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Abstract. This work discusses the numerical aspects of
representing the diffusional (condensational ) growth in
particulate

::::::::::::
condensational

::::::
growth

:::
of

::::::::
particles

:::
in

::::::
models

::
of

:::::::
aerosol

:
systems such as atmospheric clouds. It fo-

cuses on the Eulerian modelling approach, in which the5

evolution of
:::::::
fixed-bin

::::::::::::
discretisation

::
is

:::::
used

:::
for

:
the prob-

ability density function describing the particle-size spec-
trumis carried out using a fixed-bin discretisation (so-called
“bin” microphysics). The numerical diffusion problem .

::::::::
Numerical

::::::::
diffusion

:::
is inherent to the employment of the10

fixed-bin discretisation in the numerical solution of
::
for

::::::
solving the arising transport problem is scrutinised

::::::::
(advection

:::::::
equation

:::::::::
describing

:::
size

::::::::
spectrum

::::::::
evolution). The focus is on

the applications of
::
of

:::
this

:::::
work

:
is
:::
on

:
a
::::::::
technique

:::
for

:::::::
reducing

::
the

:::::::::
numerical

::::::::
diffusion

:::
in

::::::::
solutions

:::::
based

:::
on

:::
the

:::::::
upwind15

:::::::
scheme: the Multidimensional Positive Definite Advection
Transport Algorithm (MPDATA). Several MPDATA variants
are explored including infinite-gauge, non-oscillatory, third-
order-terms and recursive antidiffusive correction (Double-
Pass Donor-Cell, DPDC) options. Methodology for handling20

coordinate transformations associated with both particle-size
spectrum variable choice and

::::::::
coordinate

::::::
choice

:::
and

::::
with

:
nu-

merical grid layout
:::::
choice

:
are expounded. The study uses

PyMPDATA - a new open-source Python implementation of
MPDATA. Analysis of the performance of the scheme for25

different discretisation parameters and different settings of
the algorithm is performed using: (i) an analytically solvable
box-model test case, and (ii) the single-column kinematic
driver (“KiD”) test case in which the size-spectral advection
due to condensation is solved simultaneously with the spatial30

advection in the vertical physical coordinate, and in which
the supersaturation evolution is coupled with the droplet
growth through water mass budget. The single-column
problem

:::::::::
box-model

:::::::
problem

::::::
covers

:::::::::::
size-spectral

::::::::
dynamics

::::
only,

::
no

::::::
spatial

:::::::::
dimension

::
is

::::::::::
considered.

:::
The

::::::::::::
single-column 35

:::
test

::::
case involves a numerical solution of a two-dimensional

advection problem (spectral and spatial dimensions). The
discussion presented in the paper covers size-spectral, spatial
and temporal convergence, computational cost, conservative-
ness and quantification of the numerical broadening of the 40

particle-size spectrum. The box-model simulations demon-
strate that, for the problem considered

::::::::
compared

::::
with

::::::
upwind

:::::::
solutions, even a tenfold decrease of the spurious numerical
spectral broadening can be obtained by an apt choice of the
MPDATA variant (maintaining the same spatial and tempo- 45

ral resolution), yet at an increased computational cost. Anal-
yses using the single-column test case reveal that the width
of the droplet size spectrum is affected by numerical diffu-
sion pertinent to both spatial and spectral advection. Appli-
cation of even a single corrective iteration of MPDATA ro- 50

bustly decreases the relative dispersion of the droplet spec-
trum, roughly by a factor of two at the levels of maximal liq-
uid water content.

:::::::
Presented

::::::::::
simulations

:::
are

::::::
carried

:::
out

::::
using

::::::::::
PyMPDATA

::
-
:
a
:::::

new
::::::::::
open-source

:::::::
Python

:::::::::::::
implementation

::
of

::::::::
MPDATA

::::::
based

::
on

:::
the

:::::::
Numba

::::::::::
just-in-time

::::::::::
compilation 55

:::::::::::
infrastructure.

:
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1 Introduction

1.1 Motivation and outline

The focus of this paper is on the problem of particle-size
evolution for a population of droplets undergoing diffusional

::::::::::::
condensational

:
growth. Representing the particle-size spec-5

trum using a number density function, the problem can
be stated using

::
as

:
a population-balance equation express-

ing conservation of the number of particles. Herein, the nu-
merical solution of the problem using the MPDATA fam-
ily of finite difference schemes originating in Smolarkiewicz10

(1983, 1984) is discussed. MPDATA stands for Multidi-
mensional Positive Definite Advection Transport Algorithm
and is a higher-order iterative extension of the forward-
in-time upwind scheme.

::::::
Iterative

::::::::::
application

:::
of

:::::::
upwind,

:::
first

::::::
using

:::
the

::::::::
physical

::::::::
velocity

::::
and

::::::::::::
subsequently

::::
with15

:::::::
so-called

:::::::::::
antidiffusive

:::::::::
velocities,

:::::
results

:::
in

::::::::
MPDATA

:::::
being

:::::::::::
characterised

::
by

::::::
small

:::::::
implicit

::::::::
diffusion

:::
but

::::::::
retaining

:::
the

:::::
salient

::::::::
features

::
of

::::
the

:::::::
upwind

:::::::
scheme:

:::::::::::::::
conservativeness,

::::
small

:::::
phase

:::::
error

:::
and

::::
sign

:::::::::::
preservation.

MPDATA features a variety of options allowing to20

pick an algorithm variant appropriate to the problem
at hand. This work highlights the importance of the
MPDATA algorithm variant choice for the resultant spec-
tral broadening of the particle-size spectrum. The term
spectral broadening refers to the increasing

::::::
increase25

::
in

:
width of the droplet spectrum during the lifetime

of a cloud, which .
:::::

The
::::::::::

broadening
::

may be associ-
ated with both physical mechanisms (mixing, turbulence)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(incl. turbulent mixing, particle composition diversity, radiative heat transfer effects, see e.g. Feingold and Chuang, 2002)
as well as

::::
with

:
spurious artefacts stemming from the em-30

ployed numerical solution technique,
:::

the
::::::

latter
:::::
being

:::
the

::::
focus

::
of
::::
this

::::
work.

Cloud simulations with a detailed treatment of droplet mi-
crophysics face a twofold challenge in resolving the droplet
spectrum width. First, it is challenging to model and nu-35

merically represent the subtleties of condensational growth

:::::
which

:::
link

:::
the

::::::::::::::
physio-chemical

:::::::::
properties

::
of

:::::
single

:::::::
particles

::::
with

:::::::
ambient

::::::::::::::
thermodynamics

:::::::
through

::::::
latent

::::
heat

::::::
release

:::
and

::::::::::::
multi-particle

::::::::::
competition

::::
for

::::::::
available

::::::
vapour

:
(e.g.,

Arabas and Shima, 2017; Yang et al., 2018), even more so40

when considering the interplay between particle population
dynamics

::::::
growth and supersaturation fluctuations (e.g., Jef-

fery et al., 2007; Abade et al., 2018). Second, the discreti-
sation strategies employed in representing the particle-size
spectrum and its evolution are characterised by inherent lim-45

itations which constrain the fidelity of spectral width predic-
tions (e.g., Arabas and Pawlowska, 2011; Morrison et al.,
2018). Finally, corroboration of spectral width estimates
from both theory and modelling against experimental data
faces the problems of instrumental broadening inherent to the50

measurement techniques (e.g. Devenish et al., 2012, sec. 3.2)
and the problem of sampling volume choice (e.g., Kostinski
and Jameson, 2000).

The width of the spectrum plays a key role in the
determination of

:::::::::
determining

:
both the droplet collision prob- 55

abilities (Grabowski and Wang, 2013) and the characteris-
tics relevant for radiative transfer (Chandrakar et al., 2018).
These in turn are reflected in parameterisations of cloud pro-
cesses in large-scale models. Taking climate-timescale sim-
ulation as an example, the representation of clouds remains 60

the largest source of uncertainty (Schneider et al., 2017). The
parameterisations

::::::::::::::
Parameterisations used in climate models,

::
for

::::::::
example

::
of

::::
such

:::::
cloud

::::::::::::
microphysical

::::::::
processes

::
as

:::::
cloud

:::::::::::
condensation

:::::
nuclei

::::::
(CCN)

:::::::::
activation,

:
are developed based

on smaller-scale simulations resolving particle-size spectrum 65

evolution. Consequently, it is of high interest
:::::::::
importance

:
to

quantify the extent to which the droplet-size spectrum width
is a consequence of (a) the physics of particle growth embod-
ied in the governing equations and (b) the discretisation and
the associated numerical diffusion. 70

The following introductory subsections start with a

:::::::::::::
chronologically

::::::::
presented literature review of applications of

MPDATA to the problem of condensational growth of par-
ticles. Section 2 focuses on a simple

:::::::::
analytically

:::::::
solvable

box-model test case
::::
with

::
no

::::::
spatial

:::::::::
dimension

::::::::::
considered, 75

and serves as a tutorial on MPDATA variants(limited to
one-dimensional homogeneous advection of a positive-sign
signal). It is presented to gather the information that is scat-
tered across works focusing on more complex computa-
tional fluid dynamics applications of MPDATA. Example 80

simulations employing an analytically solvable test case

::::::::
Presented

::::::::::
simulations

:
pertaining to the evolution of cloud

droplet size spectrum in a cumulus cloud is used to depict the
effects on numerical broadening from

:::::
depict

::::
how enabling

the discussed algorithm variants
:::::
affects

:::::::::
simulated

::::::
droplet 85

:::::::
spectrum

::::::
width. An analysis of the computational cost of

different algorithm variants is carried out and corroborated
with previously published data. While comprehensive from
the point of view of the considered problem of diffusional
growth

::::
(and

:::::
hence

::::::
limited

::
to

::::::::::::::
one-dimensional

:::::::::::
homogeneous 90

::::::::
advection

:::
of

:::::::::::
positive-sign

::::::
fields), the presented material

merely hints at the versatility of the algorithm. For a proper
review of the MPDATA family of algorithms highlighting
the multi-dimensional aspects and its multifaceted applica-
tions, we refer to Smolarkiewicz and Margolin (1998), Smo- 95

larkiewicz (2006) and Kühnlein and Smolarkiewicz (2017).
Section 3 covers the application of MPDATA for cou-

pled size-spectral and spatial advection in a single-column
kinematic setup from Shipway and Hill (2012). First, the
methodology to handle the spectral-spatial liquid water ad- 100

vection problem taking into account the coupling with the
vapour field is detailed. Second, the results obtained us-
ing different MPDATA variants are discussed focusing on
the measures of spectral broadening. title = PyMPDATA
v1: Numba-accelerated implementation of1MPDATA with 105

examples in Python, Julia and Matlab,
Section 4 concludes the work with a summary of findings.

Appendix A contains
:
a
:
convergence analysis based on results
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of multiple simulations using the embraced box-model test
case run with different temporal and spatial (size-spectral)
resolutions

:::
and

:::::::::
compared

::::
with

:::
the

::::::::
analytical

:::::::
solution.

All presented simulations are performed with the

::::::::::
PyMPDATA

:::::::::::::::::::::
(Bartman et al., 2021)

:
–

::::
an

:::
open-source5

package PyMPDATA Bartman et al. (2021)
:::::
Python

:::::::::::::
implementation

::
of

:::::::::
MPDATA

:::::
built

:::
on

:::
top

:::
of

:::
the

:::::::
Numba

:::::::::
just-in-time

::::::::::
compilation

::::::::::
framework.

1.2 Background

There exist two contrasting approaches for modelling the10

evolution of droplet-size spectrum (see Grabowski, 2020, for
a review): Eulerian (fixed-bin) and the Lagrangian (moving-
bin, moving-sectional or particle-based). Overall, while the
Lagrangian methods are the focus of active research and de-
velopment (Morrison et al., 2020), the Eulerian schemes have15

been predominantly used in large-scale modelling (Khain
et al., 2015).

Following Liu et al. (1997) and Morrison et al. (2018),
the earliest documented study employing the Eulerian nu-
merics for condensational growth of a population of particles20

is that of Kovetz and Olund (1969). Several earlier works,
starting with the seminal study of Howell (1949), utilised
the Lagrangian approach. The numerical scheme proposed
in Kovetz and Olund (1969, eq. (10)) resembles an upwind
algorithm,

:
being explicit in time and orienting the finite-25

difference stencil differently for condensation and evapora-
tion.

One of the first
::
An

:::::
early

:
discussions of numerical broad-

ening of the spectrum can likely
::::
cloud

::::::
droplet

::::::::
spectrum

:::
can

be found in Brown (1980) where the numerical scheme from30

Kovetz and Olund (1969) was improved in several ways,
including the sampling of the drop growth rate at the bin
boundaries (as is done herein). Brown (1980) also covers
quantification of the error of the method by comparisons to
analytic

::::::::
analytical solutions.35

In Tsang and Brock (1982),
::
an

:::::::::::::::::
Eulerian-Lagrangian

::::::
scheme

:::::
is
:::::::::::::

considered
:::::::

that
::::::::::::

combines
:::::

a

::::::::::::::::::::
method-of-characteristics

::::::::
solution

::::
with

:::::
spline

:::::::::::
interpolation

::::
onto

::
a
::::::

fixed
:::::

grid.
:::::::

Based
::::

on
:::::::::::

comparison
:::::

with
::::

the

:::::::::::::::::
Eulerian-Lagrangian

:::::::
scheme,

::::
the

:::::::
authors

:::::::::
conclude

::::
that40

the authors point out that upwind differencing is not suitable
for aerosol growth calculations due to its unacceptable
numerical diffusion. Noteworthy, the study includes consid-
erations of the Kelvin effect of surface tension on the drop
growth (not considered herein, see discussion of eq. 2.345

below).
The first mention of an application of the MPDATA

scheme for the problem of condensational growth can be
found in Smolarkiewicz (1984). The problem is given as an
example where the divergent-flow option of the algorithm50

may be applicable (see sect. 2.8 below).
In Tsang and Korgaonkar (1987), which is focused on

evaporation, MPDATA is used as a predictor step followed

by a corrective step using a Galerkin finite element solver.
In two subsequent studies from the same group (Tsang and 55

Rao, 1988, 1990), MPDATA is compared to other algo-
rithms in terms of conservativeness and computational cost.
In Tsang and Rao (1988), the basic 3-iteration MPDATA was
used. Interestingly

::::::::::
Intriguingly, it is noted there that “If the

antidiffusion velocities are increased by some factor between 60

1.04 and 1.08, use of [corrective iteration] only once can
reduce 50% of the computing time [...] without much sacri-
fice of accuracy”. In conclusion, the authors praise

:::::
praised

MPDATA for providing narrow size spectra. Tsang and Rao
(1988) pointed out that MPDATA performs worse than the 65

upwind scheme in terms of the prediction accuracy of the
mean radius.

The “Aerosol Science: Theory and Practice” book of
Williams and Loyalka (1991) contains a section (5.19) on
MPDATA (termed “Smolarkiewicz method”) within a chap- 70

ter focusing on the methods of solving the dynamic equation
describing aerosol spectrum evolution. The basic variant of
MPDATA (Smolarkiewicz, 1983) was

:
is

:
presented with an

outline of its derivation.
In Kostoglou and Karabelas (1995) and Dhaniyala and 75

Wexler (1996), the authors mention that MPDATA has the
potential to reduce the numerical diffusion as compared to
upwind in the context of particle size evolution calcula-
tions. The first lists

::::::::
However, high computational cost among

drawbacks in using the algorithm that led to discarding
:
of
:::
the 80

::::::
method

::
is

:::::
given

::
as

::
a
::::::
reason

::
to

::::::
discard

:
the scheme from the

presented comparison
::::::
further

:::::::
analysis.

In Morrison et al. (2018), a comparison of different numer-
ical schemes for the condensational growth problem is per-
formed. Both fixed-,

::::::::
Fixed-bin

:
and moving-bin approaches 85

are compared, including the non-oscillatory variant of .
:
MP-

DATA (referred to as MPDG therein) . MPDATA
:::
with

:::
the

::::::::::::
non-oscillatory

::::::
option

:::::::
enabled,

:
is reported to produce more

::::
most significant numerical diffusion and spectral broadening
than all other

:::::
among

:::::::::
employed

::::::::
fixed-bin methods. Intrigu- 90

ingly, as can be seen in Fig. 7 therein, the broad spectrum
in the results obtained with MPDATA appears already at the
very beginning of the simulations, at the

::::::
appears

:::
as

::::
early

::
as

::::
after

::
20

:::::
time

:::::
steps,

::
at

:::
an altitude of 20m

:
(out of 520m of

simulated displacement of an air parcel
::
the

:::::::::
simulated

:::::
parcel 95

::::::::::::
displacement).

:::::
Thus,

::
it
:::

is
:::::::::::
questionable

::
if

:::
the

::::::::::
broadening

::::::::
attributed

::
to

:::
the

:::::::::
diffusivity

::
of

::::::::
MPDATA

::
is

:::
not

:::
an

::::::
artefact

::
of

::
the

:::::::
top-hat

:::::
initial

::::::::
condition.

In Wei et al. (2020), MPDATA is employed for integrating
droplet spectrum evolution for comparison with a Lagrangian 100

scheme. The work concludes that the spurious broadening of
the spectrum cannot be alleviated even with a grid composed
of

::::::
spectral

::::::::::::
discretisation

::::::::
involving 2000 size bins.

The discussion presented in Morrison et al. (2018)
prompted further analyses presented in Hernandéz Pardo 105

et al. (2020) and Lee et al. (2021). These studies highlighted
that, in principle, the problem is a four-dimensional transport
problem (three spatial dimensions and the spectral dimen-
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sion) and that the interplay of spectral and spatial advection
further nuances the issue of spectral broadening.

Noteworthy, none of the works mentioned above discussed
coordinate transformations to non-linear grid layouts with
MPDATA (a discussion of handling non-uniform mesh with5

the upwind scheme can be found in Li et al., 2017, Ap-
pendix A). Wei et al. (2020) and Morrison et al. (2018) are
the only works mentioning other than the basic flavour of
the scheme, yet only the non-oscillatory option was consid-
ered. Herein, the applicability for solving the condensational10

growth problem of multiple variants of MPDATA and their
combinations is expounded.

1.3 Governing equations

To describe the conservation of particle number N under the
evolution of the particle-size spectrum np(p) = dN

dp (n denot-15

ing number density as a function of particle-size parameter p
such as radius or volume), one may take the one-dimensional
continuity equation (i.e., Liouville equation expressing the
conservation of probability, for discussion see Hulburt and
Katz, 1964), in a generalised coordinate system:20

∂t(Gnp) + ∂x(uGnp) = 0, (1.1)

where G≡G(x) represents the coordinate transformation
from p to x with x being an equidistant mesh coordinate
used in the numerical solution; np ≡ np(p(x)) being num-
ber density function and u≡ u(x) denoting the pace of parti-25

cle growth in the chosen coordinate x.
::::::::
Equation

::::
(1.1)

::
in

:::
this

::::::
context

::
is

::::
also

:::::::
referred

::
to

::
as

::
a
:::::::::
population

:::::::
balance

:::::::
equation

:::::::::::::::::::::::::::::::
(see, e.g. Ramkrishna, 2000, chpt. 2.7).

:

The coordinate transformation term G may play a twofold
role in this context.30

First, there is a degree of freedom in

::::
First,

::::
one

:::
has

:
the choice of the particle-size parameter used

as the coordinate (i.e., the argument p of the density func-
tion n(p)). For the chosen coordinates p ∈ [r,s∼ r2,v ∼ r3],
the appropriate distributions will be nr(r), ns(s) and nv(v)35

where s= 4πr2 and v = 4/3πr3 denote particle surface and
volume, respectively. The size spectrum np(p) in a given co-
ordinate is related with nr(r) via the following relation of
measures: np(p)dp= nr(r)dr so

::::
such

::::
that the total number

N =
∫
nrdr is conserved.40

Second, there is also a degree of freedom in

::::::
Second,

::::
one

:::
has

:
the choice of the grid layout p(r(x)), that

is how the parameters r, s or v are discretised to form the
equidistant grid in x. This can be used, for instance, to define
a mass-doubling grid layout (x= ln2(r3)) as used in Morri-45

son et al. (2018) and herein.
Combining

:::::::::::
Combination

:::
of

:
the two transformations

results in
:::::
yields the following definition of G:

G≡ dp(r)/dx(r) =
dp

dx
(1.2)

which defines the transformation from the coordinate p of the50

density function to the numerical mesh coordinate x. For fur-

ther discussion of the coordinate transformation approaches
in the embraced framework (including multi-dimensional
setting), see Smolarkiewicz and Clark (1986) and Smo-
larkiewicz and Margolin (1993). 55

2 Spectral advection with upwind and MPDATA
(box-model test case)

2.1 Upwind discretisation

The numerical solution of equation (1.1) is obtained on a grid
defined by x= i ·∆x and at discrete timesteps defined by 60

t= n·∆t. Henceforth, ψn
i andGi denote the discretised num-

ber density np and the discretised coordinate transformation
term, respectively. The dimensionless advective field is de-
noted byGC = dp

dxu∆t/∆x, where C stands for the Courant
number, i.e. the velocity in terms of temporal and spatial grid 65

increments. Note that the values of the Courant number itself
are not used, only the product GC (of the coordinate trans-
formation termG and the Courant numberC

:
)
::
is

::::
used. A stag-

gered grid is employed and indicated with fractional indices
for vector fields, e.g.,: GCi+1/2 ≡ (GC)|i+1/2 in the case of 70

the discretisation of GC. A finite difference form of the dif-
ferential operators is introduced embracing the so-called up-
wind approach (dating back at least to Courant et al., 1952,
eq. 16 therein):

ψn+1
i = ψn

i −
1

Gi

(
F (ψn

i ,ψ
n
i+1,GCi+1/2)− 75

F (ψn
i−1,ψ

n
i ,GCi−1/2)

)
(2.1)

with

F (ψL,ψR,GCmid) =max(GCmid,0) ·ψL+

min(GCmid,0) ·ψR (2.2)

where the introduced flux function F defines the flux of ψ 80

across a grid-cell boundary. Hereinafter a shorthand notation
Fi+ 1

2
(ψ)≡ F (ψi,ψi+1,GCi+ 1

2
) is used.

2.2 Box-model test case and upwind solution

The test case is based on Figure 3 from East (1957) - one of
the early papers on the topic of cloud droplet spectral broad- 85

ening. The case considers the growth of a population of cloud
droplets through condensation in the equilibrium supersatu-
ration limit, where:

u≈ dx

dr
ṙ =

dx

dr

ξ

r
, (2.3)

with ξ = ξ0(S− 1) being an approximately constant factor 90

proportional to the supersaturation (S− 1) where the satu-
ration S is equal to

::::::
denotes

:
the relative humidity of ambi-

ent air. The parameter ξ0 is set to 100 µm2s−1 to match the
results from East (1957). The approximation (2.3) neglects
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the dependence of particle growth rate on the surface tension
(Kelvin term). Taking it into consideration requires replacing
(S− 1) with (S− eA/r), where A depends on temperature
only; for discussion see, e.g., Tsang and Brock (1982).

For the initial number density function, an idealised fair-5

weather cumulus droplet size spectrum is modelled with a
lognormal distribution:

n(0)r (r) = n0 exp
(
−κ(log10(r/r0))2

)
/r (2.4)

with r0 = 7 µm and κ= 22 (East and Marshall, 1954)while
was set at ,

::::
and n0 = 465 cm−3 to match liquid water content10

of 1 g kg−1 as indicated in East (1957).
For the boundary conditions (implemented using halo grid

cells),
:::::
linear

:
extrapolation is applied for

::
to G, while both ψ

and GC are set to zero within the halo.
Analytical solution to eq. (1.1) is readily obtainable for15

ṙ = ξ/r and for any initial size spectrum. Noting that intro-
ducing x= r2 coordinates, the transport equation (1.1) be-
comes a constant-coefficient advection equation, the problem
reduces to translation of the signal in x by 2ξt. Cast in the r
coordinate, the solution can be expressed as (Kovetz, 1969):20

ψanalytical = nr(r, t > 0)≡ r

r̃
n(0)r (r̃), (2.5)

where r̃ = r̃(r, t) =
√
r2− 2ξt.

The upper panels in Figures 1 and 2 depict the droplet size
spectrum evolution through condensational growth from an
initial liquid water mixing ratio of M0 = 1 g kg−1 under su-25

persaturation
::
of S− 1 = 0.075%.

Two grid layout (x) and size parameter (p) choices are de-
picted. Both panels in Fig. 1 present simulation carried out
with p= r2 coordinate and discretised on a mass-doubling
grid (x= ln2(r3)). Both panels in Fig. 2 present simula-30

tion results obtained with x= r and p= r. In all cases, the
timestep is set to ∆t= 1

3 s. The domain span is 1–26 µm. The
grid is composed of 75 grid cells. Such settings corresponds
to GC ≈ 0.26 for p= r2, and a variable Courant number ap-
proximately in the range of 0.03 to 0.07 for p= r.35

The time steps
:::::
times

:::
for

:::::
which

::::::
results

:::
are depicted in the

plots are selected by finding t for which the integrated liquid
water mixing ratio of the analytical solution equals to 1, 4 and
10 g kg−1 (assuming air density of 1 kg m−3). In both Fig-
ure 1 and 2, the upper panels display

:::::
show the number den-40

sity and the bottom panels show the normalised mass density.
The bottom panels thus depict the same quantities as Fig. 3
in East (1957).

::::::
Similar

::::::::::
comparison

::
of

:::::::
upwind

:::
and

::::::::
analytical

:::::::
solutions

::
is

::::
also

::::::::
presented

::
in

::::
Fig.

::
1a

::
in

:::::::::::::
Li et al. (2017).

:

The normalised mass density of bin i is evaluated as45

4/3πρlm
(l=3)
i /M by calculating the third statistical moment

of the number distribution nr(p) with the formula:

m
(l)
i =

r2∫
r1

nrr
ldr =

=ψi ·


(l+ 1)

−1
rl+1

∣∣∣r2
r1

for p= r

2(l+ 2)
−1

(r2)
l+2
2

∣∣∣r22
r21

for p= r2

(2.6)

where r1, r2 are the boundaries of i-th bin, and ψi is the
value of np associated with the bin (i.e., np is assumed to be 50

bin-wise constant; note that the dimension of
:::::::
physical

:::
unit

::::::::
associated

::::
with

:
np depends on the choice of p). The normal-

isation factor M is the
::::
water

:
mixing ratio (e.g., M =M0 =

1 g kg−1 for t= 0).
Evolution of the particle number density (upper panel) 55

and normalised mass density (bottom panel) with red
histograms corresponding to the numerical solution using
upwind scheme, black dots depicting analytical solution,
and grey filled histogram representing discretised analytical
solution; compare Fig. 3 in East (1957). Numerical solution 60

was obtained in the following coordinate transformation:
p= r2; x= ln2(r3) As in Fig. 1 for p= r and x= r.

The dotted curve corresponds to the analytic solution. The
numerical solution obtained with the upwind scheme (2.1) is
plotted with red histograms and compared to the discretised 65

analytical solution plotted as grey filled histograms.
Looking at the mass density plots in Figs. 1 and 2, it is

evident that casting the results in the form of mass density
shifts positions of the extrema in comparison with the analyt-
ical solution. This is one of the consequences of integrating 70

::::::
solving the number conservation law

:::::::
equation

:
(for discussion

see sec. 2.12).
As can be seen in both the number- and mass-density plots

in Figs. 1 and 2, solutions obtained with the upwind scheme
are characterised by a significant drop in the peak value and 75

spectral broadening
::::::
visible

:::::::::
broadening

::
of

:::
the

::::::::
spectrum

:
with

respect to the analytical solution – both manifesting the nu-
merical diffusion.

The broadening and the drop in the peak value are less pro-
nounced in Fig. 2 where the linear grid increases

::::::::::
employment 80

::
of

:
a
::::::

linear
::::
grid

::::::
causes

::
an

::::::::
increase

::
of

:::
the

:
the resolution in

the large-particle region of the spectrum
::
as

:::::::::
compared

::
to

::::::::::::
mass-doubling

:::
grid

::::
case

:::
of

:::
Fig.

::
1.

2.3 Truncation error analysis of the upwind scheme

One of the methods used to quantify the numerical dif- 85

fusion of the upwind
:
a
:::::::::

numerical
::

scheme is the modi-
fied equation analysis of Hirt (1968) (see Margolin and
Shashkov, 2006, for discussion in the context of MPDATA).
To depict the idea

::
In

::
a
::::::::
nutshell,

:::
the

:::::::
analysis

:::::::::
involves:

::
(i)

::::::::::::::
Taylor-expansion

:::
of

::::
each

:::::
term

::
of
::::

the
:::::::::
numerical

:::::::
scheme, 90

::
(ii)

:::::::::::
elimination

::
of

::::::::::::::
higher-than-first

:::::
order

:::::
time

:::::::::
derivatives

::::
using

:::
the

::::::::::::::::
time-differentiated

::::::
original

::::::::
advection

::::::::
equation,

:::
and
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:::
(iii)

:::::::::
derivation

:::
of

::
a

::::::
partial

::::::::::
differential

::::::::
equation,

:::::::
referred

::
to

::
as

:::
the

::::::::
modified

:::::::::
equation,

:::
that

::
a
:::::
given

:::::::
scheme

:::::::
actually

:::::::::::
approximates

::
in

:::
lieu

::
of
:::
the

:::::::::
advection

::::::::
equation.

::
To

:::::
depict

:::
an

:::::::::
application

::
of

:::
the

::::::::
modified

:::::::
equation

:::::::
analysis

::
in

:::
the

::::::
present

::::::
context

::::::::
(upwind

:::::::
scheme), a simplified setting5

of G= 1 and C = const is outlined herein. In the analysis,
the Taylor expansion of ψ up to the second order is taken
at ψn+1

i , ψni+1 and ψni−1 and substituted into the numerical
upwind scheme, in which the flux function (2.2) is

:
expressed

using moduli (e.g., Crowley, 1968, eq. (12)):10

ψn+1
i = ψni −

(
C + |C|

2
(ψni −ψni−1)+

C − |C|
2

(ψni+1−ψni )

)
(2.7)

resulting
::::
what

::::::
results

:
in:

∂tψ+ ∂2t ψ
∆t

2
=−u+ |u|

2

(
∂xψ− ∂2xψ

∆x

2

)
−

u− |u|
2

(
∂xψ+ ∂2xψ

∆x

2

)
(2.8)15

which is
:::
can

::
be

:
further transformed by employing a time

derivative of both sides of the original advection equa-
tion ∂tψ =−u∂xψ −→ ∂2t ψ =−u∂x∂tψ = u2∂2xψ to sub-
stitute the second-order time derivative with

:
a spatial deriva-

tive (Cauchy-Kowalevski procedure, see Toro, 1999) lead-20

ing to the sought modified equation (Roberts and Weiss,
1966, eq. 2.9):

∂tψ+u∂xψ+

(
u2

∆t

2
− |u|∆x

2

)
︸ ︷︷ ︸

K

∂2xψ+ ...= 0 (2.9)

The above analysis depicts that the employment of the nu-
merical scheme (2.1) results in a solution of a modified equa-25

tion (2.9), approximating the original problem up to first or-
der. The leading second-order error contribution has the form
of a diffusive term with a coefficient K (note that the above
outline of the modified equation analysis assumes the

:
a
:
con-

stant velocity field). The diffusive form of the leading error30

term explains with the smoothing of the spectrum evident in
Figs. 1,2, and hence

:
is

:::::::::
consistent

::::
with the notion of numeri-

cal diffusion.

2.4 Antidiffusive velocity and iterative corrections

The problem of numerical diffusion can be addressed by35

introducing the so-called “antidiffusive velocity" (Smo-
larkiewicz, 1983). To this end, the Fickian flux can be cast
in the form of the

::
an advective flux - an approach dubbed

pseudo-velocity technique in the context of advection-
diffusion simulations (Lange, 1973, 1978) or hyperbolic for-40

mulation of diffusion (Cristiani, 2015, discussion of eq. (4)
therein), and discussed in detail in Smolarkiewicz and Clark
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Figure 1.
:::::::
Evolution

::
of
:::

the
::::::
particle

::::::
number

::::::
density

:::::
(upper

:::::
panel)

:::
and

::::::::
normalised

:::::
mass

:::::
density

:::::::
(bottom

:::::
panel)

::::
with

:::
red

::::::::
histograms

::::::::::
corresponding

:::
to

:::
the

::::::::
numerical

:::::::
solution

::::
using

:::::::
upwind

::::::
scheme,

::::
black

:::
dots

::::::::
depicting

:::::::
analytical

:::::::
solution,

:::
and

::::
grey

::::
filled

::::::::
histograms

:::::::::
representing

:::::::::
discretised

::::::::
analytical

:::::::
solution;

:::::::
compare

::::
Fig.

::
3
::

in

::::::::
East (1957)

:
.
::::::::
Numerical

:::::::
solution

:::
was

:::::::
obtained

::::
with

::::::
p = r2

:::
on

:
a

:::::::::::
mass-doubling

:::
grid,

:::
i.e.

::::
with

:::::::::
x = ln2(r3).

:

(1986, sect. 3.2):

∂x(K∂xψ) = ∂x

(
K
∂xψ

ψ
ψ

)
. (2.10)

In Smolarkiewicz (1983, 1984), it was proposed to apply 45

the identity (2.10) to equation (2.9) to suppress the spuri-
ous diffusion. The procedure is iterative. The first iteration
is the basic upwind pass. Subsequent corrective iterations re-
verse the effect of numerical diffusion by performing upwind
passes with the so-called antidiffusive flux based on equa- 50

tion (2.10) but with K taken with a negative sign and ap-
proximated using the upwind stencil (for discussion of the
discretisation, see Smolarkiewicz and Margolin (2001)).

Accordingly, the basic antidiffusive field GC(k) is defined
as follows (with ε > 0 being an arbitrarily small constant 55

used to prevent from divisions by zero):

GC
(k)

i+ 1
2

=Ai+ 1
2

(∣∣∣GC(k−1)
i+ 1

2

∣∣∣−(GC(k−1)
i+ 1

2

)2)
, (2.11)
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Figure 2.
::
As

::
in

:::
Fig.

::
1
::
for

:::::
p = r

:::
and

:::::
x = r.
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Figure 3. Comparison of analytic
:::::::
analytical, upwind and MPDATA

solutions (see plot key for algorithm variant specification) using the
setup from Fig. 1, see sec. 2.4 for discussion.

where k is the iteration number, GC(1) ≡GC and

Ai+ 1
2

=
ψ∗i+1−ψ∗i

ψ∗i+1 +ψ∗i + ε
, (2.12)

where ψ∗ denotes ψn in the first iteration, or the values
resulting from the application of the upwind scheme with
the antidiffusive flux in subsequent iterations. The MPDATA5

scheme inherits the key properties of upwind in terms of
positive-definiteness, conservativeness and stability while re-
ducing the effect of numerical diffusion. Given the context
of conservation of particle concentration, in all presented
numerical

:
In

:::
all

::::::::
presented formulæ below, it is assumed that 10

the transported signal is positive , the
::
ψ

::
is

:::::::
positive

:::
(as

::
in

::
the

:::::
case

::
of

:::::::
particle

:::::::
number

::::::::
density).

::::
The

:
references pro-

vided include formulation of the algorithm for variable sign
signals

::::::::::
variable-sign

:::::
fields

::::
(e.g.,

::::::::::
momentum

:::::::::
advection).

::
In

:
Figure 3compares a set of example simulations 15

performed with thesame set-up as in Figure 1. The,
:::
the an-

alytical results obtained with upwind
:::
and

:::::::::
presented

::
in

:::::
Figure

::
1
:
are supplemented with results obtained using the

MPDATA scheme with two and three iterations. Employment
of the MPDATA iteration corrects both the signal

::::::::
MPDATA 20

::::::
corrects

:::::
(with

:::::::
respect

::
to

:::::::::
analytical

:::::::
solution)

:::::
both

:::
the

:
peak

amplitude and its
:::
the

::::::::
spectrum width, as well as the position

of the maximum. It is visible that the effect of the third iter-
ation is less pronounced than that of the second one. Over-
all, while the MPDATA solutions are superior to upwind, the 25

drop in amplitude and broadening of the resultant spectrum
still visibly differs from the discretised analytical solution.

2.5 Infinite gauge variant

For the possible improvement of the algorithm, one may con-
sider linearising MPDATA about an arbitrarily large constant 30

(i.e. taking ψ′ = ψ+ aχ in the limit a−→∞ instead of ψ,
where χ is a constant scalar background field). Such analysis
was considered in Smolarkiewicz and Clark (1986, eq. 41)
and subsequently referred to as the “infinite-gauge” (or
“iga”) variant of MPDATA (Smolarkiewicz (2006, eq. 34), 35

Margolin and Shashkov (2006, point (6) on page 1204)).
Such gauge transformation changes the corrective itera-

tions of the basic algorithm as follows (replacing eqs. (2.12)
and (2.2) what is symbolised with ):

Ai+ 1
2
 A(iga)

i+ 1
2

=
ψ∗i+1−ψ∗i

2
(2.13) 40

Fi+ 1
2
 F

(iga)
i+ 1

2

=GC
(k)

i+ 1
2

(2.14)

Noting
::::
Note

:
that the amplitude of the diffusive flux

(2.10) is inversely proportional to the amplitude of the
signal

:::::::::
transported

::::
field.

::::::::::::
Consequently, such gauge choice de-

creases the amplitude of the truncation error (see Smo- 45

larkiewicz and Clark (1986, p. 408), Jaruga et al. (2015,
discussion of Fig. 11)), however, it makes the algorithm no
longer positive definite.

::::::::
However,

:::
the

::::::::::::
infinite-gauge

::::::
variant

::
no

::::::
longer

::::::
assures

:::::::::::::
positive-definite

::::::::
solutions.

Figure 4 depicts how enabling the infinite gauge vari- 50

ant influences results presented in Figure 3. In each plotted
timestep, the maximum amplitude of the infinite-gauge result
is closest to the analytical solution

:
–
:
improving over the ba-

sic MPDATA. However, in each case, negative values are
:::
also

observed (non-physical in case of the considered problem). 55
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Figure 4. Comparison of analytic
:::::::
analytical, upwind and MPDATA

solutions (see plot key for algorithm variant specification) using the
setup from Fig. 1, see sec. 2.5 for discussion.

Consequently, for the problem at hand, it is effectively es-
sential to combine it with the monotonicity-preserving non-
oscillatory option outlined in the next section.

2.6 Non-oscillatory option

In Smolarkiewicz and Grabowski (1990), an extension of the5

MPDATA algorithm was introduced that makes the solution
monotonicity preservingand .

::
In

:::
the

::::
case

::
of

:::
the

:::::::::::
infinite-gauge

::::::
variant

:::::::
outlined

:::::
above,

::
it
:
precludes the appearance of nega-

tive values in the discussed solution of droplet size spectrum
evolution. The trade-off is that the order of the algorithm is10

reduced (see Appendix A).
The non-oscillatory option (later referred to as “non-osc"

herein) modifies the algorithm in such way
::
as

::::::
follows:

GC
(k+1)

i+ 1
2

 GC
(k+1,non-osc)
i+ 1

2

= GC
(k)

i+ 1
2

×

×

min(1,β↓i ,β
↑
i+1) GC

(k)

i+ 1
2

≥ 0

min(1,β↑i ,β
↓
i+1) GC

(k)

i+ 1
2

< 0
, (2.15)15

where

β↑i ≡Gi×
max

(
ψ(max)
i ,ψ∗i−1,ψ

∗
i ,ψ
∗
i+1

)
−ψ∗i

max
(
F (ψ∗)i− 1

2
,0
)
−min

(
F (ψ∗i )i+ 1

2
,0
)

+ ε
,

(2.16)

and

β↓i ≡Gi×
min

(
ψ(min)
i ,ψ∗i−1,ψ

∗
i ,ψ
∗
i+1

)
−ψ∗i

max
(
F (ψ∗i )i+ 1

2
,0
)
−min

(
F (ψ∗i )i− 1

2
,0
)

+ ε
,

(2.17)

with20

ψ(min)
i = min(ψni−1,ψ

n
i ,ψ

n
i+1), (2.18)

ψ(max)
i = max(ψni−1,ψ

n
i ,ψ

n
i+1). (2.19)
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Figure 5. Comparison of analytic
:::::::
analytical, upwind and MPDATA

solutions (see plot key for algorithm variant specification) using the
setup from Fig. 1, see sec. 2.6 for discussion.

Note that in the case of infinite gauge option enabled, F
function takes

::
the

:
form presented in eq. (2.13) (see also Hill,

2011, sect. 2.5). 25

Figure 5 juxtaposes infinite gauge solutions with the non-
oscillatory option switched on or off. The effectiveness of
the latter variant is apparent as spurious negative values no
longer occur.

2.7 DPDC 30

An alternative approach to the iterative procedure
:::::::::
application

::
of

:::
the

::::::::::
antidiffusive

::::::::
velocities

:
was introduced in Beason and

Margolin (1988); Margolin and Smolarkiewicz (1998) and
further discussed in Margolin and Shashkov (2006), where
the contributions of multiple corrective iterations of MP- 35

DATA were analytically summedleading .
::::
This

::::
leads

:
to a new

two-pass scheme dubbed DPDC (Double-Pass Donor-Cell),
featuring the following form of the antidiffusive GC field:

GC
(2)

i+ 1
2

 GC (DPDC)
i+ 1

2

=
GC(2)

1− |Ai+ 1
2
|

(
1− GC(2)

1−A2
i+ 1

2

)
,

(2.20)

withAi+ 1
2

defined in eq. (2.12). Note that only one corrective 40

iteration is performed with the DPDC variant.
As in the case of the infinite gauge variant of MPDATA

(section 2.5), the above formulation does not guarantee the
monotonicity of the solution. Herein an

:::
An example simula-

tion combining the double-pass (DPDC), the non-oscillatory 45

and infinite-gauge variants is presented in Figure 6 depicting
how the solution is improved over that in Figure 5.

2.8 Divergent-flow correction

For divergent flow
:::::
flows (hereinafter abbreviated dfl),

::
the

modified equation analysis yields an additional correction 50
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Figure 6. Comparison of analytic
:::::::
analytical, upwind and MPDATA

solutions (see plot key for algorithm variant specification) using the
setup from Fig. 1, see sec. 2.7 for discussion.

term to
::
in

:
the antidiffusive velocity

:::::::
formula

:
(see Smo-

larkiewicz (1984, eq. (38)) for uniform coordinates, Mar-
golin and Smolarkiewicz (1998, eq. (30)) for non-uniform
coordinates and Waruszewski et al. (2018, sect. 4) for the
infinite-gauge variant):5

GC
(k)

i+ 1
2

 GC (k,dfl)
i+ 1

2

=GC(k) −
GC

(k)

i+ 1
2

Gi+1 +Gi
×

×
GC

(k)

i+ 3
2

−GC(k)
i−1/2

2
×

×

{
(ψ∗i+1 +ψ∗i )/2 (iga)

1 (else)
(2.21)

As pointed out in section 5.1 in Smolarkiewicz (1984), this
option has the potential of improving results for the prob-10

lem of the evolution of the droplet size spectrum (personal
communication with William Hall cited therein). This is
due to the drop growth velocity defined by eq. (2.3) be-
ing dependent on the droplet radius(hence divergentgiven
the one-dimensional problem)

:
,
:::::
hence

::::::::
divergent. Yet, apply-15

ing adequate coordinate transformation (i.e., p= r2), the
drop growth velocity in the transformed coordinates be-
comes constant (see section 2.2 above and Hall (see, e.g.
1980, sec. 3b)). However, in

:::::::::::
Nevertheless,

:::
the

::::::::::
antidiffusive

::::::::
velocities

::::::::
employed

::
in

:::::::::
corrective

::::::::
iterations

::
of

::::::::
MPDATA

:::
are20

::
in

:::::::
principle

:::::::::
divergent,

:::::
hence

:::
the

::::::
option

:::
has

::::
the

:::::::
potential

::
to

:::::::
influence

::::::
results

::::
even

::::
with

:::::::
p= r2.

::
In simulations using the presented setup (

:::
also

:
for p 6= r2;

not shown), only insignificant changes in the signal occurring

:::::
results

:
when the divergent-flow option was used were ob-25

served. However, the problem considered herein does not in-
clude, for instance, the surface tension influence on the drop
growth rate.
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Figure 7. Comparison of analytic
:::::::
analytical, upwind and MPDATA

solutions (see plot key for algorithm variant specification) using the
setup from Fig. 1, see sec. 2.9 for discussion.

2.9 Third-order terms

Another possible improvement to the algorithm comes from 30

the inclusion of the third-order terms in the modified equa-
tion analysis, which leads to the following form of the antid-
iffusive velocity (Margolin and Smolarkiewicz, 1998):

GC
(k)

i+ 1
2

 GC
(k,tot)
i+ 1

2

=GC(k) +Bi ·GC(k)

i+ 1
2

×

×1

6

4
|GC(k)

i+ 1
2

|

Gi+1 +Gi
− 8

 GC
(k)

i+ 1
2

Gi+1 +Gi

2

− 1

 (2.22) 35

Bi =2 · (ψ∗i+2−ψ∗i+1−ψ∗i +ψ∗i−1)×

×

{
(1 + 1 + 1 + 1)−1 (iga)

(ψ∗i+2 +ψ∗i+1 +ψ∗i +ψ∗i−1)−1 (else)
(2.23)

Figure 7 depicts how enabling the third-order-terms im-
proves the solution of the test problem with respect to the
upwind and basic MPDATA. 40

Noteworthy, discussion of higher-order variants of MP-
DATA was carried forward in Kuo et al. (1999) and
Waruszewski et al. (2018). In the latter case, the focus was
placed on accounting for coordinate transformation and vari-
able velocity in the derivation of antidiffusive velocities lead- 45

ing to a fully third-order accurate scheme.

2.10 A “best” combination of options

The MPDATA variants presented in the preceding sections
can be combined together. In Figure 8, results obtained
with the upwind scheme and

:::
with

:
the basic two-pass MP- 50

DATA are compared to those obtained with a combination of
three iterations ,

::::
three

::::::::
iterations

:::
and

::
a

:::
the third-order-terms,
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Figure 8. Comparison of analytic
:::::::
analytical, upwind and MPDATA

solutions (see plot key for algorithm variant specification) using the
setup from Fig. 1, see sec. 2.10 for discussion.

::
the

:
infinite-gauge and

:::
the non-oscillatory options

::::::
enabled

::::::::::::
simultaneously.

:::::
This

:::::::::::
combination

::
of

:::::::
options

::
is

:
hereinafter

referred to as the “best” variant (for the problem at hand).
In the following subsections, the influence of MPDATA

algorithm variant choice on the resultant spectrum broadness5

and
::::
width

::::
and

::
on

::::
the computational cost is analysed using

the example simulation setup used above (i.e., in all figures
except Fig. 2, see section 2.2 for test case definition).

Analysis of the scheme solution convergence with chang-
ing resolution and Courant number is presented in Ap-10

pendix A.

2.11 Quantification of numerical broadening

The relative dispersion, defined as the ratio of standard devi-
ation σ to the mean µ of the spectrum, is a parameter com-
monly used to describe the width of the spectrum (e.g. Chan-15

drakar et al., 2018).
The calculated dispersion ratio over all bins takes

:::
the form:

d=

√
1
N

∑
im

(l=2)
i −

(
1
N

∑
im

(l=1)
i

)2
1
N

∑
im

(l=1)
i

(2.24)

where mi is defined in (2.6) and N is the conserved total
number of particles (equal to

∑
im

(l=0)
i ). To quantify the20

effect of
::
the

:
numerical diffusion on the broadness of the

resultant
:::::::::
broadening

::
of

:::
the

:
spectrum, the following param-

eter is introduced based on the numerical and analytical so-
lutions (hereinafter reported in percentages):

Rd = dnumerical/danalytical− 1 (2.25)25

Table 1 depicts the gradual narrowing of the spectrum un-
der undisturbed adiabatic growth.

Left
::::::::
Left-hand

:
panel in Fig. 9 provides values of the Rd

parameter evaluated at six selected timesteps
:::::
times

:
corre-

sponding to M = 1,2,4,6,8,10 g kg−1. Although numerical30

Table 1. Relative dispersion of the discretised (using grid setup as
in Fig. 1) analytical solution taken for five selected times.

Variant danalytic :::::
danalytical:

d(M = 1 g kg−1) 0.357
d(M = 2 g kg−1) 0.202
d(M = 4 g kg−1) 0.126
d(M = 6 g kg−1) 0.097
d(M = 8 g kg−1) 0.080

d(M = 10 g kg−1) 0.069

broadening is inherent to all employed schemes and grows
in time for all considered variants, the scale of the effect is
significantly reduced when using MPDATA.

In particular, a tenfold decrease in numerical broadening
as quantified using Rd is observed comparing upwind and 35

the “best” variant considered herein.

2.12 Notes on conservativeness

Due to the formulation of the problem as number conserva-
tion

:
, and discretisation of the evolution equation using fixed

bins, even though the numerical scheme is conservative (up 40

to subtle limitations outlined below), evaluation of other sta-
tistical moments of the evolved spectrum from the number
density introduces an inherent discrepancy from the analyti-
cal results (for a discussion on multi-moment formulation of
the problem, see e.g. Liu et al., 1997). 45

In order to quantify the discrepancy in the total mass be-
tween the discretised analytical solution and the numerically
integrated spectrum, the following ratio is defined using mo-
ment evaluation formula (2.6):

RM =M (numeric)(numerical)
::::::

/M (analytic)(analytical)
::::::

− 1 = 50

=

∑
im

(l=3, numeric)
i∑

im
(l=3, analytic)
i

∑
im

(l=3, numeric)
i∑

im
(l=3, analytical)
i

:::::::::::::::

− 1. (2.26)

The right
::::::::
right-hand

:
panel in Fig. 9 depicts the values of the

above-defined ratio computed for spectra obtained with dif-
ferent variants of MPDATA discussed herein. The departures
from analytically-derived values are largest for the upwind 55

scheme (up to ca. 5%) and oscillate around 0 with an ampli-
tude of the order of 1% for most of the MPDATA solutions.

The consequences of mass conservation inaccuracies in
the fixed-bin particle-size spectrum representation may not
be as severe as in, e.g. dynamical core responsible for the 60

transport of conserved scalar fields. The outlined discrepan-
cies may be dealt with by calculating the change in mass dur-
ing a timestep from condensation, then using it in vapour and
latent heat budget calculations so the total mass and energy
in the modelled system are conserved. 65
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Figure 9. Left
:::::::
Left-hand panel summarises values of the numerical-to-analytical spectral width ratio Rd = dnumerical/danalytical − 1 (expressed

as a percentage) computed for simulations using different discussed variants of MPDATA and plotted as a function of increasing mixing ratio
(i.e., each simulation is depicted with a set of line-connected points corresponding to selected timesteps), see section 2.11. Right

::::::::
Right-hand

panel presents analogous analysis for Rm, see section 2.12 for discussion. Note: RM = Rd = 0 corresponds to perfect match with the
analytical solution.)

The problem embodied in equation (1.1) is the
conservation of the number of particles and the em-
braced algorithm (2.1)-(2.2) is conservative (up to numerical
precision) for G= 1. However, the formulation of the donor
cell scheme ψn+1 = ψn +G−1i

(
Fi−1/2 +Fi+ 1

2

)
on the5

staggered grid with G 6= 1, for example due to employment
of non-identity coordinate transformations,

:
implies that even

though the influx and outflux across boundary of adjacent
cells is equal, discretisation of Gi at cell centres limits
the level of accuracy in number conservation.

:::
For

::::::
further10

:::::::::
discussion,

:::
see

::::::
section

:
3
::
in
:::::::::::::::::::::::::::
Smolarkiewicz and Rasch (1991)

:
.

The total number of particles in the system may di-
verge from the analytical expected value even for the ini-
tial condition depending on the employed discretisation ap-15

proach. In the present work, the probability density func-
tion is probed

:::::::
sampled

:
at cell centres effectively assuming

piecewise-constant number density function. An alternative
approach is to discretise the initial probabilities by assigning
to ψi the values of (φi+ 1

2
−φi−1/2)/(ri+ 1

2
− ri−1/2) where20

φ is the cumulative distribution.

2.13 Computational cost

Table 2 includes an assessment of the relative computational
cost of the explored variants of MPDATA. The performance
was estimated by repeated measurements of the wall time 25

and selecting the minimal value as representative. Values are
reported after normalisation with respect to upwind times

:
as

:::::::::::
multiplicities

::
of

::::
the

:::::::
upwind

:::::::::
execution

::::
time. Simulations

were performed using the mass doubling
::::::::::::
mass-doubling

:
grid.

The table includes, where available, analogous figures re- 30

ported in earlier studies on MPDATA (see caption for com-
ments on the dimensionality of the employed cases

:
,
::
as

::
it

:::::
differs

::::
and

:::
thus

::::
does

:::
not

:::::::
warrant

:::::
direct

::::::::::
comparison). Among

notable traits is the decrease in computational cost when
enabling the infinite gauge option what

:::
that

:
is associated 35

with a reduced number of terms in both the flux function as
well as in the antidiffusive velocity formulation (see section
2.5 in Hill, 2011, and sections 2.5-2.6 herein). The “best”
variant is roughly ten times more costly than the upwind
scheme for the case studied herein

::::
setup

::::::
studied

::::::
herein

:::
and 40

::
the

:::::::::
employed

:::::::::::::
implementation. Among studies of bin micro-

physics schemes, analogous measures were reported in Liu
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Table 2. Wall times normalised with respect to the upwind solution
compared to data reported in four earlier works: S83 denotes Smo-
larkiewicz (1983) (two-dimensional problem); SS05 corresponds to
Smolarkiewicz and Szmelter (2005) (three-dimensional, unstruc-
tured grid); SR91 denotes Smolarkiewicz and Rasch (1991) and
MSS00 corresponds to Margolin et al. (2000) (both reported for
two-dimensional problems).

Variant S83 SS05 SR91 MSS00

upwind 1.0 1.0 1.0 1.0 1.0
2 iters 2.5 2.9 4.3 5.4 3.7
2 iters, iga 2.2 - 1.9 - -
2 iters, iga, non-osc 5.9 - 3.9 - -
DPDC, iga, non-osc 6.2 - - - -
3 iters 5.7 5 - 9.8 -
3 iters, tot 4.1 - - 19 -
3 iters, tot, iga, non-osc 11 - - - -

et al. (1997) where the variational method presented there
was reported to execute 3.1 times longer than first-order up-
wind; and in Onishi et al. (2010) where the studied semi-
Lagrangian scheme was reported to be characterised by over
4 times higher computational cost than upwind (see Table 45

therein). In the latter case, a direct comparison is hindered by
significantly different stability constraints on the timestep.

Although the discussed problem is one-dimensional, a
computationally efficient and an accurate solution is essen-
tial, as it typically needs to be solved at every timestep and10

grid point of a three-dimensional cloud model. While the re-
ported upwind-normalised wall times give a rough estimation
of the cost increase associated with a particular MPDATA op-
tion, the actual footprint on a complex simulation system will
depend on numerous implementation details including paral-15

lelisation strategy.

3 Spectral-spatial advection with MPDATA
(single-column test case)

3.1 Problem statement

In multidimensional simulations in which the considered par-20

ticle number density field is not only a function of time and
particle size, but also of spatial coordinates, there are sev-
eral additional points to consider applying MPDATA to the
problem.

First, in the context of atmospheric cloud simulations, ow-25

ing to the stratification of the atmosphere, the usual practice
is to reformulate the conservation problem in terms of spe-
cific number concentration being defined as the number of
particles np (cf. eq. (1.1)) divided by the mass of air (com-
monly the dry air) effectively resulting in multiplication of30

::::::::
including

:::
the

::::
(dry)

:::
air

::::::
density

::
in

:
the G factor (cf. eqs (1.2)-

(2.1))by the (dry) air density . This translates to maintaining

a constant .
:::::

This
::
is

::::::::
motivated

:::
by

:::::::::::
atmospheric

::::::::::
stratification

::::::::
associated

::::
with

::::::::
presence

::
of

:::::::
vertical

:::
air

::::::
density

::::::::
gradient.

::
In

:
a
::::::::::::
non-divergent

:::::::
stratified

:::::
flow,

:::
the

:
specific number concen- 35

tration (summed across all particle-size categories)
:
is

:::
not

:::::::
modified

:::
by

::::::::
advection

:
along the vertical dimensiondespite

the presence of an air density gradient. Ordinary
:
.
:::
On

:::
the

::::
other

:::::
hand,

:
particle volume concentration

::
(as

::::::::
opposed

::
to

::::::
specific

:::::::
number

::::::::::::
concentration)

:
would vary due to variable 40

density of air (i.e., expansion of air along the vertical coor-
dinate). Note, however, that in eq. (2.1) it is

:::::
further assumed

that the G factor does not vary in time.
Second, even with a single spatial dimension (single-

column setup), the coupled size-spectral/spatial advection 45

problem is two-dimensional. This is where the inherent mul-
tidimensionality of MPDATA (also, the "M" in MPDATA)
requires further attention. The one-dimensional antidiffusive
formulæ discussed in sections 2.4-2.9 need to be augmented
with additional terms representing cross-dimensional contri- 50

butions to the numerical diffusion. For an introduction, see
e.g. Section 2.2 in Smolarkiewicz and Margolin (1998), for
original derivation see Smolarkiewicz (1984), for a recent
work discussing the interpretation of all terms in the antidif-
fusive velocity formulæ, including cross-dimensional terms, 55

see Waruszewski et al. (2018).
Third, in any practical application where the drop size evo-

lution is coupled with the water vapour budget (and hence
with supersaturation evolution), it is essential to evaluate the
total change in mass of liquid water due to condensation 60

which is then to be used to define the source term of the
water vapour field (and in latent heat budget representation).
Noteworthy, knowing the difference of values at n + 1 and
at n timesteps of the advected specific number concentration
field is not sufficient to evaluate the vapour sink/source term. 65

This is because only the fluxes across the size-spectral di-
mension

::::
only

:
need to be accounted for (note that the fluxes

in all MPDATA iterations need to be summed up).
Several recent papers are highlighting the need for scrutiny

when comes to the interplay of size-spectral and spatial ad- 70

vection and the associated numerical broadening (Morrison
et al., 2018; Hernandéz Pardo et al., 2020; Lee et al., 2021).
In the following subsection, a set of single-column simula-
tions is presented and discussed depicting the performance of
MPDATA in a size-spectral/spatial advection problem cou- 75

pled with vapour advection and supersaturation budget. The
simulations are performed using a commonly employed MP-
DATA setting with only the non-oscillatory option enabled,
and the discussion is focused on the sensitivity of the re-
sults to spatial, spectral and temporal resolution, as well as 80

to the effect of performing one or two corrective passes of
MPDATA (two or three iterations, respectively).

3.2 Test case definition

The test setup is based on the single-column KiD warm case
introduced in Shipway and Hill (2012). This prescribed-flow 85
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Figure 10. Snapshots of the advected two-dimensional liquid water field at t = t1 = 600s for three
::::::::
simulations

::::
with different number of

iterations settings of MPDATA
::::::
iterations

:
(with the non-oscillatory option enabled

::
see

:::
text

:::
for

:::::
details).

framework has been further used, e.g., in Field et al. (2012)
(mixed-phase scenario), in Hill et al. (2015) (warm rain sce-
nario), in Gettelman and Morrison (2015) (both pure-ice,
mixed-phase and warm-rain scenarios) and in the Hill et al.
(2021) microphysics models intercomparison study (warm5

rain scenario). Here, condensation is the only microphysical
process considered.

The simulated 3.2 km height
::::
high column of air is de-

scribed by:

– a constant-in-time piecewise-linear potential tempera-10

ture profile (297.9 K from the ground to the level
of 740 m, linearly decreasing down to 312.66 K at
3260 m);

– constant-in-time hydrostatic pressure and density pro-
files computed assuming surface pressure of 1007 hPa;15

– piece-wise linear initial vapour mixing ratio profile
(15 g kg−1 at ground, 13.8 g kg−1 at 740 m and
2.4 g kg−1 at 3260 m); and

– a constant-in-space but time-dependent
vertical momentum defined by20

ρdw(z, t) = ρdw1 sin(πt/t1)(1−H(t− t1))
:::::
profile

:::::::
defining

:::
the

:::::::
vertical

:::::::::
component

:::
of

:::
the

::::::::
advector

::::
field

::::
GCz::

as
::
in

:::
eq.

::::
3.1:

GCz(z, t) = ρd(z)
∆t

∆z
w1 sin(πt/t1)(1−H(t− t1)),

::::::::::::::::::::::::::::::::::::::::::

(3.1)

where H is the Heaviside step function, w is the vertical ve-25

locity, w1 = 2.5 m s−1, ρd :::::
ρd(z) is the hydrostatic dry den-

sity profile and t1 = 600 s. Note that the vertical velocity thus
differs from the original KiD setup where w is held constant,

the .
:::::

This change is motivated by the aim of maintaining the
non-divergent flow field condition. 30

The advection is thus solved for two scalar fields: (i)
a one-dimensional field representing vertical variability of
water vapour mixing ratio (

:::
field

:::::::::::
representing

:::
the

:::::::
vertical

:::::::::
distribution

::
of

:
mass of vapour per mass of dry air)

:
, and (ii) a

two-dimensional field representing vertical and spectral vari- 35

ability of liquid particle specific concentration (number of
particles per mass of dry air). The spectral coordinate is set
to particle radius (p= r) and the bins are laid out uniformly
(x= r) over a range of 1 µm to 20.2 µm. Noteworthy, this
results in the size-spectral component of the advection ve- 40

locity being divergent (while the vertical component is non-
divergent).

The initial condition does not feature supersaturation any-
where in the domain. The upward advection of water vapour
causes supersaturation to occur and trigger condensation. 45

The size-spectral velocity is defined as in the box-model
test case (cf. eq. (2.3)) but with supersaturation being time-
dependent and derived from the values of vapour mixing ra-
tio, temperature and pressure at a given level. Note that the
temperature profile is constant in time and the test case does 50

not feature representation of latent heat release effects, only
the ambient air/particle vapour budget is accounted for by
subtracting the amount of condensed water from the vapour
field in each timestep, before performing the subsequent step
of advection on the vapour mixing ratio field. 55

The domain is initially void of liquid water and the only
source of it is through the boundary condition in the spectral
dimension specified as follows:

ψ−1 = max

(
0,NCCN−

∑
i

ψ

)
(3.2)
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Figure 11. Single-column simulations depicted with three selected variables: liquid water mixing ratio ql (top row), supersaturation S (middle
row) and relative dispersion d (bottom row); for three settings of the iteration count in MPDATA (one iteration corresponding to the basic
upwind scheme, left

:::::::
left-hand column). Each of nine datasets (three iteration settings, three variables) is plotted with a grey-scale time vs.

altitude map (left
:::::::
left-hand panels with the colour scale above) and a set of four profiles (right

:::::::
right-hand

:
panels). Profiles are plotted for

t = 3 min. (dotted
:
,
:::
red), 6 min. (dashed

:
,
:::::
orange), 9 min. (solid,

::::
navy), & 12 min. (dash-dot,

:::::
green), with vertical lines of corresponding

line style plotted at given times in the left
:::::::
left-hand panels. For plotting, the model state is resampled by averaging in the time dimension to

reduce the number of plotted steps by a factor of 50 (from 3600 down to 72).

with i=−1 denoting the halo grid cell at the left edge of
the spectral domain on a given vertical level and (the sum-
mation spans all bins at a given level (excluding

:::::::
excluding

::
the

:
halo grid cells). The flux across the domain boundary in

the spectral dimension represents the cloud droplet activa-5

tion. The flux is dependent, through
:::::::
Through

:
eq. (2.3),

:::
the

:::
flux

::
is

:::::::::
dependent on the supersaturation at a given level, and

on the NCCN parameter representing a maximal number of
activated droplets (per unit mass of dry air). In the performed
simulations, NCCN was set to 500 mg-1. For discussion of 10

other ways to represent activation in bin microphysics mod-
els, see, e.g., Grabowski et al. (2011).
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Figure 12. Profiles of relative dispersion d for a set of temporal, spatial and spectral resolution settings (∆r, ∆z and ∆t values given in
labels above each plot). Each panel depicts results for three different MPDATA iteration counts (one iteration corresponding to the basic
upwind scheme). Profiles plotted for t = t1 = 10 min.

The simulations are run for
:::::
cover

:
a
::::
time

::::::
period

::
of 15 min-

utes out of which the first 10
:::::::
minutes

:::::
(until

:::::::
t1 = 600

:::
s) in-

volve non-zero vertical velocity (as t1 = 600 s).

3.3 Discussion of results

Figure 10 depicts qualitatively how MPDATA performs with5

the single-column simulation depending on the number of
MPDATA iterations employed. Presented simulation,

::
cf.

::
eq.

::::
3.1).

:::::::
Several

::::::::
temporal,

:::::
spatial

::::
and

::::::
spectral

::::::::::
resolutions

::
are

:::::
tested

::::
with

:::
the

:::::::::
following

::::::
settings

:
hereinafter referred to as

::
the

:
base resolution case, is performed with the liquid water 10

dynamics resolved on a
:
:
:
32× 32 grid with a vertical grid

step ∆z = 100 m, size-spectral grid step ∆r = 0.6 µm and
timestep ∆t= 0.25s.

3.3
:::::::::

Discussion
::
of

::::::
results

:::::
Figure

:::
10

:::::::
depicts

:::::::::::
qualitatively

:::::
how

:::::::::
MPDATA

::::::::
performs 15

::::
with

:::
the

::::::::::::
single-column

::::::::::
simulation

:::::
(base

:::::::::
resolution

:::::
case)
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::::::::
depending

:::
on

:::
the

:::::::
number

::
of

::::::::
MPDATA

::::::::
iterations

:::::::::
employed.

The two-dimensional liquid water mixing ratio grid is ren-
dered with a shaded array of

::::::
shaded

:
histogram bars. The

vertical axis corresponds to the advected quantity: spatio-
spectral number density divided by the dry density of air.5

Histogram bars with values of less than 1% of the verti-
cal axis range (1%× 2 m-1mg-1µm-1) are not plotted for
clarity. Presented plots are aimed at intuitively portraying
the model state and the extent to which the introduction of
subsequent MPDATA corrective iterations counteracts the10

numerical
::::::
reduces

:
spectrum broadening. Note that besides

the depicted liquid water mixing ratio, the model state con-
sists as well of a one-dimensional vapour mixing ratio vector

:::
(not

:::::::
shown).

In Figure 11, the base resolution case is depicted with plots15

constructed following the original methodology from Ship-
way and Hill (2012) (as in Fig. 1 therein). The grey-scale
maps depict the evolution in time and vertical dimension
of water vapour mixing ratio ql, supersaturation S and the
droplet spectrum relative dispersion d. The adjacent profile20

plots depict the vertical variability of the mapped quantity at
four selected times.

Notwithstanding the highly idealised and simplified mod-
elling framework employed herein, one may attempt a com-
parison with profiles obtained from both in-situ aircraft25

measurements (Arabas et al., 2009, profiles of d in Fig. 1
therein) and detailed three-dimensional simulations (Arabas
and Shima, 2013, profiles of S and liquid water content in
Fig. 2-4 therein) inspired by the same RICO field campaign
(Rauber et al., 2007) as the single-column setup of Shipway30

and Hill (2012). The comparison merely confirms that the
chosen test case covers the parameter space relevant to the
studied problem. Resemblance remains, at most, qualitative,
as expected given the stark simplicity of the KiD framework.

Interestingly, the parabolic vertical profile of the relative35

dispersion obtained herein was also reported in Lu and Se-
infeld (2006) for bin-microphysics three-dimensional simu-
lations of marine stratocumulus. In the discussion of figures
2, 3 & 6 therein, it was hypothesised that the parabolic shape
is a signature of entrainment as well as updraft-downdraft40

interactions, none of which are represented in the kinematic
framework employed herein.

The liquid water profiles depicted in the top row of Fig. 11
reveal that the cloud structure developed within the first
ca. 9 minutes of the simulation is later maintained, with the45

profiles at t= 9 min. and t= 12 min. being virtually indis-
tinguishable. Middle row plots of supersaturation profiles de-
pict that the considered simulation setup enables to capture of
the characteristic supersaturation maximum just above cloud
base. Furthermore, it is evident that the corrective iterations50

of MPDATA influence the maximal supersaturation values.
Noteworthy, this results in different timestep (Courant num-
ber) constraints depending on the number of iterations used
because the spectral velocity is a function of supersaturation.

There is a cloud-top activation feature hinted in all three 55

panels in Fig. 10 as well as indirectly in the supersaturation
profiles in Fig. 11. The representation of activation above
cloud base is sensitive to both numerical details of vapour
and heat transport reflected in the diagnosed supersaturation,
as well as to the assumptions behind the activation formula- 60

tion itself (see e.g. discussion of Fig. 2 and Fig. 6 in Slaw-
inska et al., 2012, and references therein). Given the sim-
plified treatment of activation defined by eq. (3.2), together
with the unphysical assumption of constant temperature pro-
file, the only conclusion here is that the visualisation method 65

used in Fig. 10 is apt to highlight this feature . Noteworthy,
what is

::
no

:::::::
physical

:::::::::::
interpretation

::
of

::::
this

::::::
feature

:
is
:::::::::
warranted.

:::
Yet,

::
it

::
is

:::::
worth

:::::
noting

::::
that,

:
consistent with the differences in

supersaturation values between upwind and MPDATA solu-
tions, the effect is in fact unnoticeable in

::::::::
cloud-top

::::::::
activation 70

:
is
:::::::::::

unnoticeable
:::

in
::::
Fig.

::
10

:::
in the case of the upwind solu-

tionpresented in Fig. 10.
The bottom row in Fig. 11 depicts the relative dispersion

defined and computed as in section 2.11 ,
:
(discarding levels

where the total droplet number mixing ratio summed over all 75

bins on a level is below 5% ofNCCN). Narrowing of the spec-
trum with a height below z = 1.5 km depicted

:::::::
revealed by

decreasing values of d is a robust feature. Minimal
::::::::
Minimum

values of d
:::
for

:
a
:::::
given

::::::
profile vary visibly depending on the

number of MPDATA iterations employed. 80

To provide insight into the sensitivity of the results to tem-
poral, spatial and spectral resolution, Fig. 12 presents the rel-
ative dispersion profiles at t= t1 = 10 min. for several reso-
lution settings. In the background of the figure, there are three
axes plotted pointing

::
in the directions in which the figure 85

panels can be explored to reveal the dependence on: the ver-
tical spatial spacing ∆z (left-to-right), the spectral spacing
∆r (bottom-to-top), and the timestep (back-to-foreground).
The base resolution case is plotted at the intersection of the
background axes. Note that besides the back-to-foreground 90

sequence of plots where all but the timestep settings is kept
equal, the timestep also varies with the grid settings to fulfil
scheme stability constraint.

The dependence on the temporal resolution, as gauged
by comparing the base resolution case with cases with the 95

timestep
::
in

:::::
which

:::
the

:::::::
timestep

::
is halved (∆t= 125 ms; back-

ground) and
::
is doubled (∆t= 500 s; foreground), is

::::::
remains

barely observable. This is in general agreement with Morri-
son et al. (2018) and Hernandéz Pardo et al. (2020) where
the dependence on

:::
the timestep is shown to be much smaller 100

than on the spatial or
::
on

:::
the

:
spectral resolution.

The dependence on the spectral resolution is captured and
clearly manifested at the lowest spectral resolution where
the minimal

::::::::
minimum

:
spectral dispersion d

:::::
along

:
a
::::::

profile
drops by ca. 0.1 when decreasing ∆r = 1.2µm down to 105

∆r = 0.3µm. Little further change can be observed by re-
fining the resolution down to ∆r = 0.15µm. Focusing on the
minimal

::::::::
minimum values of d for a given profile, in general,

the lower the spectral resolution, the more profound the ef-



Olesik et. al: On numerical broadening of particle-size spectra 17

fect of introducing corrective iterations of MPDATA. In most
cases, applying even a single corrective step (i.e., 2 iterations)
results in halving of the minimal values

::
of

:
d as compared to

the upwind solution (i.e., 1 iteration).
The spatial resolution setting ∆z significantly alters the5

results, particularly near the cloud base. The values of d at the
lower half of the presented profile (i.e., ca. below z = 1 km)
drop from over 0.3 down to around 0.1 when refining the
resolution from ∆z = 200 m down to ∆z = 25 m.

4 Conclusions10

The study was focused
::::::
focuses on the MPDATA family of

numerical schemes and its application to the size-spectral as
well as spatio-spectral transport problem arising in models
of condensational growth of cloud droplets. MPDATA iter-
atively applies the upwind algorithm, first with the physi-15

cal velocity, subsequently using antidiffusive volocities. As
a result, the algorithm is characterised by reduced numer-
ical diffusion while maintaining the salient features of the
underlying upwind scheme such as

:::::::
compared

:::::
with

::::::
upwind

::::::::
solutions,

:::::
while

::::::::::
maintaining

:
conservativeness and positive-20

definiteness.
In literature, the derivation and discussion of

::::::::
derivations

::
of

:::::::
different

:
MPDATA variants are spread across numerous

research papers published across almost four decades, and
in most cases focused on multidimensional hydrodynamics25

applications. It was
::
is the aim of this study, to highlight the

developments that followed the original formulation of the
algorithm, and to highlight their applicability to the problem

::
of

:::
bin

:::::::::::
microphysics. To this end, it was shown that the com-

bination of such features of MPDATA as the infinite-gauge,30

non-oscillatory and third-order-terms options, together with
the application of multiple corrective iterations offer a robust
scheme that grossly outperforms the almost quadragenar-
ian basic MPDATA. The procedure to introduce coordinate
transformations, e.g., to a mass-doubling grid in the context35

of size-spectral transport was detailed.
In the case of the single-column test case, the simulations

featured
:::::::
discussed

:::::::::::
simulations

::::::
feature

::
coupling between

droplet growth and supersaturation evolution. The
:::::::
embraced

:::::::
measure

::
of

::::::::
spectrum

::::::
width,

:::
the cloud droplet spectrum rel-40

ative dispersion,
:
is influenced by numerical diffusion perti-

nent to both spectral and vertical advection. Focusing on the
levels corresponding to the region of maximal liquid water
content (ca. between z = 1 km and 2 km for the case con-
sidered), it was shown that application of even a single cor-45

rective iteration of MPDATA robustly reduces (in most cases
more than halves) the spectral width. In agreement with con-
clusions drawn from single-column simulations in Morrison
et al. (2018) and Lee et al. (2021), within the range of ex-
plored grid settings, the vertical resolution has the most pro-50

found effect on the overall characteristics of the spectrum

width profile as it significantly influences the just-above-
cloud-base evolution of the spectral width.

Code availability. All calculations were performed using Python
with a new open-source implementation of MPDATA: PyMPDATA 55

(Bartman et al., 2021). In terms of numerics, PyMPDATA closely
follows libmpdata++ (Jaruga et al., 2015).

All of presented figures and tables can be recreated in interactive
notebooks “in the cloud” using the mybinder.org or Colab plat-
forms. To launch the notebooks, follow the links: 60

https://github.com/atmos-cloud-sim-uj/PyMPDATA-examples/
tree/main/PyMPDATA_examples/Olesik_et_al_2020 and
https://github.com/atmos-cloud-sim-uj/PyMPDATA-examples/
tree/main/PyMPDATA_examples/Shipway_and_Hill_2012. The
notebooks are part of the PyMPDATA-examples Python package. 65

Both PyMPDATA and PyMPDATA-examples are licensed under
the GNU General Public License 3.0, and are available on the
PyPI.org Python package repository. In addition, archives with the
version used in the study is enclosed as an electronic supplement to
the paper. 70

The single-column framework is a Python reimplementation
of the open-source KiD code available at https://github.com/
BShipway/KiD.

Appendix A: Convergence analysis

To assess the spatial and temporal convergence of the numer- 75

ical solutions presented above, a convergence test originating
from Smolarkiewicz and Grabowski (1990) is used. For the
analysis the following truncation-error L2 measure is used
(e.g., Smolarkiewicz, 1984):

ErrL2 =
1

T

√∑
i

(
ψnumerical
i −ψanalytical

i

)2
/nx. (A1) 80

As a side note, it is worth pointing out that for the chosen
coordinates

(
p= r2,x= r2

)
, the coordinate transformation

term is equal to the identity, so there is no need for including
the G factor into the computed error measures. In the gen-
eral case, convergence will depend on the grid choice and to 85

account for that one may use a modified measure as given in
Smolarkiewicz and Rasch (1991, eq. 24 ).

To explore the convergence, the error measures are com-
puted for 7 different linearly spaced values of C between
0.05 and 0.95, and nx ∈

{
27,28,29,210,211,212,213,214

}
90

resulting in 56 simulations for each presented combination
of options.

As proposed in Smolarkiewicz and Grabowski (1990), vi-
sualization of the results is carried out on polar plots with
radius ρ and angle φ coordinates defined as follows: 95

ρ= ln2

(
1

nx

)
+ const, φ= C

π

2
, (A2)

where ρ was shifted by a constant so that the highest resolu-
tion grid corresponds to ρ= 1.

https://github.com/atmos-cloud-sim-uj/PyMPDATA-examples/tree/main/PyMPDATA_examples/Olesik_et_al_2020
https://github.com/atmos-cloud-sim-uj/PyMPDATA-examples/tree/main/PyMPDATA_examples/Olesik_et_al_2020
https://github.com/atmos-cloud-sim-uj/PyMPDATA-examples/tree/main/PyMPDATA_examples/Olesik_et_al_2020
https://github.com/atmos-cloud-sim-uj/PyMPDATA-examples/tree/main/PyMPDATA_examples/Shipway_and_Hill_2012
https://github.com/atmos-cloud-sim-uj/PyMPDATA-examples/tree/main/PyMPDATA_examples/Shipway_and_Hill_2012
https://github.com/atmos-cloud-sim-uj/PyMPDATA-examples/tree/main/PyMPDATA_examples/Shipway_and_Hill_2012
https://github.com/BShipway/KiD
https://github.com/BShipway/KiD
https://github.com/BShipway/KiD
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Figure A1. Convergence plot for the upwind scheme (cf. Fig. 1).
Angle in the polar plot corresponds to the Courant number C; the
distance from origin denotes the number of grid boxes nx, see eq.
(A2). Grey dots indicate data point locations – parameter values
for which computations were made. Colours and isolines depict the
error measure values (interpolated from the data point locations),
see eq. (A1).
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Figure A2. Convergence plot for basic two-pass MPDATA (cf.
Fig. 3). See caption of Fig. A1 for the description of plot elements.
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Figure A3. Convergence plot for the infinite gauge MPDATA
(cf. Fig. 4). See caption of Fig. A1 for the description of plot el-
ements.
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Figure A4. Convergence plot for the infinite gauge non-oscillatory
variant of MPDATA (cf. Fig. 5). See caption of Fig. A1 for the de-
scription of plot elements.
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Figure A5. Convergence plot for the DPDC variant with infinite
gauge and non-oscillatory corrections (cf. Fig. 6). See caption of
Fig. A1 for the description of plot elements.
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Figure A6. Convergence plot for the three-pass MPDATA
(cf. Fig. 3). See caption of Fig. A1 for the description of plot el-
ements.
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Figure A7. Convergence plot for the three-pass MPDATA with
third-order terms (cf. Fig. 7). See caption of Fig. A1 for the de-
scription of plot elements.
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Figure A8. Convergence plot for the three-pass infinite gauge non-
oscillatory MPDATA with third-order term corrections (cf. Fig. 8).
See caption of Fig. A1 for the description of plot elements.
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Figures A1-A8 depict the convergence rates and are in-
tended for comparison with analogously constructed plots in
Figs. 2-3 Smolarkiewicz and Grabowski (1990), Figs. 8.1-8.2
Margolin and Smolarkiewicz (1998) and Figs. 10-11 Jaruga
et al. (2015).5

The chosen colour increments correspond to the error re-
duction by a factor of 2, the warmer the colour, the larger
the error. The small grey points behind the isolines repre-
sent points for which the error value was calculated. When
moving along the lines of constant Courant number, increas-10

ing the space and time discretisation, the number of crossed
dashed isolines indicate the order of convergence. For the
considered problem, it can be seen that the upwind scheme
(Fig. A1) has a convergence of the first order (one isoline
is crossed when spatial discretisation increases by one or-15

der); MPDATA scheme (Fig. A2) of the second-order and
MPDATA with 3 iterations (Fig. A6) is of the third order.

Moreover, the shape of the dashed isolines tells the depen-
dency of the solution accuracy on the Courant number. When
these are isotropic (truncation error being independent of po-20

lar angle), the solution is independent of the Courant number.
Noteworthy, in Fig. A3 and Fig. A4, s groove of the

third-order convergence rate is evident around φ= π
4 , nor-

mally characteristic for MPDATA with three or more passes.
When second-order truncation error is sufficiently reduced,25

the third-order error, proportional to (1− 3C + 2C2) as can
be seen in (2.22), dominates, but vanishes for C = 0.5, thus
resulting in the existence of the groove.

The convergence test results for the three-pass MPDATA
with infinite gauge, non-oscillatory and third-order terms op-30

tions enabled (Fig. A8) are consistent with results depicted
in Fig. A7, although the order of convergence is reduced due
to the employment of non-oscillatory option.
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