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Abstract. This work discusses the numerical aspects of rep-
resenting the diffusional (condensational) growth in par-
ticulate systems such as atmospheric clouds. It focuses
on the Eulerian modeling approach

::::::::
modelling

:::::::::
approach,

:
in

which the evolution of the probability density function de-5

scribing the particle size
:::::::::
particle-size

:
spectrum is carried

out using a fixed-bin discretization
:::::::::::
discretisation (so-called

“bin” microphysics). The numerical diffusion problem in-
herent to the employment of the fixed-bin discretization

:::::::::::
discretisation in the numerical solution of the arising trans-10

port problem is scrutinized. Focus
:::::::::
scrutinised.

::::
The

:::::
focus

is on the applications of MPDATA family of numerical
schemes

::
the

:::::::::::::::
Multidimensional

::::::::
Positive

:::::::
Definite

:::::::::
Advection

::::::::
Transport

:::::::::
Algorithm

:::::::::
(MPDATA). Several MPDATA variants

are explored including : infinite-gauge, non-oscillatory, third-15

order-terms and recursive antidiffusive correction (double
pass donor cell

::::::::::
Double-Pass

::::::::::
Donor-Cell, DPDC) options.

Methodology for handling coordinate transformations as-
sociated with both particle size distribution

:::::::::
particle-size

:::::::
spectrum

:
variable choice and numerical grid layout are20

expounded. The study uses PyMPDATA - a new open-
source Python implementation of MPDATA. Analysis of
the performance of the scheme for different discretization

:::::::::::
discretisation parameters and different settings of the algo-
rithm is performed using: (i) an analytically solvable box-25

model test case, and (ii) the single-column
::::::::
kinematic

:::::
driver

:
(“KiD”

:
) test case in which the size-spectral advection due

to condensation is solved simultaneously with the spatial ad-
vection in the vertical physical coordinate, and in which the
supersaturation evolution is coupled with the droplet growth30

through water mass budget. The single-column problem in-
volves

:
a numerical solution of a two-dimensional advection

problem (spectral and spatial dimensions). The discussion
presented in the paper covers spatial (i.e. size-spectral) ,

:::::
spatial

:
and temporal convergence, computational cost, con- 35

servativeness and quantification of the numerical broadening
of the particle size

:::::::::
particle-size

:
spectrum. The box-model

simulations demonstrate that, for the problem considered,
even a tenfold decrease of the spurious numerical spectral
broadening can be obtained by a proper

:
an

:::
apt

:
choice of the 40

MPDATA variant (maintaining the same spatial and tempo-
ral resolution), yet at an increased computational cost. Anal-
yses using the single-column test case reveal that the width
of the droplet size spectrum is affected by numerical diffu-
sion pertinent to both spatial and spectral advection. Appli- 45

cation of even a single corrective iteration of MPDATA ro-
bustly decreases the relative dispersion of the droplet spec-
trum, roughly by a factor of two at the levels of maximal
liquid water content.

1 Introduction 50

1.1 Motivation and outline

The focus of this paper is on the problem of predicting
the particle size

::::::::::
particle-size

:
evolution for a popula-

tion of droplets undergoing diffusional growth. Embracing
continuous description of the particle size

::::::::::
Representing

:::
the 55

::::::::::
particle-size spectrum using a number density function, the
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problem can be stated using a population-balance equa-
tion expressing conservation of

::
the

:
number of particles.

Herein, the numerical solution of the problem using the
MPDATA family of finite difference schemes originating in
Smolarkiewicz (1983, 1984) is discussed. MPDATA stands5

for Multidimensional Positive Definite Advection Transport
Algorithm and is a higher-order iterative extension of the
forward-in-time upwind scheme.

MPDATA features a variety of options allowing to pick an
algorithm variant appropriate to the problem at hand. This10

work highlights the importance of
::
the

:
MPDATA algorithm

variant choice for the resultant spectral broadening of the
particle size spectrum.

::::::::::
particle-size

:::::::::
spectrum.

:
The term spectral broadening

refers to the increasing width of the droplet spectrum during15

the lifetime of a cloud, which may be associated with both
physical mechanisms (mixing, turbulence) as well as spuri-
ous artifacts

:::::::
artefacts

:
stemming from the employed numeri-

cal solution technique.
Cloud simulations with

:
a detailed treatment of droplet mi-20

crophysics face a twofold challenge in prognosing
:::::::
resolving

the droplet spectrum width. First, it is challenging to model
and numerically represent the subtleties of condensational
growth (e.g., Arabas and Shima, 2017; Yang et al., 2018),
even more so when considering the interplay between par-25

ticle population dynamics and supersaturation fluctuations
(e.g., Jeffery et al., 2007; Abade et al., 2018). Second, the
discretization

:::::::::::
discretisation strategies employed in represent-

ing the particle size
:::::::::
particle-size

:
spectrum and its evolution

are characterized
:::::::::::
characterised by inherent limitations which30

constrains
:::::::
constrain the fidelity of spectral width predictions

(e.g., Arabas and Pawlowska, 2011; Morrison et al., 2018).
Finally, corroboration of spectral width estimates from both
theory and modeling

::::::::
modelling

:
against experimental data

faces the problems of instrumental broadening inherent to the35

measurement techniques (e.g. Devenish et al., 2012, sec. 3.2)
and the problem of sampling volume choice (e.g., Kostinski
and Jameson, 2000).

The width of the spectrum plays a key role in the
determination of both the droplet collision probabilities40

Grabowski and Wang (2013)
::::::::::::::::::::::::
(Grabowski and Wang, 2013)

and the characteristics relevant for radiative-transfer

:::::::
radiative

:::::::
transfer

:
(Chandrakar et al., 2018). These in turn

are reflected in parameterisations of cloud processes in
large scale

:::::::::
large-scale

:
models. Taking climate timescale45

::::::::::::::
climate-timescale

:
simulation as an example, the represen-

tation of clouds remains the largest source of uncertainty
there (Schneider et al., 2017). The parameterisations used in
climate models are developed based on smaller-scale simu-
lations involving particle size-spectrum dynamics

:::::::
resolving50

::::::::::
particle-size

:::::::::
spectrum

:::::::::
evolution. Consequently, it is

of high interest to disentangle the size effects on the
droplet spectrum that come from the exact solution of the
governing equation or are

::::::
quantify

::::
the

::::::
extent

::
to
::::::

which

::
the

:::::::::::
droplet-size

::::::::
spectrum

::::::
width

::
is

:
a consequence of the55

numerical discretization (i.e. numerical diffusion)
::
(a)

:::
the

::::::
physics

:::
of

:::::::
particle

:::::::
growth

:::::::::
embodied

:::
in

::::
the

:::::::::
governing

::::::::
equations

::::
and

:::
(b)

::::
the

::::::::::::
discretisation

::::
and

::::
the

:::::::::
associated

::::::::
numerical

::::::::
diffusion.

The following introductory subsections start with a litera- 60

ture review of applications of finite-difference schemes, and
MPDATA in particular,

::::::::
MPDATA

:
to the problem of conden-

sational growth of population of particles.

:::::::
particles.

:
Section 2 focuses on a simple box-model test

case and serves as a tutorial on MPDATA variants (limited to 65

one-dimensional homogeneous advection of a positive-sign
signal). It is presented with the aim of gathering

::
to

:::::
gather

::
the

:
information that is scattered across works focusing on

more complex computational fluid dynamics applications of
MPDATA. Example simulations employing an analytically 70

solvable test case pertaining to the evolution of cloud
droplet size spectrum in a cumulus cloud is used to depict
the effects on numerical broadening from enabling the
discussed algorithm variants. An analysis of the compu-
tational cost of different algorithm variants is carried out 75

and corroborated with previously published data. While
comprehensive from the point of view of the considered
problem of diffusional growth, the presented material merely
hints

::
at

:
the versatility of the algorithm. For a proper review

of
:::
the MPDATA family of algorithms highlighting the multi- 80

dimensional aspects and its multifaceted applications, see
?Smolarkiewicz (2006); Kühnlein and Smolarkiewicz (2017)

::
we

::::::::
refer

:::::
to
:::::::::::::::::::::::::::::::::

Smolarkiewicz and Margolin (1998)

:
,
::::::::::::::::::::::::::::::::::::::::::::

Smolarkiewicz (2006)
:::
and

:::::::::::::::::::::::::::::
Kühnlein and Smolarkiewicz (2017). 85

Section 3 covers
::
the

:
application of MPDATA for cou-

pled size-spectral and spatial advection in a single-column
kinematic setup from Shipway and Hill (2012). First, the
methodology to handle the spectral-spatial liquid water ad-
vection problem taking into account the coupling with the 90

vapour field is detailed. Second, the results obtained us-
ing different MPDATA variants are discussed focusing on
the measures of spectral broadening.

:::
title

::
=
:::::::::::

PyMPDATA

:::
v1:

::::::::::::::::
Numba-accelerated

:::::::::::::
implementation

::::::::::::
of1MPDATA

::::
with

::::::::
examples

::
in

::::::
Python,

:::::
Julia

:::
and

::::::
Matlab

:
, 95

Section 4 concludes the work with a summary of findings.
Appendix A contains convergence analysis based on re-

sults of multiple simulations using the embraced box-model
test case run with different temporal and spatial (size-
spectral) resolutions. 100

:::
All

:::::::::
presented

:::::::::::
simulations

::::
are

::::::::::
performed

:::::
with

::::
the

::::::::::
open-source

:::::::
package

::::::::::
PyMPDATA

::::::::::::::::::
Bartman et al. (2021)

:
.

1.2 Background

There exist two contrasting approaches for modeling

::::::::
modelling

:
the evolution of cloud droplet size

:::::::::
droplet-size 105

spectrum (see Grabowski, 2020, for a review): Eu-
lerian (fixed-bin) and the Lagrangian (moving-bin,

::::::::::::::
moving-sectional

::
or particle-based). The Lagrangian
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approach has the advantages of: (i) simplicity of formulation
(no need to define particle-level properties and processes as
gridded continuous fields), (ii) lack of discretization-related
artifacts such as numerical diffusion associated with
solving PDEs, (iii) facilitation of tracking multiple particle5

attributes such as the amount of solute required for modeling
activation. On the other hand, there are inherent challenges
in using the particles-based framework: (i) ensuring proper
sampling of physical and parameter space, (ii) handling
load-balancing in distributed memory environments,10

(iii) solvability of resultant stiff ODE systems. Overall, while
the Lagrangian methods are the focus of active research and
development (Grabowski et al., 2019)

::::::::::::::::::
(Morrison et al., 2020)

, the Eulerian schemes have been predominantly used
in large scale modeling (Khain et al., 2015), due to their15

consistency with the fluid advection dynamics description
and due to robust algorithms for representing particle
collisions

::::::::
large-scale

:::::::::
modelling

::::::::::::::::
(Khain et al., 2015).

Following Liu et al. (1997) and Morrison et al. (2018), the
earliest documented study employing the Eulerian numerics20

for condensational growth of a continuous size distribution
representing a population of particles is that of Kovetz
and Olund (1969)(whereas several earlier works.

:::::::
Several

:::::
earlier

:::::::
works,

:
starting with the seminal study of How-

ell (1949)utilized ,
:::::::

utilised
:
the Lagrangian approach). The25

numerical scheme proposed in Kovetz and Olund (1969,
eq. (10)) resembles an upwind algorithm being explicit in
time and orienting the finite-difference stencil differently for
condensation and evaporation.

Likely one
:::
One

:
of the first discussions of numerical broad-30

ening of the spectrum can
::::
likely

:
be found in Brown (1980)

where the numerical scheme from Kovetz and Olund (1969)
was improved in several ways, including

::
the

:
sampling of the

drop growth rate at the bin boundaries (as is done herein).
The study

::::::::::::
Brown (1980) also covers quantification of the er-35

ror of the method by comparisons to analytic solutions.
In Tsang and Brock (1982), the authors point out that up-

wind differencing is not suitable for aerosol growth calcula-
tions for

::
due

:::
to its unacceptable numerical diffusion. Note-

worthy, the study includes considerations of the Kelvin effect40

of surface tension on the drop growth (not considered herein,

:::
see

::::::::
discussion

:::
of

::
eq.

:::
2.3

::::::
below).

The first mention of an application of the MPDATA
scheme for the problem of condensational growth can be
found already in Smolarkiewicz (1984). The problem is45

given as an example where the divergent-flow option of the
algorithm may be applicable (see sect. 2.8 below).

In Tsang and Korgaonkar (1987), which is focused on
the evaporationof an “aerosol cloud”

:::::::::
evaporation, MPDATA

is used as a predictor step followed by a corrective step50

using a Galerkin finite element solver. In
:
two subsequent

studies from the same group (Tsang and Rao, 1988, 1990),
MPDATA is compared with

::
to other algorithms in terms of

conservativeness and computational cost. In Tsang and Rao
(1988), the basic 3-iteration MPDATA is

:::
was

:
used. Inter-55

estingly, it is noted there that “If the antidiffusion veloci-
ties are increased by some factor between 1.04 and 1.08,
use of [corrective iteration] only once can reduce 50% of
the computing time [...] without much sacrifice of accuracy”.
In conclusions

:::::::::
conclusion, the authors praise MPDATA for 60

providing narrow size distributions. At the same time, it
is

::::::
spectra.

:::::::::::::::::::
Tsang and Rao (1988) pointed out that MPDATA

performs worse than upwind
::
the

:::::::
upwind

::::::
scheme

:
in terms of

mean radius prediction accuracy
:::
the

::::::::
prediction

::::::::
accuracy

::
of

::
the

:::::
mean

::::::
radius. 65

The “Aerosol Science: Theory and Practice” book of
Williams and Loyalka (1991) contains a section (5.19) on
MPDATA (termed “Smolarkiewicz method”) within a chap-
ter focused

:::::::
focusing

:
on the methods of solving the dynamic

equation describing aerosol spectrum evolution. The basic 70

variant of MPDATA (Smolarkiewicz, 1983) is
:::
was

:
presented

with an outline of its derivation.
In Kostoglou and Karabelas (1995) and Dhaniyala and

Wexler (1996), the authors mention that MPDATA has the
potential to reduce errors in particle size computations. The 75

latter work
::
the

:::::::::
numerical

::::::::
diffusion

::
as

::::::::
compared

:::
to

::::::
upwind

::
in

::
the

:::::::
context

::
of

::::::
particle

::::
size

::::::::
evolution

::::::::::
calculations.

::::
The

:::
first

lists high computational cost among drawbacks in using the
algorithm that led to discarding the scheme from the pre-
sented comparison. 80

In Morrison et al. (2018), a comparison of different nu-
merical schemes for

:::
the

:
condensational growth problem

is performed. Both fixed-, and moving-bin approaches are
compared, including the non-oscillatory variant of MP-
DATA (referred to as MPDG therein). MPDATA is reported 85

to produce
::::
more

:
significant numerical diffusion and spec-

tral broadening relative to
::::
than

:
all other methods. Intrigu-

ingly, as can be seen in Fig. 7 therein, the broad spec-
trum in the results obtained with MPDATA appears al-
ready at the very beginning of the simulations, at the alti- 90

tude of 20m out of 520m of simulated displacement of an
air parcel. Overall, the discussion in Morrison et al. (2018)
, which has prompted further analyses presented in
Hernandéz Pardo et al. (2020) and Lee et al. (2021), focuses
on the issue of spectral broadening from the vertical 95

numerical diffusion highlighting that, in principle, the
problem is a four-dimensional transport problem (three
spatial dimensions and the spectral dimension).

In Wei et al. (2020), MPDATA is employed for integrating
droplet spectrum evolution for comparison with a Lagrangian 100

scheme. The work concludes that the spurious broadening of
the spectrum cannot be alleviated even with a grid composed
of 2000 (sic!) size bins.

:::
The

::::::::::
discussion

::::::::::
presented

:::
in

::::::::::::::::::::
Morrison et al. (2018)

::::::::
prompted

::::::::::
further

::::::::::::
analyses

::::::::::::
presented

::::::
in 105

:::::::::::::::::::::::::
Hernandéz Pardo et al. (2020)

::
and

:::::::::::::::
Lee et al. (2021).

::::::
These

::::::
studies

::::::::::
highlighted

:::::
that,

:::
in

:::::::::
principle,

::::
the

:::::::::
problem

::
is

:
a
::::::::::::::::

four-dimensional
:::::::::

transport
::::::::

problem
:::::::

(three
:::::::

spatial

:::::::::
dimensions

::::
and

::::
the

::::::::
spectral

:::::::::::
dimension)

::::
and

::::
that

::::
the
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:::::::
interplay

:::
of

:::::::
spectral

:::
and

::::::
spatial

:::::::::
advection

::::::
further

:::::::
nuances

::
the

:::::
issue

::
of

:::::::
spectral

::::::::::
broadening.

Noteworthy, none of the works mentioned
above discussed coordinate transformations
to non-linear grid layouts with MPDATA5

(a discussion of handling non-uniform mesh with upwind scheme can be found in Li et al., 2017, Appendix A)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(a discussion of handling non-uniform mesh with the upwind scheme can be found in Li et al., 2017, Appendix A)
. Wei et al. (2020) and Morrison et al. (2018) are the only
works mentioning other than basic flavor

:::
the

::::
basic

::::::
flavour

:
of

the scheme, yet only the non-oscillatory option was consid-10

ered. Herein, the applicability
:::
for

::::::
solving

:::
the

::::::::::::
condensational

::::::
growth

:::::::
problem

:
of multiple variants of MPDATA and their

combinations is expoundedhighlighting their robustness for
solving the condensational growth problem.

1.3 Governing equations15

To describe the conservation of particle number N under the
evolution of the particle size

::::::::::
particle-size

:
spectrum np(p) =

dN
dp (n denoting number density as a function of particle

size
:::::::::
particle-size

:
parameter p such as radius or volume), one

may take the one-dimensional continuity equation (i.e., Li-20

ouville equation expressing the conservation of probability,
for discussion see Hulburt and Katz, 1964), in a generalized

:::::::::
generalised

:
coordinate system:

∂t(Gnp) + ∂x(uGnp) = 0, (1.1)

where G≡G(x) represents the coordinate transformation25

from p to x ,
:::
with

:
x being an equidistant mesh coordinate

used in the numerical solution; np ≡ np(p(x)) being number
density function and u≡ u(x) denoting the pace of particle
growth in the chosen coordinate x. The coordinate transfor-
mation term G may play a twofold role in this context.30

First, there is a degree of freedom in the choice of the
particle-size parameter used as the coordinate (i.e., the ar-
gument p of the density function n(p)). For the chosen co-
ordinates p ∈ [r,s∼ r2,v ∼ r3], the appropriate distributions
will be nr(r), ns(s) and nv(v) where s= 4πr2 and v =35

4/3πr3 denote particle surface and volume, respectively.
The size spectrum np(p) in a given coordinate is related
with nr(r) via the following relation of measures: np(p)dp=
nr(r)dr so the total number N =

∫
nrdr is conserved.

Second, there is also a degree of freedom in the choice of40

the grid layout p(r(x)), that is how the parameters r, s or
v are discretized

:::::::::
discretised to form the equidistant grid in

x. This can be used, for instance, to define a mass-doubling
grid layout (x= ln2(r3)) as used in Morrison et al. (2018)
and herein.45

Combining the two transformations results in the follow-
ing definition of G:

G≡ dp(r)/dx(r) =
dp

dx
(1.2)

which defines the transformation from the coordinate p of the
density function to the numerical mesh coordinate x. For fur-50

ther discussion of the coordinate transformation approaches

in the embraced framework (including multi-dimensional
setting), see Smolarkiewicz and Clark (1986) and Smo-
larkiewicz and Margolin (1993).

2 Spectral advection with upwind and MPDATA 55

(box-model test case)

2.1 Upwind discretization
::::::::::::
discretisation

The numerical solution of equation (1.1) will be obtained
by discretizing space and time as follows:

::
is

:::::::
obtained

:::
on

:
a

:::
grid

:::::::
defined

::
by

:
x= i ·∆x and

::
at

:::::::
discrete

::::::::
timesteps

::::::
defined 60

::
by

:
t= n ·∆t. Henceforth, ψn

i and Gi denote the discretized

:::::::::
discretised number density np and the discretized

::::::::
discretised

coordinate transformation term, respectively. The dimen-
sionless advective field is denoted by GC = dp

dxu∆t/∆x,
where C stands for the Courant number, i.e. the velocity in 65

terms of temporal and spatial grid increments.
::::
Note

:::
that

:::
the

:::::
values

::
of
::::

the
:::::::
Courant

:::::::
number

::::
itself

::::
are

:::
not

:::::
used,

::::
only

:::
the

::::::
product

::::
GC

:::
of

:::
the

:::::::::
coordinate

:::::::::::::
transformation

::::
term

:::
G

:::
and

::
the

::::::::
Courant

::::::
number

:::
C.

:
A staggered grid is employed what

warrants introduction of fractional indexing
:::
and

::::::::
indicated 70

::::
with

::::::::
fractional

::::::
indices

:
for vector fields, i.e.

:::
e.g.,: GCi+1/2 ≡

(GC)|i+1/2 in the case of the discretisation of the product
GC. To solve the equation numerically, a

:
A

:
finite difference

form of the differential operators is introduced embracing the
so-called upwind approach (dating back at least to Courant 75

et al., 1952, eq. 16 therein):

ψn+1
i = ψn

i −
1

Gi

(
F (ψn

i ,ψ
n
i+1,GCi+1/2)−

F (ψn
i−1,ψ

n
i ,GCi−1/2)

)
(2.1)

with

F (ψL,ψR,GCmid) =max(GCmid,0) ·ψL+ 80

min(GCmid,0) ·ψR (2.2)

where the introduced flux function F defines the flux of ψ
across a

:
grid-cell boundary as a function of the values of ψL

and ψR to the left and right of the boundary, respectively and
the value of GC at the boundary. Hereinafter a shorthand 85

notation Fi+ 1
2
(ψ)≡ F (ψi,ψi+1,GCi+ 1

2
) is used.

2.2 Box-model test case and upwind solution

The test case is based on Figure 3 from East (1957) - one of
the early papers on the topic of cloud droplet spectral broad-
ening. The case considers the growth of a population of cloud 90

droplets through condensation in the equilibrium supersatu-
ration limit, where:

u≈ dx

dr
ṙ =

dx

dr

ξ

r
, (2.3)

with ξ = ξ0(S− 1) being an approximately constant fac-
tor proportional to

::
the

:
supersaturation (S− 1)

:::::
where

:::
the 95
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::::::::
saturation

::
S
::

is
::::::

equal
::
to

:::
the

:::::::
relative

::::::::
humidity

:::
of

:::::::
ambient

::
air. The parameter ξ0 is set to 100 µm2s−1 to match the
results from East (1957).

:::
The

:::::::::::::
approximation

::::
(2.3)

:::::::
neglects

::
the

::::::::::
dependence

::
of
:::::::
particle

::::::
growth

::::
rate

::
on

:::
the

::::::
surface

::::::
tension

::::::
(Kelvin

:::::
term).

::::::
Taking

::
it

:::
into

::::::::::::
consideration

::::::
requires

::::::::
replacing5

::::::
(S− 1)

::::
with

::::::::::
(S− eA/r),

::::::
where

::
A

:::::::
depends

:::
on

::::::::::
temperature

::::
only;

:::
for

:::::::::
discussion

:::
see,

::::
e.g.,

::::::::::::::::::::
Tsang and Brock (1982)

:
.

For the initial number density distribution function, an
idealized

:::::::
idealised

:
fair-weather cumulus droplet size spec-

trum is modeled
::::::::
modelled with a lognormal distribution:10

n(0)r (r) = n0 exp
(
−κ(log10(r/r0))2

)
/r (2.4)

with parameters: r0 = 7 µm ,
:::
and

::::::::
κ= 22

:::::::::::::::::::::
(East and Marshall, 1954)

:::::
while

::::
was

::
set

:::
at n0 = 465 cm−3

and κ= 22
::
to

::::::
match

:::::
liquid

::::::
water

:::::::
content

::
of

::
1
:

g kg−1
:
as

:::::::
indicated

::
in
::::::::::
East (1957).15

For the boundary conditions (implemented using halo grid
cells), extrapolation is applied for G, while both ψ and GC
are set to zero within the halo.

Analytical solution to eq. (1.1) is readily obtainable for
ṙ = ξ/r and for any initial size distribution

:::::::
spectrum. Not-20

ing that introducing x= r2 coordinates, the transport equa-
tion (1.1) becomes a constant-coefficient advection equation,
the problem reduces to translation of the signal in x by 2ξt.
Cast in the r coordinate, the solution can be expressed as
(Kovetz, 1969):25

ψanalytical = nr(r, t > 0)≡ r

r̃
n(0)r (r̃), (2.5)

where r̃ = r̃(r, t) =
√
r2− 2ξt.

The upper panels in Figures 1 and 2 depict the droplet size
spectrum evolution through condensational growth from an
initial liquid water mixing ratio of M0 = 1 g kg−1 under su-30

persaturation S− 1 = 0.075%.
Two grid layout (x) and size parameter (p) choices are

depicted. Both panels in Fig. 1 present simulation carried
out with density function coordinate p= r2 and discretized

::::::::
coordinate

::::
and

::::::::::
discretised

:
on a mass-doubling grid (x=35

ln2(r3)), whereas both
:
.
::::
Both

:
panels in Fig. 2 present sim-

ulation results obtained with x= r and p= r. In both
::
all

cases, the timestep is set to ∆t= 1
3 s, the domain range is

(1; 26).
::::
The

:::::::
domain

::::
span

::
is

:::::
1–26 µm, there are

:
.
:::
The

::::
grid

:
is
:::::::::

composed
:::
of 75 grid cells. Such settings corresponds to40

GC ≈ 0.26 in first layout, where
:::
for

:
p= r2is used, and ,

:::
and

:
a
:

variable Courant number approximately in the range
of (0.03 ;

:
to
:
0.07 ) in second layout, where

::
for p= ris used.

The snapshots are depicted at times where the
::::
time

::::
steps

:::::::
depicted

::
in

:::
the

:::::
plots

:::
are

:::::::
selected

::
by

:::::::
finding

:
t
:::
for

:::::
which

:::
the45

::::::::
integrated liquid water mixing ratio of the analytical solution
obtains values of

:::::
equals

::
to
:

1, 4 and 10 g kg−1 (assuming
air density of 1 kg m−3). In both Figure 1 and 2, the upper
panels display the number density and the bottom panel show
the normalized

:::::
panels

:::::
show

:::
the

:::::::::
normalised mass density. The50

bottom panels thus depict the same quantities as Fig. 3 in East
(1957).
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Figure 1. Evolution of the particle number density (upper panel)
and normalized

::::::::
normalised

:
mass density (bottom panel) with red

histograms corresponding to the numerical solution using upwind
scheme, black dots depicting analytical solution, and gray

:::
grey

filled histogram representing discretized
::::::::
discretised

:
analytical so-

lution; compare Fig. 3 in East (1957). Numerical solution was
obtained in the following coordinate transformation: p = r2; x =
ln2(r3)

The normalized
:::::::::
normalised mass density of bin i is evalu-

ated as 4/3πρlm
(l=3)
i /M by calculating the third statistical

moment of the number distribution nr(p) with the formula: 55

m
(l)
i =

r2∫
r1

nrr
ldr =

=ψi ·


(l+ 1)

−1
rl+1

∣∣∣r2
r1

for p= r

2(l+ 2)
−1

(r2)
l+2
2

∣∣∣r22
r21

for p= r2

(2.6)

where r1, r2 are the boundaries of i-th bin, and ψi is the
value of np associated with the bin (i.e., np is assumed to be
bin-wise constant; note that the dimension of np depends on
the choice of p). The normalization

:::::::::::
normalisation

:
factor M 60

is the mixing ratio (e.g., M =M0 = 1 g kg−1 for t= 0).
The dotted curve corresponds to the analytic solution.

The numerical solution obtained with the upwind scheme
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Figure 2. As in Fig. 1 for p = r and x = r.

(2.1) is plotted with red histograms and compared with the
discretized

::
to

:::
the

::::::::::
discretised analytical solution plotted as

grey filled histograms.
Looking at the mass density plots in Figs. 1 and 2, it is evi-

dent that casting the results in the form of mass density shifts5

positions of the extrema in comparison with
::
the

:
analytical so-

lution. This is one of the consequences of applying numerical
solution by integrating

:::::::::
integrating

:::
the number conservation

law (for discussion see sec. 2.12).
As can be seen in both the number- and mass-density plots10

in Figs. 1 and 2, solutions obtained with the upwind scheme
are characterized by

:::::::::::
characterised

::
by

::
a significant drop in the

peak value and spectral broadening , with respect to the ana-
lytical solution – both manifesting the numerical diffusion.

The broadening and the drop in the peak value is
:::
are less15

pronounced in Fig. 2 where the linear grid increases the res-
olution in the large-particle region of the spectrum.

2.3 Truncation error analysis of the upwind scheme

One of the methods used to quantify the numerical diffusion
of the upwind scheme is the modified equation analysis of20

Hirt (1968) (see Margolin and Shashkov, 2006, for discus-
sion in the context of MPDATA). To depict the idea, a sim-
plified setting of G= 1 and C = const is outlined herein. In

the analysis, the Taylor expansion of ψ up to the second or-
der is taken at ψn+1

i , ψni+1 and ψni−1 and substituted into the 25

numerical upwind scheme, in which the flux function (2.2) is
expressed using moduli (e.g., Crowley, 1968, eq. (12)):

ψn+1
i = ψni −

(
C + |C|

2
(ψni −ψni−1)+

C − |C|
2

(ψni+1−ψni )

)
(2.7)

resulting in: 30

∂tψ+ ∂2t ψ
∆t

2
=−u+ |u|

2

(
∂xψ− ∂2xψ

∆x

2

)
−

u− |u|
2

(
∂xψ+ ∂2xψ

∆x

2

)
(2.8)

which is further transformed by employing a time deriva-
tive of both sides of the original advection equation ∂tψ =
−u∂xψ −→ ∂2t ψ =−u∂x∂tψ = u2∂2xψ to substitute the 35

second-order time derivative with spatial derivative (Cauchy-
Kowalevski procedure, see Toro, 1999) leading to the sought
modified equation (Roberts and Weiss, 1966, eq. 2.9):

∂tψ+u∂xψ+

(
u2

∆t

2
− |u|∆x

2

)
︸ ︷︷ ︸

K

∂2xψ+ ...= 0 (2.9)

The above analysis depicts that the employment of the nu- 40

merical scheme (2.1) results in a solution of a modified equa-
tion (2.9), approximating the original problem up to first or-
der. The leading second-order error contribution has the form
of a diffusive term with a coefficient K (note that the above
outline of the modified equation analysis assumes the con- 45

stant velocity field). The diffusive form of the leading error
term explains with the smoothing of the spectrum evident in
Figs. 1,2, and hence the notion of numerical diffusion.

2.4 Antidiffusive velocity and iterative corrections

The problem of numerical diffusion can be addressed by 50

introducing the so called
:::::::
so-called

:
“antidiffusive veloc-

ity" (Smolarkiewicz, 1983). To this end, the Fickian flux
can be cast in the form of the advective flux - an ap-
proach dubbed pseudo-velocity technique in the context of
advection-diffusion simulations (Lange, 1973, 1978) or hy- 55

perbolic formulation of diffusion (Cristiani, 2015, discussion
of eq. (4) therein), and discussed in detail in Smolarkiewicz
and Clark (1986, sect. 3.2):

∂x(K∂xψ) = ∂x

(
K
∂xψ

ψ
ψ

)
. (2.10)

In Smolarkiewicz (1983, 1984), it was proposed to apply 60

the identity (2.10) to equation (2.9) in order to suppress the
spurious diffusion. The procedure is iterative. The first iter-
ation is the basic upwind pass. Subsequent corrective itera-
tions reverse the effect of numerical diffusion by performing
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Figure 3. Comparison of analytic, upwind and MPDATA solutions
(see plot key for algorithm variant specification) using the setup
from Fig. 1, see sec. 2.4 for discussion.

upwind passes with the so-called antidiffusive flux based on
equation (2.10) but with K taken with

:
a
:

negative sign and
approximated using the upwind stencil (for discussion of the
discretization

::::::::::
discretisation, see Smolarkiewicz and Margolin

(2001)).5

Accordingly, the basic antidiffusive field GC(k) is defined
as follows (with ε > 0 being an arbitrary

::::::::
arbitrarily

:
small

constant used to prevent from divisions by zero):

GC
(k)

i+ 1
2

=Ai+ 1
2

(∣∣∣GC(k−1)
i+ 1

2

∣∣∣−(GC(k−1)
i+ 1

2

)2)
, (2.11)

where k is the iteration number, GC(1) ≡GC and10

Ai+ 1
2

=
ψ∗i+1−ψ∗i

ψ∗i+1 +ψ∗i + ε
, (2.12)

where ψ∗ denotes ψn in the first iteration, or the values
resultant from

:::::::
resulting

:::::
from

:::
the application of the upwind

scheme with the antidiffusive flux in subsequent iterations.
The MPDATA scheme inherits the key properties of upwind15

in terms of positive-definiteness, conservativeness and stabil-
ity , while reducing the effect of numerical diffusion. Given
the context of conservation of particle concentration, in all
presented numerical formulæ below, it is assumed that the
transported signal is positive, the references provided include20

formulation of the algorithm for variable sign signals.
Figure 3 compares a set of example simulations performed

with the same set-up as in Figure 1. The analytical results ob-
tained with upwind are supplemented with results obtained
using

:::
the MPDATA scheme with two and three iterations.25

Employment of the MPDATA iteration corrects both the sig-
nal peak amplitude and its width, as well as the position of
the maximum. It is visible that the effect of the third itera-
tion is less pronounced than that of the second one. Over-
all, while the MPDATA solutions are superior to upwind, the30
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Figure 4. Comparison of analytic, upwind and MPDATA solutions
(see plot key for algorithm variant specification) using the setup
from Fig. 1, see sec. 2.5 for discussion.

drop in amplitude and broadening of the resultant spectrum
still visibly differs from the discretized

::::::::
discretised

:
analytical

solution.

2.5 Infinite gauge variant

For the possible improvement of the algorithm, one may con- 35

sider linearizing
:::::::::
linearising MPDATA about an arbitrarily

large constant (i.e. taking ψ′ = ψ+ aχ in the limit a−→∞
instead of ψ, where χ is a constant scalar background field).
Such analysis was considered in Smolarkiewicz and Clark
(1986, eq. 41) and subsequently referred to as the “infinite- 40

gauge” (or “iga”) variant of MPDATA (Smolarkiewicz
(2006, eq. 34), Margolin and Shashkov (2006, point (6) on
page 1204)).

Such gauge transformation changes the corrective itera-
tions of the basic algorithm as follows (replacing eqs. (2.12) 45

and (2.2) what is symbolized
:::::::::
symbolised with ):

Ai+ 1
2
 A(iga)

i+ 1
2

=
ψ∗i+1−ψ∗i

2
(2.13)

Fi+ 1
2
 F

(iga)
i+ 1

2

=GC
(k)

i+ 1
2

(2.14)

Noting that the amplitude of the diffusive flux (2.10) is
inversely proportional to the amplitude of the signal, such 50

gauge choice decreases the amplitude of the truncation error
(see Smolarkiewicz and Clark (1986, p. 408), Jaruga et al.
(2015, discussion of Fig. 11)), however

:
,
:
it makes the algo-

rithm no longer positive definite.
Figure 4 depicts how enabling the infinite gauge vari- 55

ant influences results presented in Figure 3. In each plotted
timestep, the maximum amplitude of the infinite-gauge re-
sult is closest to the analytical solution improving over the
basic MPDATA. However, in each case,

:
negative values are

observed (non-physical in case of the considered problem). 60
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Consequently, for the problem at hand, it is effectively es-
sential to combine it with the monotonicity-preserving non-
oscillatory option outlined in the next section.

2.6 Non-oscillatory option

In Smolarkiewicz and Grabowski (1990),
::
an

:
extension of5

the MPDATA algorithm was introduced that makes the solu-
tion monotonicity preserving and precludes

:::
the appearance

of negative values in the discussed solution of droplet size
spectrum evolution. The trade-off is that the order of the al-
gorithm is reduced (see Appendix A).10

The non-oscillatory option (later referred to as “non-osc"
herein) modifies the algorithm in such way:

GC
(k+1)

i+ 1
2

 GC
(k+1,non-osc)
i+ 1

2

= GC
(k)

i+ 1
2

×

×

min(1,β↓i ,β
↑
i+1) GC

(k)

i+ 1
2

≥ 0

min(1,β↑i ,β
↓
i+1) GC

(k)

i+ 1
2

< 0
, (2.15)

where15

β↑i ≡Gi×
max

(
ψ(max)
i ,ψ∗i−1,ψ

∗
i ,ψ
∗
i+1

)
−ψ∗i

max
(
F (ψ∗)i− 1

2
,0
)
−min

(
F (ψ∗i )i+ 1

2
,0
)

+ ε
,

(2.16)

and

β↓i ≡Gi×
min

(
ψ(min)
i ,ψ∗i−1,ψ

∗
i ,ψ
∗
i+1

)
−ψ∗i

max
(
F (ψ∗i )i+ 1

2
,0
)
−min

(
F (ψ∗i )i− 1

2
,0
)

+ ε
,

(2.17)

with

ψ(min)
i = min(ψni−1,ψ

n
i ,ψ

n
i+1), (2.18)20

ψ(max)
i = max(ψni−1,ψ

n
i ,ψ

n
i+1). (2.19)

Note that in the case of infinite gauge option enabled, F func-
tion takes form presented in eq. (2.13) (see also Hill, 2011,
sect. 2.5).

Figure 5 juxtaposes infinite gauge solutions for
:::
with

:::
the25

non-oscillatory option switched on or off. The effectiveness
of the latter variant is apparent as spurious negative values no
longer occur.

2.7 DPDC

An alternative approach to the iterative procedure30

was introduced in Beason and Margolin (1988); ?
::::::::::::::::::::::::::::::::::::::::::::::::::::::
Beason and Margolin (1988); Margolin and Smolarkiewicz (1998)
and further discussed in Margolin and Shashkov (2006),
where the contributions of multiple corrective iterations
of MPDATA were analytically summed leading to a35

new two-pass scheme dubbed DPDC (double-pass donor

0 5 10 15 20 25
micrometer

0

50

100

150

200

1.
0 

1/
ce

nt
im

et
er

³/m
icr

om
et

er

dN/dr

MPDATA 2 iterations infinite gauge
MPDATA 2 iterations infinite gauge non-oscillatory
discretised analytical solution (actual dotted)

Figure 5. Comparison of analytic, upwind and MPDATA solutions
(see plot key for algorithm variant specification) using the setup
from Fig. 1, see sec. 2.6 for discussion.

cell
::::::::::
Double-Pass

::::::::::
Donor-Cell), featuring the following form

of the antidiffusive GC field:

GC
(2)

i+ 1
2

 GC (DPDC)
i+ 1

2

=
GC(2)

1− |Ai+ 1
2
|

(
1− GC(2)

1−A2
i+ 1

2

)
,

(2.20)

withAi+ 1
2

defined in eq. (2.12). Note that only one corrective 40

iteration is performed with the DPDC variant.
As in the case of the infinite gauge variant of MPDATA

(section 2.5), the above formulation does not guarantee
::
the

monotonicity of the solution. Herein an example simula-
tion combining the DPDC

::::::::::
double-pass

::::::::
(DPDC), the non- 45

oscillatory and infinite-gauge variants is presented in Fig-
ure 6 depicting how the solution is improved over that in
Figure 5.

2.8 Divergent-flow correction

For divergent flow (hereinafter abbreviated dfl), mod- 50

ified equation analysis yields an additional correction
term to the antidiffusive velocity (see Smolarkiewicz
(1984, eq. (38)) for uniform coordinates, ?, eq. (30)

:::::::::::::::::::::::::::::::::::::
Margolin and Smolarkiewicz (1998, eq. (30)) for non-
uniform coordinates and Waruszewski et al. (2018, sect. 4) 55

for the infinite-gauge variant):

GC
(k)

i+ 1
2

 GC (k,dfl)
i+ 1

2

=GC(k) −
GC

(k)

i+ 1
2

Gi+1 +Gi
×

×
GC

(k)

i+ 3
2

−GC(k)
i−1/2

2
×

×

{
(ψ∗i+1 +ψ∗i )/2 (iga)

1 (else)
(2.21)
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Figure 6. Comparison of analytic, upwind and MPDATA solutions
(see plot key for algorithm variant specification) using the setup
from Fig. 1, see sec. 2.7 for discussion.

As pointed out in section 5.1 in Smolarkiewicz (1984), this
option has the potential of improving results for the problem
of the evolution of the droplet size distribution

:::::::
spectrum

:
(per-

sonal communication with William Hall cited therein). This
is due to the drop growth velocity defined by eq. (2.3) be-5

ing dependent on
::
the

:::::::
droplet radius (hence divergent given

the one-dimensional problem). Yet, applying adequate co-
ordinate transformation (i.e., p= r2), the drop growth ve-
locity in the transformed coordinates becomes constant (see
section 2.2 above and Hall (see, e.g. 1980, sec. 3b)). How-10

ever, in simulations using the presented setup (for p 6= r2;
not shown), only insignificant changes in the signal occur-
ring when the divergent-flow option was used were observed.
However, the problem considered herein does not include,
for instance, the surface tension influence on the drop growth15

rate.

2.9 Third order
:::::::::::
Third-order terms

Another possible improvement to the algorithm comes from
the inclusion of the third-order terms in the modified equa-
tion analysis, which leads to

:::
the following form of the antid-20

iffusive velocity (?)
:::::::::::::::::::::::::::::
(Margolin and Smolarkiewicz, 1998):

GC
(k)

i+ 1
2

 GC
(k,tot)
i+ 1

2

=GC(k) +Bi ·GC(k)

i+ 1
2

×

×1

6

4
|GC(k)

i+ 1
2

|

Gi+1 +Gi
− 8

 GC
(k)

i+ 1
2

Gi+1 +Gi

2

− 1

 (2.22)

Bi =2 · (ψ∗i+2−ψ∗i+1−ψ∗i +ψ∗i−1)×

×

{
(1 + 1 + 1 + 1)−1 (iga)

(ψ∗i+2 +ψ∗i+1 +ψ∗i +ψ∗i−1)−1 (else)
(2.23)25
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Figure 7. Comparison of analytic, upwind and MPDATA solutions
(see plot key for algorithm variant specification) using the setup
from Fig. 1, see sec. 2.9 for discussion.

Figure 7 depicts how enabling the third-order-terms im-
proves

::
the

:
solution of the test problem with respect to the

upwind and basic MPDATA.
Noteworthy, discussion of higher-order variants of MP-

DATA was carried forward in Kuo et al. (1999) and 30

Waruszewski et al. (2018). In the latter case, the focus was
placed on accounting for coordinate transformation and vari-
able velocity in the derivation of antidiffusive velocities lead-
ing to a fully third-order accurate scheme.

2.10 A “best” combination of options 35

The MPDATA variants presented in the preceding sections
can be combined together. In Figure 8, results obtained with

::
the

:
upwind scheme and the basic two-pass MPDATA are

compared with
:
to

:
those obtained with a powerful combina-

tion of three iterations, third-order-terms, infinite-gauge and 40

non-oscillatory options hereinafter referred to as the “best”
variant (for the problem at hand).

In the following subsections, the influence of MPDATA
algorithm variant choice on the resultant spectrum broadness
and computational cost is analysed using the example simu- 45

lation setup used above (i.e., in all figures except Fig. 2, see
section 2.2 for test case definition).

Analysis of the scheme solution convergence with chang-
ing resolution and Courant number is presented in Ap-
pendix A. 50

2.11 Quantification of numerical broadening

The relative dispersion, defined as the ratio of standard devia-
tion σ to the mean µ of the distribution

:::::::
spectrum, is a param-

eter commonly used to describe the width of the spectrum
(e.g. Chandrakar et al., 2018). 55
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Figure 8. Comparison of analytic, upwind and MPDATA solutions
(see plot key for algorithm variant specification) using the setup
from Fig. 1, see sec. 2.10 for discussion.

Table 1. Relative dispersion of the discretized
::::::::
discretised

:
(using

grid setup as in Fig. 1) analytical solution taken for five selected
times.

Variant danalytic

d(M = 1 g kg−1) 0.357
d(M = 2 g kg−1) 0.202
d(M = 4 g kg−1) 0.126
d(M = 6 g kg−1) 0.097
d(M = 8 g kg−1) 0.080

d(M = 10 g kg−1) 0.069

The calculated dispersion ratio over all bins takes form:

d=

√
1
N

∑
im

(l=2)
i −

(
1
N

∑
im

(l=1)
i

)2
1
N

∑
im

(l=1)
i

(2.24)

where mi is defined in (2.6) and N is the conserved total
number of particles (equal to

∑
im

(l=0)
i ). To quantify the ef-

fect of numerical diffusion on the broadness of the resultant5

spectrum, the following parameter is introduced based on
the numerical and analytical solutions (hereinafter reported
in percentages):

Rd = dnumerical/danalytical− 1 (2.25)

Table 1 depicts the gradual narrowing of the spectrum un-10

der undisturbed adiabatic growth.
Left panel in Fig. 9 provides values of the Rd parameter

evaluated at six selected timesteps corresponding to M =
1,2,4,6,8,10 g kg−1. Although numerical broadening is in-
herent to all employed schemes , and grows in time for all15

considered variants, the scale of the effect is significantly re-
duced when using MPDATA.

In particular, a tenfold decrease in numerical broadening
as quantified using Rd is observed comparing upwind and

::
the

:
“best” variant considered herein. 20

While outside of the scope of the present study, it
is worth noting that in simulations combining spectral
growth with transport in physical space, the numerical
broadening associated with the spatial advection
also contributes to the numerical broadening effect 25

(see Hernandéz Pardo et al., 2020, and references therein).

2.12 Notes on conservativeness

Due to the formulation of the problem as number conserva-
tion and discretization

:::::::::::
discretisation of the evolution equa-

tion using fixed bins, even though the numerical scheme is 30

conservative (up to subtle limitations outlined below), evalu-
ation of other statistical moments of the evolved distribution

:::::::
spectrum

:
from the number density introduces an inherent

discrepancy from the analytical results (for a discussion on
multi-moment formulation of the problem, see e.g. Liu et al., 35

1997).
In order to quantify the discrepancy in the total mass be-

tween the discretized
::::::::
discretised

:
analytical solution and the

numerically integrated spectrum, the following ratio is de-
fined using moment evaluation formula (2.6): 40

RM =M (numeric)/M (analytic)− 1 =

=

∑
im

(l=3, numeric)
i∑

im
(l=3, analytic)
i

− 1. (2.26)

Right
:::
The

:::::
right

:
panel in Fig. 9 depicts the values of the

above-defined ratio computed for spectra obtained with dif-
ferent variants of MPDATA discussed herein. The departures 45

from analytically-derived values are largest for the upwind
scheme (up to ca. 5%) , and oscillate around 0 with

::
an ampli-

tude of the order of 1% for most of the MPDATA solutions.
The consequences of mass conservation inaccuracies in

the fixed-bin particle size
::::::::::
particle-size

:
spectrum representa- 50

tion may not be as severe as in, e.g. dynamical core responsi-
ble for

::
the

:
transport of conserved scalar fields. The outlined

discrepancies may be dealt with by calculating the change in
mass during a timestep from condensation, then using it in
vapor

::::::
vapour and latent heat budget calculations so the total 55

mass and energy in the modeled
::::::::
modelled system are con-

served.
The problem embodied in equation (1.1) is the conserva-

tion of
::
the

:
number of particles and the embraced algorithm

(2.1)-(2.2) is conservative (up to numerical precision) for 60

G= 1. However, the formulation of the donor cell scheme
ψn+1 = ψn +G−1i

(
Fi−1/2 +Fi+ 1

2

)
on the staggered grid

with G 6= 1, for example due to employment of non-identity
coordinate transformations implies that even though the in-
flux and outflux across boundary of adjacent cells is equal, 65

discretization
:::::::::::
discretisation of Gi at cell centers

::::::
centres lim-

its the level of accuracy in number conservation.
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Figure 9.
:::
Left

:::::
panel

:::::::::
summarises

:::::
values

::
of

:::
the

::::::::::::::::::
numerical-to-analytical

::::::
spectral

:::::
width

::::
ratio

:::::::::::::::::::::
Rd = dnumerical/danalytical − 1

::::::::
(expressed

::
as

::
a

::::::::
percentage)

::::::::
computed

::
for

:::::::::
simulations

::::
using

:::::::
different

:::::::
discussed

::::::
variants

::
of

::::::::
MPDATA

:::
and

:::::
plotted

::
as

:
a
::::::
function

::
of

::::::::
increasing

:::::
mixing

::::
ratio

::::
(i.e.,

:::
each

::::::::
simulation

::
is
:::::::
depicted

:::
with

::
a
::
set

::
of
:::::::::::
line-connected

:::::
points

:::::::::::
corresponding

::
to

::::::
selected

:::::::::
timesteps),

:::
see

:::::
section

::::
2.11.

:::::
Right

::::
panel

:::::::
presents

:::::::
analogous

:::::::
analysis

::
for

::::
Rm,

::
see

::::::
section

::::
2.12

::
for

:::::::::
discussion.

::::
Note:

:::::::::::
RM = Rd = 0

:::::::::
corresponds

::
to

:::::
perfect

:::::
match

::::
with

:::
the

:::::::
analytical

:::::::
solution.)

:

The total number of particles in the system may diverge
from the analytical expected value even for the initial condi-
tion depending on the employed discretization

::::::::::
discretisation

approach. In the present work, the probability density func-
tion is probed at cell centers

::::::
centres

:
effectively assuming5

piecewise-constant number density function. An alternative
approach is to discretise the initial probabilities by assigning
to ψi the values of (φi+ 1

2
−φi−1/2)/(ri+ 1

2
− ri−1/2) where

φ is the cumulative distribution.
Left panel summarizes values of the10

numerical-to-analytical spectral width ratio
Rd = dnumerical/danalytical− 1 (expressed as a percentage)
computed for simulations using different discussed variants
of MPDATA and plotted as a function of increasing
mixing ratio (i.e., each simulation is depicted with a set of15

line-connected points corresponding to selected timesteps),
see section 2.11. Right panel presents analogous analysis for
Rm, see section 2.12 for discussion. Note: RM =Rd = 0
corresponds to perfect match with the analytical solution.)

2.13 Computational cost 20

Table 2 includes an assessment of the relative computational
cost of the explored variants of MPDATA. The performance
was estimated by repeated measurements of the wall time and
selecting the minimal value as representative. Values are re-
ported after normalization

:::::::::::
normalisation with respect to the 25

values pertinent to upwind runs
::::::
upwind

::::::
times.

::::::::::
Simulations

::::
were

:::::::::
performed

:::::
using

::
the

:::::
mass

::::::::
doubling

::::
grid.

:::
The

:::::
table

::::::::
includes,

::::::
where

:::::::::
available,

:::::::::
analogous

::::::
figures

:::::::
reported

::
in

::::::
earlier

:::::::
studies

:::
on

:::::::::
MPDATA

::::
(see

:::::::
caption

:::
for

::::::::
comments

:::
on

::::
the

::::::::::::
dimensionality

:::
of

:::
the

:::::::::
employed

::::::
cases). 30

::::::
Among

:::::::
notable

:::::
traits

:::
is

::::
the

::::::::
decrease

:::
in

::::::::::::
computational

:::
cost

::::::
when

::::::::
enabling

::::
the

:::::::
infinite

::::::
gauge

::::::
option

::::::
what

::
is

::::::::
associated

::::
with

::
a
:::::::
reduced

:::::::
number

::
of

:::::
terms

::
in

:::::
both

:::
the

:::
flux

:::::::
function

::
as

::::
well

::
as

:::
in

:::
the

::::::::::
antidiffusive

:::::::
velocity

::::::::::
formulation

::::::::::::::::::::::::::::::::::::::::::::::
(see section 2.5 in Hill, 2011, and sections 2.5-2.6 herein) 35

. The “best” variant is roughly ten times more costly
than the upwind scheme . The table includes analogous
measurements reported in earlier studies on MPDATA,
where available

:::
for

:::
the

::::
case

::::::
studied

::::::
herein.

:::::::
Among

::::::
studies

::
of

:::
bin

::::::::::::
microphysics

:::::::::
schemes,

:::::::::
analogous

::::::::
measures

:::::
were 40

:::::::
reported

::
in

:::::::::::::::
Liu et al. (1997)

:::::
where

:::
the

:::::::::
variational

:::::::
method
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Table 2. Elapsed wall
:::
Wall

:
times

::::::::
normalised with respect to

:::
the up-

wind computed for mass doubling grid for results presented herein

::::::
solution compared with with

:
to
:

data reported in three previously
published

:::
four

:::::
earlier

:
works. Column labeled with

:
: S83 denotes

values reported in Smolarkiewicz (1983) for (two-dimensional
problem. Column labeled

:
);
:

SS05 correspond
:::::::::
corresponds

:
to

data reported in Smolarkiewicz and Szmelter (2005) for a 3D
finite-volume advection on

::::::::::::::
(three-dimensional, unstructured grid.

Column
:
);
:

SR91 includes values from
::::::
denotes Smolarkiewicz and

Rasch (1991) ,
::
and

:
MSS00 corresponds to data from Margolin et al.

(2000) ,
:
(both reported for two-dimensional problems).

Variant S83 SS05 SR91 MSS00
:

upwind 1.0 1.0 1.0 1.0 1.0
2 pass

:::
iters

:
2.5 2.9 4.3 5.4 3.7

2 pass
:::
iters, iga 2.2 - 1.9 - -

2 pass
:::
iters, iga, non-osc 5.9 - 3.9 - -

DPDC, iga, non-osc 6.2 - - - -
3 pass

:::
iters

:
5.7 5 - 9.8 -

3 pass
:::
iters, tot 4.1 - - 19 -

3 pass
:::
iters, tot, iga, non-osc 11 - - - -

::::::::
presented

:::::
there

::::
was

:::::::
reported

:::
to

:::::::
execute

:::
3.1

:::::
times

::::::
longer

:::
than

:::::::::
first-order

::::::::
upwind;

::::
and

::
in
:::::::::::::::::

Onishi et al. (2010)
:::::
where

::
the

:::::::
studied

:::::::::::::::
semi-Lagrangian

:::::::
scheme

::::
was

::::::::
reported

::
to
:::

be

:::::::::::
characterised

::
by

::::
over

:
4
:::::
times

::::::
higher

::::::::::::
computational

:::
cost

::::
than

::::::
upwind

:
(see Table caption for comments).

:
4

:::::::
therein).

::
In

:::
the5

::::
latter

:::::
case,

:
a
:::::
direct

::::::::::
comparison

::
is
::::::::

hindered
:::
by

::::::::::
significantly

:::::::
different

:::::::
stability

:::::::::
constraints

::
on

:::
the

::::::::
timestep.

:

As can be seen from the table, the infinite gauge option
not only improves result, but simplifies equation, making
numerics faster. Three-pass MPDATA with third order terms10

included is slightly faster than the variant with both the
infinite-gauge and non-oscillatory options enabled.

Although the discussed problem is one-dimensional, its

:
a
:

computationally efficient and
::
an

:
accurate solution is

essential, as it typically needs to be solved at every15

timestep and grid point of a three-dimensional cloud model.

:::::
While

:::
the

::::::::
reported

::::::::::::::::
upwind-normalised

:::::
wall

:::::
times

:::::
give

:
a

:::::
rough

:::::::::
estimation

:::
of

:::
the

:::::
cost

:::::::
increase

::::::::::
associated

::::
with

::
a

::::::::
particular

::::::::
MPDATA

::::::
option,

:::
the

:::::
actual

:::::::
footprint

:::
on

:
a
:::::::
complex

::::::::
simulation

:::::::
system

:::
will

::::::
depend

:::
on

::::::::
numerous

:::::::::::::
implementation20

:::::
details

::::::::
including

::::::::::::
parallelisation

:::::::
strategy.

:

3 Spectral-spatial advection with MPDATA
(single-column test case)

3.1 Problem statement

In multidimensional simulations in which the considered par-25

ticle number density field is not only a function of time and
of particle size, but also of spatial coordinates, there are sev-

eral additional points to consider applying MPDATA to the
problem.

First, in the context of atmospheric cloud simulations, ow- 30

ing to the stratification of the atmosphere, a
::
the usual practice

is to reformulate the conservation problem in terms of spe-
cific number concentration being defined as the number of
particles np (cf. eq. (1.1)) divided by the mass of air (com-
monly the dry air) effectively resulting in multiplication of 35

the G factor (cf. eqs (1.2)-(2.1)) by the (dry) air density. This
translates to maintaining a constant specific number concen-
tration (summed across all particle size

::::::::::
particle-size cate-

gories) along the vertical dimension despite
::
the

:
presence of

an air density gradient. Ordinary particle volume concentra- 40

tion would vary due to variable density of air (i.e., expansion
of air along the vertical coordinate). Note

:
, however, that in

eq. (2.1) it is assumed that theG factor does not vary in time.
Second, even with a single spatial dimension (single-

column setup), the coupled size-spectral/spatial advection 45

problem is two-dimensional. This is where the inherent mul-
tidimensionality of MPDATA (also, the "M" in MPDATA)
requires further attention. The one-dimensional antidiffusive
formulæ discussed in sections 2.4-2.9 need to be augmented
with additional terms representing cross-dimensional contri- 50

butions to the numerical diffusion. For
::
an

:
introduction, see

e.g. Section 2.2 in ?
:::::::::::::::::::::::::::::
Smolarkiewicz and Margolin (1998), for

original derivation see Smolarkiewicz (1984), for a recent
work discussing the interpretation of all terms in the antidif-
fusive velocity formulæ, including cross-dimensional terms, 55

see Waruszewski et al. (2018).
Third, in any practical application where the drop size evo-

lution is coupled with
::
the

:
water vapour budget (and hence

with supersaturation evolution), it is essential to evaluate the
total change in mass of liquid water due to condensation 60

which is then to be used to define the source term of the water
vapour field (and in latent heat budget representation). Note-
worthy, knowing the difference of values at n + 1 and at n
timesteps of the advected specific number concentration field
is not sufficient to evaluate the vapour sink/source term. This 65

is because only the fluxes across the size-spectral dimension
need to be accounted for (note that the fluxes in all MPDATA
iterations need to be summed up).

There are several recent papers
::::::
Several

:::::
recent

::::::
papers

:::
are

highlighting the need for scrutiny when comes to the in- 70

terplay of size-spectral and spatial advection and the asso-
ciated numerical broadening (Morrison et al., 2018; Her-
nandéz Pardo et al., 2020; Lee et al., 2021). In the following
subsection, a set of single-column simulations is presented
and discussed depicting

:::
the performance of MPDATA in a 75

size-spectral/spatial advection problem coupled with vapour
advection and supersaturation budget. The simulations are
performed using a commonly employed MPDATA setting
with only the non-oscillatory option enabled, and the dis-
cussion is focused on the sensitivity of the results to spatial, 80

spectral and temporal resolution, as well as to the effect of
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performing one or two corrective passes of MPDATA (two
or three iterations, respectively).

3.2 Test case definition

The test setup is based on the single-column KiD warm
case introduced in Shipway and Hill (2012). This prescribed-5

flow framework has been further used, e.g., in Field et al.
(2012) (mixed-phase scenario), in Hill et al. (2015) (warm
rain scenario)and ,

:
in Gettelman and Morrison (2015) (both

pure-ice, mixed-phase and warm-rain scenarios)
:::
and

::
in

::
the

:::::::::::::::
Hill et al. (2021)

:::::::::::
microphysics

::::::
models

::::::::::::::
intercomparison10

::::
study

::::::
(warm

::::
rain

::::::::
scenario). Here, condensation is the only

microphysical process considered.
The simulated 3.2 km height column of air is described

by: a constant-in-time piecewise-linear potential temperature
profile (297.9 K from the ground to the level of 740 m, lin-15

early decreasing down to 312.66 K at 3260 m); constant-
in-time hydrostatic pressure and density profiles computed
assuming surface pressure of 1007 hPa; piece-wise linear
initial vapour mixing ratio profile (15 g kg−1 at ground,
13.8 g kg−1 at 740 m and 2.4 g kg−1 at 3260 m); and20

a constant-in-space but time-dependent vertical momentum
defined by ρdw(z, t) = ρdw1 sin(πt/t1)(1−H(t−t1)) where
H is the Heaviside step function, w is the vertical velocity,
w1 = 2.5 m s−1, ρd is the hydrostatic dry density profile and
t1 = 600 s. Note that the vertical velocity thus differs from25

the original KiD setup wherew is held constant, the change is
motivated by the aim of maintaining the non-divergent flow
field condition.

The advection is thus solved for two scalar fields: (i) a one-
dimensional field representing vertical variability of water30

vapour mixing ratio (mass of vapour per mass of dry air) and
(ii) a two-dimensional field representing vertical and spectral
variability of liquid particle specific concentration (number
of particles per mass of dry air). The spectral coordinate is
set to particle radius (p= r) and the bins are laid out uni-35

formly (x= r) over a range of 1 µm to 20.2 µm. Notewor-
thy, this results in the size-spectral component of the advec-
tion velocity being divergent (while the vertical component
is non-divergent).

The initial condition does not feature supersaturation any-40

where in the domain. The upward advection of water vapour
causes supersaturation to occur and trigger condensation.
The size-spectral velocity is defined as in the box-model
test case (cf. eq. (2.3)) but with supersaturation being time-
dependent and derived from the values of vapour mixing ra-45

tio, temperature and pressure at a given level. Note that the
temperature profile is constant in time and the test case does
not feature representation of latent heat release effects, only
the ambient air/particle vapour budget is accounted for by
subtracting the amount of condensed water from the vapour50

field in each timestep, prior to performing
:::::
before

:::::::::
performing

::
the

:
subsequent step of advetion

::::::::
advection on the vapour mix-

ing ratio field.

The domain is initially void of liquid water and the only
source of it is through the boundary condition in the spectral 55

dimension specified as follows:

ψ−1 = max

(
0,NCCN−

∑
i

ψ

)
(3.1)

with i=−1 denoting the halo grid cell at the left edge of
the spectral domain on a given vertical level and the sum-
mation spans all bins at a given level (excluding halo grid 60

cells). The flux across the domain boundary in the spectral
dimension represents

::
the

:
cloud droplet activation. The flux

is dependent, through eq. (2.3) on the supersaturation at a
given level, and on the NCCN parameter representing a max-
imal number of activated droplets (per unit mass of dry air). 65

In the performed simulations, NCCN was set to 500 mg-1. For
discussion of other ways to represent activation in bin micro-
physics models, see, e.g., Grabowski et al. (2011).

The simulations are run for 15 minutes out of which the
first 10 involve non-zero vertical velocity (as t1 = 600 s). 70

3.3 Discussion of results

Figure 10 depicts qualitatively how MPDATA performs with
the single-column simulation depending on the number of
MPDATA iterations employed. Presented simulation, here-
inafter referred to as base resolution case, is performed with 75

the liquid water dynamics resolved on a 32× 32 grid with
:
a

vertical grid step ∆z = 100 m, size-spectral grid step ∆r =
0.6 µm and timestep ∆t= 0.25s. The two-dimensional liq-
uid water mixing ratio grid is rendered with

:
a shaded array of

histogram bars. The vertical axis corresponds to the advected 80

quantity: spatio-spectral number density divided by the dry
density of air. Histogram bars with value

:::::
values of less than

1% of the vertical axis range (1%× 2 m-1mg-1µm-1) are not
plotted for clarity. Presented plots are aimed at intuitively
portraying the model state and the extent to which

::
the

:
intro- 85

duction of subsequent MPDATA corrective iterations coun-
teracts the numerical spectrum broadening. Note that besides
the depicted liquid water mixing ratio, the model state con-
sists as well of a one-dimensional vapour mixing ratio vector.

In Figure 11, the base resolution case is depicted with plots 90

constructed following the original methodology from Ship-
way and Hill (2012) (as in Fig. 1 therein). The gray-scale

::::::::
grey-scale

:
maps depict the evolution in time and vertical di-

mension of : water vapour mixing ratio ql, supersaturation
S and the droplet spectrum relative dispersion d. The adja- 95

cent profile plots depict the vertical variability of the mapped
quantity at four selected times.

Notwithstanding the highly idealised and simplified
modeling

::::::::
modelling

:
framework employed herein, one may

attempt
:
a comparison with profiles obtained from both in- 100

situ aircraft measurements (Arabas et al., 2009, profiles of
d in Fig. 1 therein) and detailed three-dimensional simu-
lations (Arabas and Shima, 2013, profiles of S and liq-
uid water content in Fig. 2-4 therein) inspired by the same
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Figure 10. Snapshots of the advected two-dimensional liquid water field at t = t1 = 600s for three different number of iterations settings of
MPDATA (with the non-oscillatory option enabled).

RICO field campaign (Rauber et al., 2007) as the single-
column setup of Shipway and Hill (2012). The resemblance
remains

::::::::::
comparison

::::::
merely

:::::::
confirms

:::
that

:::
the

::::::
chosen

::::
test

:::
case

:::::
covers

:::
the

:::::::::
parameter

:::::
space

:::::::
relevant

::
to

:::
the

:::::::
studied

:::::::
problem.

:::::::::::
Resemblance

:::::::
remains,

::
at

:::::
most, qualitative, as expected given5

the stark simplicity of the KiD framework.
:::::::::::
Interestingly,

:::
the

:::::::
parabolic

:::::::
vertical

::::::
profile

::
of

:::
the

:::::::
relative

:::::::::
dispersion

:::::::
obtained

:::::
herein

:::::
was

::::
also

::::::::
reported

:::
in
:::::::::::::::::::::

Lu and Seinfeld (2006)
::
for

::::::::::::::
bin-microphysics

:::::::::::::::
three-dimensional

::::::::::
simulations

:::
of

::::::
marine

::::::::::::
stratocumulus.

:::
In

:::
the

::::::::::
discussion

:::
of

::::::
figures

::
2, yet it is10

arguably congruous enough to confirm that the chosen
test case covers the parameter space relevant to the
studied problem

:
3

::
&

::
6
:::::::

therein,
:::

it
::::
was

:::::::::::
hypothesised

::::
that

::
the

:::::::::
parabolic

::::::
shape

:::
is

::
a
:::::::::

signature
:::

of
:::::::::::

entrainment
:::

as

:::
well

:::
as

:::::::::::::::
updraft-downdraft

:::::::::::
interactions,

:::::
none

::
of

::::::
which

:::
are15

:::::::::
represented

::
in

:::
the

:::::::::
kinematic

:::::::::
framework

::::::::
employed

::::::
herein.

The liquid water profiles depicted in the top row of Fig. 11
reveal that the cloud structure developed within the first
ca. 9 minutes of the simulation is later maintained, with the
profiles at t= 9 min. and t= 12 min. being virtually indis-20

tinguishable. Middle row plots of supersaturation profiles de-
pict that the considered simulation setup enables to capture

:
of

the characteristic supersaturation maximum just above cloud
base. Furthermore, it is evident that the corrective iterations
of MPDATA influence the maximal supersaturation values.25

Noteworthy, this results in different timestep (Courant num-
ber) constraints depending on the number of iterations used
because the spectral velocity is a function of supersaturation.

:::::
There

::
is
::

a
:::::::::

cloud-top
:::::::::

activation
:::::::

feature
::::::

hinted
:::

in
:::

all

::::
three

:::::::
panels

::
in
:::::

Fig.
:::

10
::::

as
::::
well

:::
as
::::::::::

indirectly
:::
in

:::
the30

::::::::::::
supersaturation

::::::::
profiles

:::
in

::::
Fig.

::::
11.

:::::
The

::::::::::::
representation

::
of

:::::::::
activation

::::::
above

::::::
cloud

::::::
base

:::
is

::::::::
sensitive

:::
to

:::::
both

::::::::
numerical

::::::
details

:::
of

:::::::
vapour

::::
and

::::
heat

::::::::
transport

::::::::
reflected

::
in

::::
the

:::::::::
diagnosed

::::::::::::::
supersaturation

::::
as

:::::
well

:::
as

:::
to

::::
the

::::::::::
assumptions

:::::::
behind

:::::
the

:::::::::
activation

:::::::::::
formulation

::::::
itself 35

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see e.g. discussion of Fig. 2 and Fig. 6 in Slawinska et al., 2012, and references therein)

:
.
:::::
Given

::::
the

:::::::::
simplified

::::::::
treatment

:::
of

:::::::::
activation

::::::
defined

:::
by

::
eq.

::::::
(3.1),

::::::::
together

:::::
with

::::
the

::::::::::
unphysical

::::::::::
assumption

:::
of

:::::::
constant

::::::::::
temperature

:::::::
profile,

:::
the

:::::
only

::::::::::
conclusion

::::
here

::
is

:::
that

::::
the

:::::::::::
visualisation

:::::::
method

:::::
used

::
in

:::::
Fig.

:::
10

::
is
::::

apt
::
to 40

:::::::
highlight

::::
this

:::::::
feature.

::::::::::
Noteworthy,

:::::
what

::
is
:::::::::

consistent
::::
with

::
the

::::::::::
differences

:::
in

:::::::::::::
supersaturation

::::::
values

:::::::
between

:::::::
upwind

:::
and

::::::::
MPDATA

:::::::::
solutions,

:::
the

:::::
effect

::
is

::
in

:::
fact

:::::::::::
unnoticeable

::
in

::
the

::::
case

:::
of

::
the

:::::::
upwind

:::::::
solution

::::::::
presented

::
in

::::
Fig.

:::
10.

The bottom row in Fig. 11 depicts the relative dispersion 45

defined and computed as in section 2.11, discarding levels
where the total droplet number mixing ratio summed over
all bins on a level is below 5% of NCCN. Narrowing of the
spectrum with

:
a
:

height below z = 1.5 km depicted by de-
creasing values of d is a robust feature. Minimal values of d 50

vary visibly depending on the number of MPDATA iterations
employed.

In order to
::
To

:
provide insight into the sensitivity of the

results to temporal, spatial and spectral resolution, Fig. 12
presents the relative dispersion profiles at t= t1 = 10 min. 55

for several resolution settings. In the background of the fig-
ure, there are three axes plotted pointing the directions in
which the figure panels can be explored to reveal the de-
pendence on: the vertical spatial spacing ∆z (left-to-right),
the spectral spacing ∆r (bottom-to-top), and the timestep 60

(back-to-foreground). The base resolution case is plotted at
the intersection of the background axes. Note that besides
the back-to-foreground sequence of plots where all but the
timestep settings is kept equal, the timestep also varies with
the grid settings to fulfill scheme stability constraints

::::
fulfil 65

::::::
scheme

:::::::
stability

::::::::
constraint.
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Figure 11. Single-column simulations depicted with three selected variables: liquid water mixing ratio ql (top row), supersaturation S (middle
row) and relative dispersion d (bottom row); for three settings of the iteration count in MPDATA (one iteration corresponding to the basic
upwind scheme, left column). Each of nine datasets (three iteration settings, three variables) is plotted with a gray-scale

::::::::
grey-scale time vs.

altitude map (left panels with color
:::
the

:::::
colour scale above) and a set of four profiles (right panels). Profiles are plotted for t = 3 min. (dotted),

6 min. (dashed), 9 min. (solid), & 12 min. (dash-dot), with vertical lines of corresponding line style plotted at given times in the left panels.
For plotting, the model state is resampled by averaging in the time dimension to reduce the number of plotted steps by a factor of 50 (from
3600 down to 72).

The dependence on the temporal resolution, as gauged
by comparing the base resolution case with cases with the
timestep halved (∆t= 125 ms; background) and doubled
(∆t= 500 s; foreground), is barely observable. This is in
general agreement with Morrison et al. (2018) and Her-5

nandéz Pardo et al. (2020) where the dependence on timestep

is shown to be much smaller than on the spatial or spectral
resolution.

The dependence on
:::
the spectral resolution is captured and

clearly manifested at the lowest spectral resolution where 10

the minimal spectral dispersion d drops by ca. 0.1 when de-
creasing ∆r = 1.2µm down to ∆r = 0.3µm. Little further
change can be observed by refining the resolution down to
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Figure 12. Profiles of relative dispersion d for a set of temporal, spatial and spectral resolution settings (∆r, ∆z and ∆t values given in
labels above each plot). Each panel depicts results for three different MPDATA iteration counts (one iteration corresponding to the basic
upwind scheme). Profiles plotted for t = t1 = 10 min.

∆r = 0.15µm. Focusing on the minimal values of d for a
given profile, in general,

:
the lower the spectral resolution, the

more profound the effect of introducing corrective iterations
of MPDATA. In most cases, applying even a single corrective
step (i.e., 2 iterations) results in halving of the minimal val-5

ues d as compared to
:::
the upwind solution (i.e., 1 iteration).

The spatial resolution setting ∆z significantly alters the re-
sultsparticularly near ,

::::::::::
particularly

::::
near

:::
the

:
cloud base. The

values of d at the lower half of the presented profile (i.e.,
ca. below z = 1 km) drop from over 0.3 down to around10

0.1 when refining the resolution from ∆z = 200 m down to
∆z = 25 m.

4 Conclusions

The study was focused on the MPDATA family of nu-
merical schemes that iteratively apply

:::
and

:::
its

:::::::::
application 15

::
to

:::
the

::::::::::::
size-spectral

::
as

:::::
well

:::
as

:::::::::::::
spatio-spectral

::::::::
transport

:::::::
problem

::::::
arising

:::
in

:::::::
models

:::
of

:::::::::::::
condensational

:::::::
growth

::
of
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::::
cloud

:::::::::
droplets.

:::::::::
MPDATA

:::::::::
iteratively

:::::::
applies

:
the upwind

algorithmreducing the ,
::::

first
:::::

with
::::

the
:::::::
physical

::::::::
velocity,

::::::::::
subsequently

::::::
using

:::::::::::
antidiffusive

::::::::::
volocities.

:::
As

::
a
::::::

result,

::
the

:::::::::
algorithm

::
is

:::::::::::
characterised

:::
by

:::::::
reduced

:
numerical diffu-

sion while maintaining the salient features of the underly-5

ing upwind scheme such as conservativeness and positive-
definiteness.

Several options introduced to MPDATA following its
original formulation were explored here in the context
of condensational growth problems. This included the10

procedure to introduce coordinate transformations (e.g. ,
to a mass-doubling grid) and the variants of MPDATA
including:

::
In

:::::::::
literature,

:::
the

:::::::::
derivation

::::
and

::::::::::
discussion

::
of

::::::::
MPDATA

:::::::
variants

::::
are

::::::
spread

:::::::
across

:::::::::
numerous

:::::::
research

:::::
papers

:::::::::
published

:::::::
across

:::::::
almost

:::::
four

::::::::
decades,

::::
and

:::
in15

::::
most

:::::
cases

::::::::
focused

:::
on

:::::::::::::::
multidimensional

:::::::::::::
hydrodynamics

::::::::::
applications.

::
It
::::
was

:::
the

::::
aim

:::
of

:::
this

::::::
study,

::
to

::::::::
highlight

:::
the

:::::::::::
developments

::::
that

::::::::
followed

:::
the

:::::::
original

::::::::::
formulation

::
of

:::
the

::::::::
algorithm,

::::
and

::
to

:::::::
highlight

::::
their

:::::::::::
applicability

::
to

:::
the

:::::::
problem.

::
To

::::
this

::::
end,

::
it
::::

was
:::::::

shown
::::
that

:::
the

:::::::::::
combination

:::
of

::::
such20

::::::
features

:::
of

::::::::
MPDATA

:::
as

:::
the

:
infinite-gauge, non-oscillatory

, DPDC and third-order-terms options.
Furthermore, an example application of the MPDATA

scheme to address the two-dimensional advection problem
arising from consideration ,

::::::::
together

::::
with

::::
the

:::::::::
application25

::
of

::::::::
multiple

:::::::::
corrective

:::::::::
iterations

:::::
offer

::
a
::::::

robust
:::::::

scheme

:::
that

::::::::
grossly

:::::::::::
outperforms

:::::
the

:::::::
almost

::::::::::::::
quadragenarian

::::
basic

::::::::::
MPDATA.

::::
The

:::::::::
procedure

:::
to

:::::::::
introduce

:::::::::
coordinate

:::::::::::::
transformations,

:::::
e.g.,

:::
to

::
a
::::::::::::::

mass-doubling
::::

grid
:::

in
::::

the

::::::
context

:
of size-spectral /spatial evolution of the particle30

density in a single-column model was presented. The
developed setup constitutes a Python reimplementation
of the condensation-only bin-microphysics

:::::::
transport

::::
was

:::::::
detailed.

::
In

:::
the

:::::
case

:::
of

:::
the

:
single-column variant of the KiD35

framework introduced in Shipway and Hill (2012). The
simulations feature

:::
test

:::::
case,

:::
the

::::::::::
simulations

:::::::
featured

:
cou-

pling between droplet growth and supersaturation evolution.
Furthermore, the multidimensional character of MPDATA
stemming from involvement of cross-dimensional terms40

in antidiffusive velocity formulæ is exploited. Presented
analysis is focused on the sensitivity to spatial, spectral and
temporal resolution and hints that, for the case considered,
the

:::
The

:
cloud droplet spectrum relative dispersion is

significantly influenced by numerical diffusion pertinent to45

both spectral and vertical advection. Focusing on the lev-
els corresponding to the region of maximal liquid water
content (ca. between z = 1 km and 2 km

::
for

::::
the

::::
case

:::::::::
considered), it is evident

:::
was

::::::
shown

:
that application of even

a single MPDATA corrective iteration
::::::::
corrective

:::::::
iteration

::
of50

::::::::
MPDATA robustly reduces (in most cases more than halves)
the spectral width. In agreement with conclusions drawn
from single-column simulations in Morrison et al. (2018) and
Lee et al. (2021), within the range of explored grid settings,
the vertical resolution has

::
the

:
most profound effect on the55

overall characteristics of the spectrum width profile as it sig-
nificantly influences the just-above-cloud-base evolution of
the spectral width(much less influence above).

In literature, the derivation and discussion of MPDATA
variants is spread across numerous research papers published 60

across almost four decades, and in most cases focused on
multidimensional hydrodynamics applications. It was the
aim of this study, to highlight the developments that followed
the original formulation of the algorithm, and to highlight
their applicability to the problem. To this end, it was 65

shown that combination of such features of MPDATA as the
infinite-gauge, non-oscillatory and third-order-terms options,
together with application of multiple corrective iterations
offer a robust scheme that grossly outperforms the almost
quadragenarian basic MPDATA. 70

This study outlined the applicability of the PyMPDATA
high-performance Python implementation of MPDATA
for exploring the numerical aspects of the representation
of condensational growth in bin microphysics schemes.
Extensibility of PyMPDATA, in particular towards 75

support for higher-dimensional problems, was among
the key motivating factors for development of the
package in Python/Numba. This opens up the path to
higher-dimensional MPDATA solvers – a development
already underway. A four-dimensional MPDATA solver (to 80

the authors’ knowledge not publicly released or discussed
in literature yet) would be capable of integrating the bin
micrphysics dynamics in three spatial dimensions.

Code availability. The calculations are performed using Python
with a new open-source implementation of MPDATA: PyMPDATA 85

(Bartman et al., 2021). In terms of numerics, PyMPDATA closely
follows libmpdata++ (Jaruga et al., 2015).

All of presented figures and tables can be recreated in interactive
notebooks “in the cloud” using the mybinder.org or Colab plat-
forms. To launch the notebooks, follow the links: 90

https://github.com/atmos-cloud-sim-uj/PyMPDATA-examples/
tree/main/PyMPDATA_examples/Olesik_et_al_2020 and
https://github.com/atmos-cloud-sim-uj/PyMPDATA-examples/
tree/main/PyMPDATA_examples/Shipway_and_Hill_2012. The
notebooks are part of the PyMPDATA-examples Python package. 95

Both PyMPDATA and PyMPDATA-examples are licensed under
the GNU General Public License 3.0, are available on the PyPI.org
Python package repository, and are additionally enclosed as an
electronic supplement to this paper.

The single-column framework is a Python reimplementation 100

of the open-source KiD code available at https://github.com/
BShipway/KiD.

Appendix A: Convergence analysis

To assess the spatial and temporal convergence of the numer-
ical solutions presented above, a convergence test originating 105

from Smolarkiewicz and Grabowski (1990) is used. For the
analysis the following truncation-error L2 measure is used

https://github.com/atmos-cloud-sim-uj/PyMPDATA-examples/tree/main/PyMPDATA_examples/Olesik_et_al_2020
https://github.com/atmos-cloud-sim-uj/PyMPDATA-examples/tree/main/PyMPDATA_examples/Olesik_et_al_2020
https://github.com/atmos-cloud-sim-uj/PyMPDATA-examples/tree/main/PyMPDATA_examples/Olesik_et_al_2020
https://github.com/atmos-cloud-sim-uj/PyMPDATA-examples/tree/main/PyMPDATA_examples/Shipway_and_Hill_2012
https://github.com/atmos-cloud-sim-uj/PyMPDATA-examples/tree/main/PyMPDATA_examples/Shipway_and_Hill_2012
https://github.com/atmos-cloud-sim-uj/PyMPDATA-examples/tree/main/PyMPDATA_examples/Shipway_and_Hill_2012
https://github.com/BShipway/KiD
https://github.com/BShipway/KiD
https://github.com/BShipway/KiD
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Figure A1. Convergence plot for the upwind scheme (cf. Fig. 1).
Angle in the polar plot corresponds to the Courant number C; the
distance from origin denotes the number of grid boxes nx, see eq.
(A2). Gray

::::
Grey dots indicate data point locations – parameter val-

ues for which computations were made. Colors
::::::
Colours and isolines

depict the error measure values (interpolated from the data point lo-
cations), see eq. (A1).

(e.g., Smolarkiewicz, 1984):

ErrL2 =
1

T

√∑
i

(
ψnumerical
i −ψanalytical

i

)2
/nx. (A1)

As a side note, it is worth pointing out that for the chosen
coordinates

(
p= r2,x= r2

)
, the coordinate transformation

term is equal to
::
the

:
identity, so there is no need for including5

theG factor into the computed error measures. In
::
the general

case, convergence will depend on the grid choice and to ac-
count for that one may used

::
use

:
a modified measure as given

in Smolarkiewicz and Rasch (1991, eq. 24 ).
To explore the convergence, the error measures are com-10

puted for 7 different linearly spaced values of C between
0.05 and 0.95, and nx ∈

{
27,28,29,210,211,212,213,214

}
resulting in 56 simulations for each presented combination
of options.

As proposed in Smolarkiewicz and Grabowski (1990), vi-15

sualization of the results is carried out on polar plots with
radius ρ and angle φ coordinates defined as follows:

ρ= ln2

(
1

nx

)
+ const, φ= C

π

2
, (A2)

where ρ was shifted by a constant so that the highest resolu-
tion grid corresponds to ρ= 1.20

Figures A1-A8 depict the convergence rates and are in-
tended for comparison with analogously constructed plots in
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Figure A2. Convergence plot for basic 2-pass
:::::::
two-pass MPDATA

(cf. Fig. 3). See caption of Fig. A1 for
::
the

:
description of plot ele-

ments.
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Figure A3. Convergence plot for the infinite gauge MPDATA
(cf. Fig. 4). See caption of Fig. A1 for

:::
the description of plot el-

ements.
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Figure A4. Convergence plot for the infinite gauge non-oscillatory
variant of MPDATA (cf. Fig. 5). See caption of Fig. A1 for

:::
the de-

scription of plot elements.
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Figure A5. Convergence plot for the DPDC variant with infinite
gauge and non-oscillatory corrections (cf. Fig. 6). See caption of
Fig. A1 for

:::
the description of plot elements.
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Figure A6. Convergence plot for the three-pass MPDATA
(cf. Fig. 3). See caption of Fig. A1 for

:::
the description of plot el-

ements.
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Figure A7. Convergence plot for the three-pass MPDATA with third
order

::::::::
third-order

:
terms (cf. Fig. 7). See caption of Fig. A1 for

::
the

description of plot elements.
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Figure A8. Convergence plot for the three-pass infinite gauge non-
oscillatory MPDATA with third order

::::::::
third-order term corrections

(cf. Fig. 8). See caption of Fig. A1 for
::
the

:
description of plot ele-

ments.

Figs. 2-3 Smolarkiewicz and Grabowski (1990), Figs. 8.1-
8.2 ?

::::::::::::::::::::::::::::::
Margolin and Smolarkiewicz (1998) and Figs. 10-11

Jaruga et al. (2015).
The chosen color

:::::
colour increments correspond to the er-

ror reduction by a factor of 2, the warmer the color
:::::
colour,5

the larger the error. The small gray
:::
grey

::
points be-

hind the isolines represent points for which the error
value was calculated. When moving along the lines of
constant Courant number, increasing the space and time
discretization,

:::::::::::
discretisation,

:::
the

:
number of crossed dashed10

isolines indicate the order of convergence. For the considered
problem, it can be seen that the upwind scheme (Fig. A1) has

:
a convergence of the first order (one isoline is crossed when
spatial discretization

:::::::::::
discretisation

:
increases by one order);

MPDATA scheme (Fig. A2) of the second order
::::::::::
second-order15

and MPDATA with 3 iterations (Fig. A6) is of the third order.
Moreover, the shape of the dashed isolines tells the depen-

dency of the solution accuracy on the Courant number. When
these are isotropic (truncation error being independent of po-
lar angle), the solution is independent of the Courant number.20

An interesting behavior of the schemes can be seen for

::::::::::
Noteworthy,

::
in Fig. A3 and Fig. A4, where the

:
s groove of the

third-order convergence rate forms
::
is

::::::
evident

:
around φ= π

4 ,
normally characteristic for MPDATA with three or more
passes. When second-order truncation error is sufficiently re-25

duced, the third-order error, proportional to (1− 3C + 2C2)
as can be seen in (2.22), dominates, but vanishes forC = 0.5,
thus resulting in the existence of the groove.

The convergence test result
:::::
results for the three-pass MP-

DATA with infinite gauge, non-oscillatory and third order30

:::::::::
third-order terms options enabled (Fig. A8) are consistend

::::::::
consistent

:
with results depicted in Fig. A7, although the or-

der of convergence is reduced due to the employment of non-
oscillatory option.

Author contributions. The idea of the study originated in discus- 35

sions between SA, SU and MO. MO led the work and preliminary
version of a significant part of the presented material constituted his
MSc thesis prepared under the mentorship of SA. PB architected
the key components of the PyMPDATA package. JB contributed
the DPDC variant of MPDATA to PyMPDATA. MB participated in 40

composing the paper and devising the result analysis workflow. All
authors contributed to the final form of the text.

Competing interests. The authors declare no competing interests.
Simon Unterstrasser and Sylwester Arabas are members of the edi-
torial board of Geoscientific Model Development. The peer-review 45

process has been handled by an independent editor.

Acknowledgements. The manuscript and the developed code
benefited from comments and contributions from (in alphabetical
order): Szymon Drenda,

::::::::
Comments

::::
from

:
Wojciech Grabowski,

:::::
Adrian

::::
Hill,

:
Hugh Morrison, Andrzej Odrzywołek, Piotr Smo- 50

larkiewicz and Maciej Waruszewski . Paper
::
as

::::
well

::
as

:::::
paper re-

views by Josef Schröttle and two
:::
three

:
anonymous reviewers

helped to extend and improve the manuscript. Insider knowledge
on the KiD model offered in private communications by Adrian
Hill was of great help. The project was carried out with support 55

from
:::::
within

::
the

::::::::::::::::::::::::
POWROTY/REINTEGRATION

:::::::::
programme

::
of the

Foundation for Polish Science
:::::::::
co-financed

::
by

:::
the

:::::::
European

:::::
Union

::::
under

:::
the

:::::::
European

:::::::
Regional

:::::::::::
Development

::::
Fund (POIR.04.04.00-

00-5E1C/18-00).

References 60

Abade, G., Grabowski, W. W., and Pawlowska, H.: Broaden-
ing of Cloud Droplet Spectra through Eddy Hopping: Tur-
bulent Entraining Parcel Simulations, J. Atmos. Sci., 75,
https://doi.org/10.1175/JAS-D-18-0078.1, 2018.

Arabas, S. and Pawlowska, H.: Adaptive method of lines for multi- 65

component aerosol condensational growth and CCN activation,
Geosci. Model Dev., 4, https://doi.org/10.5194/gmd-4-15-2011,
2011.

Arabas, S. and Shima, S.-I.: Large-Eddy Simulations of Trade Wind
Cumuli Using Particle-Based Microphysics with Monte Carlo 70

Coalescence, J. Atmos. Sci., 70, https://doi.org/10.1175/JAS-D-
12-0295.1, 2013.

Arabas, S. and Shima, S.-I.: On the CCN (de)activation nonlineari-
ties, Nonlin. Proc. Geophys., 24, https://doi.org/10.5194/npg-24-
535-2017, 2017. 75

Arabas, S., Pawlowska, H., and Grabowski, W.: Effective radius
and droplet spectral width from in-situ aircraft observations
in trade-wind cumuli during RICO, Geophys. Res. Lett., 36,
https://doi.org/10.1029/2009GL038257, 2009.
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