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Abstract. This work discusses the numerical aspects of rep-
resenting the diffusional (condensational) growth in par-
ticulate systems such as atmospheric clouds. It focuses
on the Eulerian modeling approach

::::::::
modelling

:::::::::
approach,

:
in

which the evolution of the probability density function de-5

scribing the particle size
:::::::::
particle-size

:
spectrum is carried

out using a fixed-bin discretization
:::::::::::
discretisation (so-called

“bin” microphysics). The numerical diffusion problem in-
herent to the employment of the fixed-bin discretization

:::::::::::
discretisation in the numerical solution of the arising trans-10

port problem is scrutinized. Focus
:::::::::
scrutinised.

::::
The

:::::
focus

is on the applications of MPDATA family of numerical
schemes

::
the

:::::::::::::::
Multidimensional

::::::::
Positive

:::::::
Definite

:::::::::
Advection

::::::::
Transport

:::::::::
Algorithm

:::::::::
(MPDATA). Several MPDATA variants

are explored including : infinite-gauge, non-oscillatory, third-15

order-terms and recursive antidiffusive correction (double
pass donor cell

::::::::::
Double-Pass

::::::::::
Donor-Cell, DPDC) options.

Methodology for handling coordinate transformations as-
sociated with both particle size distribution

:::::::::
particle-size

:::::::
spectrum

:
variable choice and numerical grid layout are20

expounded. The study uses PyMPDATA - a new open-
source Python implementation of MPDATA. Analysis of
the performance of the scheme for different discretization

:::::::::::
discretisation parameters and different settings of the algo-
rithm is performed using: (i) an analytically solvable box-25

model test case, and (ii) the single-column
::::::::
kinematic

:::::
driver

:
(“KiD”

:
) test case in which the size-spectral advection due

to condensation is solved simultaneously with the spatial ad-
vection in the vertical physical coordinate, and in which the
supersaturation evolution is coupled with the droplet growth30

through water mass budget. The single-column problem in-
volves

:
a numerical solution of a two-dimensional advection

problem (spectral and spatial dimensions). The discussion
presented in the paper covers spatial (i.e. size-spectral) ,

:::::
spatial

:
and temporal convergence, computational cost, con- 35

servativeness and quantification of the numerical broadening
of the particle size

:::::::::
particle-size

:
spectrum. The box-model

simulations demonstrate that, for the problem considered,
even a tenfold decrease of the spurious numerical spectral
broadening can be obtained by a proper

:
an

:::
apt

:
choice of the 40

MPDATA variant (maintaining the same spatial and tempo-
ral resolution), yet at an increased computational cost. Anal-
yses using the single-column test case reveal that the width
of the droplet size spectrum is affected by numerical diffu-
sion pertinent to both spatial and spectral advection. Appli- 45

cation of even a single corrective iteration of MPDATA ro-
bustly decreases the relative dispersion of the droplet spec-
trum, roughly by a factor of two at the levels of maximal
liquid water content.

1 Introduction 50

1.1 Motivation and outline

The focus of this paper is on the problem of predicting
the particle size

::::::::::
particle-size

:
evolution for a popula-

tion of droplets undergoing diffusional growth. Embracing
continuous description of the particle size

::::::::::
Representing

:::
the 55

::::::::::
particle-size spectrum using a number density function, the
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problem can be stated using a population-balance equa-
tion expressing conservation of

::
the

:
number of particles.

Herein, the numerical solution of the problem using the
MPDATA family of finite difference schemes originating in
Smolarkiewicz (1983, 1984) is discussed. MPDATA stands5

for Multidimensional Positive Definite Advection Transport
Algorithm and is a higher-order iterative extension of the
forward-in-time upwind scheme.

MPDATA features a variety of options allowing to pick an
algorithm variant appropriate to the problem at hand. This10

work highlights the importance of
::
the

:
MPDATA algorithm

variant choice for the resultant spectral broadening of the
particle size spectrum.

::::::::::
particle-size

:::::::::
spectrum.

:
The term spectral broadening

refers to the increasing width of the droplet spectrum during15

the lifetime of a cloud, which may be associated with both
physical mechanisms (mixing, turbulence) as well as spuri-
ous artifacts

:::::::
artefacts

:
stemming from the employed numeri-

cal solution technique.
Cloud simulations with

:
a detailed treatment of droplet mi-20

crophysics face a twofold challenge in prognosing
:::::::
resolving

the droplet spectrum width. First, it is challenging to model
and numerically represent the subtleties of condensational
growth (e.g., Arabas and Shima, 2017; Yang et al., 2018),
even more so when considering the interplay between par-25

ticle population dynamics and supersaturation fluctuations
(e.g., Jeffery et al., 2007; Abade et al., 2018). Second, the
discretization

:::::::::::
discretisation strategies employed in represent-

ing the particle size
:::::::::
particle-size

:
spectrum and its evolution

are characterized
:::::::::::
characterised by inherent limitations which30

constrains
:::::::
constrain the fidelity of spectral width predictions

(e.g., Arabas and Pawlowska, 2011; Morrison et al., 2018).
Finally, corroboration of spectral width estimates from both
theory and modeling

::::::::
modelling

:
against experimental data

faces the problems of instrumental broadening inherent to the35

measurement techniques (e.g. Devenish et al., 2012, sec. 3.2)
and the problem of sampling volume choice (e.g., Kostinski
and Jameson, 2000).

The width of the spectrum plays a key role in the
determination of both the droplet collision probabilities40

Grabowski and Wang (2013)
::::::::::::::::::::::::
(Grabowski and Wang, 2013)

and the characteristics relevant for radiative-transfer

:::::::
radiative

:::::::
transfer

:
(Chandrakar et al., 2018). These in turn

are reflected in parameterisations of cloud processes in
large scale

:::::::::
large-scale

:
models. Taking climate timescale45

::::::::::::::
climate-timescale

:
simulation as an example, the represen-

tation of clouds remains the largest source of uncertainty
there (Schneider et al., 2017). The parameterisations used in
climate models are developed based on smaller-scale simu-
lations involving particle size-spectrum dynamics

:::::::
resolving50

::::::::::
particle-size

:::::::::
spectrum

:::::::::
evolution. Consequently, it is

of high interest to disentangle the size effects on the
droplet spectrum that come from the exact solution of the
governing equation or are

::::::
quantify

::::
the

::::::
extent

::
to
::::::

which

::
the

:::::::::::
droplet-size

::::::::
spectrum

::::::
width

::
is

:
a consequence of the55

numerical discretization (i.e. numerical diffusion)
::
(a)

:::
the

::::::
physics

:::
of

:::::::
particle

:::::::
growth

:::::::::
embodied

:::
in

::::
the

:::::::::
governing

::::::::
equations

::::
and

:::
(b)

::::
the

::::::::::::
discretisation

::::
and

::::
the

:::::::::
associated

::::::::
numerical

::::::::
diffusion.

The following introductory subsections start with a litera- 60

ture review of applications of finite-difference schemes, and
MPDATA in particular,

::::::::
MPDATA

:
to the problem of conden-

sational growth of population of particles.

:::::::
particles.

:
Section 2 focuses on a simple box-model test

case and serves as a tutorial on MPDATA variants (limited to 65

one-dimensional homogeneous advection of a positive-sign
signal). It is presented with the aim of gathering

::
to

:::::
gather

::
the

:
information that is scattered across works focusing on

more complex computational fluid dynamics applications of
MPDATA. Example simulations employing an analytically 70

solvable test case pertaining to the evolution of cloud
droplet size spectrum in a cumulus cloud is used to depict
the effects on numerical broadening from enabling the
discussed algorithm variants. An analysis of the compu-
tational cost of different algorithm variants is carried out 75

and corroborated with previously published data. While
comprehensive from the point of view of the considered
problem of diffusional growth, the presented material merely
hints

::
at

:
the versatility of the algorithm. For a proper review

of
:::
the MPDATA family of algorithms highlighting the multi- 80

dimensional aspects and its multifaceted applications, see
?Smolarkiewicz (2006); Kühnlein and Smolarkiewicz (2017)

::
we

::::::::
refer

:::::
to
:::::::::::::::::::::::::::::::::

Smolarkiewicz and Margolin (1998)

:
,
::::::::::::::::::::::::::::::::::::::::::::

Smolarkiewicz (2006)
:::
and

:::::::::::::::::::::::::::::
Kühnlein and Smolarkiewicz (2017). 85

Section 3 covers
::
the

:
application of MPDATA for cou-

pled size-spectral and spatial advection in a single-column
kinematic setup from Shipway and Hill (2012). First, the
methodology to handle the spectral-spatial liquid water ad-
vection problem taking into account the coupling with the 90

vapour field is detailed. Second, the results obtained us-
ing different MPDATA variants are discussed focusing on
the measures of spectral broadening.

:::
title

::
=
:::::::::::

PyMPDATA

:::
v1:

::::::::::::::::
Numba-accelerated

:::::::::::::
implementation

::::::::::::
of1MPDATA

::::
with

::::::::
examples

::
in

::::::
Python,

:::::
Julia

:::
and

::::::
Matlab

:
, 95

Section 4 concludes the work with a summary of findings.
Appendix A contains convergence analysis based on re-

sults of multiple simulations using the embraced box-model
test case run with different temporal and spatial (size-
spectral) resolutions. 100

:::
All

:::::::::
presented

:::::::::::
simulations

::::
are

::::::::::
performed

:::::
with

::::
the

::::::::::
open-source

:::::::
package

::::::::::
PyMPDATA

::::::::::::::::::
Bartman et al. (2021)

:
.

1.2 Background

There exist two contrasting approaches for modeling

::::::::
modelling

:
the evolution of cloud droplet size

:::::::::
droplet-size 105

spectrum (see Grabowski, 2020, for a review): Eu-
lerian (fixed-bin) and the Lagrangian (moving-bin,

::::::::::::::
moving-sectional

::
or particle-based). The Lagrangian
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approachhastheadvantagesof: (i) simplicity of formulation
(no needto de�ne particle-levelpropertiesandprocessesas
griddedcontinuous�elds), (ii) lack of discretization-related
artifacts such as numerical diffusion associatedwith
solving PDEs,(iii) facilitation of trackingmultiple particle5

attributessuchastheamountof soluterequiredfor modeling
activation.On the otherhand,thereareinherentchallenges
in using the particles-basedframework:(i) ensuringproper
sampling of physical and parameterspace,(ii) handling
load-balancing in distributed memory environments,10

(iii) solvabilityof resultantstiff ODEsystems.Overall, while
the Lagrangian methods are the focus of active research and
development(Grabowski et al., 2019)

::::::::::::::::::
(Morrison et al., 2020)

, the Eulerian schemes have been predominantly used
in large scale modeling (Khain et al., 2015), due to their15

consistencywith the �uid advectiondynamicsdescription
and due to robust algorithms for representingparticle
collisions

::::::::
large-scale

:::::::::
modelling

::::::::::::::::
(Khain et al., 2015).

Following Liu et al. (1997) and Morrison et al. (2018), the
earliest documented study employing the Eulerian numerics20

for condensational growth of acontinuoussizedistribution
representinga population of particles is that of Kovetz
and Olund (1969)(whereasseveralearlier works.

:::::::
Several

:::::
earlier

:::::::
works,

:
starting with the seminal study of How-

ell (1949)utilized ,
:::::::

utilised
:
the Lagrangian approach). The25

numerical scheme proposed in Kovetz and Olund (1969,
eq. (10)) resembles an upwind algorithm being explicit in
time and orienting the �nite-difference stencil differently for
condensation and evaporation.

Likely one
:::
One

:
of the �rst discussions of numerical broad-30

ening of the spectrum can
::::
likely

:
be found in Brown (1980)

where the numerical scheme from Kovetz and Olund (1969)
was improved in several ways, including

::
the

:
sampling of the

drop growth rate at the bin boundaries (as is done herein).
Thestudy

::::::::::::
Brown (1980) also covers quanti�cation of the er-35

ror of the method by comparisons to analytic solutions.
In Tsang and Brock (1982), the authors point out that up-

wind differencing is not suitable for aerosol growth calcula-
tions for

::
due

:::
to its unacceptable numerical diffusion. Note-

worthy, the study includes considerations of the Kelvin effect40

of surface tension on the drop growth (not considered herein,

:::
see

::::::::
discussion

:::
of

::
eq.

:::
2.3

::::::
below).

The �rst mention of an application of the MPDATA
scheme for the problem of condensational growth can be
found already in Smolarkiewicz (1984). The problem is45

given as an example where the divergent-�ow option of the
algorithm may be applicable (see sect. 2.8 below).

In Tsang and Korgaonkar (1987), which is focused on
the evaporationofan “aerosolcloud”

:::::::::
evaporation, MPDATA

is used as a predictor step followed by a corrective step50

using a Galerkin �nite element solver. In
:
two subsequent

studies from the same group (Tsang and Rao, 1988, 1990),
MPDATA is comparedwith

::
to other algorithms in terms of

conservativeness and computational cost. In Tsang and Rao
(1988), the basic 3-iteration MPDATAis

:::
was

:
used. Inter-55

estingly, it is noted there that “If the antidiffusion veloci-
ties are increased by some factor between 1.04 and 1.08,
use of [corrective iteration] only once can reduce 50% of
the computing time [...] without much sacri�ce of accuracy”.
In conclusions

:::::::::
conclusion, the authors praise MPDATA for60

providing narrow sizedistributions.At the sametime, it
is

::::::
spectra.

:::::::::::::::::::
Tsang and Rao (1988) pointed out that MPDATA

performs worse thanupwind
::
the

:::::::
upwind

::::::
scheme

:
in terms of

meanradiuspredictionaccuracy
:::
the

::::::::
prediction

::::::::
accuracy

::
of

::
the

:::::
mean

::::::
radius. 65

The “Aerosol Science: Theory and Practice” book of
Williams and Loyalka (1991) contains a section (5.19) on
MPDATA (termed “Smolarkiewicz method”) within a chap-
ter focused

:::::::
focusing

:
on the methods of solving the dynamic

equation describing aerosol spectrum evolution. The basic70

variant of MPDATA (Smolarkiewicz, 1983)is
:::
was

:
presented

with an outline of its derivation.
In Kostoglou and Karabelas (1995) and Dhaniyala and

Wexler (1996), the authors mention that MPDATA has the
potential to reduceerrorsin particlesizecomputations.The 75

latter work
::
the

:::::::::
numerical

::::::::
diffusion

::
as

::::::::
compared

:::
to

::::::
upwind

::
in

::
the

:::::::
context

::
of

::::::
particle

::::
size

::::::::
evolution

::::::::::
calculations.

::::
The

:::
�rst

lists high computational cost among drawbacks in using the
algorithm that led to discarding the scheme from the pre-
sented comparison. 80

In Morrison et al. (2018), a comparison of different nu-
merical schemes for

:::
the

:
condensational growth problem

is performed. Both �xed-, and moving-bin approaches are
compared, including the non-oscillatory variant of MP-
DATA (referred to as MPDG therein). MPDATA is reported85

to produce
::::
more

:
signi�cant numerical diffusion and spec-

tral broadeningrelative to
::::
than

:
all other methods. Intrigu-

ingly, as can be seen in Fig. 7 therein, the broad spec-
trum in the results obtained with MPDATA appears al-
ready at the very beginning of the simulations, at the alti-90

tude of 20m out of 520m of simulated displacement of an
air parcel.Overall, the discussionin Morrison et al. (2018)
, which has prompted further analyses presented in
Hernandéz Pardo et al. (2020)andLee et al. (2021), focuses
on the issue of spectral broadening from the vertical 95

numerical diffusion highlighting that, in principle, the
problem is a four-dimensional transport problem (three
spatialdimensionsandthespectraldimension).

In Wei et al. (2020), MPDATA is employed for integrating
droplet spectrum evolution for comparison with a Lagrangian100

scheme. The work concludes that the spurious broadening of
the spectrum cannot be alleviated even with a grid composed
of 2000(sic!) size bins.

:::
The

::::::::::
discussion

::::::::::
presented

:::
in

::::::::::::::::::::
Morrison et al. (2018)

::::::::
prompted

::::::::::
further

::::::::::::
analyses

::::::::::::
presented

::::::
in 105

:::::::::::::::::::::::::
Hernandéz Pardo et al. (2020)

::
and

:::::::::::::::
Lee et al. (2021).

::::::
These

::::::
studies

::::::::::
highlighted

:::::
that,

:::
in

:::::::::
principle,

::::
the

:::::::::
problem

::
is

:
a

::::::::::::::::
four-dimensional

:::::::::
transport

::::::::
problem

:::::::
(three

:::::::
spatial

:::::::::
dimensions

::::
and

::::
the

::::::::
spectral

:::::::::::
dimension)

::::
and

::::
that

::::
the
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:::::::
interplay

:::
of

:::::::
spectral

:::
and

::::::
spatial

:::::::::
advection

::::::
further

:::::::
nuances

::
the

:::::
issue

::
of

:::::::
spectral

::::::::::
broadening.

Noteworthy, none of the works mentioned
above discussed coordinate transformations
to non-linear grid layouts with MPDATA5

(a discussion of handling non-uniform mesh with upwind scheme can be found in Li et al., 2017, Appendix A)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(a discussion of handling non-uniform mesh with the upwind scheme can be found in Li et al., 2017, Appendix A)
. Wei et al. (2020) and Morrison et al. (2018) are the only
works mentioning other thanbasic�avor

:::
the

::::
basic

::::::
�avour

:
of

the scheme, yet only the non-oscillatory option was consid-10

ered. Herein, the applicability
:::
for

::::::
solving

:::
the

::::::::::::
condensational

::::::
growth

:::::::
problem

:
of multiple variants of MPDATA and their

combinations is expoundedhighlighting their robustnessfor
solvingthecondensationalgrowthproblem.

1.3 Governing equations15

To describe the conservation of particle numberN under the
evolution of theparticlesize

::::::::::
particle-size

:
spectrumnp(p) =

dN
dp (n denoting number density as a function ofparticle
size

:::::::::
particle-size

:
parameterp such as radius or volume), one

may take the one-dimensional continuity equation (i.e., Li-20

ouville equation expressing the conservation of probability,
for discussion see Hulburt and Katz, 1964), in ageneralized

:::::::::
generalised

:
coordinate system:

@t (Gnp) + @x (uGnp) = 0 ; (1.1)

where G � G(x) represents the coordinate transformation25

from p to x ,
:::
with

:
x being an equidistant mesh coordinate

used in the numerical solution;np � np(p(x)) being number
density function andu � u(x) denoting the pace of particle
growth in the chosen coordinatex. The coordinate transfor-
mation termG may play a twofold role in this context.30

First, there is a degree of freedom in the choice of the
particle-size parameter used as the coordinate (i.e., the ar-
gumentp of the density functionn(p)). For the chosen co-
ordinatesp 2 [r;s � r 2;v � r 3], the appropriate distributions
will be nr (r ), ns(s) and nv (v) where s = 4 �r 2 and v =35

4=3�r 3 denote particle surface and volume, respectively.
The size spectrumnp(p) in a given coordinate is related
with nr (r ) via the following relation of measures:np(p)dp=
nr (r )dr so the total numberN =

R
nr dr is conserved.

Second, there is also a degree of freedom in the choice of40

the grid layoutp(r (x)) , that is how the parametersr , s or
v arediscretized

:::::::::
discretised to form the equidistant grid in

x. This can be used, for instance, to de�ne a mass-doubling
grid layout (x = ln 2(r 3)) as used in Morrison et al. (2018)
and herein.45

Combining the two transformations results in the follow-
ing de�nition of G:

G � dp(r )=dx(r ) =
dp
dx

(1.2)

which de�nes the transformation from the coordinatep of the
density function to the numerical mesh coordinatex. For fur-50

ther discussion of the coordinate transformation approaches

in the embraced framework (including multi-dimensional
setting), see Smolarkiewicz and Clark (1986) and Smo-
larkiewicz and Margolin (1993).

2 Spectral advection with upwind and MPDATA 55

(box-model test case)

2.1 Upwind discretization
::::::::::::
discretisation

The numerical solution of equation (1.1)will be obtained
by discretizingspaceandtime asfollows:

::
is

:::::::
obtained

:::
on

:
a

:::
grid

:::::::
de�ned

::
by

:
x = i � � x and

::
at

:::::::
discrete

::::::::
timesteps

::::::
de�ned 60

::
by

:
t = n� � t. Henceforth, n

i andGi denote thediscretized

:::::::::
discretised number densitynp and thediscretized

::::::::
discretised

coordinate transformation term, respectively. The dimen-
sionless advective �eld is denoted byGC = dp

dx u� t=� x,
whereC stands for the Courant number, i.e. the velocity in65

terms of temporal and spatial grid increments.
::::
Note

:::
that

:::
the

:::::
values

::
of

::::
the

:::::::
Courant

:::::::
number

::::
itself

::::
are

:::
not

:::::
used,

::::
only

:::
the

::::::
product

::::
GC

:::
of

:::
the

:::::::::
coordinate

:::::::::::::
transformation

::::
term

:::
G

:::
and

::
the

::::::::
Courant

::::::
number

:::
C.

:
A staggered grid is employedwhat

warrantsintroduction of fractional indexing
:::
and

::::::::
indicated 70

::::
with

::::::::
fractional

::::::
indices

:
for vector �elds, i.e.

:::
e.g.,:GCi+1 =2 �

(GC)j i+1 =2 in the case of the discretisation ofthe product
GC. To solvetheequationnumerically,a

:
A

:
�nite difference

form of the differential operators is introduced embracing the
so-called upwind approach (dating back at least to Courant75

et al., 1952, eq. 16 therein):

 n+1
i =  n

i �
1
Gi

�
F ( n

i ;  n
i+1 ;GCi+1 =2)�

F ( n
i� 1;  n

i ;GCi� 1=2)
�

(2.1)

with

F ( L ;  R ;GCmid) =max( GCmid;0) �  L + 80

min(GCmid;0) �  R (2.2)

where the introduced �ux functionF de�nes the �ux of  
across a

:
grid-cell boundaryasa functionof thevaluesof  L

and R to theleft andright of theboundary,respectivelyand
the value of GC at the boundary. Hereinafter a shorthand85

notationFi + 1
2
( ) � F ( i ;  i +1 ;GCi + 1

2
) is used.

2.2 Box-model test case and upwind solution

The test case is based on Figure 3 from East (1957) - one of
the early papers on the topic of cloud droplet spectral broad-
ening. The case considers the growth of a population of cloud90

droplets through condensation in the equilibrium supersatu-
ration limit, where:

u �
dx
dr

_r =
dx
dr

�
r

; (2.3)

with � = � 0(S � 1) being an approximately constant fac-
tor proportional to

::
the

:
supersaturation (S � 1)

:::::
where

:::
the 95
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::::::::
saturation

::
S

::
is

::::::
equal

::
to

:::
the

:::::::
relative

::::::::
humidity

:::
of

:::::::
ambient

::
air. The parameter� 0 is set to100 µm2s� 1 to match the
results from East (1957).

:::
The

:::::::::::::
approximation

::::
(2.3)

:::::::
neglects

::
the

::::::::::
dependence

::
of

:::::::
particle

::::::
growth

::::
rate

::
on

:::
the

::::::
surface

::::::
tension

::::::
(Kelvin

:::::
term).

::::::
Taking

::
it

:::
into

::::::::::::
consideration

::::::
requires

::::::::
replacing5

::::::
(S � 1)

::::
with

::::::::::
(S � eA=r ),

::::::
where

::
A

:::::::
depends

:::
on

::::::::::
temperature

::::
only;

:::
for

:::::::::
discussion

:::
see,

::::
e.g.,

::::::::::::::::::::
Tsang and Brock (1982)

:
.

For the initial number densitydistribution function, an
idealized

:::::::
idealised

:
fair-weather cumulus droplet size spec-

trum ismodeled
::::::::
modelled with a lognormal distribution:10

n(0)
r (r ) = n0 exp

�
� � (log10(r=r 0))2�

=r (2.4)

with parameters: r 0 = 7 µm ,
:::
and

::::::::
� = 22

:::::::::::::::::::::
(East and Marshall, 1954)

:::::
while

::::
was

::
set

:::
at n0 = 465 cm� 3

and � = 22
::
to

::::::
match

:::::
liquid

::::::
water

:::::::
content

::
of

::
1

:
g kg� 1

:
as

:::::::
indicated

::
in

::::::::::
East (1957).15

For the boundary conditions (implemented using halo grid
cells), extrapolation is applied forG, while both andGC
are set to zero within the halo.

Analytical solution to eq. (1.1) is readily obtainable for
_r = �=r and for any initial sizedistribution

:::::::
spectrum. Not-20

ing that introducingx = r 2 coordinates, the transport equa-
tion (1.1) becomes a constant-coef�cient advection equation,
the problem reduces to translation of the signal inx by 2�t .
Cast in ther coordinate, the solution can be expressed as
(Kovetz, 1969):25

 analytical= nr (r; t > 0) �
r
~r

n(0)
r (~r ); (2.5)

where~r = ~r (r; t ) =
p

r 2 � 2�t .
The upper panels in Figures 1 and 2 depict the droplet size

spectrum evolution through condensational growth from an
initial liquid water mixing ratio ofM 0 = 1 g kg � 1 under su-30

persaturationS � 1 = 0:075%.
Two grid layout (x) and size parameter (p) choices are

depicted. Both panels in Fig. 1 present simulation carried
out with densityfunction coordinatep = r 2 anddiscretized

::::::::
coordinate

::::
and

::::::::::
discretised

:
on a mass-doubling grid (x =35

ln2(r 3)), whereasboth
:
.

::::
Both

:
panels in Fig. 2 present sim-

ulation results obtained withx = r and p = r . In both
::
all

cases, the timestep is set to� t = 1
3 s, the domainrangeis

(1; 26).
::::
The

:::::::
domain

::::
span

::
is

:::::
1–26 µm, thereare

:
.

:::
The

::::
grid

:
is

:::::::::
composed

:::
of 75 grid cells. Such settings corresponds to40

GC � 0:26 in �rst layout, where
:::
for

:
p = r 2is used,and ,

:::
and

:
a
:

variable Courant number approximately in the range
of (0.03;

:
to

:
0.07) in secondlayout,where

::
for p = r is used.

The snapshotsaredepictedat timeswherethe
::::
time

::::
steps

:::::::
depicted

::
in

:::
the

:::::
plots

:::
are

:::::::
selected

::
by

:::::::
�nding

:
t

:::
for

:::::
which

:::
the45

::::::::
integrated liquid water mixing ratio of the analytical solution
obtainsvaluesof

:::::
equals

::
to

:
1, 4 and 10 g kg� 1 (assuming

air density of1 kg m� 3). In both Figure 1 and 2, the upper
panels display the number density and the bottompanelshow
thenormalized

:::::
panels

:::::
show

:::
the

:::::::::
normalised mass density. The50

bottom panels thus depict the same quantities as Fig. 3 in East
(1957).

Figure 1. Evolution of the particle number density (upper panel)
andnormalized

::::::::
normalised

:
mass density (bottom panel) with red

histograms corresponding to the numerical solution using upwind
scheme, black dots depicting analytical solution, andgray

:::
grey

�lled histogram representingdiscretized
::::::::
discretised

:
analytical so-

lution; compare Fig. 3 in East (1957). Numerical solution was
obtained in the following coordinate transformation:p = r 2 ; x =
ln2(r 3)

Thenormalized
:::::::::
normalised mass density of bini is evalu-

ated as4=3�� l m
( l =3)
i =M by calculating the third statistical

moment of the number distributionnr (p) with the formula: 55

m( l )
i =

r 2Z

r 1

nr r l dr =

=  i �

8
><

>:

(l + 1) � 1 r l +1
�
�
�
r 2

r 1

for p = r

2(l + 2) � 1 (r 2)
l +2

2

�
�
�
r 2

2

r 2
1

for p = r 2

(2.6)

wherer 1, r 2 are the boundaries ofi -th bin, and i is the
value ofnp associated with the bin (i.e.,np is assumed to be
bin-wise constant; note that the dimension ofnp depends on
the choice of p). Thenormalization

:::::::::::
normalisation

:
factorM 60

is the mixing ratio (e.g.,M = M 0 = 1 g kg � 1 for t = 0 ).
The dotted curve corresponds to the analytic solution.

The numerical solution obtained with the upwind scheme
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Figure 2. As in Fig. 1 forp = r andx = r .

(2.1) is plotted with red histograms and comparedwith the
discretized

::
to

:::
the

::::::::::
discretised analytical solution plotted as

grey �lled histograms.
Looking at the mass density plots in Figs. 1 and 2, it is evi-

dent that casting the results in the form of mass density shifts5

positions of the extrema in comparison with
::
the

:
analytical so-

lution. This is one of the consequences ofapplyingnumerical
solutionby integrating

:::::::::
integrating

:::
the number conservation

law (for discussion see sec. 2.12).
As can be seen in both the number- and mass-density plots10

in Figs. 1 and 2, solutions obtained with the upwind scheme
arecharacterizedby

:::::::::::
characterised

::
by

::
a signi�cant drop in the

peak value and spectral broadening, with respect to the ana-
lytical solution – both manifesting the numerical diffusion.

The broadening and the drop in the peak valueis
:::
are less15

pronounced in Fig. 2 where the linear grid increases the res-
olution in the large-particle region of the spectrum.

2.3 Truncation error analysis of the upwind scheme

One of the methods used to quantify the numerical diffusion
of the upwind scheme is the modi�ed equation analysis of20

Hirt (1968) (see Margolin and Shashkov, 2006, for discus-
sion in the context of MPDATA). To depict the idea, a sim-
pli�ed setting of G = 1 andC = const is outlined herein. In

the analysis, the Taylor expansion of up to the second or-
der is taken at n +1

i ,  n
i +1 and n

i � 1 and substituted into the25

numerical upwind scheme, in which the �ux function (2.2) is
expressed using moduli (e.g., Crowley, 1968, eq. (12)):

 n +1
i =  n

i �
�

C + jCj
2

( n
i �  n

i � 1)+

C � j Cj
2

( n
i +1 �  n

i )
�

(2.7)

resulting in: 30

@t  + @2
t  

� t
2

= �
u + juj

2

�
@x  � @2

x  
� x
2

�
�

u � j uj
2

�
@x  + @2

x  
� x
2

�
(2.8)

which is further transformed by employing a time deriva-
tive of both sides of the original advection equation@t  =
� u@x  �! @2

t  = � u@x @t  = u2@2
x  to substitute the 35

second-order time derivative with spatial derivative (Cauchy-
Kowalevski procedure, see Toro, 1999) leading to the sought
modi�ed equation (Roberts and Weiss, 1966, eq. 2.9):

@t  + u@x  +
�

u2 � t
2

� j uj
� x
2

�

| {z }
K

@2
x  + ::: = 0 (2.9)

The above analysis depicts that the employment of the nu-40

merical scheme (2.1) results in a solution of a modi�ed equa-
tion (2.9), approximating the original problem up to �rst or-
der. The leading second-order error contribution has the form
of a diffusive term with a coef�cientK (note that the above
outline of the modi�ed equation analysis assumes the con-45

stant velocity �eld). The diffusive form of the leading error
term explains with the smoothing of the spectrum evident in
Figs. 1,2, and hence the notion of numerical diffusion.

2.4 Antidiffusive velocity and iterative corrections

The problem of numerical diffusion can be addressed by50

introducing the so called
:::::::
so-called

:
“antidiffusive veloc-

ity" (Smolarkiewicz, 1983). To this end, the Fickian �ux
can be cast in the form of the advective �ux - an ap-
proach dubbed pseudo-velocity technique in the context of
advection-diffusion simulations (Lange, 1973, 1978) or hy-55

perbolic formulation of diffusion (Cristiani, 2015, discussion
of eq. (4) therein), and discussed in detail in Smolarkiewicz
and Clark (1986, sect. 3.2):

@x (K@x  ) = @x

�
K

@x  
 

 
�

: (2.10)

In Smolarkiewicz (1983, 1984), it was proposed to apply60

the identity (2.10) to equation (2.9)in orderto suppress the
spurious diffusion. The procedure is iterative. The �rst iter-
ation is the basic upwind pass. Subsequent corrective itera-
tions reverse the effect of numerical diffusion by performing



Olesik et. al: On numerical broadening of particle-size spectra 7

Figure 3. Comparison of analytic, upwind and MPDATA solutions
(see plot key for algorithm variant speci�cation) using the setup
from Fig. 1, see sec. 2.4 for discussion.

upwind passes with the so-called antidiffusive �ux based on
equation (2.10) but withK taken with

:
a
:
negative sign and

approximated using the upwind stencil (for discussion of the
discretization

::::::::::
discretisation, see Smolarkiewicz and Margolin

(2001)).5

Accordingly, the basic antidiffusive �eldGC (k ) is de�ned
as follows (with � > 0 being anarbitrary

::::::::
arbitrarily

:
small

constant used to prevent from divisions by zero):

GC (k )
i + 1

2
= A i + 1

2

� �
�
�GC (k � 1)

i + 1
2

�
�
� �

�
GC (k � 1)

i + 1
2

� 2
�

; (2.11)

wherek is the iteration number,GC (1) � GC and10

A i + 1
2

=
 �

i +1 �  �
i

 �
i +1 +  �

i + �
; (2.12)

where  � denotes n in the �rst iteration, or the values
resultantfrom

:::::::
resulting

:::::
from

:::
the application of the upwind

scheme with the antidiffusive �ux in subsequent iterations.
The MPDATA scheme inherits the key properties of upwind15

in terms of positive-de�niteness, conservativeness and stabil-
ity , while reducing the effect of numerical diffusion. Given
the context of conservation of particle concentration, in all
presented numerical formulæ below, it is assumed that the
transported signal is positive, the references provided include20

formulation of the algorithm for variable sign signals.
Figure 3 compares a set of example simulations performed

with the same set-up as in Figure 1. The analytical results ob-
tained with upwind are supplemented with results obtained
using

:::
the MPDATA scheme with two and three iterations.25

Employment of the MPDATA iteration corrects both the sig-
nal peak amplitude and its width, as well as the position of
the maximum. It is visible that the effect of the third itera-
tion is less pronounced than that of the second one. Over-
all, while the MPDATA solutions are superior to upwind, the30

Figure 4. Comparison of analytic, upwind and MPDATA solutions
(see plot key for algorithm variant speci�cation) using the setup
from Fig. 1, see sec. 2.5 for discussion.

drop in amplitude and broadening of the resultant spectrum
still visibly differs from thediscretized

::::::::
discretised

:
analytical

solution.

2.5 In�nite gauge variant

For the possible improvement of the algorithm, one may con-35

sider linearizing
:::::::::
linearising MPDATA about an arbitrarily

large constant (i.e. taking 0=  + a� in the limit a �! 1
instead of , where� is a constant scalar background �eld).
Such analysis was considered in Smolarkiewicz and Clark
(1986, eq. 41) and subsequently referred to as the “in�nite-40

gauge” (or “iga”) variant of MPDATA (Smolarkiewicz
(2006, eq. 34), Margolin and Shashkov (2006, point (6) on
page 1204)).

Such gauge transformation changes the corrective itera-
tions of the basic algorithm as follows (replacing eqs. (2.12)45

and (2.2) what issymbolized
:::::::::
symbolised with ):

A i + 1
2

 A (iga)
i + 1

2
=

 �
i +1 �  �

i

2
(2.13)

Fi + 1
2

 F ( iga)
i + 1

2
= GC (k )

i + 1
2

(2.14)

Noting that the amplitude of the diffusive �ux (2.10) is
inversely proportional to the amplitude of the signal, such50

gauge choice decreases the amplitude of the truncation error
(see Smolarkiewicz and Clark (1986, p. 408), Jaruga et al.
(2015, discussion of Fig. 11)), however

:
,
:
it makes the algo-

rithm no longer positive de�nite.
Figure 4 depicts how enabling the in�nite gauge vari-55

ant in�uences results presented in Figure 3. In each plotted
timestep, the maximum amplitude of the in�nite-gauge re-
sult is closest to the analytical solution improving over the
basic MPDATA. However, in each case,

:
negative values are

observed (non-physical in case of the considered problem).60
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Consequently, for the problem at hand, it is effectively es-
sential to combine it with the monotonicity-preserving non-
oscillatory option outlined in the next section.

2.6 Non-oscillatory option

In Smolarkiewicz and Grabowski (1990),
::
an

:
extension of5

the MPDATA algorithm was introduced that makes the solu-
tion monotonicity preserving and precludes

:::
the appearance

of negative values in the discussed solution of droplet size
spectrum evolution. The trade-off is that the order of the al-
gorithm is reduced (see Appendix A).10

The non-oscillatory option (later referred to as “non-osc"
herein) modi�es the algorithm in such way:

GC (k+1)
i + 1

2
 GC (k+1 ;non-osc)

i + 1
2

= GC (k )
i + 1

2
�

�

8
<

:

min(1; � #
i ; � "

i +1 ) GC (k )
i + 1

2
� 0

min(1; � "
i ; � #

i +1 ) GC (k )
i + 1

2
< 0

; (2.15)

where15

� "
i � Gi �

max
�

 (max)
i ;  �

i � 1;  �
i ;  �

i +1

�
�  �

i

max
�
F ( � ) i � 1

2
;0

�
� min

�
F ( �

i ) i + 1
2
;0

�
+ �

;

(2.16)

and

� #
i � Gi �

min
�

 (min)
i ;  �

i � 1;  �
i ;  �

i +1

�
�  �

i

max
�
F ( �

i ) i + 1
2
;0

�
� min

�
F ( �

i ) i � 1
2
;0

�
+ �

;

(2.17)

with

 (min)
i = min(  n

i � 1;  n
i ;  n

i +1 ); (2.18)20

 (max)
i = max(  n

i � 1;  n
i ;  n

i +1 ): (2.19)

Note that in the case of in�nite gauge option enabled,F func-
tion takes form presented in eq. (2.13) (see also Hill, 2011,
sect. 2.5).

Figure 5 juxtaposes in�nite gauge solutionsfor
:::
with

:::
the25

non-oscillatory option switched on or off. The effectiveness
of the latter variant is apparent as spurious negative values no
longer occur.

2.7 DPDC

An alternative approach to the iterative procedure30

was introduced in Beason and Margolin (1988);?

::::::::::::::::::::::::::::::::::::::::::::::::::::::
Beason and Margolin (1988); Margolin and Smolarkiewicz (1998)
and further discussed in Margolin and Shashkov (2006),
where the contributions of multiple corrective iterations
of MPDATA were analytically summed leading to a35

new two-pass scheme dubbed DPDC (double-passdonor

Figure 5. Comparison of analytic, upwind and MPDATA solutions
(see plot key for algorithm variant speci�cation) using the setup
from Fig. 1, see sec. 2.6 for discussion.

cell
::::::::::
Double-Pass

::::::::::
Donor-Cell), featuring the following form

of the antidiffusiveGC �eld:

GC (2)
i + 1

2
 GC (DPDC)

i + 1
2

=
GC (2)

1� j A i + 1
2
j

 

1 �
GC (2)

1� A2
i + 1

2

!

;

(2.20)

with A i + 1
2

de�ned in eq. (2.12). Note that only one corrective40

iteration is performed with the DPDC variant.
As in the case of the in�nite gauge variant of MPDATA

(section 2.5), the above formulation does not guarantee
::
the

monotonicity of the solution. Herein an example simula-
tion combining theDPDC

::::::::::
double-pass

::::::::
(DPDC), the non- 45

oscillatory and in�nite-gauge variants is presented in Fig-
ure 6 depicting how the solution is improved over that in
Figure 5.

2.8 Divergent-�ow correction

For divergent �ow (hereinafter abbreviated d�), mod-50

i�ed equation analysis yields an additional correction
term to the antidiffusive velocity (see Smolarkiewicz
(1984, eq. (38)) for uniform coordinates,?, eq. (30)

:::::::::::::::::::::::::::::::::::::
Margolin and Smolarkiewicz (1998, eq. (30)) for non-
uniform coordinates and Waruszewski et al. (2018, sect. 4)55

for the in�nite-gauge variant):

GC (k )
i + 1

2
 GC (k,d�)

i + 1
2

= GC (k ) �
GC (k )

i + 1
2

Gi +1 + Gi
�

�
GC (k )

i + 3
2

� GC (k )
i � 1=2

2
�

�

(
( �

i +1 +  �
i )=2 (iga)

1 (else)
(2.21)
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Figure 6. Comparison of analytic, upwind and MPDATA solutions
(see plot key for algorithm variant speci�cation) using the setup
from Fig. 1, see sec. 2.7 for discussion.

As pointed out in section 5.1 in Smolarkiewicz (1984), this
option has the potential of improving results for the problem
of the evolution of the droplet sizedistribution

:::::::
spectrum

:
(per-

sonal communication with William Hall cited therein). This
is due to the drop growth velocity de�ned by eq. (2.3) be-5

ing dependent on
::
the

:::::::
droplet radius (hence divergent given

the one-dimensional problem). Yet, applying adequate co-
ordinate transformation (i.e.,p = r 2), the drop growth ve-
locity in the transformed coordinates becomes constant (see
section 2.2 above and Hall (see, e.g. 1980, sec. 3b)). How-10

ever, in simulations using the presented setup (forp 6= r 2;
not shown), only insigni�cant changes in the signal occur-
ring when the divergent-�ow option was used were observed.
However, the problem considered herein does not include,
for instance, the surface tension in�uence on the drop growth15

rate.

2.9 Third order
:::::::::::
Third-order terms

Another possible improvement to the algorithm comes from
the inclusion of the third-order terms in the modi�ed equa-
tion analysis, which leads to

:::
the following form of the antid-20

iffusive velocity(?)
:::::::::::::::::::::::::::::
(Margolin and Smolarkiewicz, 1998):

GC (k )
i + 1

2
 GC (k; tot)

i + 1
2

= GC (k ) + B i � GC (k )
i + 1

2
�

�
1
6

0

B
@4

jGC (k )
i + 1

2
j

Gi +1 + Gi
� 8

0

@
GC (k )

i + 1
2

Gi +1 + Gi

1

A

2

� 1

1

C
A (2.22)

B i =2 � ( �
i +2 �  �

i +1 �  �
i +  �

i � 1)�

�

(
(1 + 1 + 1 + 1) � 1 (iga)
( �

i +2 +  �
i +1 +  �

i +  �
i � 1) � 1 (else)

(2.23)25

Figure 7. Comparison of analytic, upwind and MPDATA solutions
(see plot key for algorithm variant speci�cation) using the setup
from Fig. 1, see sec. 2.9 for discussion.

Figure 7 depicts how enabling the third-order-terms im-
proves

::
the

:
solution of the test problem with respect to the

upwind and basic MPDATA.
Noteworthy, discussion of higher-order variants of MP-

DATA was carried forward in Kuo et al. (1999) and30

Waruszewski et al. (2018). In the latter case, the focus was
placed on accounting for coordinate transformation and vari-
able velocity in the derivation of antidiffusive velocities lead-
ing to a fully third-order accurate scheme.

2.10 A “best” combination of options 35

The MPDATA variants presented in the preceding sections
can be combined together. In Figure 8, results obtained with

::
the

:
upwind scheme and the basic two-pass MPDATA are

comparedwith
:
to

:
those obtained with apowerful combina-

tion of three iterations, third-order-terms, in�nite-gauge and40

non-oscillatory options hereinafter referred to as the “best”
variant (for the problem at hand).

In the following subsections, the in�uence of MPDATA
algorithm variant choice on the resultant spectrum broadness
and computational cost is analysed using the example simu-45

lation setup used above (i.e., in all �gures except Fig. 2, see
section 2.2 for test case de�nition).

Analysis of the scheme solution convergence with chang-
ing resolution and Courant number is presented in Ap-
pendix A. 50

2.11 Quanti�cation of numerical broadening

The relative dispersion, de�ned as the ratio of standard devia-
tion � to the mean� of thedistribution

:::::::
spectrum, is a param-

eter commonly used to describe the width of the spectrum
(e.g. Chandrakar et al., 2018). 55
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Figure 8. Comparison of analytic, upwind and MPDATA solutions
(see plot key for algorithm variant speci�cation) using the setup
from Fig. 1, see sec. 2.10 for discussion.

Table 1. Relative dispersion of thediscretized
::::::::
discretised

:
(using

grid setup as in Fig. 1) analytical solution taken for �ve selected
times.

Variant danalytic

d(M = 1 g kg � 1) 0.357
d(M = 2 g kg � 1) 0.202
d(M = 4 g kg � 1) 0.126
d(M = 6 g kg � 1) 0.097
d(M = 8 g kg � 1) 0.080

d(M = 10 g kg � 1) 0.069

The calculated dispersion ratio over all bins takes form:

d =

r
1
N

P
i m( l =2)

i �
�

1
N

P
i m( l =1)

i

� 2

1
N

P
i m( l =1)

i

(2.24)

wheremi is de�ned in (2.6) andN is the conserved total
number of particles (equal to

P
i m( l =0)

i ). To quantify the ef-
fect of numerical diffusion on the broadness of the resultant5

spectrum, the following parameter is introduced based on
the numerical and analytical solutions (hereinafter reported
in percentages):

Rd = dnumerical=danalytical� 1 (2.25)

Table 1 depicts the gradual narrowing of the spectrum un-10

der undisturbed adiabatic growth.
Left panel in Fig. 9 provides values of theRd parameter

evaluated at six selected timesteps corresponding toM =
1;2;4;6;8;10 g kg� 1. Although numerical broadening is in-
herent to all employed schemes, and grows in time for all15

considered variants, the scale of the effect is signi�cantly re-
duced when using MPDATA.

In particular, a tenfold decrease in numerical broadening
as quanti�ed usingRd is observed comparing upwind and

::
the

:
“best” variant considered herein. 20

While outside of the scope of the present study, it
is worth noting that in simulations combining spectral
growth with transport in physical space, the numerical
broadening associated with the spatial advection
also contributes to the numerical broadening effect 25

(see Hernandéz Pardo et al., 2020, and references therein).

2.12 Notes on conservativeness

Due to the formulation of the problem as number conserva-
tion anddiscretization

:::::::::::
discretisation of the evolution equa-

tion using �xed bins, even though the numerical scheme is30

conservative (up to subtle limitations outlined below), evalu-
ation of other statistical moments of the evolveddistribution

:::::::
spectrum

:
from the number density introduces an inherent

discrepancy from the analytical results (for a discussion on
multi-moment formulation of the problem, see e.g. Liu et al.,35

1997).
In order to quantify the discrepancy in the total mass be-

tween thediscretized
::::::::
discretised

:
analytical solution and the

numerically integrated spectrum, the following ratio is de-
�ned using moment evaluation formula (2.6): 40

RM = M (numeric) =M (analytic) � 1 =

=
P

i m( l =3 , numeric)
i

P
i m( l =3 , analytic)

i

� 1: (2.26)

Right
:::
The

:::::
right

:
panel in Fig. 9 depicts the values of the

above-de�ned ratio computed for spectra obtained with dif-
ferent variants of MPDATA discussed herein. The departures45

from analytically-derived values are largest for the upwind
scheme (up to ca. 5%), and oscillate around 0 with

::
an ampli-

tude of the order of 1% for most of the MPDATA solutions.
The consequences of mass conservation inaccuracies in

the �xed-bin particlesize
::::::::::
particle-size

:
spectrum representa-50

tion may not be as severe as in, e.g. dynamical core responsi-
ble for

::
the

:
transport of conserved scalar �elds. The outlined

discrepancies may be dealt with by calculating the change in
mass during a timestep from condensation, then using it in
vapor

::::::
vapour and latent heat budget calculations so the total55

mass and energy in themodeled
::::::::
modelled system are con-

served.
The problem embodied in equation (1.1) is the conserva-

tion of
::
the

:
number of particles and the embraced algorithm

(2.1)-(2.2) is conservative (up to numerical precision) for60

G = 1 . However, the formulation of the donor cell scheme
 n +1 =  n + G� 1

i

�
Fi � 1=2 + Fi + 1

2

�
on the staggered grid

with G 6= 1 , for example due to employment of non-identity
coordinate transformations implies that even though the in-
�ux and out�ux across boundary of adjacent cells is equal,65

discretization
:::::::::::
discretisation ofGi at cellcenters

::::::
centres lim-

its the level of accuracy in number conservation.
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Figure 9.
:::
Left

:::::
panel

:::::::::
summarises

:::::
values

::
of

:::
the

::::::::::::::::::
numerical-to-analytical

::::::
spectral

:::::
width

::::
ratio

:::::::::::::::::::::
Rd = dnumerical=danalytical� 1

::::::::
(expressed

::
as

::
a

::::::::
percentage)

::::::::
computed

::
for

:::::::::
simulations

::::
using

:::::::
different

:::::::
discussed

::::::
variants

::
of

::::::::
MPDATA

:::
and

:::::
plotted

::
as

:
a

::::::
function

::
of

::::::::
increasing

:::::
mixing

::::
ratio

::::
(i.e.,

:::
each

::::::::
simulation

::
is

:::::::
depicted

:::
with

::
a

::
set

::
of

:::::::::::
line-connected

:::::
points

:::::::::::
corresponding

::
to

::::::
selected

:::::::::
timesteps),

:::
see

:::::
section

::::
2.11.

:::::
Right

::::
panel

:::::::
presents

:::::::
analogous

:::::::
analysis

::
for

::::
Rm ,

::
see

::::::
section

::::
2.12

::
for

:::::::::
discussion.

::::
Note:

:::::::::::
RM = Rd = 0

:::::::::
corresponds

::
to

:::::
perfect

:::::
match

::::
with

:::
the

:::::::
analytical

:::::::
solution.)

:

The total number of particles in the system may diverge
from the analytical expected value even for the initial condi-
tion depending on the employeddiscretization

::::::::::
discretisation

approach. In the present work, the probability density func-
tion is probed at cellcenters

::::::
centres

:
effectively assuming5

piecewise-constant number density function. An alternative
approach is to discretise the initial probabilities by assigning
to  i the values of(� i + 1

2
� � i � 1=2)=(r i + 1

2
� r i � 1=2) where

� is the cumulative distribution.
Left panel summarizes values of the10

numerical-to-analytical spectral width ratio
Rd = dnumerical=danalytical� 1 (expressedas a percentage)
computedfor simulationsusingdifferent discussedvariants
of MPDATA and plotted as a function of increasing
mixing ratio (i.e., eachsimulationis depictedwith a setof15

line-connectedpointscorrespondingto selectedtimesteps),
seesection2.11.Rightpanelpresentsanalogousanalysisfor
Rm , seesection2.12 for discussion.Note: RM = Rd = 0
correspondsto perfectmatchwith theanalyticalsolution.)

2.13 Computational cost 20

Table 2 includes an assessment of the relative computational
cost of the explored variants of MPDATA. The performance
was estimated by repeated measurements of the wall time and
selecting the minimal value as representative. Values are re-
ported afternormalization

:::::::::::
normalisation with respect tothe 25

valuespertinentto upwind runs
::::::
upwind

::::::
times.

::::::::::
Simulations

::::
were

:::::::::
performed

:::::
using

::
the

:::::
mass

::::::::
doubling

::::
grid.

:::
The

:::::
table

::::::::
includes,

::::::
where

:::::::::
available,

:::::::::
analogous

::::::
�gures

:::::::
reported

::
in

::::::
earlier

:::::::
studies

:::
on

:::::::::
MPDATA

::::
(see

:::::::
caption

:::
for

::::::::
comments

:::
on

::::
the

::::::::::::
dimensionality

:::
of

:::
the

:::::::::
employed

::::::
cases). 30

::::::
Among

:::::::
notable

:::::
traits

:::
is

::::
the

::::::::
decrease

:::
in

::::::::::::
computational

:::
cost

::::::
when

::::::::
enabling

::::
the

:::::::
in�nite

::::::
gauge

::::::
option

::::::
what

::
is

::::::::
associated

::::
with

::
a

:::::::
reduced

:::::::
number

::
of

:::::
terms

::
in

:::::
both

:::
the

:::
�ux

:::::::
function

::
as

::::
well

::
as

:::
in

:::
the

::::::::::
antidiffusive

:::::::
velocity

::::::::::
formulation

::::::::::::::::::::::::::::::::::::::::::::::
(see section 2.5 in Hill, 2011, and sections 2.5-2.6 herein)35

. The “best” variant is roughly ten times more costly
than the upwind scheme. The table includes analogous
measurementsreported in earlier studies on MPDATA,
whereavailable

:::
for

:::
the

::::
case

::::::
studied

::::::
herein.

:::::::
Among

::::::
studies

::
of

:::
bin

::::::::::::
microphysics

:::::::::
schemes,

:::::::::
analogous

::::::::
measures

:::::
were 40

:::::::
reported

::
in

:::::::::::::::
Liu et al. (1997)

:::::
where

:::
the

:::::::::
variational

:::::::
method
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Table 2.Elapsedwall
:::
Wall

:
times

::::::::
normalised with respect to

:::
the up-

wind computedfor massdoublinggrid for resultspresentedherein

::::::
solution comparedwith with

:
to

:
data reported inthreepreviously

published
:::
four

:::::
earlier

:
works. Column labeledwith

:
: S83 denotes

values reported in Smolarkiewicz (1983)for (two-dimensional
problem. Column labeled

:
);

:
SS05 correspond

:::::::::
corresponds

:
to

data reported in Smolarkiewicz and Szmelter (2005)for a 3D
�nite-volume advectionon

::::::::::::::
(three-dimensional, unstructured grid.

Column
:
);
:

SR91includesvaluesfrom
::::::
denotes Smolarkiewicz and

Rasch (1991),
::
and

:
MSS00 corresponds todatafrom Margolin et al.

(2000),
:
(both reported for two-dimensional problems).

Variant S83 SS05 SR91 MSS00
:

upwind 1.0 1.0 1.0 1.0 1.0
2 pass

:::
iters

:
2.5 2.9 4.3 5.4 3.7

2 pass
:::
iters, iga 2.2 - 1.9 - -

2 pass
:::
iters, iga, non-osc 5.9 - 3.9 - -

DPDC, iga, non-osc 6.2 - - - -
3 pass

:::
iters

:
5.7 5 - 9.8 -

3 pass
:::
iters, tot 4.1 - - 19 -

3 pass
:::
iters, tot, iga, non-osc 11 - - - -

::::::::
presented

:::::
there

::::
was

:::::::
reported

:::
to

:::::::
execute

:::
3.1

:::::
times

::::::
longer

:::
than

:::::::::
�rst-order

::::::::
upwind;

::::
and

::
in

:::::::::::::::::
Onishi et al. (2010)

:::::
where

::
the

:::::::
studied

:::::::::::::::
semi-Lagrangian

:::::::
scheme

::::
was

::::::::
reported

::
to

:::
be

:::::::::::
characterised

::
by

::::
over

:
4
:::::
times

::::::
higher

::::::::::::
computational

:::
cost

::::
than

::::::
upwind

:
(see Tablecaptionfor comments).

:
4

:::::::
therein).

::
In

:::
the5

::::
latter

:::::
case,

:
a
:::::
direct

::::::::::
comparison

::
is

::::::::
hindered

:::
by

::::::::::
signi�cantly

:::::::
different

:::::::
stability

:::::::::
constraints

::
on

:::
the

::::::::
timestep.

:
As canbe seenfrom the table, the in�nite gaugeoption

not only improvesresult, but simpli�es equation,making
numericsfaster.Three-passMPDATA with third orderterms10

included is slightly faster than the variant with both the
in�nite-gaugeandnon-oscillatoryoptionsenabled.

Although the discussed problem is one-dimensional,its

:
a

:
computationally ef�cient and

::
an

:
accurate solution is

essential, as it typically needs to be solved at every15

timestep and grid point of a three-dimensional cloud model.

:::::
While

:::
the

::::::::
reported

::::::::::::::::
upwind-normalised

:::::
wall

:::::
times

:::::
give

:
a

:::::
rough

:::::::::
estimation

:::
of

:::
the

:::::
cost

:::::::
increase

::::::::::
associated

::::
with

::
a

::::::::
particular

::::::::
MPDATA

::::::
option,

:::
the

:::::
actual

:::::::
footprint

:::
on

:
a

:::::::
complex

::::::::
simulation

:::::::
system

:::
will

::::::
depend

:::
on

::::::::
numerous

:::::::::::::
implementation20

:::::
details

::::::::
including

::::::::::::
parallelisation

:::::::
strategy.

:

3 Spectral-spatial advection with MPDATA
(single-column test case)

3.1 Problem statement

In multidimensional simulations in which the considered par-25

ticle number density �eld is not only a function of time and
of particle size, but also of spatial coordinates, there are sev-

eral additional points to consider applying MPDATA to the
problem.

First, in the context of atmospheric cloud simulations, ow-30

ing to the strati�cation of the atmosphere,a
::
the usual practice

is to reformulate the conservation problem in terms of spe-
ci�c number concentration being de�ned as the number of
particlesnp (cf. eq. (1.1)) divided by the mass of air (com-
monly the dry air) effectively resulting in multiplication of35

theG factor (cf. eqs (1.2)-(2.1)) by the (dry) air density. This
translates to maintaining a constant speci�c number concen-
tration (summed across allparticle size

::::::::::
particle-size cate-

gories) along the vertical dimension despite
::
the

:
presence of

an air density gradient. Ordinary particle volume concentra-40

tion would vary due to variable density of air (i.e., expansion
of air along the vertical coordinate). Note

:
, however, that in

eq. (2.1) it is assumed that theG factor does not vary in time.
Second, even with a single spatial dimension (single-

column setup), the coupled size-spectral/spatial advection45

problem is two-dimensional. This is where the inherent mul-
tidimensionality of MPDATA (also, the "M" in MPDATA)
requires further attention. The one-dimensional antidiffusive
formulæ discussed in sections 2.4-2.9 need to be augmented
with additional terms representing cross-dimensional contri-50

butions to the numerical diffusion. For
::
an

:
introduction, see

e.g. Section 2.2 in?
:::::::::::::::::::::::::::::
Smolarkiewicz and Margolin (1998), for

original derivation see Smolarkiewicz (1984), for a recent
work discussing the interpretation of all terms in the antidif-
fusive velocity formulæ, including cross-dimensional terms,55

see Waruszewski et al. (2018).
Third, in any practical application where the drop size evo-

lution is coupled with
::
the

:
water vapour budget (and hence

with supersaturation evolution), it is essential to evaluate the
total change in mass of liquid water due to condensation60

which is then to be used to de�ne the source term of the water
vapour �eld (and in latent heat budget representation). Note-
worthy, knowing the difference of values at n+ 1 and at n
timesteps of the advected speci�c number concentration �eld
is not suf�cient to evaluate the vapour sink/source term. This65

is because only the �uxes across the size-spectral dimension
need to be accounted for (note that the �uxes in all MPDATA
iterations need to be summed up).

Thereareseveralrecentpapers
::::::
Several

:::::
recent

::::::
papers

:::
are

highlighting the need for scrutiny when comes to the in-70

terplay of size-spectral and spatial advection and the asso-
ciated numerical broadening (Morrison et al., 2018; Her-
nandéz Pardo et al., 2020; Lee et al., 2021). In the following
subsection, a set of single-column simulations is presented
and discussed depicting

:::
the performance of MPDATA in a75

size-spectral/spatial advection problem coupled with vapour
advection and supersaturation budget. The simulations are
performed using a commonly employed MPDATA setting
with only the non-oscillatory option enabled, and the dis-
cussion is focused on the sensitivity of the results to spatial,80

spectral and temporal resolution, as well as to the effect of
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performing one or two corrective passes of MPDATA (two
or three iterations, respectively).

3.2 Test case de�nition

The test setup is based on the single-column KiD warm
case introduced in Shipway and Hill (2012). This prescribed-5

�ow framework has been further used, e.g., in Field et al.
(2012) (mixed-phase scenario), in Hill et al. (2015) (warm
rain scenario)and,

:
in Gettelman and Morrison (2015) (both

pure-ice, mixed-phase and warm-rain scenarios)
:::
and

::
in

::
the

:::::::::::::::
Hill et al. (2021)

:::::::::::
microphysics

::::::
models

::::::::::::::
intercomparison10

::::
study

::::::
(warm

::::
rain

::::::::
scenario). Here, condensation is the only

microphysical process considered.
The simulated3:2 km height column of air is described

by: a constant-in-time piecewise-linear potential temperature
pro�le (297:9 K from the ground to the level of740m, lin-15

early decreasing down to312:66 K at 3260 m); constant-
in-time hydrostatic pressure and density pro�les computed
assuming surface pressure of1007 hPa; piece-wise linear
initial vapour mixing ratio pro�le (15 g kg� 1 at ground,
13:8 g kg� 1 at 740 m and 2:4 g kg� 1 at 3260 m); and20

a constant-in-space but time-dependent vertical momentum
de�ned by� dw(z; t) = � dw1 sin(�t=t 1)(1� H (t� t1)) where
H is the Heaviside step function,w is the vertical velocity,
w1 = 2 :5 m s� 1, � d is the hydrostatic dry density pro�le and
t1 = 600 s. Note that the vertical velocity thus differs from25

the original KiD setup wherew is held constant, the change is
motivated by the aim of maintaining the non-divergent �ow
�eld condition.

The advection is thus solved for two scalar �elds: (i) a one-
dimensional �eld representing vertical variability of water30

vapour mixing ratio (mass of vapour per mass of dry air) and
(ii) a two-dimensional �eld representing vertical and spectral
variability of liquid particle speci�c concentration (number
of particles per mass of dry air). The spectral coordinate is
set to particle radius (p = r ) and the bins are laid out uni-35

formly (x = r ) over a range of1 � m to 20:2 � m. Notewor-
thy, this results in the size-spectral component of the advec-
tion velocity being divergent (while the vertical component
is non-divergent).

The initial condition does not feature supersaturation any-40

where in the domain. The upward advection of water vapour
causes supersaturation to occur and trigger condensation.
The size-spectral velocity is de�ned as in the box-model
test case (cf. eq. (2.3)) but with supersaturation being time-
dependent and derived from the values of vapour mixing ra-45

tio, temperature and pressure at a given level. Note that the
temperature pro�le is constant in time and the test case does
not feature representation of latent heat release effects, only
the ambient air/particle vapour budget is accounted for by
subtracting the amount of condensed water from the vapour50

�eld in each timestep,prior to performing
:::::
before

:::::::::
performing

::
the

:
subsequent step ofadvetion

::::::::
advection on the vapour mix-

ing ratio �eld.

The domain is initially void of liquid water and the only
source of it is through the boundary condition in the spectral55

dimension speci�ed as follows:

 � 1 = max

 

0;NCCN �
X

i

 

!

(3.1)

with i = � 1 denoting the halo grid cell at the left edge of
the spectral domain on a given vertical level and the sum-
mation spans all bins at a given level (excluding halo grid60

cells). The �ux across the domain boundary in the spectral
dimension represents

::
the

:
cloud droplet activation. The �ux

is dependent, through eq. (2.3) on the supersaturation at a
given level, and on theNCCN parameter representing a max-
imal number of activated droplets (per unit mass of dry air).65

In the performed simulations,NCCN was set to500mg-1. For
discussion of other ways to represent activation in bin micro-
physics models, see, e.g., Grabowski et al. (2011).

The simulations are run for15 minutes out of which the
�rst 10 involve non-zero vertical velocity (ast1 = 600 s). 70

3.3 Discussion of results

Figure 10 depicts qualitatively how MPDATA performs with
the single-column simulation depending on the number of
MPDATA iterations employed. Presented simulation, here-
inafter referred to as base resolution case, is performed with75

the liquid water dynamics resolved on a32� 32 grid with
:
a

vertical grid step� z = 100 m, size-spectral grid step� r =
0:6 � m and timestep� t = 0 :25s. The two-dimensional liq-
uid water mixing ratio grid is rendered with

:
a shaded array of

histogram bars. The vertical axis corresponds to the advected80

quantity: spatio-spectral number density divided by the dry
density of air. Histogram bars withvalue

:::::
values of less than

1% of the vertical axis range (1%� 2 m-1mg-1� m-1) are not
plotted for clarity. Presented plots are aimed at intuitively
portraying the model state and the extent to which

::
the

:
intro- 85

duction of subsequent MPDATA corrective iterations coun-
teracts the numerical spectrum broadening. Note that besides
the depicted liquid water mixing ratio, the model state con-
sists as well of a one-dimensional vapour mixing ratio vector.

In Figure 11, the base resolution case is depicted with plots90

constructed following the original methodology from Ship-
way and Hill (2012) (as in Fig. 1 therein). Thegray-scale

::::::::
grey-scale

:
maps depict the evolution in time and vertical di-

mension of: water vapour mixing ratioql , supersaturation
S and the droplet spectrum relative dispersiond. The adja- 95

cent pro�le plots depict the vertical variability of the mapped
quantity at four selected times.

Notwithstanding the highly idealised and simpli�ed
modeling

::::::::
modelling

:
framework employed herein, one may

attempt
:
a comparison with pro�les obtained from both in-100

situ aircraft measurements (Arabas et al., 2009, pro�les of
d in Fig. 1 therein) and detailed three-dimensional simu-
lations (Arabas and Shima, 2013, pro�les ofS and liq-
uid water content in Fig. 2-4 therein) inspired by the same
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Figure 10.Snapshots of the advected two-dimensional liquid water �eld att = t1 = 600s for three different number of iterations settings of
MPDATA (with the non-oscillatory option enabled).

RICO �eld campaign (Rauber et al., 2007) as the single-
column setup of Shipway and Hill (2012). Theresemblance
remains

::::::::::
comparison

::::::
merely

:::::::
con�rms

:::
that

:::
the

::::::
chosen

::::
test

:::
case

:::::
covers

:::
the

:::::::::
parameter

:::::
space

:::::::
relevant

::
to

:::
the

:::::::
studied

:::::::
problem.

:::::::::::
Resemblance

:::::::
remains,

::
at

:::::
most, qualitative, as expected given5

the stark simplicity of the KiD framework.
:::::::::::
Interestingly,

:::
the

:::::::
parabolic

:::::::
vertical

::::::
pro�le

::
of

:::
the

:::::::
relative

:::::::::
dispersion

:::::::
obtained

:::::
herein

:::::
was

::::
also

::::::::
reported

:::
in

:::::::::::::::::::::
Lu and Seinfeld (2006)

::
for

::::::::::::::
bin-microphysics

:::::::::::::::
three-dimensional

::::::::::
simulations

:::
of

::::::
marine

::::::::::::
stratocumulus.

:::
In

:::
the

::::::::::
discussion

:::
of

::::::
�gures

::
2, yet it is10

arguably congruousenough to con�rm that the chosen
test case covers the parameter space relevant to the
studied problem

:
3

::
&

::
6

:::::::
therein,

:::
it

::::
was

:::::::::::
hypothesised

::::
that

::
the

:::::::::
parabolic

::::::
shape

:::
is

::
a
:::::::::

signature
:::

of
:::::::::::

entrainment
:::

as

:::
well

:::
as

:::::::::::::::
updraft-downdraft

:::::::::::
interactions,

:::::
none

::
of

::::::
which

:::
are15

:::::::::
represented

::
in

:::
the

:::::::::
kinematic

:::::::::
framework

::::::::
employed

::::::
herein.

The liquid water pro�les depicted in the top row of Fig. 11
reveal that the cloud structure developed within the �rst
ca. 9 minutes of the simulation is later maintained, with the
pro�les at t = 9 min. andt = 12 min. being virtually indis-20

tinguishable. Middle row plots of supersaturation pro�les de-
pict that the considered simulation setup enables to capture

:
of

the characteristic supersaturation maximum just above cloud
base. Furthermore, it is evident that the corrective iterations
of MPDATA in�uence the maximal supersaturation values.25

Noteworthy, this results in different timestep (Courant num-
ber) constraints depending on the number of iterations used
because the spectral velocity is a function of supersaturation.

:::::
There

::
is

::
a
:::::::::

cloud-top
:::::::::

activation
:::::::

feature
::::::

hinted
:::

in
:::

all

::::
three

:::::::
panels

::
in

:::::
Fig.

:::
10

::::
as

::::
well

:::
as

::::::::::
indirectly

:::
in

:::
the30

::::::::::::
supersaturation

::::::::
pro�les

:::
in

::::
Fig.

::::
11.

:::::
The

::::::::::::
representation

::
of

:::::::::
activation

::::::
above

::::::
cloud

::::::
base

:::
is

::::::::
sensitive

:::
to

:::::
both

::::::::
numerical

::::::
details

:::
of

:::::::
vapour

::::
and

::::
heat

::::::::
transport

::::::::
re�ected

::
in

::::
the

:::::::::
diagnosed

::::::::::::::
supersaturation

::::
as

:::::
well

:::
as

:::
to

::::
the

::::::::::
assumptions

:::::::
behind

:::::
the

:::::::::
activation

:::::::::::
formulation

::::::
itself 35

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see e.g. discussion of Fig. 2 and Fig. 6 in Slawinska et al., 2012, and references therein)

:
.

:::::
Given

::::
the

:::::::::
simpli�ed

::::::::
treatment

:::
of

:::::::::
activation

::::::
de�ned

:::
by

::
eq.

::::::
(3.1),

::::::::
together

:::::
with

::::
the

::::::::::
unphysical

::::::::::
assumption

:::
of

:::::::
constant

::::::::::
temperature

:::::::
pro�le,

:::
the

:::::
only

::::::::::
conclusion

::::
here

::
is

:::
that

::::
the

:::::::::::
visualisation

:::::::
method

:::::
used

::
in

:::::
Fig.

:::
10

::
is

::::
apt

::
to 40

:::::::
highlight

::::
this

:::::::
feature.

::::::::::
Noteworthy,

:::::
what

::
is

:::::::::
consistent

::::
with

::
the

::::::::::
differences

:::
in

:::::::::::::
supersaturation

::::::
values

:::::::
between

:::::::
upwind

:::
and

::::::::
MPDATA

:::::::::
solutions,

:::
the

:::::
effect

::
is

::
in

:::
fact

:::::::::::
unnoticeable

::
in

::
the

::::
case

:::
of

::
the

:::::::
upwind

:::::::
solution

::::::::
presented

::
in

::::
Fig.

:::
10.

The bottom row in Fig. 11 depicts the relative dispersion45

de�ned and computed as in section 2.11, discarding levels
where the total droplet number mixing ratio summed over
all bins on a level is below 5% ofNCCN. Narrowing of the
spectrum with

:
a
:
height belowz = 1 :5 km depicted by de-

creasing values ofd is a robust feature. Minimal values ofd 50

vary visibly depending on the number of MPDATA iterations
employed.

In order to
::
To

:
provide insight into the sensitivity of the

results to temporal, spatial and spectral resolution, Fig. 12
presents the relative dispersion pro�les att = t1 = 10 min. 55

for several resolution settings. In the background of the �g-
ure, there are three axes plotted pointing the directions in
which the �gure panels can be explored to reveal the de-
pendence on: the vertical spatial spacing� z (left-to-right),
the spectral spacing� r (bottom-to-top), and the timestep60

(back-to-foreground). The base resolution case is plotted at
the intersection of the background axes. Note that besides
the back-to-foreground sequence of plots where all but the
timestep settings is kept equal, the timestep also varies with
the grid settings toful�ll schemestability constraints

::::
ful�l 65

::::::
scheme

:::::::
stability

::::::::
constraint.
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MPDATA iterations: 1 MPDATA iterations: 2 MPDATA iterations: 3

Figure 11.Single-column simulations depicted with three selected variables: liquid water mixing ratioql (top row), supersaturationS (middle
row) and relative dispersiond (bottom row); for three settings of the iteration count in MPDATA (one iteration corresponding to the basic
upwind scheme, left column). Each of nine datasets (three iteration settings, three variables) is plotted with agray-scale

::::::::
grey-scale time vs.

altitude map (left panels withcolor
:::
the

:::::
colour scale above) and a set of four pro�les (right panels). Pro�les are plotted fort = 3 min. (dotted),

6 min. (dashed),9 min. (solid), & 12 min. (dash-dot), with vertical lines of corresponding line style plotted at given times in the left panels.
For plotting, the model state is resampled by averaging in the time dimension to reduce the number of plotted steps by a factor of50 (from
3600down to72).

The dependence on the temporal resolution, as gauged
by comparing the base resolution case with cases with the
timestep halved (� t = 125 ms; background) and doubled
(� t = 500 s; foreground), is barely observable. This is in
general agreement with Morrison et al. (2018) and Her-5

nandéz Pardo et al. (2020) where the dependence on timestep

is shown to be much smaller than on the spatial or spectral
resolution.

The dependence on
:::
the spectral resolution is captured and

clearly manifested at the lowest spectral resolution where10

the minimal spectral dispersiond drops by ca. 0.1 when de-
creasing� r = 1 :2� m down to � r = 0 :3� m. Little further
change can be observed by re�ning the resolution down to
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Figure 12. Pro�les of relative dispersiond for a set of temporal, spatial and spectral resolution settings (� r , � z and� t values given in
labels above each plot). Each panel depicts results for three different MPDATA iteration counts (one iteration corresponding to the basic
upwind scheme). Pro�les plotted fort = t1 = 10 min.

� r = 0 :15� m. Focusing on the minimal values ofd for a
given pro�le, in general,

:
the lower the spectral resolution, the

more profound the effect of introducing corrective iterations
of MPDATA. In most cases, applying even a single corrective
step (i.e., 2 iterations) results in halving of the minimal val-5

uesd as compared to
:::
the upwind solution (i.e., 1 iteration).

The spatial resolution setting� z signi�cantly alters the re-
sultsparticularlynear,

::::::::::
particularly

::::
near

:::
the

:
cloud base. The

values ofd at the lower half of the presented pro�le (i.e.,
ca. belowz = 1 km) drop from over 0.3 down to around10

0.1 when re�ning the resolution from� z = 200 m down to
� z = 25 m.

4 Conclusions

The study was focused on the MPDATA family of nu-
merical schemesthat iteratively apply

:::
and

:::
its

:::::::::
application 15

::
to

:::
the

::::::::::::
size-spectral

::
as

:::::
well

:::
as

:::::::::::::
spatio-spectral

::::::::
transport

:::::::
problem

::::::
arising

:::
in

:::::::
models

:::
of

:::::::::::::
condensational

:::::::
growth

::
of
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::::
cloud

:::::::::
droplets.

:::::::::
MPDATA

:::::::::
iteratively

:::::::
applies

:
the upwind

algorithmreducing the ,
::::

�rst
:::::

with
::::

the
:::::::
physical

::::::::
velocity,

::::::::::
subsequently

::::::
using

:::::::::::
antidiffusive

::::::::::
volocities.

:::
As

::
a

::::::
result,

::
the

:::::::::
algorithm

::
is

:::::::::::
characterised

:::
by

:::::::
reduced

:
numerical diffu-

sion while maintaining the salient features of the underly-5

ing upwind scheme such as conservativeness and positive-
de�niteness.

Several options introduced to MPDATA following its
original formulation were explored here in the context
of condensationalgrowth problems. This included the10

procedureto introduce coordinatetransformations(e.g. ,
to a mass-doublinggrid) and the variants of MPDATA
including:

::
In

:::::::::
literature,

:::
the

:::::::::
derivation

::::
and

::::::::::
discussion

::
of

::::::::
MPDATA

:::::::
variants

::::
are

::::::
spread

:::::::
across

:::::::::
numerous

:::::::
research

:::::
papers

:::::::::
published

:::::::
across

:::::::
almost

:::::
four

::::::::
decades,

::::
and

:::
in15

::::
most

:::::
cases

::::::::
focused

:::
on

:::::::::::::::
multidimensional

:::::::::::::
hydrodynamics

::::::::::
applications.

::
It

::::
was

:::
the

::::
aim

:::
of

:::
this

::::::
study,

::
to

::::::::
highlight

:::
the

:::::::::::
developments

::::
that

::::::::
followed

:::
the

:::::::
original

::::::::::
formulation

::
of

:::
the

::::::::
algorithm,

::::
and

::
to

:::::::
highlight

::::
their

:::::::::::
applicability

::
to

:::
the

:::::::
problem.

::
To

::::
this

::::
end,

::
it

::::
was

:::::::
shown

::::
that

:::
the

:::::::::::
combination

:::
of

::::
such20

::::::
features

:::
of

::::::::
MPDATA

:::
as

:::
the

:
in�nite-gauge, non-oscillatory

, DPDCand third-order-terms options.
Furthermore,an exampleapplication of the MPDATA

schemeto addressthe two-dimensionaladvectionproblem
arising from consideration,

::::::::
together

::::
with

::::
the

:::::::::
application25

::
of

::::::::
multiple

:::::::::
corrective

:::::::::
iterations

:::::
offer

::
a

::::::
robust

:::::::
scheme

:::
that

::::::::
grossly

:::::::::::
outperforms

:::::
the

:::::::
almost

::::::::::::::
quadragenarian

::::
basic

::::::::::
MPDATA.

::::
The

:::::::::
procedure

:::
to

:::::::::
introduce

:::::::::
coordinate

:::::::::::::
transformations,

:::::
e.g.,

:::
to

::
a
::::::::::::::

mass-doubling
::::

grid
:::

in
::::

the

::::::
context

:
of size-spectral/spatial evolution of the particle30

density in a single-column model was presented.The
developed setup constitutes a Python reimplementation
of the condensation-onlybin-microphysics

:::::::
transport

::::
was

:::::::
detailed.

::
In

:::
the

:::::
case

:::
of

:::
the

:
single-columnvariant of the KiD35

framework introduced in Shipway and Hill (2012). The
simulationsfeature

:::
test

:::::
case,

:::
the

::::::::::
simulations

:::::::
featured

:
cou-

pling between droplet growth and supersaturation evolution.
Furthermore,the multidimensionalcharacterof MPDATA
stemming from involvement of cross-dimensionalterms40

in antidiffusive velocity formulæ is exploited. Presented
analysisis focusedon thesensitivityto spatial,spectraland
temporalresolutionandhints that, for the caseconsidered,
the

:::
The

:
cloud droplet spectrum relative dispersion is

signi�cantly in�uenced by numerical diffusion pertinent to45

both spectral and vertical advection. Focusing on the lev-
els corresponding to the region of maximal liquid water
content (ca. betweenz = 1 km and 2 km

::
for

::::
the

::::
case

:::::::::
considered), itis evident

:::
was

::::::
shown

:
that application of even

a singleMPDATA correctiveiteration
::::::::
corrective

:::::::
iteration

::
of50

::::::::
MPDATA robustly reduces (in most cases more than halves)
the spectral width. In agreement with conclusions drawn
from single-column simulations in Morrison et al. (2018) and
Lee et al. (2021), within the range of explored grid settings,
the vertical resolution has

::
the

:
most profound effect on the55

overall characteristics of the spectrum width pro�le as it sig-
ni�cantly in�uences the just-above-cloud-base evolution of
the spectral width(muchlessin�uence above).

In literature,the derivationand discussionof MPDATA
variantsis spreadacrossnumerousresearchpaperspublished 60

acrossalmost four decades,and in most casesfocusedon
multidimensionalhydrodynamicsapplications.It was the
aimof thisstudy,to highlightthedevelopmentsthatfollowed
the original formulation of the algorithm,and to highlight
their applicability to the problem. To this end, it was 65

shownthatcombinationof suchfeaturesof MPDATA asthe
in�nite-gauge,non-oscillatoryandthird-order-termsoptions,
togetherwith applicationof multiple corrective iterations
offer a robustschemethat grosslyoutperformsthe almost
quadragenarianbasicMPDATA. 70

This study outlined the applicability of the PyMPDATA
high-performancePython implementation of MPDATA
for exploring the numerical aspectsof the representation
of condensationalgrowth in bin microphysics schemes.
Extensibility of PyMPDATA, in particular towards 75

support for higher-dimensionalproblems, was among
the key motivating factors for development of the
package in Python/Numba.This opens up the path to
higher-dimensionalMPDATA solvers – a development
alreadyunderway.A four-dimensionalMPDATA solver (to 80

the authors' knowledgenot publicly releasedor discussed
in literature yet) would be capableof integrating the bin
micrphysicsdynamicsin threespatialdimensions.

Code availability. The calculations are performed using Python
with a new open-source implementation of MPDATA: PyMPDATA85

(Bartman et al., 2021). In terms of numerics, PyMPDATA closely
follows libmpdata++ (Jaruga et al., 2015).

All of presented �gures and tables can be recreated in interactive
notebooks “in the cloud” using the mybinder.org or Colab plat-
forms. To launch the notebooks, follow the links: 90

https://github.com/atmos-cloud-sim-uj/PyMPDATA-examples/
tree/main/PyMPDATA_examples/Olesik_et_al_2020 and
https://github.com/atmos-cloud-sim-uj/PyMPDATA-examples/
tree/main/PyMPDATA_examples/Shipway_and_Hill_2012. The
notebooks are part of the PyMPDATA-examples Python package.95

Both PyMPDATA and PyMPDATA-examples are licensed under
the GNU General Public License 3.0, are available on the PyPI.org
Python package repository, and are additionally enclosed as an
electronic supplement to this paper.

The single-column framework is a Python reimplementation100

of the open-source KiD code available at https://github.com/
BShipway/KiD.

Appendix A: Convergence analysis

To assess the spatial and temporal convergence of the numer-
ical solutions presented above, a convergence test originating105

from Smolarkiewicz and Grabowski (1990) is used. For the
analysis the following truncation-errorL 2 measure is used
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Figure A1. Convergence plot for the upwind scheme (cf. Fig. 1).
Angle in the polar plot corresponds to the Courant numberC; the
distance from origin denotes the number of grid boxesnx , see eq.
(A2). Gray

::::
Grey dots indicate data point locations – parameter val-

ues for which computations were made.Colors
::::::
Colours and isolines

depict the error measure values (interpolated from the data point lo-
cations), see eq. (A1).

(e.g., Smolarkiewicz, 1984):

ErrL 2 =
1
T

s
X

i

�
 numerical

i �  analytical
i

� 2
=nx: (A1)

As a side note, it is worth pointing out that for the chosen
coordinates

�
p = r 2;x = r 2

�
, the coordinate transformation

term is equal to
::
the

:
identity, so there is no need for including5

theG factor into the computed error measures. In
::
the general

case, convergence will depend on the grid choice and to ac-
count for that one mayused

::
use

:
a modi�ed measure as given

in Smolarkiewicz and Rasch (1991, eq. 24 ).
To explore the convergence, the error measures are com-10

puted for 7 different linearly spaced values ofC between
0:05 and 0:95, and nx 2

�
27;28;29;210;211;212;213;214

	

resulting in 56 simulations for each presented combination
of options.

As proposed in Smolarkiewicz and Grabowski (1990), vi-15

sualization of the results is carried out on polar plots with
radius� and angle� coordinates de�ned as follows:

� = ln 2

�
1

nx

�
+ const; � = C

�
2

; (A2)

where� was shifted by a constant so that the highest resolu-
tion grid corresponds to� = 1 .20

Figures A1-A8 depict the convergence rates and are in-
tended for comparison with analogously constructed plots in

Figure A2. Convergence plot for basic2-pass
:::::::
two-pass MPDATA

(cf. Fig. 3). See caption of Fig. A1 for
::
the

:
description of plot ele-

ments.

Figure A3. Convergence plot for the in�nite gauge MPDATA
(cf. Fig. 4). See caption of Fig. A1 for

:::
the description of plot el-

ements.
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Figure A4. Convergence plot for the in�nite gauge non-oscillatory
variant of MPDATA (cf. Fig. 5). See caption of Fig. A1 for

:::
the de-

scription of plot elements.

Figure A5. Convergence plot for the DPDC variant with in�nite
gauge and non-oscillatory corrections (cf. Fig. 6). See caption of
Fig. A1 for

:::
the description of plot elements.

Figure A6. Convergence plot for the three-pass MPDATA
(cf. Fig. 3). See caption of Fig. A1 for

:::
the description of plot el-

ements.

Figure A7. Convergence plot for the three-pass MPDATA withthird
order

::::::::
third-order

:
terms (cf. Fig. 7). See caption of Fig. A1 for

::
the

description of plot elements.


