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We thank the referees for their detailed and fruitful comments on our manuscript. We reproduce below their reviews and
embed our responses in bold blue text in their comments. Revised section of the manuscript are reproduced in italic blue. We

also provide a track-change manuscript at the end of the present document.

1 Referee #1

The submitted paper presents the Community Inversion Framework (CIF) to help rationalise development efforts and leverage
the strengths of individual inversion systems into a comprehensive framework. The CIF is primarily a programming protocol
to allow various inversion bricks to be exchanged among researchers. The system is supposed to allow running different

atmospheric transport models, different observation streams and different data assimilation approaches. The paper describes a
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system that will bring a major software advances for future inversion frameworks. The presentation is clear and well written. I

have few main major concerns detailed in the main comments below.

1.1 Main comments

The paper advertises and the multi-CTM or model capability, but this is not shown in the paper only mentioning a future paper.
This capability needs to be showcased in the paper or such claims should be removed or rephrased.

The CIF is a multi-purpose systems. The two main purposes are to enable the comparisons of different inversion
methods with a given inversion case, and the comparison of different transport models for a given inversion configura-
tion. We decided to split the two aspects into two different papers for clarity. We clarified the text accordingly

p4. 1. 14: In the present paper, we lay out the basis of the CIF, giving details on its underlying principles and overall
implementation. The proof-of-concept focuses on the implementation of several inversion methods, illustrated with a test case.
We will dedicate a future paper to the evaluation of the system on a real-life problem with a number of interfaced atmospheric
(chemistry-)transport models.

It is a bit limiting to narrow the scope only on GHG as inversion of reactive species and primary aerosols is quite relevant
as well. Especially if CIF plans to, or already includes the CHIMERE CTM which is originally designed for air quality
applications.

The CIF is primarily designed by members of the GHG community, thus the bias in presentation. However all the
conceptual environment of the CIF can be applied directly to chemistry, as it is the case in CHIMERE, which solves
complex chemical schemes reproducing the full chemistry of O3, NO2, VOC, CO, etc., as well as in LMDZ e.g. with
simple chemical schemes around methane, CO or nitrous oxide. We clarified the text accordingly

p3 134: In particular, although primarily designed for GHGs applications, the CIF is based on a general structure that will
allow applications to air quality data assimilation.

Air quality applications are also mentioned throughout the introduction more explicitly.

The ensemble and analytical results point out possible problems in the implementation of the EnKF and in the analytical
solution using correlation length scales.

There was indeed a difference in the way the correlations were computed in the analytical and the ensemble method,
versus the variational method. We fixed the issue and also updated the test cases to better highlight the consistency of
the results.

It is not entirely clear on how the system uses the ensemble information to perform the inversion. This ensemble-based
inversion should not be called an EnKF as it is not sequential. This needs to be revised or diagnosed or explained.

We agree that in this application there is no time-stepping in the EnKF solution and hence the word Filter is not
appropriate. However, the implementation of the solution methods allows it, and algorithmically follows the Ensemble
Square Root Filter originally described in Whitaker and Hamil, (2002) and later used in Peters et al., (2005). The

important distinction from the other methods is the use of the statistics of the ensemble to solve the Kalman equations,
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and the possibility to solve non-linear problems. We think the name EnSREF is therefore suited, and will use it in the
revised version. We also include the note about the time-stepping.

The section on Ensemble methods (p8-10) has been extensively rewritten to clarify the difference between EnSRF and other
ensemble methods. See track-change manuscript

Finally, the testing of system using the Gaussian plumes on my local machine (Mac) was impossible for the time I gave in.
I regularly use python and successfully setup conda on my local machine. But it seems that the CIF is dependent on many
specific packages that bring conflict issues and are not straightforward to install (specifically GDAL seems problematic). It
required some research to find different commands to install the packages from what is indicated on the online documentation.
After trying for hours, I had to give up as my time to revise this paper is limited.

We are sorry to hear about difficulties to install our system. We will give more details on the installation in the
documentation web pages. To make the testing of our system easier, we have now set up a docker image (publicly
available here: https://hub.docker.com/repository/docker/pycif/pycif-ubuntu) with all packages correctly installed and
demonstration data available as well. Thus, new users can simply download the docker image and run it on their system,
avoiding complicated configuration of libraries.

The docker image is provided with the corresponding configuration command lines to be run on a standard Ubuntu
system to obtain the same environment. These lines can be used to adapt to other OS and distributions.

More specifically, we agree that the GDAL library can create some issues when not correctly installed. However,
GDAL is standard in geoinformation systems and such a library is essential for all geographical operations, such as
reprojecting from one grid to another, or finding in which grid cell an observation point is. In very regular grids, such
a library is not necessary, but the CIF is design to accommodate many transport models and input data, which are not
necessarily always on regular lon/lat grid.

The docker image is now mentioned in Sect 3.1 p.17, 119: To foster portability and dissemination, a dedicated Docker image
is distributed with pyCIF, providing a stable environment to run the system and enabling full reproducibility of the results from

one machine to the other.
1.2 Specific comments

— P3, L8: Define better what a unified system would be here.

Rephrased p3 111 as: A unified system, as a community platform running multiple transport models, with diverse inver-

sion methods, would provide ...

— P3, L12: OOPS main goals are on NWP. The CAMS system will run on OOPS (which is based on IFS) which will run
inversions in the future. Maybe it is worth mentioning the CoCO2 projects (formerly CHE). The authors should also

mention the Joint Effort for Data Integration led by UCAR/JCSDA. https://www.jcsda.org/jcsda-project-jedi.

The CAMS operational system will indeed run with OOPS, to be adapted for flux inversion purposes. The CIF

is part of the CoCO2 project and is used as an interface between the operational community of CAMS and the
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research community. The CIF will also be used for the design of operational systems at the national and regional

scales in Europe. We clarified this aspect and also mention the JEDI effort as follows:

p3 115: "Collaborative efforts towards unified systems are already happening in other data assimilation communi-
ties, with, e.g., the Object-Oriented Prediction System (OOPS; coordinated by the European Centre for Medium-range
Weather Forecast, UK), or the Joint Effort for Data Integration (led by UCAR/JCSDA; https://www.jcsda.org/jcsda-
project-jedi). The Data Assimilation Research Testbed (DART) is also an example of collective effort proposing common

data assimilation scripts for diverse applications (e.g., Earth system, chemical species inversions)"

P3, L13-14: DART is an EnKF (EAKF to be more precise) that allows to run on the CESM earth system model. There
is also a WRF mode. I would not call this unified or modular system compared to OOPS, CIF or JEDI. Also, DART can

run atmospheric composition and recently chemical species inversions as well (see Gaubert et al., 2020).

We thank the reviewer for these insights and have updated the text accordingly (see reply above).

P5, L10: Some of the models mentioned here use semi-lagrangian advection scheme. Maybe remove Eulerian and use a

different word.
We rephrased as follows: p5119:

[... ] by numerical (chemistry-)transport models. These can be of various types e.g. global circulation models (e.g.,
LMDZ, Chevallier et al. 2010; TM5, Houweling et al.2014; GEOS-Chem, van der Laan-Luijkx et al. 2017; Liu et al.
2015; Palmer et al. 2019; Feng et al. 2017;NICAM, Niwa et al. 2017), regional Eulerian chemistry-transport models
(e.g., CHIMERE, Broquet et al.2011; Fortems-Cheiney et al. 2019; WRF-CHEM, Zheng et al. 2018; COSMO-GHG,
Kuhlmann et al. 2019;LOTOS-EUROS, Curier et al. 2012) or Lagrangian particle dispersion models (e.g., FLEXPART,
Thompson25and Stohl 2014; STILT, Bagley et al. 2017, Brioude et al. 2013, Trusilova et al. 2010).

P5, L11: Mizzi et al., 2016 is a WRF CHEM paper and also do not perform any source inversion but only concentration

assimilation. Please consider removing this reference.

There was a mistake in our references indeed. We have now replaced Mizzi by Kuhlman et al. 2019.

Equation 2: Does N indicates a normal distribution? Please clarified. Also, in the second brace element, is this zero
in the first moment? If yes, I guess this assumes unbiased observation and prior. I know this is a requirement for data
assimilation formulation.But often not the case in practice in atmospheric composition. Maybe you can detail and develop

this in the text.

N indeed indicates a normal distribution. This is now stated in the text. We also clarified the underlying assump-

tion of unbiased errors. This reads as follow now:

" is to assume prior and observation spaces to be normal distributions, noted N (-, ) below, the first argument repre-
senting the average of the distribution and the second argument the covariance matrix. In addition, when assuming that

the distributions in the state vector space and the observation space are independent from each other, and that errors in
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the observation and the state vector spaces have Gaussian, unbiased distributions, it is possible mathematically derive

the Bayes theorem and to represent the distributions of Eq. (2) as follows:
EQUATION 2

with B and A the prior and posterior covariance matrix of uncertainties in the target vector, X" and x* the prior and
posterior target vectors and R the covariance matrix of uncertainties in the observation vector and the observation

operator."

The assumption that errors are unbiased, which makes it possible to write normal distributions in Eq. (1) with means
xb, 0 and x° respectively, is needed to simplify the formulation of the Bayesian problem in atmospheric inversions.
Neglecting error biases have known impacts on inversion results (Masarie et al., 2011); they can be accounted for
online as an unknown to be solved by the inversion (Zammit-Mangion et al., 2021), but are often treated offline from the

inversion, either through pre-processing of inputs or post-processing of outputs.

P6, L22-25: This is an important point, maybe the authors could expand more on this for the non-data assimilation

expert?

We give some more details, especially in terms of linearisation around a given point to approximate the observa-

tion operator by its Jacobian.

p7 l11: Analytical inversions can also be used on slightly non-linear problems, by linearizing the observation operator

around a given reference point using the tangent linear of the observation operator. It formulates as follows:

H(xP + 6x) ~ H(xP) + dHyo (0%) = H(x®) + Hywdx (D)

with 6x a small deviation from x* within a domain where the linear assumption is valid, dH,» the tangent-linear of H

at x" and H,w the Jacobian matrix of H at x".
Then Eq. (3) can be easily adapted by replacing (y° — Hx") by (y° — H(x")) and H by H,.

The computation of an analytical inversion faces two main computational limitations. First, the matrix H represent-
ing the observation operator H must be built explicitly. This can be done either column by column, in the so-called
response function method, or row by row, in the so-called footprint method. The two approaches require dim(X), the
dimension of the target space and dim()’), the dimension of the observation space, independent simulations respectively.
In the response function method, each column is built by computing {dH»(dx;) \ Vox; € By} with B, the canonical
basis of the target space. For a given increment dx;, the corresponding column gives the sensitivity of observations to
changes in the corresponding component of the target space. In the footprint method, each row is built by computing
{Hib@yi) \ Wiy, € By} with By the canonical basis of the observation space. For a given perturbation of 0y, of a

component of the observation vector, the corresponding row of H gives the sensitivity of the inputs to that perturbation.
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— P7, L8: Are control space and target space the same thing or different? Please be consistent (I would recommend control

space as it is more generally used in atmospheric DA) or explain the differences.

We think that the use of '"control vector'' can be misleading in some context and prefer ''target vector' which is
also widely used in the community. We have checked for the consistency of the use of target v control vector over

all the manuscript.

P7, L12: This part of the sentence is not very clear. Replace "... problems such as the variational and the ensemble

Kalman filter methods which are described below."
We have replaced by:

For this reason, smart adaptations of the inversion framework (including approximations and numerical solvers) are
often necessary to tackle problems even when they are linear; in the following, we choose to elaborate on some of the
most frequent approaches used in the atmospheric inversion community: the variational approach and one ensemble

method, the Ensemble Square Root Filter.

P7, L18: “limited non-linearity”: This is not necessarily true, or it is misleading. EnKFs are frequently applied success-
fully on chemical transport models which can be significantly non-linear systems in the polluted boundary layer for

example.

Indeed, the ensemble methods can in principle handle non-linear systems, although we found in a CO2-application
of the EnSRF that non-linearity in the observation operator quickly degrades the analysis (Tolk et al., 2011). We

have revised the text.

In the current version, only the EnSRF approach is implemented in the CIF. One should note that the EnSRF, as a direct
approximation of the analytical solution, can be very sensitive to non-linearity in the observation operator (e.g., Tolk
et al, 2011). It can generally cope only with slight non-linearity over the assimilation window, thus, the assimilation
window length has to be chosen appropriately, contrary to other ensemble methods which are usually not sensitive to

non-linearity.

P7, L25: “running computation window”: I believe the authors refer to what is commonly called assimilation window?
(Note that inversion is part of data assimilation techniques, so it is fine to call it data assimilation window in the inversion
framework). Please be consistent in the terminology in this paragraph. “Smaller”, smaller than what? I understand that
for GHG inversions especially CO2 you need long window given the observation network and the CO2 atmospheric

lifetime, but this is not general to all atmospheric composition inversion.

We have clarified the terminology. For a given period of interest, EnSRF computes smaller running assimilation
windows. The length of the assimilation windows can vary depending on the scale, on the species of interest, the

process of interest, the observations used, etc. All the ensemble methods section has been rewritten.
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— P7,1L29-31: “for very dense...may not be sufficient”: This is not necessarily true,or the statement is misleading. This also

needs to be proven. If the reference exists please add it. One can foresee that with a better coverage and higher satellite
sensitivity towards the surface the window length could be reduced hence the number of observations to go through

sequentially is reduced. Please correct or remove this statement or justify this more clearly.

We agree with the reviewer that this statement was too vague. The assimilation window must be shortened as
much as possible to limit the number of observations, but too short windows generate their own problems of

independence of windows and propagation of information between windows. We have clarified to:

for very dense observations, such as datasets from new-generation high-resolution satellites, the sequential assimilation
of observations may not be sufficient, or at least methods may be needed to make the observation errors between sequen-
tial assimilation windows independent, for example by applying a whitening transformation to the observations to form a
new set with uncorrelated errors as suggested by Tippet et al., 2003. The challenge is exacerbated for long-lived species
such as CO2, for which assimilation windows must be long enough to maintain the propagation of information on the
fluxes on long distances through transport. Propagating an covariance matrix from assimilation windows to assimilation
windows as accurate as possible could in principle limit the later issue, as suggested in Kang et al., 2011 and 2012, but

could still prove hard to apply in very high resolution problems.

P8, L11: “under-estimating”: This is not necessarily true. Small ensemble size can over and underestimate the uncer-

tainty. More importantly they introduce spuriousness. Please clarified the statement.

We have clarified the statement. Small ensembles can cause the posterior ensemble to collapse, i.e., the posterior
distribution is dominated by one or a very small number of members, which do not allow for a reliable assessment
of the posterior uncertainties (Morzfeld et al., 2017); moreover, small ensembles introduce spuriousness in the

posterior uncertainties, with irrealistic correlations being artificially generated.

pl0: By using random sampling, ensemble methods are able to approximate large dimensional matrices at a reduced
cost without using the adjoint of the observation operator (see variational inversion below) that can be challenging
to implement. Small ensembles generally cause the posterior ensemble to collapse, i.e., the posterior distribution is
dominated by one or a very small number of members, which does not allow for a reliable assessment of the posterior
uncertainties (Morzfeld et al., 2017); moreover, small ensembles introduce spuriousness in the posterior uncertainties,
with irrealistic correlations being artificially generated.. In the EnSRF, small ensembles rather cause a misrepresentation
of uncertainty structures, which limits the accuracy of the computed solution, and may require fixes as described in, e.g.,
Bocquet (2011). In any case, the level of approximation necessary for this approach to work is strongly different for each
problem, which requires preliminary studies before consistent application. In particular, the so-called localization of the
ensemble can be used to improve the consistency of the inversion outputs (e.g., Zupanski et al., 2007; Babenhauserheide

etal., 2015).

In the current version, only the EnSRF approach is implemented in the CIF. One should note that the EnSRF, as a direct

approximation of the analytical solution, can be very sensitive to non-linearity in the observation operator (e.g., Tolk
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et al, 2011). It can generally cope only with slight non-linearity over the assimilation window, thus, the assimilation
window length has to be chosen appropriately, contrary to other ensemble methods which are usually not sensitive to

non-linearity.

P8, L13-14: Could you possibly provide few examples of different problems having different approximations?

We give two examples of past studies who discussed the use of the localization of the Monte Carlo ensemble to

help the filter keeping consistent results.

P8 L15-28: I recommend revising this introduction of the variational method. Add a sentence to present the cost function.
Put the equation right after. Explain in few sentences that the aim is to minimize this cost function and that to achieve

this the gradient is calculated. Then put the gradient formula.

We have re-arranged the variational section to clarify it. See track-change for detailed modifications. In particular,
we give details on how the posterior uncertainties are computed in variational inversions in the new version of the

manuscript.

P8, L25: I am not sure this is true. If the state vector is large, i.e. increasing resolution or augmenting the control variables,

or increasing the number of observations, the minimization is expected to be slower.

The limiting factor in the analytical inversion approach is the size of H which cannot be broken down (unlike
B). The variational approach still has limitations but memory is unlikely to be a problem since B can be broken

down, only the computational time could be a limiting factor.

Technically, crazily huge target vector will impede the capability of variational inversions to be computed, if only
due to memory limitations, and convergence time. However, these limits come for much bigger problems than
for analytical and ensemble methods. Also, the minimization algorithms such as CONGRAD and M1QN3 are
extremely efficient and manage a relatively good level of convergence with only a few tens of iterations even in
very large dimensional problems (when correctly set up). For very large inversion problems (especially in the case

of non-linearity), variational inversions still need thorough set up to guarantee the convergence.
P12, Equation 12: Please, be explicit about what the index represents. "... of elementary interchangeable N transforma-
tions ..."

We now give more details about this equation. This generalization of the decomposition of the observation oper-
ators allow us to simplify the configuration and development of inversions. In particular, the development of new

functions is well identified and makes the development of the adjoint simpler.

pl5 115: In such a formalism, all intermediate transformations have the same conceptual level in the code. They are

functions ranging from spatial reprojection, to temporal interpolations, to more complex operations such as the recon-

struction of satellite total columns from concentrations simulated at individual levels in the transport model. In the CIF,

all these transformations have the same input and output structure and, thus, their order can be changed seamlessly
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to execute a given configuration. Please note that the commutative property of elementary transformations as pieces of

code does not guarantee the commutative property of the corresponding physical operators.

P13, L10: It is a bit of pity that air quality application is only mentioned here. I think a system such as CIF could greatly

benefit the air quality community as much as the GHG community, which are getting more connected lately.

We agree. As mentioned above, the CIF is being developed by members of the GHG community primarily.
However, air quality applications are also included in the purposes of the CIF, as e.g., the chemistry transport
CHIMERE is implemented in the CIF with complex chemical schemes. AQ applications are now mentioned from

the introduction.

P13, L13: T am not sure what the authors meant by spatial gradient as observations?Please clarified or remove.

Some inversion studies assimilate differences between concentrations at different locations in the observation
vector (Breon et al. 2015), instead of individual observations. This approach is meant to limit the influence of

background concentrations in the inversion of local fluxes.

pl5 17: authors implemented differences between observation sites and time in the observation vector instead of ob-
servations from individual sites in order to focus on spatial/temporal gradients, thus allowing to limit the influence of

background concentrations in the computation of local

P13, L14-15: Maybe the authors could mention here that the main idea behind “super-obing” is to lower the discrepancies

of the representativeness between model and observations.

We thank the reviewer for helping to clarify our text. We have added statements about the representativeness of

the observations

pl6 14: In the case of super-observations (satellites retrievals, images, spatial gradients, etc.) in the observation vector,
it is often necessary to combine multiple simulated point observations in given grid cells and time stamps into a single

super-observation, to limit redundant observations, hence the size of the observation vector.

P13, L15-16: “This is the case for...time and locations,” This sentence is very unclear.Please rephrase or explain better.
We agree with the reviewer. We have split and clarified our statement.

pl6 [8: Super-observations are commonly used in the case for satellite observations being compared to all the model
levels above a given location; concentration gradients comparing observations at different time and locations (see e.g.,
Bréon et al., 2015; Staufer et al., 2016) are another example of observation aggregation to reduce representativeness
errors. isotopic ratios are also super-observations asl0they require to simulate separate isotopologues and recombine

them after the simulation (as done in e.g.,van der Velde et al., 2018; Peters et al., 2018)

— P15, L21-31: What about satellite observations? I think the authors should add statement about this.
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At the moment (in a version of the CIF more advanced than the one described in the present paper), satellite ob-
servations are included in the observation operator, but the user must format original files manually to a standard
observation format readable by the CIF, with column, averaging kernels, etc. in a specific form. In the future, there

will be a need to allow raw satellite formats automatically in the CIF to be ingested without manual formatting.

pl9 11: satellite products, in particular the formatting of averaging kernels and other metadata, should also be included

in the CIF in the near future as they play a growing role in the community

P17, L11: Those studies use Gaussian plume technique but do not provide a continuous inversion constrain globally.
Please correct the statement as it makes the reader believes that the Gaussian plume technique would allow a global

inversion similar to a CTM based inversion.
We fully agree with the reviewer and have clarified the sentence.

p20 [22: to the larger scales with satellite measurements to optimize individual clusters of industrial or urban emissions

P19, L28: 10000m is 4 times the size of the domain here. No data assimilation system would use such long length scale.

Is this on purpose? If yes, please justify.

The purpose of this set-up is to demonstrate that very large correlation lengths are equivalent to having only
one uniform scaling factor. In the example set-up we had, the high number of observation sites counter-balanced
the large correlation lengths. We changed our set-up, with a smaller domain and smaller number of observation
sites to really demonstrate the equivalence of large correlation lengths and one single scaling factor for the whole

domain. The corresponding figures are shown in Supplement now.

P20, L16, Fig 5 and similar other figures. With all the fluxes and fluxes differences plots it would be better to use python

colour maps that are diverging and centred around 0. This will improve the readability of the figures.

We have used centered color scales for the uncertainty matrix as plotted now. But as fluxes are not centered, we

find that our color scales are the best compromise for readability.

P20, L20: I am unsure if I understand correctly but I believe the authors are speaking about iterations in the variational
sense and members in the EnKF sense. If yes, please have few sentences to explain what the word ’simulation’ means.

Alternatively, I would replace the word ’simulations’ by’iterations or members.’

The reviewer understood correctly. We clarified. We use this measure in the x-axis to be comparable between vari-
ational and ensemble methods, as one iteration of a variational algorithm requires two simulations (one forward

and one adjoint). Details are given about the number of simulations in Sect. 4.2.2

p24 130: More precisely, users and developers of adjoint transport models choose the number of forward re-computations
to be carried out, based on a space-speed trade off: by saving all forward intermediate states, the adjoint is as costly as
the forward, but the disk space burden can be extremely challenging to manage, thus increasing the overall computation

time in return.

10
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— P20, L32: 10000m is 4 times the size of the domain here. See the related comment above. Such long length scales would

provide very uniform structure on the increments. Structure similar to the 500m increments is seen on the result using

the 10000m length scale. I expect there is typo through the text a O should be removed to 1000m?

This was indeed 10000m, but the high number of observation sites counter-balanced the long correlation lengths.
We have changed the set-up with less observation sites to have very uniform increments when having very large
correlation scales. This is a simple test to demonstrate the consistency of the definition of the correlations in the

system. To make this test clearer, we now prescribe a correlation of 200 km, hence 100 times the size of the domain.

P20,L.33-P21,L2: This look to me more like a bug rather noise as vertical lines or “chessboard” like pattern appear in
the increments results. Such pattern also occurs in the analytical solution. This not looking like sampling noise to me. I
think this points out possible problems in the implementation of the EnKF and of the systems other than the variational
methods. It is not entirely clear if the system uses the ensemble information to derive jacobians for the calculation of H
and perform a minimization? In this case this inversion cannot be called EnKF. This needs to be revised or diagnosed or

explained.

Thanks for pointing this out. There was a small difference in the definition of the B matrix between analytical
and ensemble methods on one side, and variational inversions in the other site. We have removed it and have

correspondingly re-computed the inversions.

1.3 Technical comments

P2, L27-29: an order in all those references, chronological or alphabetical.

We have re-ordered those references chronologically

P7, L16: replace "... linear, simple cases." by "... linear and simple cases."

Corrected

P7, L19: change “characterized” to “characterize”.

Corrected

P9, L13: Chevallier et al., 2005: put this reference to the previous parenthesis for clarity.

Corrected

P10, L5: There is a colon here but nothing after. Should we expect equations?

An equation was missing in the submitted version of the manuscript. We detail how posterior matrices can be
deduced in variational inversions: either with Monte Carlo experiments or with truncated eigen vectors and

values of the Hessian matrix

11
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pl2 18: The approximation of the posterior uncertainty matrix A in the case of CONGRAD reads as follows:

A =Hess(J)' = VLAV, 2)

with V xa the dominant eigenvectors of the Hessian matrix at the point X* and Axa the matrix of the dominant eigenvalues
of the Hessian matrix. Please note that the dominant eigenvalues of the Hessian matrix correspond to components with

low posterior uncertainties in A.

Another approach to quantify the posterior uncertainty matrix A, valid for both linear and non-linear cases, is to carry
out a Monte Carlo ensemble of independent inversions with sampled prior vectors from the prior distribution N'(x*,B)

(e.g., ?). An ensemble of posterior vectors are inferred and used to compute the posterior matrix as follows:

1
N-1

a a a a a a a a a a a T
(Xl —Xpefy X2 T Xpefy - XN_Xref) . (Xl T Xpefy Xg T Xpefy oo Xy — X ) 3)

Ax

with N the size of the Monte Carlo ensemble, x¢ the posterior vector corresponding to the prior X% of the Monte Carlo
ensemble and X;. , the average over sampled posterior vectors.

P15, L18: T understand what the authors means but this need to be reformulated. “Meteos” is not really correct English.
This referred to the keyword used in the CIF, which is abbreviated for the sake of readability; we replaced the
word in the body of the manuscript by ''meteo-data''.

P19, L3-10: Maybe add the equations in the text where they are mentioned.

We re-aranged this section accordingly.

P22, L6: This is not a fair statement considering on how the “EnKF” has been implemented here. It doesn’t seem to
be strictly an EnKF as the sequential assimilation is not performed. Consider changing or removing this in the conclu-

sion. Also, this is not the scope of GMD paper here to compare methods but to describe and showcase model/software

developments for geoscience.
We agree that a GMD '"description paper'' should not go too far in interpreting demonstration results. We have

reformulated and reduced the comparison of methods. See track-change for modifications in the result section.

P22, L10-12: The authors could add some sentences about the challenges in implementing actual CTMs in the CIF
framework. For example, among many other challenges, I/O is a limiting factor for data assimilation especially with

CTMs.

We agree that I/O can be a limiting factor. With its very general formalism, the CIF may not be able to ac-

commodate very specific tweaks necessary for some models and some very large applications. However, using
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very efficient numerical libraries in python (which uses C in the background), one should be able to keep up the
pace with systems with compiled codes (Fortran mainly in the community). We have added a paragraph in the

conclusion to discuss this issue:

The next step of the CIF is the implementation of a large variety of CTMs. The implementation of new CTMs already
interfaced with other inversion systems should not bring particular conceptual challenges as all interface operations are
already written in their original inversion system; in most cases, re-arranging existing routines is sufficient to interface
a model to the CIF. One particular challenge concerns I/O optimizations: the generation of inputs and the processing of
outputs can be time consuming and in some very heavy applications requires specific numerical and coding optimiza-
tions. The very general formalism of the CIF may hamper the ability of applying these particular optimizations for some
models. Best efforts will have to be deployed to take full advantage of advanced 1/O and data manipulation libraries in

python to limit this weakness.

2 Referee #2: Peter Rayner

2.1 General Comments

This paper introduces a software system to facilitate ensembles of inverse calculations. The likely focus is atmospheric in-
versions in which model inputs such as surface fluxes are inferred from combinations of prior information and observations.
Such a system is clearly useful since ensembles based on choices of ingredients (such as models or input covariances) provide
a better basis for both the means and uncertainties of posterior estimates. the paper is certainly within scope for GMD since
it describes a system which might well be widely used in the future. It is also well written though some final proofreading,
especially around pluralisation, will be needed.

I note I am not reviewing the software itself. There is only one major critique of the paper. I think the benefits of the system
are slightly over-sold (but what software re-lease doesn’t do this). I believe, for example. that CIF doesn’t provide a framework
for comparing estimates where the target spaces differ such as ENKF with short windows vs long-term mean approaches. That’s
an intellectual/mathematical task which one could instantiate in software. This would probably involve classes representing
PDFs which might be internally represented by ensembles or parameters and functions then defining transformations among
these PDFs. That quibble aside there is no doubt the system will help such comparisons.

We agree that the CIF does not provide a plug’n’play solution to the problem of comparing totally different inversion
set-ups in a statistically consistent way. Doing so would require further mathematical considerations that may prove
necessary in the future to compare methods/models that cannot be computed on, e.g., exactly the same inversion window
(i.e., when comparing inversion results for a given region, one computed with a regional model and the other with a
global one). However, having a consistent framework with comparable configuration parameters and identical output

format will definitely help to develop such a comparison.
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On the positive side the ability to configure the computational pipeline is a marvellous innovation. Building our own, less
ambitious system, we have struggled to make it agnostic about computation.

Perhaps more important than supporting intercomparisons, the tools provided as part of the system will lower the entry
barrier for new groups entering the field. This was a surprising spin-off from the TRANSCOM effort 20 years ago. Most
systems since then have been too closely tied to a given model for universal use so CIF can provide a major boost to the field.
The fact that it is well documented will only help this.

There is one aspect, though, that seems seriously deficient. If I read correctly, methods for calculating uncertainty in the
Gaussian posterior are not provided. One important role of a new framework like CIF is to educate, to encourage good practice.
That includes calculating and engaging with the uncertainty in the results. Certainly any of the analytic methods under-estimate
this term but it is still true that under-sampling of concentration is a major source of uncertainty for inversions at all scales. I
request that the authors at least detail a road map for including posterior uncertainty.

We agree: this was missing. Of course the posterior uncertainty calculation depends on the approach used (analytical,
CONGRAD, M1QN3, or EnKF), as well as how the error matrices are computed in the system. We have implemented
the computation of the posterior error matrices for all methods and have re-arranged the manuscript to demonstrate
the capability to provide uncertainty reduction and posterior error matrices. In particular, posterior matrices are shown

in the Result section.
2.2 Specific Comments

— P7 bottom this correlation of errors is a common critique of ensemble methods but I’ve rarely seen it implemented in
a non-ensemble method either and it’s perfectly possible to do in ensemble methods, one just adds some extra state

variables carrying observational corrections and build the correct autocorrelations into them instead
We agree most variational inversions assume diagonal observation error matrices, or block diagonals, which is
somehow equivalent to the running assimilation window of the Kalman Filter.

— P8 L22saying "the maximum probability" and "the mode" is tautological I think
We have re-arranged the variational section following comments from reviewer #1 and have removed this tautol-
ogy.

— P9 congratulations for explicitly writing out the regularisation/reduction step which is so often assumed. It is called
pre-conditioning so often that you should add the term for clarity
We now mention the term pre-conditioning for consistency with the terminology used in the community

— P9it’s worth commenting that leading eigen-vectors of the Hessian correspond to the low uncertainty parts of the solution
which might or might not be what you want

Thank you for pointing out this aspect. We now give details on the formula used to deduce the posterior matrix

from the eigen vector of the Hessian and mention this.
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pl2 18: The approximation of the posterior uncertainty matrix A in the case of CONGRAD reads as follows:

A =Hess(J)a ~ VLA Vi, )

with 'V xa the dominant eigenvectors of the Hessian matrix at the point x* and A« the matrix of the dominant eigenvalues
of the Hessian matrix. Please note that the dominant eigenvalues of the Hessian matrix correspond to components with

low posterior uncertainties in A.

Another approach to quantify the posterior uncertainty matrix A, valid for both linear and non-linear cases, is to carry
out a Monte Carlo ensemble of independent inversions with sampled prior vectors from the prior distribution N'(x*,B)

(e.g., ?). An ensemble of posterior vectors are inferred and used to compute the posterior matrix as follows:

1
~ a a a a a a a a a a a T
A= N—l(xl —Xpefs Xo = Xyepy oee X — Xiep) - (%] — Xpefs Xo — Xpefy o0 Xy —X ) 5)

with N the size of the Monte Carlo ensemble, x¢ the posterior vector corresponding to the prior X% of the Monte Carlo

ensemble and x;.  the average over sampled posterior vectors.

P11 citing the Bousserez and Henze paper is a good advertisement for your approach, you might want to say in the

abstract or intro that many new methods are hybrid and this combined framework simplifies implementing such methods

We insist on the advantage for modern hybrid methods of such a flexible structure. The decomposition of elemen-
tary operations makes it easier to recompose them in various ways. Besides, the CIF allows new methods to be

tested with multiple models, hence inquiring their strengths and weaknesses in various contexts.

p25 114: With modern inversion methods moving towards an hybrid paradigm of variational and ensemble methods, the

flexibility of the CIF will be a valuable asset as abstract methods can be easily mixed with each other:

P15 a technical question, how do you handle target variables which aren’t needed at various stages, e.g. bias corrections

in observations which aren’t inputs to the CTM? the pipe lining structure doesn’t lend itself well to this problem.

Fig 2 and Eq. 11-12-13 may give the impression that all elementary transformations are computed in a serialized
way. One should keep in mind that x in Figure 2 includes all target variables, not only those regarding fluxes (as
assumed in the figure). Therefore, if some variables are related to observation biases, they are kept identical along
all transformations before and after the models, and they are only used at the last step when reconstructing the
simulated observation vector equivalent. We have modified the figure to highlight this aspect. The text describing

the figure has been extended:

pl6 113: The case of Fig. 2 also include background concentrations in the target vector: a background is often used to
fix some biases in initial and lateral concentrations in limited-area models, and in observations (mostly satellites); the

background variables are processed at the very end of the pipe when re-constructing the observations vector.
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The mathematical formalism of Eq. (15) and (16) suggests that transformations are necessarily computed in a serialized
way, thus limiting applications to simple target variables upstream the transport model. However, each elementary
transformation handles components of the inputs it is concerned with, leaving the rest identical and forwarding it to
later transformations. Typically, it does not actually limit applications to simple target variables upstream the CTM.
For instance, in the case of target variables optimizing biases in the observations, the corresponding components of the
target vector x are forwarded unchanged by all transformations in Fig. 2 until the very last operation, where they are

used for the final comparison to the observation vector.

P18 I think Eq. 17, do you consider sources as points or area integrals, if so do you need to integrate over the area of the

source, especially for nearby observations?

The formulas used in Eq. 16 and 17 are based on point sources. The word "gridded' in the text is therefore

misleading. We have clarified this statement by:

p21 118: we use a grid of point surface fluxes to simulate concentrations using the Gaussian plume equation.

P20 it’s worth adding that the amount of intermediate calculation needed is at user discretion; a space-speed trade-off.
CMAQ, for example needs almost none, having check pointed what it needs on the forward run it had to do anyway at

the start of the iteration.
We thank the reviewer for highlighting this aspect. We have extended the paragraph as follows to mention this

aspect:

p23129: More precisely, users and developers of adjoint transport models choose the number of forward re-computations
to be carried out, based on a space-speed trade off: by saving all forward intermediate states, the adjoint is as costly
as the forward, but the disk space burden can be impossible to manage, thus increasing the overall computation time in

return.
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