector, pb(x) the prior knowledge10

of the target vector,
:::::::::::
characterized

:::
by

::
its

:::::
mode

:::
xb,

:
yo the observation vector gathering all observations im-

plemented in the inversion and H the observation operator linking the target vector to the observation vec-

tor. In the following, we also refer to X and Y as the target and observation spaces, respectively, from

where the target and observation vectors are sampled. Classically, for atmospheric inversions, the observa-

tion vector yo includes ground-based measurements of GHG
::::
trace

:::::
gases

:
mixing ratios on fixed or mobile15

platforms, and remote sensing observations such as satellite observations. The target vector x includes the

variables to be optimized by the inversion; it includes the main variables of interest, such as the surface

fluxes, but also variables relating
:::::
related

:
to atmospheric chemical sources and sinks, background concen-

trations in the case of limited-area transport models, model parameters, etc., which are required to make

the inversion physically consistent. The observation operator H mainly includes the computation of atmo-20

spheric transport and chemistry (if relevant) by numerical Eulerian global circulation
:::::::::::::::::
(chemistry-)transport

::::::
models.

::::::
These

:::
can

:::
be

::
of

::::::
various

::::::
types:

::::
e.g.,

::::::
global

:::::::
transport

:
models (e.g., LMDZ, Chevallier et al. 2010;

TM5, Houweling et al. 2014; GEOS-Chem, van der Laan-Luijkx et al. 2017; Liu et al. 2015; Palmer

et al. 2019; Feng et al. 2017; NICAM, Niwa et al. 2017), regional Eulerian chemistry-transport mod-

els (e.g., CHIMERE, Broquet et al. 2011; ?
:::::::::::::::::::::::::::::::::::::::
Broquet et al. 2011; Fortems-Cheiney et al. 2021; WRF-CHEM,25

Zheng et al. 2018; COSMO-GHG, Mizzi et al. 2016
:::::::::::::::::
Kuhlmann et al. 2019; LOTOS-EUROS, Curier et al.

2012) or Lagrangian Particle Dispersion
::::::
particle

::::::::
dispersion

:
models (e.g., FLEXPART, Thompson and Stohl

2014; STILT, Bagley et al. 2017; Brioude et al. 2013; Trusilova et al. 2010). It also includes pre- and post-

processing operations required to project the target vector to a format compatible with the model input and

the model outputs to the observation vector; these operations can be the applications of e.g., averaging ker-30

nels in the case of satellite operations, or interpolation of the target vector to higher resolution model inputs.

As errors in inversion systems come from a large variety of independent causes superimposing on each

other, it is often assumed that the most relevant way of representing the distributions in Eq. 1
::
(1) is to assume

5



prior and observation spaces to be normal distributions,
:::::
noted

::::::
N (·, ·)

::::::
below,

:::
the

::::
first

::::::::
argument

::::::::::
representing

::
the

:::::::
average

::
of

:::
the

::::::::::
distribution

::::
and

:::
the

::::::
second

::::::::
argument

:::
the

:::::::::
covariance

::::::
matrix. In addition, when assuming

that the distributions in the state vector space and the observation space are independent from each other,
:::
and

:::
that

:::::
errors

::
in

:::
the

::::::::::
observation

:::
and

:::
the

::::
state

::::::
vector

::::::
spaces

::::
have

::::::::
Gaussian,

::::::::
unbiased

:::::::::::
distributions, it is possible

::::::::::::
mathematically

::::::
derive

:::
the

:::::
Bayes

:::::::
theorem

::::
and to represent the distributions of Eq. 1

:::
(1) as follows:5 

pb(x) ∼ N (xb, B)

p
(
yo−H(xb)

)
∼ N (0, R)

pa(x) ∼ N (xa, A)

(2)

with B and A the prior and posterior covariance matrix of uncertainties in the target vector, xb and xa the

prior and posterior target vectors and R the covariance matrix of uncertainties in the observation vector and

the observation operator.

:::
The

::::::::::
assumption

:::
that

:::::
errors

:::
are

:::::::::
unbiased,

:::::
which

::::::
makes

:
it
:::::::
possible

::
to
:::::

write
::::::
normal

:::::::::::
distributions

::
in

:::
Eq.

:::
(1)10

::::
with

:::::
means

::::
xb,

:
0
::::

and
:::
xa

::::::::::
respectively,

::
is
:::::::

needed
::
to

:::::::
simplify

::::
the

::::::::::
formulation

::
of

:::
the

::::::::
Bayesian

::::::::
problem

::
in

::::::::::
atmospheric

:::::::::
inversions.

:::::::::
Neglecting

::::
error

:::::
biases

:::::
have

:::::
known

:::::::
impacts

::
on

::::::::
inversion

::::::
results

::::::::::::::::::::::
(e.g., Masarie et al., 2011)

:
;
:::
they

::::
can

::
be

::::::::
accounted

:::
for

:::::
online

::
as

:::
an

:::::::
unknown

::
to
:::
be

:::::
solved

:::
by

::
the

::::::::
inversion

::::::::::::::::::::::::::::::
(e.g., Zammit-Mangion et al., 2021)

:
,
:::
but

:::
are

::::
often

::::::
treated

::::::
offline

::::
from

:::
the

:::::::::
inversion,

:::::
either

:::::::
through

::::::::::::
pre-processing

::
of

::::::
inputs

::
or

:::::::::::::
post-processing

::
of

:::::::
outputs.15

2.2 Computation modes in the CIF

The present version of the CIF includes three main categories of inversion methods: 1) analytical, i.e. alge-

braic solution
::
of

:::
the

:::::::
unbiased

::::::::
Gaussian

::::::::
Bayesian

:::::::
problem, 2) ensemble methods with the Ensemble Kalman

Filter
:::::
Square

:::::
Root

::::
Filter

::::::::
(EnSRF), and 3) variational with two examples of minimizing algorithms

:::::::
(M1QN3

:::
and

:::::::::::
CONGRAD). Other types of data assimilation methods (e.g. direct sampling of probability density20

functions through Monte Carlo approaches) are also used by the community. The choice of implementing

the three aforementioned methods first is motivated by their dominant use, and because these three use very

different approaches for solving the Bayesian inversion problem: that is, with/without random sampling of

probability distributions, and with/without the use of the adjoint of the observation operator. The adjoint of

the observation operator, noted H∗, is built following the mathematical definition of the adjoint; heuristi-25

cally, it operates backwards compared to the observation operator
::::::::::::::::
(e.g., Errico, 1997) in the sense that it

determines the sensitivity to inputs (e.g. fluxes) given an incremental perturbation to outputs (e.g. concen-

trations)(e.g., Errico, 1997). In addition to the mentioned data assimilation methods, the CIF also includes

the possibility to run forward simulations and to test the adjoint and the tangent linear of the observation

operator for given inversion configurations. In the following we call all inversion methods and other types of30

computation in the CIF "computation modes". With these computation modes implemented in a flexible and

6



general manner, it is anticipated that other inversion methods could be easily added to the CIF in the future

(see Sect. 2.3).

2.2.1 Data assimilation methods

Analytical inversions

Analytical inversions compute the algebraic solution of the Gaussian Bayesian problem when it is linear5

and are used extensively at all scales (e.g., Stohl et al., 2009; Turner and Jacob, 2015; Kopacz et al., 2009;

Bousquet et al., 2011; Wang et al., 2018; Palmer et al., 2006). When the observation operator is linear, H
equals its Jacobian matrix H, and conversely its adjointH∗ is the transpose of the Jacobian HT. In that case,

xa and A can be explicitly written as matrix products. There are two equivalent formulations of the matrix

products for the solution of the problem (e.g., Tarantola and Valette, 1982):10

 xa = xb + K(yo−Hxb)

A = B−KHB
or

 xa = xb + (HTR−1H + B−1)−1HTR−1(yo−Hxb)

A = (HTR−1H + B−1)−1
(3)

with K the Kalman gain matrix: K = BHT(R + HBHT)−1

::::::::
Analytical

:::::::::
inversions

::::
can

::::
also

::
be

:::::
used

::
on

:::::::
slightly

:::::::::
non-linear

:::::::::
problems,

:::
by

:::::::::
linearizing

:::
the

::::::::::
observation

:::::::
operator

::::::
around

:
a
:::::
given

::::::::
reference

::::
point

:::::
using

:::
the

:::::::
tangent

:::::
linear

::
of

:::
the

::::::::::
observation

:::::::
operator.

::
It

:::::::::
formulates

::
as

:::::::
follows:15

H(xb + δx)≈H(xb) + dHxb(δx) =H(xb) + Hxbδx
:::::::::::::::::::::::::::::::::::::::::::

(4)

::::
with

:::
δx

:
a
:::::

small
:::::::::

deviation
::::
from

:::
xb

::::::
within

::
a
:::::::
domain

:::::
where

::::
the

:::::
linear

::::::::::
assumption

::
is
::::::

valid,
:::::
dHxb

:::
the

:::::::::::
tangent-linear

::
of

::
H

::
at
:::
xb

:::
and

::::
Hxb

:::
the

::::::::
Jacobian

:::::
matrix

:::
of

::
H

::
at

:::
xb.

::::
Then

:::
Eq.

:::
(3)

:::
can

:::
be

:::::
easily

:::::::
adapted

::
by

::::::::
replacing

::::::::::
(yo−Hxb)

:::
by

:::::::::::
(yo−H(xb))

::::
and

::
H

:::
by

::::
Hxb .

:

The computation of an analytical inversion faces two main computational limitations. First, the matrix H20

representing the observation operatorH must be built explicitly. This can be done either column by column,

in the so-called response function method, by computing {H(xi) \ ∀xi ∈ Bχ}::
or

:::
row

:::
by

::::
row,

::
in

::
the

::::::::
so-called

:::::::
footprint

:::::::
method.

::::
The

:::
two

::::::::::
approaches

::::::
require

::::::::
dim(X ),

:::
the

:::::::::
dimension

::
of

:::
the

:::::
target

:::::
space

::::
and

:::::::
dim(Y),

:::
the

::::::::
dimension

:::
of

::
the

::::::::::
observation

::::::
space,

::::::::::
independent

::::::::::
simulations

::::::::::
respectively.

::
In

:::
the

::::::::
response

:::::::
function

:::::::
method,

::::
each

::::::
column

::
is

::::
built

::
by

:::::::::
computing

::::::::::::::::::::::
{dHxb(δxi) \ ∀δxi ∈ Bχ}with Bχ the canonical basis of the target space,25

or row by row, in the so-called
:
.
:::
For

::
a

:::::
given

::::::::
increment

::::
δxi,:::

the
::::::::::::
corresponding

:::::::
column

::::
gives

:::
the

:::::::::
sensitivity

::
of

::::::::::
observations

::
to
:::::::
changes

::
in
:::

the
::::::::::::

corresponding
::::::::::

component
::
of

:::
the

:::::
target

::::::
space.

::
In

:::
the footprint method, by

computing {H∗(δyi) \ ∀δyi ∈ BY}::::
each

::::
row

::
is

::::
built

::
by

:::::::::
computing

::::::::::::::::::::::

{
H∗xb(δyi) \ ∀δyi ∈ BY

}
with BY the

7



canonical basis of the observation space.
:::
For

:
a
:::::
given

::::::::::
perturbation

:::
of

:::
δyi::

of
::
a

:::::::::
component

::
of

:::
the

::::::::::
observation

:::::
vector,

:::
the

::::::::::::
corresponding

::::
row

::
of

::
H

:::::
gives

:::
the

:::::::::
sensitivity

::
of

:::
the

:::::
inputs

::
to

::::
that

::::::::::
perturbation.

:

Depending on the number of available observations or the size of the target vector, one of the two is

preferred to limit the number of observation operator computations to be carried out explicitly. When the di-

mension of the target vector is relatively small, the response function is generally preferred, and conversely,5

when the observation vector is small, the footprint approach is preferred. The type of transport model used

to compute the matrix H also plays a role in the choice of the approach: for Eulerian models, the response

function approach is preferred for multiple reasons: (i) their adjoint is often much more costly than their

forward, (ii) the adjoint may not be available for some models or is difficult to generate, and (iii) the compu-

tation time of the forward is constant no matter how numerous the observations; for Lagrangian models, the10

footprint approach is preferred as they often compute backward transport simulations for each observation,

allowing a straightforward computation of the adjoint (Seibert and Frank, 2004). In both cases, the explicit

construction of the matrix H requires numerous independent simulations, which can be an insurmountable

computational challenge.

The second obstacle consists in that the computation of the Kalman gain matrix in Eq. 3
:::
(3) (left) requires15

inverting of a matrix of the dimension of the observation vector
:::::
space, dim(Y), while for the other formula-

tion (Eq. 3 right) a matrix
::
(3)

:::::
right)

:::
the

::::::
matrix

::
is of dimension dim(χ

::
X ), the dimension of the control

::::
target

space. If the dimensions of both the observation and the control
::::
target

:
spaces are very high, as in many

inversion applications, the explicit computation of Eq. 3
::
(3)

:
with matrix products and inverses is not compu-

tationally feasible. For this reason, smart adaptations of the inversion framework (including approximations20

and numerical solvers) are often necessary to tackle even linear problems
:::::::
problems

::::
even

:::::
when

::::
they

:::
are

:::::
linear;

::
in

:::
the

::::::::
following,

:::
we

::::::
choose

:::
to

:::::::
elaborate

:::
on

:::::
some

::
of

:::
the

:::::
most

:::::::
frequent

:::::::::
approaches

:::::
used

::
in

:::
the

::::::::::
atmospheric

:::::::
inversion

::::::::::
community: the variational approach and the Ensemble Kalman filter are described below

:::
one

::::::::
ensemble

:::::::
method,

:::
the

::::::::
Ensemble

::::::
Square

:::::
Root

:::::
Filter

:::::::
(EnSRF). Less frequently, intermediate adaptations of

the analytical inversion also include sequential applications (e.g., Michalak, 2008; Bruhwiler et al., 2005;25

Brunner et al., 2012), that are a compromise between tackling the above-mentioned computational obstacles

while maintaining the simplicity of the analytical inversion; however, such sequential analytical inversions

are limited to specific linear ,
:::
and simple cases.

Ensemble methods

Ensemble methods are commonly used to tackle high-dimensional problems with limited non-linearity and30

to approximately characterized
:::::::::
characterize

:
the optimal solution. In ensemble methods, such as Ensemble

Kalman filters (EnKFs) or smoothers (e.g., Peters et al., 2005; Zupanski et al., 2007; Zupanski, 2005; Feng et al., 2009; Chatterjee et al., 2012)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Whitaker and Hamill, 2002; Peters et al., 2005; Zupanski et al., 2007; Zupanski, 2005; Feng et al., 2009; Chatterjee et al., 2012)
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, the issue of high dimensions in the system of Equations 3
::
Eq.

:::
(3)

:
is avoided using the two following main

procedures:

– observations are
:::
first assimilated sequentially in the system to reduce the dimension of the observa-

tion space, making it possible to explicitly compute matrix products and inverses,
:::
and

::::
thus

::::::::::
propagating

:::::::::
information

:::::
from

:::
the

:::::
target

::::
space

::
to
:::
the

::::::::::
observation

:::::
space; the overall inversion time window

:::::
period

:
is5

processed incrementally using a smaller running computation
::::::::::
assimilation window including a man-

ageable number of observations; intermediate inversions are solved on the smaller running window

that is gradually moved from the beginning to the end of the overall inversion
::::
data

::::::::::
assimilation win-

dow; the running assimilation window with so-called analysis and forecast steps introduces complex

technical challenges to rigorously propagate errors from one iteration of the running window to the10

next one; for
::::::::
moreover,

:::
the

::::::::
sequential

::::::::::
assimilation

:::
of

::::::::::
observations

::
is

::::
valid

::::
only

:::::
under

:::
the

::::::::::
assumption

:::
that

:::::::::::
observations

:::::
errors

:::
are

:::
not

::::::::
correlated

::::::::
between

::::::::::
assimilation

::::::::
windows,

:::::
which

::::
may

:::::
prove

::::::::
incorrect

::
for

:::::::::::
high-density

:::
data

::::
sets,

:::
but

::
is

::
an

::::::::::
assumption

::::
also

::::
done

::
in,

::::
e.g.,

:::::::::
variational

:::::::::
inversions.

:::
For

:
very dense

observations, such as datasets from new-generation high-resolution satellites, the sequential assimi-

lation of observations may not be sufficient; moreover, the sequential assimilation of observations is15

valid only under the assumption that observations for each assimilation window are not correlated with

each others, which may prove incorrect for high-density data sets; ,
::
or

::
at
::::
least

::::::::
methods

::::
may

::
be

::::::
needed

::
to

::::
make

:::
the

::::::::::
observation

:::::
errors

:::::::
between

:::::::::
sequential

::::::::::
assimilation

::::::::
windows

:::::::::::
independent,

::
for

::::::::
example

::
by

:::::::
applying

:
a
:::::::::
whitening

::::::::::::
transformation

::
to

:::
the

:::::::::::
observations

::
to

::::
form

::
a

:::
new

:::
set

::::
with

:::::::::::
uncorrelated

:::::
errors

::
as

::::::::
suggested

:::
by

::::::::::::::::
Tippett et al. (2003)

::::
.The

::::::::
challenge

::
is

::::::::::
exacerbated

:::
for

:::::::::
long-lived

::::::
species

:::::
such

::
as

:::::
CO2,20

::
for

::::::
which

::::::::::
assimilation

::::::::
windows

::::
must

:::
be

::::
long

::::::
enough

::
to
::::::::

maintain
:::
the

::::::::::
propagation

::
of

::::::::::
information

:::
on

::
the

::::::
fluxes

:::
on

::::
long

::::::::
distances

:::::::
through

:::::::::
transport;

::::::::::
propagating

::
a

:::::::::
covariance

::::::
matrix

:::::
from

::::::::::
assimilation

:::::::
windows

:::
to

::::::::::
assimilation

::::::::
windows

:::
as

:::::::
accurate

:::
as

:::::::
possible

:::::
could

:::
in

:::::::
principle

:::::
limit

:::
the

:::::
later

:::::
issue,

::
as

::::::::
suggested

::
in
:::::::::::::::::::::

Kang et al. (2011, 2012),
:::
but

:::::
could

::::
still

:::::
prove

::::
hard

:::
to

:::::
apply

::
in

::::
very

::::
high

:::::::::
resolution

::::::::
problems.25

– matrix
::
the

::::::::
posterior

:::::::::
distribution

::
at

::
a

::::
given

::::
step

::
of

:::
the

::::
filter

::
is

::::
then

:::::::::::
characterized

::::::::
explicitly

:::
by

:::::::
applying

:::
Eq.

:::
(1)

::
on

::::
each

:::::::
member

:::
of

:::
the

::::::::
ensemble;

:::
the

::::
new

:::::::::::
intermediate

:::::::
posterior

::::::::::
distribution

::
is

::::
then

:::::::
sampled

:::
and

:::::::::
propagated

::
to

:::
the

::::
next

::::
data

::::::::::
assimilation

:::::::
window.

:

::
In

::
the

:::::::::::
atmospheric

:::::::
inversion

::::::::::
community,

:::::::
another

::::::::
ensemble

::::::
method

::
is

:::::
widely

:::::
used,

:::::
based

::
on

:::
the

:::::::::::::
CarbonTracker

::::::
system

::::::::::::::::
(Peters et al., 2005),

:::::
which

::::
uses

::
an

:::::::::
Ensemble

::::::
Square

::::
Root

:::::
Filter

:::::::::::::::::::::::::::::::
(EnSRF; Whitaker and Hamill, 2002)30

:
.
::
In

:::
that

:::::::::
approach,

:::
the

::::::::::
observations

:::
are

::::
split

:::::
using

:::::::
running

:::
data

:::::::::::
assimilation

:::::::
windows

::
as
:::

for
:::::
other

::::::::
ensemble

:::::::
methods,

:::
but

:::::::
instead

::
of

:::::::
directly

::::::::::::
characterizing

:::
the

::::::::
posterior

::::::::::
distribution

::::
from

::::
the

::::::::
ensemble,

:::
the

::::::::
statistics

::
of

:::
the

::::::::
ensemble

::
is

::::
used

::
to

:::::
solve

:::
the

:::::::::
analytical

::::::::
equation,

:::
Eq.

:::
(3),

:::::::::::::
approximately.

:::::
Thus,

:::
the

::::::
EnSRF

:::::::
method

:
is
::::
less

::::::
general

:::
as

::::::
EnKFs

::::::::
methods,

::
as

::
it

:::::
relies

::
on

:::
the

::::::::
Gaussian

::::::::::
assumption,

:::
as

::::
well

::
as

::::::
limited

:::::::::::
non-linearity
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::
in

:::
the

::::::::
inversion

:::::::
problem,

:::
but

::::::
proves

::::
very

:::::::
efficient

:::
at

:::::::::
computing

::
an

::::::::::::
approximated

:::::::
solution

::
of

:::
the

::::::::
inversion

:::::::
problem.

::::::
Matrix

:
products in Eq. 1

:::
(3) involving the target vector covariance matrix B (HBHT and BHT)

are approximated by reducing the space of uncertainties to a low-rank representation; this is done in practice

by using a Monte Carlo ensemble of possible control
:::::
target vectors sampling the distributionN (xb,B); with

such an approximation, matrix products can be written as follows:5 
HBHT ' 1

N − 1
(H(x1), H(x2), . . . , H(xN )) . (H(x1), H(x2), . . . , H(xN ))

T

BHT ' 1

N − 1
(x1, x2, . . . , xN ) . (H(x1), H(x2), . . . , H(xN ))T

(5)

where N is the size of the ensemble.

From there, Eq. 1
:::
(1) is solved analytically by replacing HBHT and BHT by their respective approxima-

tions. Using

::
By

:::::
using

:
random sampling, ensemble methods are able to approximate large dimensional matrices at a10

reduced cost without using the adjoint of the observation operator (see variational inversion below) that

can be challenging to implement. However, using too small ensembles causes degenerate approximations

(under-estimating the uncertainty magnitude, or misrepresenting uncertainty structures)
:::::
Small

:::::::::
ensembles

:::::::
generally

:::::
cause

::::
the

:::::::
posterior

::::::::
ensemble

:::
to

:::::::
collapse,

::::
i.e.,

:::
the

:::::::
posterior

::::::::::
distribution

::
is
:::::::::
dominated

:::
by

:::
one

:::
or

:
a

::::
very

::::
small

:::::::
number

::
of

::::::::
members,

::::::
which

::::
does

:::
not

:::::
allow

:::
for

:
a
::::::
reliable

::::::::::
assessment

::
of

:::
the

:::::::
posterior

:::::::::::
uncertainties15

::::::::::::::::::
(Morzfeld et al., 2017)

:
;
:::::::::
moreover,

:::::
small

:::::::::
ensembles

::::::::
introduce

:::::::::::
spuriousness

::
in
::::

the
::::::::
posterior

:::::::::::
uncertainties,

::::
with

::::::::
irrealistic

::::::::::
correlations

::::::
being

:::::::::
artificially

:::::::::
generated..

:::
In

:::
the

:::::::
EnSRF,

:::::
small

:::::::::
ensembles

::::::
rather

:::::
cause

::
a

::::::::::::::
misrepresentation

:::
of

:::::::::
uncertainty

:::::::::
structures, which limits the accuracy of the computed solution, and may

require fixes as described in
:
, e.g., Bocquet (2011). In any case, the level of approximation necessary for this

approach to work is strongly different for each problem, which requires preliminary studies before consistent20

application.
::
In

::::::::
particular,

:::
the

::::::::
so-called

::::::::::
localization

::
of

:::
the

::::::::
ensemble

:::
can

:::
be

::::
used

::
to

:::::::
improve

:::
the

::::::::::
consistency

::
of

:::
the

:::::::
inversion

:::::::
outputs

::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Zupanski et al., 2007; Babenhauserheide et al., 2015)

::
In

:::
the

::::::
current

:::::::
version,

:::::
only

:::
the

::::::
EnSRF

::::::::
approach

::
is
:::::::::::
implemented

:::
in

:::
the

::::
CIF.

::::
One

::::::
should

::::
note

::::
that

:::
the

::::::
EnSRF,

::
as
::

a
:::::
direct

:::::::::::::
approximation

::
of

:::
the

:::::::::
analytical

:::::::
solution,

::::
can

::
be

:::::
very

:::::::
sensitive

:::
to

:::::::::::
non-linearity

::
in

:::
the

:::::::::
observation

::::::::
operator

:::::::::::::::::::
(e.g., Tolk et al., 2011).

::
It
::::

can
::::::::
generally

::::
cope

:::::
only

::::
with

:::::
slight

:::::::::::
non-linearity

::::
over

:::
the25

::::::::::
assimilation

:::::::
window,

::::
thus,

:::
the

::::::::::
assimilation

:::::::
window

::::::
length

:::
has

::
to

:::
be

::::::
chosen

:::::::::::
appropriately,

:::::::
contrary

::
to
:::::
other

::::::::
ensemble

:::::::
methods

:::::
which

:::
are

::::::
usually

:::
not

::::::::
sensitive

::
to

:::::::::::
non-linearity.

:

Variational inversions

Variational inversions are a numerical approximation to the solution
:::::::::
Variational

:::::::::
inversions

:::
use

:::
the

:::
fact

::::
that

::::::
finding

:::
the

::::
mode

:
of the inversion problem: they involve the gradient of the cost function in Eq. 5 and require30

to run forward and adjoint simulations iteratively (e.g., Meirink et al., 2008; Bergamaschi et al., 2010; Houweling et al., 2016, 2014; ?; Chevallier et al., 2010, 2005; Thompson and Stohl, 2014; Monteil and Scholze, 2019; Wang et al., 2019)

. In variational inversions, the solution x is defined as being that with maximum posterior probability. In
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the case of Gaussian assumptions, it is equivalent to computing the mode xa of the normal distribution .

Computing xa
:::::::
posterior

::::::::
Gaussian

::::::::::
distribution

::::::::::::::::
pa(x)∼N (xa, A)

:
in Eq.1

:::
(2)

:
is equivalent to finding the

minimum
::
xa

:
of the cost function

:
J :

J(x) =
1

2
(x−xb)TB−1(x−xb) +

1

2
(yo−H(x))TR−1(yo−H(x)) (6)

The variational formulation does not require calculation of complex matrix products and inversions,5

contrary to the analytical inversion, and is thus not limited by vector dimensions. Still, the inverses of the

uncertainty matrices B and R need to be computed, potentially prohibiting the use of very large and/or

complex general matrices; this challenge is often overcome by reducing B and R to manageable combinations

of simple matrices (e.g., Kronecker products of simple shape covariance matrices; see Sect. 2.3.1).

In variational inversions, the minimum of the cost function in Eq.6
:::
(6) is numerically estimated

::::::::
iteratively10

using quasi-Newtonian algorithms based on the gradient of the cost function:

∇Jx = B−1 .(x−xb) +H∗
(
R−1 . (yo−H(x))

)
(7)

Quasi-Newtonian methods are a group of algorithms designed to compute the minimum of a function

iteratively. It should be noted that in high-dimension problems, it can take a very large number of iterations

to reach the minimum of the cost function J , forcing the user to stop the algorithm before convergence, thus15

reaching only an approximation of xa; in addition, iterative algorithms can reach local minima without ever

reaching the global minimum, making it essential to thoroughly verify variational inversion results; this can

happen in non linear
:::::::::
non-linear cases, but also, due to numerical artefacts

:
, in linear cases (some points in

the cost function have gradients so close to zero that the algorithm sees them as convergence points, whereas

the only
::::::
unique global minimum is somewhere else). In the community, examples of quasi-Newtonian al-20

gorithms commonly used are M1QN3 (Gilbert and Lemaréchal, 1989), the conjugate gradient CONGRAD

(applicable only to linear or linearized problems; Fisher, 1998) algorithm (e.g., Chevallier et al., 2005) or the

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (Zheng et al., 2018; Bousserez et al., 2015),
:::::::
M1QN3

:::::::::::::::::::::::::
(Gilbert and Lemaréchal, 1989)

:
,
:::
and

:::
the

::::::::::
CONGRAD

::::::::
algorithm

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(applicable only to linear or linearized problems; Fisher, 1998; Chevallier et al., 2005)

:::::
based

::
on

:::
the

:::::::
Lanczos

:::::::
method,

:::::
which

:::::::
iterates

::
to

:::
find

:::
the

::::::::::
eigenvalues

:::
and

:::::::::::
eigenvectors

::
of

:::
the

:::::::
Hessian

::::::
matrix,25

:::::
which

::
is

::::
then

::::
used

::
(in

::
a

:::::
single

::::
step)

::
to

::::::::
calculate

::
the

:::::::
analysis

::::::
vector,

::
xa. In general, quasi-Newtonian methods

require an initial regularization,
:::
or

:::::::::::::::
"pre-conditioning"

:
of x, the vector to be optimized, for better efficiency.

In atmospheric inversions, such a regularization is generally made by optimizing χ= B−1/2 .(x−xb) in-
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stead of x; we note A the regularization space: χ ∈ A. This transformation translates in Eq.7
:::
(6)

:::
and

:::
(7) as

follows:

∇Jχ = χ + B1/2 .H∗R−1 .(yo−H(x))

 Jχ = 1
2χ

Tχ+ 1
2 (yo−H(B1/2 .χ+ xb))TR−1(yo−H(B1/2 .χ+ xb))

∇Jχ = χ + B1/2 .H∗
(
R−1 .(yo−H(B1/2 .χ+ xb))

)
(8)

Solving Eq. 6
::
(6)

::::
and

::::
(7) in the target vector space or Eq. 8

::
(8)

:
in the regularization space is mathe-

matically fully equivalent, but the solution in the regularization space is often reached in fewer iterations.5

Moreover, in the regularization space, one can force the algorithm to focus on the main modes of the target

vector space by filtering the smallest eigenvalues of the matrix B. This reduces the dimension of χ and

accelerates further the rate of convergence, although the solution of the reduced problem is only an approxi-

mation of the solution of the full problem. In the following we thus prefer calling the "regularization space"

the "reduction space". The link between the two can be written as follows:10

χfull = QΛ−1/2 (x−xb)

χreduced = Q′Λ′
−1/2

(x−xb)
(9)

with B1/2 = QΛ1/2Q−1
::::::::::::::::
B1/2 = QΛ1/2QT, Q and Λ being the matrices of the eigenvector and the ma-

trix of the corresponding eigenvalues
:
of

:::
the

::::::
matrix

:::
B. Q′ and Λ′ are the reduced matrices of eigenvalues

and eigenvectors with a given number of dominant eigenvalues.

::::::
Overall,

::::::::::
variational

::::::::
inversions

::::
are

:
a
:::::::::
numerical

::::::::::::
approximation

::
to
::::

the
:::::::
solution

::
of

:::
the

::::::::
inversion

::::::::
problem:15

:::
they

:::::::
involve

:::
the

:::::::
gradient

::
of

:::
the

::::
cost

:::::::
function

::
in
::::

Eq.
:::
(7)

:::
and

::::::
require

:::
to

:::
run

:::::::
forward

:::
and

::::::
adjoint

::::::::::
simulations

::::::::
iteratively

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Meirink et al., 2008; Bergamaschi et al., 2010; Houweling et al., 2016, 2014; Fortems-Cheiney et al., 2021; Chevallier et al., 2010, 2005; Thompson and Stohl, 2014; Monteil and Scholze, 2019; Wang et al., 2019)

:
.

:::
The

:::::::::
variational

:::::::::::
formulation

::::
does

::::
not

::::::
require

::::::::::
calculation

::
of

::::::::
complex

::::::
matrix

::::::::
products

::::
and

:::::::::
inversions,

:::::::
contrary

::
to

:::
the

::::::::
analytical

:::::::::
inversion,

:::
and

::
is
::::
thus

:::
not

:::::::
limited

::
by

::::::
vector

::::::::::
dimensions.

:::::
Still,

:::
the

:::::::
inverses

::
of

:::
the20

:::::::::
uncertainty

:::::::
matrices

:::
B

:::
and

:::
R

::::
need

:::
to

::
be

:::::::::
computed,

::::::::::
potentially

:::::::::
prohibiting

:::
the

::::
use

::
of

:::::
very

::::
large

::::::
and/or

:::::::
complex

::::::
general

::::::::
matrices;

:::
this

::::::::
challenge

::
is

::::
often

:::::::::
overcome

::
by

:::::::
reducing

::
B

::::
and

::
R

::
to

::::::::::
manageable

:::::::::::
combinations

::
of

:::::
simple

::::::::
matrices

::::
(e.g.,

:::::::::
Kronecker

::::::::
products

::
of

::::::
simple

:::::
shape

:::::::::
covariance

::::::::
matrices;

:::
see

::::
Sect.

::::::
2.3.1).

When the observation operator is linear, the posterior uncertainty matrix A is equal to the inverse of

the Hessian matrix at the minimum of the cost function. In most cases the Hessian cannot be computed25

explicitly, because of memory limitations, which is a major drawback of variational inversions. But some

variational algorithms such as CONGRAD provide a coarse approximation of the Hessian: in the case of

CONGRAD
:::::
based

:::
on

:::
the

:::::::
Lanczos

::::::
method, leading eigenvectors of the Hessian can be computed, together
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with their eigenvalues (Fisher, 1998).
:::
The

::::::::::::
approximation

::
of

:::
the

::::::::
posterior

::::::::::
uncertainty

::::::
matrix

::
A

::
in

:::
the

::::
case

::
of

::::::::::
CONGRAD

:::::
reads

::
as

:::::::
follows:

A =Hess(J)−1xa ≈VT
xaΛ−1xa Vxa

::::::::::::::::::::::::::
(10)

::::
with

::::
Vxa

:::
the

::::::::
dominant

:::::::::::
eigenvectors

::
of

::::
the

:::::::
Hessian

::::::
matrix

::
at

:::
the

:::::
point

:::
xa

:::
and

::::
Λxa

:::
the

::::::
matrix

:::
of

:::
the

::::::::
dominant

:::::::::
eigenvalues

::
of

:::
the

:::::::
Hessian

::::::
matrix.

::::::
Please

::::
note

:::
that

:::
the

::::::::
dominant

::::::::::
eigenvalues

::
of

:::
the

::::::
Hessian

::::::
matrix5

:::::::::
correspond

::
to

::::::::::
components

::::
with

::::
low

:::::::
posterior

:::::::::::
uncertainties

::
in

:::
A.

Another approach to quantify the posterior uncertainty matrix A, valid for both linear and non-linear

cases, is to carry out a Monte Carlo ensemble of independent inversions with sampled prior vectors
::::
from

:::
the

::::
prior

::::::::::
distribution

::::::::
N (xb,B)

:::::::::::::::::::
(e.g., Liu et al., 2017).

:::
An

::::::::
ensemble

::
of

::::::::
posterior

::::::
vectors

:::
are

:::::::
inferred

::::
and

::::
used

::
to

:::::::
compute

:::
the

:::::::
posterior

::::::
matrix

::
as

:::::::
follows:10

A≈ 1

N − 1
(xa

1−xa
ref , xa

2−xa
ref , . . . xa

N −xa
ref ) . (xa

1−xa
ref , xa

2−xa
ref , . . . xa

N −xT )
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(11)

::::
with

::
N

:::
the

:::
size

:::
of

:::
the

:::::
Monte

:::::
Carlo

:::::::::
ensemble,

::
xa
i:::

the
::::::::
posterior

:::::
vector

::::::::::::
corresponding

::
to

:::
the

::::
prior

:::
xb
i::

of
:::
the

:::::
Monte

:::::
Carlo

::::::::
ensemble

::::
and

::::
xa
ref :::

the
::::::
average

::::
over

::::::::
sampled

:::::::
posterior

:::::::
vectors.

:

2.2.2 Auxiliary computation modes

Forward simulations15

Forward simulations simply use the observation operator to compute simulated observation equivalents. It

reads as:

(xb, yo) → H(xb) (12)

This mode is used to make quick comparisons between observations and simulations to check for incon-

sistencies before running a full inversion. It is also used by the analytical inversion mode to build response20

functions.

Test of the adjoint

The test of the adjoint is a crucial diagnostic for any inversion system making use of the adjoint of the

observation operator. Such a test is typically required after making any edits to the code (to the forward

observation operator or its adjoint) before running an inversion. Coding an adjoint is prone to errors and even25

small errors can have significant impacts on the computation of the gradient of the cost function in Eq. 7
:::
(7).
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Thus, one needs to make sure that the adjoint rigorously corresponds to the forward. This test consists in

checking the definition of the mathematical adjoint of the observation operator. It writes as follows for a

given target vector x and incremental target perturbation δx:

< Dd
:
Hx

:
(x, δx) |Dd

:
Hx

:
(x, δx) >=< δx |

(
H∗ ◦Dd

:
Hx

:

)
(x, δx) > (13)

DH(x, δx)
:::::::
dHx(δx)

:
is the linearization of the observation operatorH at the point x for a given increment5

δx; it is computed with the tangent linear model, which is the numerical adaptation of DH(x, δx)
::::::::
dHx(δx).

Then, (H∗ ◦DH)(x, δx)
::::::::::::::
(H∗ ◦ dHx)(δx) is calculated with the adjoint of the tangent-linear of H at the

point x.

In practice, the two terms of the equation are rarely exactly equal. Nevertheless, the difference should

never exceed a few times the machine epsilon. Besides, Eq. 13
::::
(13) should be verified for any given target10

vector and increment. In practice, it is not possible to explicitly verify all possible combinations; but as the

result of the test is highly sensitive to any error in the code, it is assumed that a few typical couples (x, δx)

are sufficient to certify the validity of the adjoint.

2.3 Identification of common elementary transformations

2.3.1 General purpose operations15

Every
::::
Each

:
inversion algorithm and computation mode mentioned above can be decomposed into a pipeline

of elementary transformations. These transformations are listed in Tab. 1 and include: the observation op-

erator and its adjoint (their matrix representations in linear cases), matrix products with control
:::::
target and

observation error covariance matrices and corresponding adjoints, and random sampling of Normal
::::::
normal

distributions. To limit redundancy in the CIF as much as possible, these elementary transformations are20

included in the CIF as generic transformation blocks on the same conceptual level. Overall, the decomposi-

tion of computation modes presently implemented in the CIF into elementary transformations leads to the

structure in Fig. 1.

Avoiding redundancy makes the maintenance of the code much easier, and provides a clear framework

for extensions to other inversion methods or features. For instance, inverse methods based on probability25

density functions other than Normal
:::::
normal

:
distributions could be easily implemented by updating the ran-

dom ensemble generator, or by implementing new cost functions representing non Gaussian
:::::::::::
non-Gaussian

distributions, while keeping the remaining code unmodified. In particular, non-Gaussian cost functions still

rely on the computation of the observation operator. New combinations of elementary transformations can

also directly lead to new methods. For instance, ensemble variational inversion (e.g., Bousserez and Henze,30

2018) is a direct combination of the available variational pipeline and the random sampling pipeline. Inver-
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sions estimating hyper-parameters through maximum-likelihood or hierarchical Bayesian techniques (e.g.,

Michalak et al., 2005; Berchet et al., 2014; Ganesan et al., 2014) could be integrated in the CIF by adapting

the Gaussian cost function and by implementing a corresponding computation pipeline.

The complexity of the selected elementary transformations spans a wide range, from one-line straightfor-

ward codes to computationally expensive and complex code implementation. In small dimensional and/or5

linear problems, the computation of the observation operator using its Jacobian and matrix products may

be computationally expensive, but is in principle rather straightforward to implement. For non-linear and/or

high-dimensional problems, these transformations require simplifications and numerous intermediate steps.

For instance, applying matrix products to the error covariance matrix R and B and computing their inverse

is easy in small dimensions, but can be limiting in high dimensional problems; for
:
.
:::
For

:
that reason, the error10

covariance matrices are often reduced to particular decompositions; for instance, the error covariance matrix

on the target vector B is often written as a Kronecker product of multiple spatial and/or temporal covariance

matrices of lower dimensions, making matrix products manageable (e.g., Chevallier et al., 2005; Meirink

et al., 2008; Yadav and Michalak, 2013).

In any case, the observation operator (see details in Sect. 2.3.2) appears as the center piece of any inversion15

method.

2.3.2 Observation operator

The observation operator is a key component of all inversion methods. It links the target space to the ob-

servation space, and conversely, its adjoint links the observation space to the target space. To do so, the

observation operator projects its inputs through various intermediate spaces to the outputs. As atmospheric20

inversions need a representation of the atmospheric transport (and chemistry if relevant) to link the target

vector (including surface fluxes, atmospheric sources and sinks, initial and boundary conditions for limited

domains and time-windows, etc.) to the observation vector (including some form of atmospheric concentra-

tion measurements), the observation operator is built around a given (chemistry-)transport model
::::
CTM in

most cases: Eq. 14
::::
(14) illustrates the various projections in this

::
the

::::::::
common case.25

x
ΠF

X−−→ f
ΠF

F−−→ inputs model−−−→ outputs
ΠM

C−−−→ c
ΠY

M−−−→ H(x) (14)

with f the target vector projected at the CTM’s resolution (includes fluxes, but also other types of inputs

required by the CTM), c the raw outputs extracted from the run of the CTM’s executable (in general 4-

dimensional concentration fields). Π operators are intermediate projectors: ΠF
X projects the target vector at

the spatial and temporal resolutions of the CTM’s inputs, ΠFF dumps the input vector in files usable by the30

CTM’s executable, ΠM
C reads the CTM’s outputs, ΠYM reprojects the raw outputs at the observation vector
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resolution
::::::
(mostly

:::
the

:::::::
temporal

:::::::::
resolution

::
as

:::
the

::::::
model

:::
and

:::
the

::::::::::
observation

::::::
worlds

:::
do

:::
not

:::::
follow

:::
the

:::::
same

::::
time

::::
line).

The targeted structure of the CIF should allow a full flexibility of observation operators, from the straight-

forward widely-used decomposition detailed in Eq.14
::::
(14) to more elaborated approaches including multiple

transport models and
::
/or complex super-observations (e.g., concentration gradients or aggregates; Bréon et al., 2015)5

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., in Bréon et al., 2015; Staufer et al., 2016, authors implemented differences between observation sites and time in the observation vector instead of observations from individual sites in order to focus on spatial/temporal gradients, thus allowing to limit the influence of background concentrations in the computation of local fluxes)

and hyper-parameters (e.g., emission factors and model parameters used to produce emission maps; Rayner et al., 2010; Asefi-Najafabady et al., 2014)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., emission factors and model parameters used to produce emission maps; Rayner et al., 2010; Asefi-Najafabady et al., 2014)

. Therefore, the observation operator is designed as a pipeline of elementary interchangeable transformations

with standardized input and output formats such that:10

H=H1 ◦H2 ◦ · · · ◦HN (15)

Such a design also
::
In

::::
such

:
a
:::::::::
formalism,

:::
all

::::::::::
intermediate

:::::::::::::
transformations

::::
have

:::
the

:::::
same

:::::::::
conceptual

::::
level

::
in

::
the

:::::
code.

:::::
They

:::
are

::::::::
functions

::::::
ranging

:::::
from

::::::
spatial

::::::::::
reprojection,

::
to

::::::::
temporal

::::::::::::
interpolations,

::
to

:::::
more

:::::::
complex

::::::::
operations

:::::
such

::
as

:::
the

::::::::::::
reconstruction

::
of

:::::::
satellite

::::
total

:::::::
columns

:::::
from

::::::::::::
concentrations

::::::::
simulated

::
at
:::::::::
individual

:::::
levels

::
in

:::
the

:::::::
transport

::::::
model.

:::
In

:::
the

::::
CIF,

::
all

:::::
these

:::::::::::::
transformations

::::
have

:::
the

:::::
same

::::
input

::::
and

:::::
output

::::::::
structure15

:::
and,

:::::
thus,

:::::
their

:::::
order

:::
can

:::
be

:::::::
changed

::::::::::
seamlessly

::
to

:::::::
execute

::
a

:::::
given

::::::::::::
configuration.

::::::
Please

::::
note

::::
that

:::
the

::::::::::
commutative

::::::::
property

::
of

:::::::::
elementary

:::::::::::::
transformations

:::
as

:::::
pieces

::
of

:::::
code

::::
does

:::
not

::::::::
guarantee

:::
the

:::::::::::
commutative

:::::::
property

::
of

:::
the

::::::::::::
corresponding

:::::::
physical

::::::::
operators.

:

::::
Such

::
a

:::::::::::::::::
transformation-based

::::::
design

:
allows us to rigorously separate transformations and thus to imple-

ment
:::
and

:::
test

:
their respective adjoints more easily. Once adjoints for each individual operations

::::::::
operation20

are implemented, the construction of the general adjoint is straightforward by reversing the order of forward

operations:

H∗ =H∗N ◦H∗N−1 ◦ · · · ◦H∗1 (16)

Fig. 2 shows an example of a typically targeted observation operator. Operators from Eq. 14
:::
(14)

:
are re-

ported for the illustration. It includes two numerical models chained with each other; they can be for instance25

a coarse global CTM and a finer resolution regional CTM, such as in Rödenbeck et al. (2009) or Belikov

et al. (2016). The system applies a series of transformations to the target vector, including spatial deaggrega-

tion for the optimization of emissions by regions, sector deaggregation to separate different activity sectors,

reprojection to the CTM’s resolution
::
(a

::::::
simple

:::::::::::
interpolation

::
of

::::::::::::::
mass-conserving

:::::::::
regridding

::
is

::::::::
available

::
so

:::
far,

::::
with

::::::
regular

:::
and

::::::::
irregular

::::::::
domains), application of temporal profiles (which is critical in air quality and30

anthropogenic CO2 applications), unit conversions to the required inputs for the CTMs. On the observa-

tion vector side, observations can span multiple model time-steps, requiring posterior temporal averages,

16



etc. In the case of super-observations (satellites retrievals, images, spatial gradients, etc.) in the observation

vector, it is often necessary to combine multiple simulated point observations in given grid cells and time

stamps into a single super-observation
:
,
::
to

::::
limit

:::::::::
redundant

:::::::::::
observations,

::::::
hence

:::
the

::::
size

::
of

:::
the

::::::::::
observation

:::::
vector,

::::
but

::::
also

::
to

::::
limit

::::::::::::::::
representativeness

::::::
issues.

::::::::::::::::
Super-observations

:::
are

:::::::::
commonly

::::
used

:::
in

:::
the

::::
case

:::
for

::::::
satellite

:::::::::::
observations

:::::
being

::::::::
compared

::
to

:::
all

::
the

::::::
model

:::::
levels

:::::
above

::
a

::::
given

::::::::
location;

:::::::::::
concentration

::::::::
gradients5

:::::::::
comparing

::::::::::
observations

::
at

:::::::
different

::::
time

::::
and

:::::::
locations

::::::::::::::::::::::::::::::::::::::::
(see e.g., Bréon et al., 2015; Staufer et al., 2016)

:::
are

::::::
another

::::::::
example

::
of

::::::::::
observation

::::::::::
aggregation

:::
to

::::::
reduce

:::::::::::::::
representativeness

::::::
errors;

:::::::
isotopic

::::::
ratios

:::
are

::::
also

:::::::::::::::
super-observations

::
as

::::
they

::::::
require

::
to

:::::::
simulate

:::::::
separate

:::::::::::
isotopologues

::::
and

:::::::::
recombine

::::
them

::::
after

:::
the

:::::::::
simulation

::::::::::::::::::::::::::::::::::::::::::::::::::
(as done in e.g., van der Velde et al., 2018; Peters et al., 2018).This is the case for satellite observations being

compared to all the model levels above a given location, or for concentration gradients comparing different10

time and locations, or also isotopic ratios that require to simulate separate isotopologues and recombine

them after the simulation . The case of Fig. 2 also include background concentrations in the target vector: a

background is often used to fix some biases in initial and lateral concentrations in limited-area models, and

in observations (mostly satellites); the background variables are processed at the very end of the pipe when

re-constructing the observations vector.15

The mathematical formalism of Eq. (15) and (16) suggests that transformations are necessarily computed

in a serialized way, thus limiting applications to simple target variables upstream the transport model. How-

ever, each elementary transformation handles components of the inputs it is concerned with, leaving the

rest identical and forwarding it to later transformations. Typically, it does not actually limit applications to

simple target variables upstream the CTM. For instance, in the case of target variables optimizing biases20

in the observations, the corresponding components of the target vector x are forwarded unchanged by all

transformations in Fig. 2 until the very last operation, where they are used for the final comparison to the

observation vector.

3 Practical implementation

3.1 General rules25

The Community Inversion Framework Community Inversion Framework project follows the organisation

scheme of Fig. 3. A centralized website is available at community-inversion.eu. The website includes all

information given in the present paper, as well as further documentation details, practical installation in-

structions, tutorials and examples of possible set-ups. To foster the collaborative dynamics of our project,

all scripts and codes are available in open-access on a GitLab server at git.nilu.no/VERIFY/CIF, where up-30

dates are published regularly. The frozen version of the code, documentation and data used for the present

publication is available in Berchet et al. (2020). The repository includes the documentation, sources for the

CTMs implemented in the CIF, as well as the Python library pyCIF pyCIF . Our project is distributed as an
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open-source project under the CECILL-C CeCILL-C licence of the French law (cecill.info). The license

grants full rights for the users to use, modify and redistribute the original version of the CIF, conditional

to the obligation to make their modifications available to the community and to properly acknowledge the

original authors of the code. The authors of modifications own intellectual property of their modifications,

but under the same governing open license. Software that may be built around the CIF in the future can5

have different licensing, but all parts of the code originating from the CIF will be governed by the original

CeCILL-C license, hence must remain open source . Similarly, some constituting pieces of the CIF can be

adapted from other softwares governed by other licenses and simply interfaced to the CIF (e.g., transport

models, minimizing algorithms, etc.); in that cases case , the corresponding softwares keep their original

license and their use and distribution in the CIF is subject to authorization by their owners (although open10

distribution and integration in the standard version of the CIF is encouraged). This is the case of the CON-

GRAD and M1QN3 algorithms which are used as minimizing algorithms in the variational inversions of the

demonstration case in Sect. 4. The M1QN3 algorithm is distributed under the GNU General Public License,

whereas CONGRAD is owned by ECMWF and is not open source; the later was interfaced with the CIF but

is not openly distributed.15

The pyCIF library pyCIF library, written in Python 3, is the practical embodiment of the CIF project. All

theoretical operations described in Sect. 2 are computed by this module. It includes inversion computations,

pre- and post-processing of CTM inputs and outputs, as well as target and observation vector reprojections,

aggregation, etc., as written in Eq. 15 (15) . Python coding standards follow the community standards

PEP-8 (python.org/dev/peps/pep-0008/).20

Test cases (including the ones presented in Sect. 4) are distributed alongside the CIF codes and scripts.

To foster portability and dissemination, a dedicated Docker image is distributed with pyCIF , providing a

stable environment to run the system and enabling full reproducibility of the results from one machine to the

other.

3.2 Plugin-based implementation25

To reflect the theoretical flexibility required in the computation of various inversion methods and observation

operators, we made the choice of implementing pyCIF pyCIF following an abstract structure with a variety

of so-called Python plugins, which are dynamically constructed and inter-connected depending on the set-up.

3.2.1 Objects and classes in pyCIF pyCIF

General classes of objects emerge from the definition of the abstract structure of the inversion framework.30

These classes are defined by the data and metadata they carry, as well as by the methods they include and

their interaction with other classes. The main classes are the following:
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– computation modes: forward computations, the test of the adjoint, variational inversions, EnKF En-

SRF and analytical inversions are available (see details in Sect. 2.2);

– models: interfaces to CTMs; includes generation of input files, executing the code and post-processing

outputs; included are a Gaussian model described in Sect. 4 for the demonstration of the system,

as well as CHIMERE, LMDZ, FLEXPART, TM5, and STILT, all of which will be described in a5

dedicated future publication;

– platforms: deal with specific configurations on different clusters; it includes a standard platform as

well as two supercomputers where the CIF was tested;

– control target vectors: store and apply operations related to the control target vector, including

spatial and temporal aggregation, deaggregation, regularization of the target vector;10

– observation vectors: store and apply operations related to the observation vector, including application

of observation errors;

– observation operators: drive CTMs and apply elementary operations between the control and observa-

tion vectors;

– transformations: elementary operations used to build the observation operator; includes temporal av-15

eraging or deaggregating of the target and observation vectors, projection of the target vector at the

model input resolution, etc.;

– data vectors: store all information on inputs for pyCIF pyCIF ; this vector is used by the observation

and control target vector classes to build themselves;

– minimizers: algorithms used to minimize cost functions, including M1QN3 and CONGRAD algo-20

rithms so far;

– simulators: cost functions to minimize in variational inversions; only includes the standard Gaussian

cost function so far;

– domains: store information about the CTM’s grid, including coordinates of grid cell centers and cor-

ners, vertical levels, etc.;25

– fluxes, fields, meteos meteo-data : fetch, read and write different formats of inputs for CTMs (sur-

face fluxes, 3D fields and meteorological fields respectively) ; so far includes only inputs specific

to included CTMs, but will ultimately include standard data streams, such as widely used emission

inventories or meteorological fields such as those from ECMWF;
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– measurements: fetch, read and write different types of observation data streams; only include the

World Data Center for Greenhouse Gases so far (https://gaw.kishou.go.jp/), but classical data providers

such as ICOS (icos-cp.eu) or ObsPack Masarie et al. (2014) (Masarie et al., 2014) will also be im-

plemented in the CIF; satellite products should also be included in the CIF in the near future as they

play a growing role in the community.5

Details on metadata and operations for each class are given in Supplements, Tab. ?? S1 . Our objective

was to design a code that is fully recursive in the sense that modifying some instance of a class does not

require to update other classes calling or being called by the modified class. Thus, each class is built so

that it only needs internal data, as well as data from the execution level just before and after it, in order

to avoid complex dependencies while allowing proper recursive behaviour in building the transformation10

pipe. For instance, the observation operator applies a pipe of transformations from the target vector to the

observation vector. Some transformations will use the model class to run the model, or the domain class to

carry out reprojections, or the target vector to aggregate/de-aggregate deaggregate target dimensions, etc.

Despite the many complex transformations carried out under the umbrella of the observation operator, only

the sub-transformations of the pipe are accessible at the observation operator level, which do not have to15

carry directly directly carry information about e.g., the model or other classes required at sub-levels. This

makes the practical code of the observation operator much simpler and as easy to read as possible.

3.2.2 Automatic construction of the execution pipe

To translate the principle scheme of Fig. 1, pyCIF pyCIF is not built in a sequential rigid manner. Plugins

are interconnected dynamically at the initializing step of pyCIF pyCIF depending on the chosen set-up (see20

Sect. 3.3 for details on the way to configure the CIF). The main strength of such a programming structure is

the independence of all objects in pyCIF pyCIF . They can be implemented separately in a clean manner.

The developer only needs to specify what other objects are required to run the one being developed and

pyCIF pyCIF makes the links to the rest. It avoids unexpected impacts elsewhere in the code when

modifying or implementing a feature in the system. In the following, we call this top-down relationship in25

the code a dependency.

For each plugin required in the configuration (primarily the computation mode), pyCIF pyCIF initializes

corresponding objects following simple rules. Following dependencies detailed in Tab. ?? S1 , for every

object to initialize, pyCIF pyCIF will fetch and initialize required plugins and attach them to the original

plugin. If the required plugin is explicitly defined in the configuration, pyCIF pyCIF will fetch this one.30

In some cases, some plugins can be built on default dependenciesthat , which do not need to be defined

explicitly in the configuration file . In that case, the required plugin can be retrieved using default plugin

dependencies specified in the code itself and not needed in the configuration.

20
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For instance, in the call graph in Fig. 1, "variationalinversion " (inversion) is a "computation mode"

object in pyCIF pyCIF . To execute, it requires a "minimizer" object (CONGRAD, M1QN3, etc.) that is

initialized and attached to it. The minimizer requires a "simulator" object (the cost function) that itself will

call functions in the "control vector" object and the "observation operator" object. Then the "observation

operator" will initialize a pipeline of transformations including running the "model", and so on and so forth.5

3.3 Definition of configurations in the CIF

In practice, pyCIF pyCIF is configured using a YAML configuration file (yaml.org). This file format was

primarily chosen for its flexibility and intuitive implementation of hierarchical parameters. In the YAML

language, key words are specified with associated values by the user. Indentations indicate sub-levels of

parameters, which makes it a consistent tool with the coding language python.10

To set-up a pyCIF pyCIF computation, the user needs to define the computation mode and all related

requirements in the YAML configuration file. Every plugin has mandatory and optional arguments. The

absence of one mandatory argument rises raises an error at initialization. Optional arguments are replaced

by corresponding default values if not specified. Examples of YAML configuration files used to carry out

the demonstration cases are given in Supplement Section S3 .15

4 Demonstration case

In the following we describe a demonstration case based on a simple implementation of a Gaussian plume

dispersion model and simple inversion set-ups. The purpose of this demonstration case is a proof-of-concept

of the CIF, with various inversion methods. We comment and compare inversion set-ups and methods for

the purpose of the exercise, but conclusions are not made to be generalized to any inversion case study due20

to the simplicity of our example. The test application with a simple Gaussian plume model allows users

to quickly carry out the test cases themselves, even on desktop computers, to familiarize themselves with

the system. Nevertheless, the Gaussian plume model is not only relevant for teaching purposes, but also for

real applications, as it is used in many inversion studies from the scale of industrial sites with in-situ fixed or

mobile measurements (e.g., Kumar et al., 2020; Foster-Wittig et al., 2015; Ars et al., 2017) to the global scale25

larger scales with satellite measurements to optimize individual clusters of industrial or urban emissions

(e.g., Nassar et al., 2017; Wang et al., 2020). Other models implemented in the CIF will be presented in a

future paper evaluating the differences when using different transport models with all other elements of the

configuration identical. The purpose of such an evaluation is to produce a rigorous inter-comparison exercise

identifying the effect of transport errors in inversion systems.30

21

yaml.org


4.1 Gaussian plume model

Gaussian plume models approximate real turbulent transport by a stable average Gaussian state (Hanna et al.,

1982). Such models are not always suitable to compare with continuous measurements but can be adapted

when using observations averaged over time. In the following, we consider the Gaussian plume assumption

to be valid for comparing to hourly averaged observations. A simple application of the Gaussian plume5

model was implemented in the CIF as a testing and training utility. It is computationally easy to run, even on

desktop computers. It includes the most basic Gaussian plume equations. In that application, concentrations

C at location (x0, y0, z0) downwind from a source of intensity f at (x1, y1, z1) are given by:

C(x0, y0, z0) =
f

2π . σy . σz . ū
exp

(
− y

2

σ2
y

)
. exp

(
− z

2

σ2
z

)
(17)

with10



σz = a . xb

σy = |465.11628× x . tan(0.017653293 (c− d . lnx))|
x = <

u

ū
| v(source, receptor) >

y = (
u

ū
× v(source, receptor) )

(18)

x is the downwind distance between the source and receptor points along the wind axis, y is the distance

between the wind axis and the receptor point, ; ,v(source, receptor) is the vector linking the source and the

receptor point. z is the difference between the source and the receptor altitudes, . u is the vectoral wind

speed, with ū is the average wind speed in the domain of simulation. < · | · > and ( ·×· ) depict the scalar15

and the vector products respectively. (a,b,c,d) are parameters depending on the Pasquill-Gifford atmo-

spheric vertical stability classes. There are 7 Pasquill-Gifford stability classes, from A extremely unstable

(mostly in summer during the afternoon) to G very stable (occurring mostly during nighttime in winter). As

the purpose of the demonstration case is primarily to work on coarsely realistic concentration fields, with a

computational cost as low as possible, our implementation of the Gaussian plume model does not include20

any representation of particle reflection on the ground or on the top of the planetary boundary layer.

22



To illustrate atmospheric inversions, we use gridded a grid of point surface fluxes to simulate concen-

trations using the Gaussian plume equation. Thus, the concentration at a given point and time t is the sum of

Gaussian plume contributions from all individual grid points:

C(x0, y0, z0, t) =
∑

(x1, y1, z1)∈ grid

f(x1, y1, z1, t)

2π . σy(t) . σz(t) . ū(t)
exp

(
− y2

σy(t)2

)
exp

(
− z2

σz(t)2

)
=

∑
(x1, y1, z1)∈ grid

H(x1, y1, z1, t)× f(x1, y1, z1, t)

= H(t) . f(t)

(19)

This formulation highlights the linear relationship between concentrations and fluxes. As the concen-5

trations can be expressed as a matrix product, the computation of the adjoint of the Gaussian model is

straightforward and does not require extra developments:

δf(x1, y1, z1, t) =
∑

(x0, y0, z0)∈ obs

δC(x0, y0, z0, t)
2π σy(t)σz(t) ū(t)

exp

(
− y2

σy(t)2

)
exp

(
− z2

σz(t)2

)
= H(t)T .C(t)

(20)

For the purpose of our demonstration cases, meteorological conditions (wind speed, wind direction, and

stability class) are randomly generated for the simulation time-window. Fixed seeds are selected for the10

generation of random conditions in order to make them reproducible.

4.2 Configuration

4.2.1 Modelling set-up

Cases discussed in Sect. 4.3 are based on the Gaussian model computed on a domain of 2.5× 2 km2 with a

100 m horizontal resolution grid of 18×12 grid cells . Surface point sources are located on a 100 m regular15

grid at the center of corresponding grid cells , with flux intensities as represented in Fig. 4. Fifty Five

virtual measurement sites are randomly located in the domain with randomly selected altitudes above ground

level as shown in Fig. 4. The inversion time-window spans a period of five days with hourly observations

and meteorological forcing conditions. Meteorological conditions are a combination of a wind speed, a wind

direction and a stability class applicable to the whole simulation domain for each hour. The three parameters20

are generated randomly for the period, without respect for realistic relatively smooth transitions in weed

speed and direction and stability class .

Truth observations are generated by running the Gaussian model in forward mode with the known true

fluxes defined known fluxes defined as the sum of prior fluxes f (used later in the inversions) in Eq. 23,

then prior fluxes are generated by perturbing the true fluxes as shown (23) and an arbitrary perturbation as25

defined in Eq. (22), and illustrated in Fig. 4 (left and right respectively).
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f =
:::

f0 .

{
cos

(
2π

x

σ1
x

)
+ sin

(
2π

y

σ1
y

)
+

(
x

σ2
x

)2

+

(
y

σ2
y

)2
}

::::::::::::::::::::::::::::::::::::::::::::::::

(21)

δf =
::::

0.2× f0 .
{

cos

(
2π

x

σ3
x

)
+ sin

(
2π

y

σ3
y

)}
:::::::::::::::::::::::::::::::::::

(22)

with f0 an arbitrary reference flux, and scaling lengths σ1
x, σ2

x, σ3
x, σ1

y , σ2
y , σ3

y equals 500, 1000, 200, 1000,

1000 and following Eq. 22. 300 m respectively. Reference fluxes and perturbations are constant over time.

5

A random noise of 1% of the standard deviation of the forward simulations was added to the truth observa-

tions to generate measurements. Prior fluxes and perturbation are generated following the equations below.

Please note that the perturbation of the fluxes is generated using an explicit formula and not a random pertur-

bation with a given covariance matrix. For that reason, we We discuss results with different possible target

vector vectors and covariance matrices. This allows us to assess the sensitivity of an inversion method to10

the resolution and definition of the target vector and corresponding covariance matrix.

f = f0 .

{
cos

(
2π

x

σ1
x

)
+ sin

(
2π

y

σ1
y

)
+

(
x

σ2
x

)2

+

(
y

σ2
y

)2
}

δf = 0.2× f0 .
{

cos

(
2π

x

σ3
x

)
+ sin

(
2π

y

σ3
y

)}
with f0 an arbitrary reference flux, and scaling lengths σ1

x, σ2
x, σ3

x, σ1
y , σ2

y , σ3
y equals 500, 1000, 200, 1000,

1000 and 300 m respectively.15

4.2.2 Inversion set-ups

The objective of our test case is to prove that our system enables users to easily compare the behaviour of

different inversion methods in various configurations. To do so, we conduct three sets of four inversions for

the demonstration of our system. Each set includes one analytical inversion, one EnKF-based EnSRF-based

inversion and two variational inversions based on M1QN3 and CONGRAD minimization algorithms respec-20

tively. The sequential aspect of the EnKF EnSRF is not implemented in the CIF, hence the comparison

with the other inversion methods only includes the random sampling of the target vector distribution to solve

Eq. 5. As the computation of posterior uncertainty matrices is not included for variational inversions at this

point neither, posterior uncertainties are not discussed in the following (5) .

The three sets of inversions differ by the dimension of the target vector and the spatial correlations of25

errors. The first set uses a target vector based on a grid of 3× 3 pixels-aggregated regions or "bands" in-

dependent from each other i.e. with no spatial error correlations. The target vectors of the second and third
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sets are defined at the grid cell’s resolution with horizontal isotropic error correlations, following an expo-

nential decay with a horizontal scale of 500 m and 10000 200000 m respectively; the latter case is used to

demonstrate that the implementation of correlation lengths is correct as very long correlations are equivalent

to having only one spatial scaling factor in the target vector . For all inversion set-ups, the target vectors

are defined as constant over time, i.e., only one coefficient per spatial dimension is optimized for the 5 days5

× 24 hours, computed by the model. In all set-ups, the magnitude of the observation noise used to generate

"true" observations is chosen as observation errors in the matrix R for consistency. In all cases, the diagonal

terms of the B matrix are set to 100%.

To assess the sensitivity of each set-up to the allocated computational resources, we computed the EnKF

EnSRF and the two variational inversions with varying numbers of simulations N . In the case of the EnKF10

EnSRF , N simply depicts the size of the Monte Carlo ensemble. For variational inversions, each step

i.e each computation of the cost function and its gradient requires one forward simulation and one adjoint

simulation. The Gaussian model is a simple auto-adjoint model, which makes the adjoint simulations as

long as the forward one. Therefore,N is equal to twice the number of computations of the cost function (one

for the forward and one for the adjoint) in the minimization algorithm. Note that in many real application15

cases, the adjoint of a CTM is more costly than the forward, reducing the number of iterations possible in

N times the cost of a forward. Indeed, despite the adjoint being mathematically as expensive as the forward,

in practice, the computation of adjoint operations often requires the re-computation of intermediate forward

computations, therefore increasing the computational burden of the adjoint model. More precisely, users

and developers of adjoint transport models choose the number of forward re-computations to be carried20

out, based on a space-speed trade off: by saving all forward intermediate states, the adjoint is as costly as

the forward, but the disk space burden can be extremely challenging to manage, thus increasing the overall

computation time in return.

4.3 Results and discussion

Posterior increments for the four inversion methods in the three considered demonstration cases are presented25

in Fig. ?? (horizontally aggregated target vector), Fig. 5 (target vector In the following, we present detailed

figures for the test case at the pixel resolution with horizontal error correlations a correlation length of

500 m) and Fig. ?? (same with correlations of 10000 m) . For the sake of readability, figures for other test

cases are grouped in Sect. S2 of the Supplement.

Posterior increments are presented in Fig. 5 . Observation locations and heights are reported for infor-30

mation. The color scale of flux increments is the same as in Fig. 4 which represent the true "increments"

to be retrieved. In Fig. ?? 8 , we present the evolution of the cost function of Eq. 6 (6) depending on

the number of simulations used for each inversion method for the three demonstration cases (see details on

25



the corresponding number of simulations of each inversion methods in Sect. 4.2.2) . The x-axis has been

cropped at the origin as the EnKF EnSRF value for small sizes of random ensembles diverges to infinity.

In the case with the target vector aggregated on groups of pixels, all inversion methods converge towards a

very similar solution. In this case, the posterior increments reproduce the overall structure of the truth-prior

difference, with four local maxima surrounding one local minimum in the center of the domain. However,5

the aggregated control target vector results in too coarse patterns which are not representative of the actual

true-prior difference. In the case with the target vector at the grid’s resolution with spatial correlations of

500 m, the fully resolved analytical solution captures all methods capture well the true-prior difference

structurewith four maxima surrounding a minimum . However, posterior increments are rather noisy com-

pared to the truth. This is due to the spatial correlations being inconsistent with the smooth perturbation with10

fixed lengths length scales in Eq. 22 (22) . Correlations help smoothing the posterior fluxes but not

perfectly consistently with the truth. For the case with the target vector at the grid’s resolution with spatial

correlations of 10000 200000 m, the analytical and variational inversions converge to very similar solu-

tions. The EnKF inversion converges towards a relatively noisy solution, suggesting a possible degeneration

of the algorithm; this is due to our very simple implementation of the EnKF, with no localization and a15

rather small number of samples in the random ensemble all methods converge towards a very smooth and

similar solution, consistently with what is expected with a very long correlation length. However, they do

not converge towards the same solution, probably because a larger number of iterations/members would be

needed to fully converge .

For the three In all cases, CONGRAD converges towards a cost function value similar to the analytical20

solution. It also converges at a faster pace than the two other other two methods and, after 20 and 50

simulations in the aggregated and full-resolution cases respectively a limited number of iterations , the

convergence rates rate is close to zero, suggesting additional simulations do not provide significant addi-

tional information to CONGRAD . The variational inversion with M1QN3 converges towards the analytical

solution only in the case of aggregated target vector. The EnKF inversion converges to the analytical solu-25

tion in two of the three cases (aggregated and full-resolution with small correlation lengths). For the two

full-resolution cases, M1QN3 converges to a local minimum instead of a global minimum, probably due to

numerical artifacts in the algorithms which makes it mistake the global minimum with a local critical point

with a gradient close to zero. This issue may be overcome by allowing the algorithm to carry on for more

iterations . The convergence rate with M1QN3 is similar to the one for the EnKF inversion for full-resolution30

target vectors, but faster for the aggregated case (although additional iterations bring new constraints on the

posterior uncertainty matrix) .

Overall, CONGRAD appears to be the most cost-efficient algorithm to estimate the analytical solution

in the case of a linear inversion in our very simple demonstration case. Though not as efficient, the EnKF

EnSRF method can approximate the analytical solution at reduced cost, but by a reduced cost. By de-35
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sign, its computation can easily be parallelized, which can allow a faster computation than CONGRAD

when computational resources are available in parallel. M1QN3 proves not as efficient as its CONGRAD

counterpart, but contrary to CONGRAD, it can accommodate non-linear cases.

The reduction of uncertainties and posterior uncertainty matrices are shown in Fig. 6 and 7, and equivalents

in Supplement. Regarding posterior uncertainties, CONGRAD proves relatively efficient to approximate5

the analytical solution, especially at the pixel resolution. The variational inversion with Monte Carlo and

M1QN3 computations and the inversion with EnSRF are much noisier. Approximating posterior matrices

requires a large number of Monte Carlo members and proves very challenging in real-world applications.

5 Conclusions

We have introduced here a new generic inversion framework that aims at merging existing inversion systems10

together, in order to share development and maintenance efforts and to foster collaboration on inversion

studies. It has been implemented in a way that is fully independent from the inversion configuration: from

the application scales, from the species of interest, from the CTM used, from the assumptions for data

assimilation, as well as from the practical operations and transformations applied to the data in pre- and post-

processing stages. This framework will prevent redundant developments from participating research groups15

and will allow for a very diverse range of applications within the same system. New developments will be

made in an efficient manner with limited risks of unexpected side effects, and thanks to the generic structure

of the code, specific developments for a given application can be directly applied to other applications.

For instance, new inversion methods implemented in the CIF can be directly tested with various transport

models. With modern inversion methods moving towards an hybrid paradigm of variational and ensemble20

methods, the flexibility of the CIF will be a valuable asset as abstract methods can be easily mixed with each

other.

We have presented the first version of this Community Inversion Framework (CIF) alongside with its

python-dedicated library pyCIF. As a first step, analytical inversions, variational inversions with M1QN3

and CONGRAD, and EnKF EnSRF have been implemented to demonstrate the general applicability of25

the CIF. The four inversion techniques were tested here on a test case with a Gaussian Plume Model plume

model and with observations generated from known "true" fluxes. The impact of spatial correlations and

of spatial aggregation, that which drive the shape of the control vectors used in this scientific community,

has been illustrated. The analytical inversion is the most accurate approach to retrieve the true fluxes, as

expected, followed by variational inversions with the CONGRAD algorithm in our simple linear case. EnKF30

In our simple case, EnSRF and M1QN3 are generally less accurate in capturing generally take longer to

converge towards the true pattern of the fluxesin our examples , even though EnKF EnSRF inversions
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have the advantage to be fully parallelizable, in contrast to variational inversions, that are sequential by

design and therefore harder to parallelize (e.g., Chevallier, 2013).

The next step of the CIF is the implementation of a large variety of CTMs. The implementation of new

CTMs already interfaced with other inversion systems should not bring particular conceptual challenges as

all interface operations are already written in their original inversion system; in most cases, re-arranging5

existing routines is sufficient to interface a model to the CIF. One particular challenge concerns I/O opti-

mizations: the generation of inputs and the processing of outputs can be time consuming and in some very

heavy applications require specific numerical and coding optimizations. The very general formalism of the

CIF may hamper the ability of applying these particular optimizations for some models. Best efforts will

have to be deployed to take full advantage of advanced I/O and data manipulation libraries in python to limit10

this weakness.

CHIMERE, LMDz, TM5, FLEXPART, and STILT have already been implemented and a sequel paper

will evaluate and compare their behaviour in similar inversion set-ups. COSMO-GHG and WRF-CHEM are

also planned to be implemented in the near future to widen the developer/user community of the system. The

use of various CTMs in identical inversion configurations (inversion method, observation and target vector,15

consistent interface, etc.) will allow extensive assessments of transport errors in inversions. Despite many

past efforts put in inter-comparison exercises, such a level of inter-comparability has never been reached and

will be a natural by-product of the CIF in the future. In addition, comparing posterior uncertainties from

different inversion methods and set-ups will make it possible to fully assess the consistency of different

inversion results.20

The flexibility of the CIF allows very complex operations to be included easily. They include the use of

satellite observations, that will be evaluated in a future paper, inversions using observations of isotopic ratios

and optimizing both surface fluxes and source signatures (Thanwerdas et al., 2020) (Thanwerdas et al., 2021)

. In addition, even though GHG greenhouse gas studies have been the main motivation behind the devel-

opment of the CIF, the system will also be tested for multi-species inversions including air pollutants.25

Code and data availability. The codes, documentation pages (including installation instructions and tutorials) and demon-

stration data used in the present paper are registered under the following DOI: 10.5281/zenodo.4322372 (Berchet et al.,

2020).
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Table 1. Elementary operations required for each data assimilation method. An = Analytical inversion; EnKF = Ensemble

Kalman filter; Var = Variational; Fwd = forward Forward simulation; AdTest = Test of the adjoint. We note X and

Y the target and observation spaces respectively, A the regularization space in the minimization algorithm of variational

inversions; the (·)∗ symbol depicts the adjoint of corresponding spaces.

Data assimilation method

Elementary operation Mathematical formulation An EnKF Var Fwd AdTest

Forward observation operator
X → Y

x → H(x) or Hx
X X X X X

Adjoint observation operator
Y∗ → X ∗

δy → H∗(δy) or HT δy
X X X

Normalisation of the observation increments
Y∗ → Y∗

δy → R−1δy
X

Regularization of the control target space
A → X

χ → x = B1/2χ+xb
X

Adjoint of the control target space regularization
X ∗ → A∗

δx → δχ ≡ B1/2δx
X

Control Target space sampling
X ×X 2 → Y

(x, P) → (x1, x2, . . . , xN )

X ×X 2 → XN

(x, B) → (x1, x2, . . . , xN )
X
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Figure 1. Call structure of the CIF.
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optimized by the inversion and is added to simulations at the end of the pipeline just before stacking outputs to the

observation vector format.
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Community Inversion Framework

Central gateway

GitLab server

community-inversion.eu/
– installation instructions

– tutorials

– set-up examples

git.nilu.no/VERIFY/CIF

FORTRAN sources

for executing CTMs

CTMs

– python library

– driver for CTMs

– carries out all processing opera-

tions

pyCIF

Test and demonstration cases

Tests

Figure 3. Organisation of the Community Inversion Framework.
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Figure 4. (left) True Prior fluxes and observation sites. (right) Difference between prior fluxes and Perturbation from

the truth prior used to generate "true" observations . Observation sites are shown as circles coloured according to their

height in meters above ground level (m a.g.l.). Fluxes are reported in arbitrary units (a.u.)
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Figure 5. Posterior increments for analytical, EnKF EnSRF , variational with CONGRAD and variational with M1QN3

(from top to bottom, left to right) for an inversion set-up at the pixel resolution with aggregated bands horizontal

correlation length of 500 m .
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Figure 6. Same Uncertainty reduction for analytical, EnSRF, variational with CONGRAD and variational with M1QN3

(from top to bottom, left to right) with the same set-up as in Fig. ?? with an inversion set-up at the pixel resolution

with horizontal correlation length of 500 m 5 .
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Figure 7. Same Prior (left) and posterior (middle and right) uncertainty matrices for analytical, EnSRF, variational with

CONGRAD and variational with M1QN3 (from top to bottom, middle and right columns), with the same set-up as in

Fig. ?? 5. All matrices are reported with an inversion set-up at unitless values, i.e., a "1" on the pixel resolution with

horizontal correlation length of 10000 m diagonal corresponds to a 100% uncertainty .
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Figure 8. Sensitivity of the inversions to the number Cost function evaluation for varying numbers of computed sim-

ulations for analytical (red), EnSRF (green), variational with CONGRAD (orange) and variational with M1QN3 (blue)

methods . (top) inversion set-up with aggregated regions of 3 pixels × 3 pixels ; (middle) inversion set-up at the pixel

resolution with horizontal correlation length of 500 m; (bottom) inversion set-up at the pixel resolution with horizontal

correlation length of 10000 200000 m. For each sub-panel: (top) Distance between the true and posterior fluxes for a

given number of simulations; (bottom) Evolution of the cost function depending on the number of simulations.
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