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Abstract. This work discusses the numerical aspects of rep- through water mass budget. The single-column problem in-
resenting the diffusional (condensational) growth in par- volves a numerical solution of a two-dimensional advection
ticulate systems such as atmospheric clouds. It focuses problem (spectral and spatial dimensions). The discussion
on the Eulerian medeling-approachmodelling approach, in presented in the paper covers spatial—(i-e—size-spectral)—,
s which the evolution of the probability density function de- spatial and temporal convergence, computational cost, con-

scribing the particle—size—particle-size spectrum is carried servativeness and quantification of the numerical broadening
out using a fixed-bin diseretization-discretisation (so-called of the particle-size-particle-size spectrum. The box-model

“bin” microphysics). The numerical diffusion problem in- simulations demonstrate that, for the problem considered,
herent to the employment of the fixed-bin diseretization even a tenfold decrease of the spurious numerical spectral
10 discretisation in the numerical solution of the arising trans- broadening can be obtained by a-preper-an apt choice of the

port problem is serutinized—Foeus—scrutinised. The focus MPDATA variant (maintaining the same spatial and tempo-
is on the applications of MPDMMFMM ral resolution), yet at an increased computational cost. Anal-
sehemesthe Multidimensional Positive Definite Advection yses using the single-column test case reveal that the width
Transport Algorithm (MPDATA). Several MPDATA variants of the droplet size spectrum is affected by numerical diffu-

15 are explored including +infinite-gauge, non-oscillatory, third- sion pertinent to both spatial and spectral advection. Appli-
order-terms and recursive antidiffusive correction (deuble cation of even a single corrective iteration of MPDATA ro-
pass—donor—eelDouble-Pass _Donor-Cell, DPDC) options. bustly decreases the relative dispersion of the droplet spec-
Methodology for handling coordinate transformations as- trum, roughly by a factor of two at the levels of maximal
sociated with both particle—size—distribution—particle-size liquid water content.

20 spectrum_variable choice and numerical grid layout are

expounded. The study uses PyMPDATA - a new open-

source Python implementation of MPDATA. Analysis of

the performance of the scheme for different diseretization 1 Introduction

discretisation parameters and different settings of the algo-

rithm is performed using: (i) an analytically solvable box- 1.1 Motivation and outline

model test case, and (ii) the single-column kinematic driver

(“KiD”) test case in which the size-spectral advection due ~ The focus of this paper is on the problem of predieting

to condensation is solved simultaneously with the spatial ad- the—partiele—size—particle-size evolution for a popula-

vection in the vertical physical coordinate, and in which the ~ tion of droplets undergoing diffusional growth. Embracing

s supersaturation evolution is coupled with the droplet growth ~  eontinuous-deseription-of-the-partiele-size-Representing the
particle-size spectrum using a number density function, the
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2 Olesik et. al: On numerical broadening of particle-size spectra

problem can be stated using a population-balance equa-

tion expressing conservation of the number of particles.

Herein, the numerical solution of the problem using the

MPDATA family of finite difference schemes originating in

Smolarkiewicz (1983, 1984) is discussed. MPDATA stands

for Multidimensional Positive Definite Advection Transport

Algorithm and is a higher-order iterative extension of the

forward-in-time upwind scheme.

MPDATA features a variety of options allowing to pick an

10 algorithm variant appropriate to the problem at hand. This
work highlights the importance of the MPDATA algorithm
variant choice for the resultant spectral broadening of the

particle-size spectrum. The term spectral broadening

1s refers to the increasing width of the droplet spectrum during

the lifetime of a cloud, which may be associated with both

physical mechanisms (mixing, turbulence) as well as spuri-

ous artifacts-artefacts stemming from the employed numeri-
cal solution technique.

2 Cloud simulations with a detailed treatment of droplet mi-
crophysics face a twofold challenge in prognesingresolving
the droplet spectrum width. First, it is challenging to model
and numerically represent the subtleties of condensational
growth (e.g., Arabas and Shima, 2017; Yang et al., 2018),

25 even more so when considering the interplay between par-
ticle population dynamics and supersaturation fluctuations
(e.g., Jeffery et al., 2007; Abade et al., 2018). Second, the
diseretization-discretisation strategies employed in represent-
ing the particle-size-particle-size spectrum and its evolution

w0 are charaeterized-characterised by inherent limitations which

eenstrains-constrain the fidelity of spectral width predictions

(e.g., Arabas and Pawlowska, 2011; Morrison et al., 2018).

Finally, corroboration of spectral width estimates from both

theory and medeling-modelling against experimental data

faces the problems of instrumental broadening inherent to the

measurement techniques (e.g. Devenish et al., 2012, sec. 3.2)

and the problem of sampling volume choice (e.g., Kostinski

and Jameson, 2000).

The width of the spectrum plays a key role in the

40 determination of both the droplet collision probabilities
Grabowski-and Wang (2013)(Grabowski and Wang, 2013)
and the characteristics relevant for radiative-transfer
radiative transfer (Chandrakar et al., 2018). These in turn
are reflected in parameterisations of cloud processes in

ss arge—seale—large-scale models. Taking elimate—timeseale
climate-timescale simulation as an example, the represen-
tation of clouds remains the largest source of uncertainty
there-(Schneider et al., 2017). The parameterisations used in
climate models are developed based on smaller—scale simu-

s0 lations i 5 sresolving
article-size spectrum evolutio Consequently, it is
of high interest to dﬁeﬂfaﬂg}e—fhe—%}—ze—effeeﬁ—eﬂ—fhe
governing—equation—or—are—quantify the extent to which
ss the droplet-size spectrum width is a consequence of the
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hysics of particle growth embodied in the governin

equations and (b) the discretisation and the associated

The following introductory subsections start with a litera-
ture review of applications of finite-differenceschemes;-and

MPDATA-inpartieular-MPDATA to the problem of conden-
sational growth of pepulation-efparticles—

particles. Section 2 focuses on a simple box-model test
case and serves as a tutorial on MPDATA variants (limited to
one-dimensional homogeneous advection of a positive-sign
signal). It is presented with-the-aim-of-gathering-to gather
the information that is scattered across works focusing on
more complex computational fluid dynamics applications of
MPDATA. Example simulations employing an analytically
solvable test case pertaining to the evolution of cloud
droplet size spectrum in a cumulus cloud is used to depict
the effects on numerical broadening from enabling the
discussed algorithm variants. An analysis of the compu-
tational cost of different algorithm variants is carried out
and corroborated with previously published data. While
comprehensive from the point of view of the considered
problem of diffusional growth, the presented material merely
hints_at the versatility of the algorithm. For a proper review
of the MPDATA family of algorithms highlighting the multi-
dimensional aspects and its multifaceted applications, see

>Smolarkiewicz (2006): Kihnlein and Smolarkiewiez 2017

we refer to Smolarkiewicz and Margolin (1998)
Smolarkiewicz (2006) and
Kiihnlein and Smolarkiewicz (2017).

Section 3 covers the application of MPDATA for cou-
pled size-spectral and spatial advection in a single-column
kinematic setup from Shipway and Hill (2012). First, the
methodology to handle the spectral-spatial liquid water ad-
vection problem taking into account the coupling with the
vapour field is detailed. Second, the results obtained us-
ing different MPDATA variants are discussed focusing on
the measures of spectral broadening. title = PyMPDATA

v1l: Numba-accelerated implementation of IMPDATA with

examples in Python, Julia and Matlab
Section 4 concludes the work with a summary of findings.

Appendix A contains convergence analysis based on re-
sults of multiple simulations using the embraced box-model
test case run with different temporal and spatial (size-
spectral) resolutions.

All presented simulations are performed with the
open-source package PYMPDATA Bartman et al. (2021).

1.2 Background

There exist two contrasting approaches for medeling
modelling the evolution of eloud-droplet—size—droplet-size
spectrum (see Grabowski, 2020, for a review): Eu-
lerian (fixed-bin) and the Lagrangian (moving-bin,

moving-sectional _or particle-based). The—lagrangian
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Olesik et. al: On numerical broadening of particle-size spectra 3

approachastheadvantagesf(i)-simplicityofformulation  estingly, it is noted there thatif“the antidiffusion veloci-
{no-needto-de-ne-particle-levelpropertiesandprocesseas  ties are increased by some factor between 1.04 and 1.08,

griddedecontinuouselds)—(i-lackof-diseretization-related  use of [corrective iteration] only once can reduce 50% of
artifacts—such—as—humerical-diffusion—asseciated with the computing time [.. ] without much sacri ce of accurécy

o load-balancing-in—distributed—memery—environments,  themeanradius. s

{iiy-selvabilityefresultanstifF-OBEsystemsOverall, while The “Aerosol Science: Theory and Practice” book of

the Lagrangian methods are the focus of active research andilliams and Loyalka (1991) contains a section (5.19) on
developmentG%&bewsknePal—%%QMomson et aI 2020) MPDATA (termed “Smolarkiewicz method") within a chap-

15 IN large-scale-modeling-Khain-etal—2015)-due-to—their equation descnblng aerosol spectrum evolution. The basic
consisteneywith-the—id—advectiondynamiesdeseription  variant of MPDATA (Smolarkiewicz, 1983%waspresented

and-due—to—robust-algorithms-for—representingparticle  with an outline of its derivation.
collisiondarge-scalgnodelling(Khain et al., 2015). In Kostoglou and Karabelas (1995) and Dhaniyala and

Following Liu et al. (1997) and Morrison et al. (2018), the Wexler (1996), the authors mention that MPDATA has the

» earliest documented study employing the Eulerian numericpotential to reducerrersin-particlesizecomputationsthe
for condensational growth of @entinuetssize distribution  fatterwerk-the numericaldiffusion as comparedo upwind

representinga—population of particles is that of Kovetz inthecontextof particlesizegvolutioncalculationsThe. rst

and Olund (196Qvhereasseveralearlierworks, Several  lists high computational cost among drawbacks in using the

earlier works, starting with the seminal study of How- algorithm that led to discarding the scheme from the pre-

» ell (1949)tilized-, utilised the Lagrangian approaghThe  sented comparison. 80

numerical scheme proposed in Kovetz and Olund (1969, In Morrison et al. (2018), a comparison of different nu-
eg. (10)) resembles an upwind algorithm being explicit in merical schemes fothe condensational growth problem
time and orienting the nite-difference stencil differently for is performed. Both xed-, and moving-bin approaches are
condensation and evaporation. compared, including the non-oscillatory variant of MP-
w Likely-eneOneof the rst discussions of numerical broad- DATA (referred to as MPDG therein). MPDATA is reported
ening of the spectrum cdikely be found in Brown (1980) to producemore signi cant numerical diffusion and spec-
where the numerical scheme from Kovetz and Olund (1969)ral broadenlngaa{we%eethan all other methods. Intrigu-
was improved in several ways, includitite sampling of the  ingly, as can be seen in Fig. 7 therein, the broad spec-
drop growth rate at the bin boundaries'(as is done herein)trum in the results obtalned with MPDATA appears aI-

ror of the method by comparisons to analytic solutions. tude of 20n out of 520n of simulated dlsplacement of an

In Tsang and Brock (1982), the authors point out that up-air parcel.Overallthe-diseussionn-Merrison-et-al-{2018)
wind differencing is not suitable for aerosol growth calcula- —which—has—prompted-further—analysespresentedHin
tionsfer-dueto its unacceptable numerical diffusion. Note- Hemande%PardeePalﬂG%}dLeee%aF@Oﬂ%eeeses

« worthy, the study includes considerations of the Kelvin effecten—the—issue-of —spectral-broadening from—the—vertical o
of surface tension on the drop growth (not considered heremeume%ak@#uae*%ﬁghhghﬂeg%hat—m—pﬁnefple—me
seediscussiorof eq.2.3 below). problem-is—a—feur-dimensionaltranspertproblem—-{three

" The rst mention of an application of the MPDATA spatialdimensionsndthespectrakimension).
scheme for the problem of condensational growth can be In Wei et al. (2020), MPDATA is employed for integrating

s found already-in Smolarkiewicz (1984). The problem is droplet spectrum evolution for comparison with a Lagrangian
given as an example where the divergent- ow option of the scheme. The work concludes that the spurious broadening of
algorithm may be applicable (see sect. 2.8 below). the spectrum cannot be alleviated even with a grid composed

In Tsang and Korgaonkar (1987), wh|ch is focused onof 2000€5|eI}S|ze bins.

5 (1988), the basic 3-iteration MPDATA&yyas: used. Inter-
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interplay of spectraland spatial advectionfurther nuances in the embraced framework (including multi-dimensional

;hg;:ssue“of._s“pectrap:rp::aden|ng setting), see Smolarkiewicz and Clark (1986) and Smo-
Noteworthy, none of the works mentioned larkiewicz and Margolin (1993).
above discussed coordinate transformations

5

to non-linear grid

55

Iayouts with MPDATA

combinations is expoundsihlighting their obustnesdo by_t'"':'" t. Henceforth, ' andG; denote thediscretized
selvingthecondensationdlrowthproblem. discretised number density, and thediseretizedliscretised

coordinate transformation term, respectlvely The dimen-
sionless advective eld is denoted WC = pu t= X,

To describe the conservation of particle numNeunder the ~ WhereC stands for the Courant number, i.e. “the velocity dn
evolution of thepar&ele&zepartlcle S|zespectrurmp(p) - terms of temporal and spa‘ual grid incrememiste thatthe

s 1.3 Governing equations
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(GC)JI+l -, inthe case of the dlscretlsatlon tﬁeﬂﬂeduet

2 GC. To-selvetheequationnumerically;aA nite difference
@(Gnp) + @(an p)=0; (1.1)  form of the differential operators is introduced embracing the
whereG  G(x) represents the coordinate transformation SO-called upwind approach (dating back at least to Courant
from p to x ~with x being an equidistant mesh coordinate €t al., 1952, eq. 16 therein):

used in the numerical solution,  ny(p(x)) being number i 1

density function andi  u(x) denoting the pace of particle = = F({ 1:GCi=)

growth in the chosen coordinate The coordinate transfor- '

2

o

» mation termG may play a twofold role in this context. FOM s MGG 1=) 2.1)
First, there is a degree of freedom in the choice of they,ith
particle-size parameter used as the coordinate (i.e., the ar-
gumentp of the density functiom(p)). For the chosen co- F( L; r:GCmig) =max( GCpig;0) L+ 80
ordinatep 2 [r;s  r?;v  r3], the appropriate distributions min(GCmia:0) R 2.2)

will be n,(r), ns(s) andny(v) wheres=4r 2 andv =

4=3 r 3 denote particle surface and volume, respectively.where the introduced ux functiofr de nes the ux of

The size spectrunm,(p) in a given coordinate is related across @yrid-cell beundaryasatunctionotthevaluesot—
with n (r) via the following relatign of measures; (p)dp = %d—ﬁ%ﬂe#?&ﬂdﬁg#&e#ﬂ%beﬂﬂd&%e&pe&weh&ﬁd

n; (r)dr so the total numbeX = n,dr is conserved. the-value-of- GC—atthe-boundary. Hereinafter a shorthand
o Second, there is also a degree of freedom in the choice ofotationF;, 1 () F( i; i+1;GC, 1) is used.

the grid layoutp(r (x)), that is how the parameters s or

v arediseretizeddiscretised to form the equidistant grid in 2-2 Box-model test case and upwind solution

3

a

X. This can be used, for instance, to de ne a mass-doublin
grid layout & =In »(r®)) as used in Morrison et al. (2018)
and herein.

Combining the two transformations results in the follow-
ing de nition of G:

%he test case is based on Figure 3 from East (1957) - one of
the early papers on the topic of cloud droplet spectral broad-
ening. The case considers the growth of a population of cleud
droplets through condensation in the equilibrium supersatu-

ration limit, where:

dp

G dp(r)= dx(r)— —= (1.2) " dx _ dx

= ===
which de nes the transformation from the coordinptef the dr drr
50 density function to the numerical mesh coordinatEorfur— with = (S 1) being an approximately constant fac-

4

o

(2.3)
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nO(r)= noexp  (logyo(r=ro))® =r (2.4)
with  parameters—ro=7 pm  s—and._ .. =22

For the boundary conditions (implemented using halo grid
cells), extrapolation is applied f@, while both andGC
are set to zero within the halo.

Analytical solution to eq. (1.1) is readily obtainable for

tion (1.1) becomes a constant-coef cient advection equation,

the problem reduces to translation of the signatiny 2t .

Cast in ther coordinate, the solution can be expressed as
s (Kovetz, 1969):

analytical — ne (rt> 0) ;nEO) ®); (2.5) Figure 1. Evolution of the particle number density (upper panel)

wherer= £(r;t) = p 12 2t histograms corresponding to the numerical solution using upwind
- - : scheme, black dots depicting analytical solution, @mey-grey
8led histogram representingliseretizeddiscretisedanalytical so-

The upper panels in Figures 1 and 2 depict the droplet siz

spectrum evolution through condensational growth from anon: compare Fig. 3 in East (1957). Numerical solution was

« initial liquid water mixing ratio ofMo =1 gkg * under su-  gptained in the following coordinate transformatigne r2; x =
persaturatiols 1 =0:075% Ina(r?)
Two grid layout &) and size parametep) choices are
depicted. Both panels in Fig. 1 present simulation carried
out with densityfunetion-coordinatep = r2 anddiscretized Thenermalizeenormalised mass density of hiiris evalu-

% ggprginat:ganq::Qj:scretisedon a mass-doubling gricx(=  ated ast=3 ;m{"® =M by calculating the third statistical
In2(r<)); th. Both panels in Fig. 2 present sim-  moment of the number distributian (p) with the formula: s
ulation results obtained witlk = r andp=r. In beth-all
cases, the timestep is set td = 1 s-the-domainrangeis Z>

(4:-26). The domainspanis 1-26 \m;-thereare, Thegrid  m{ = n,r'dr =

i ra
GC 0:26 in—stlayoutwherefor p = r2is-used;and-, 8 N r (2.6)
anda variable Courant number approximately in the range 2 (1+1) “r'*t r for p=r
of {0.03:10 0.07)-in-secondayout,wherefor p= risused. =0 L o T2 ,
The snapshotaredepictedat timeswherethe time steps “2(+2) “(rf)= , forp=r

N

integrated liquid water mixing ratio of the analytical solution wherer, r, are the boundaries afth bin, and ; is the

ebtainsvaluesof-equalsto 1, 4 and 10 gkg ! (assuming  value ofn, associated with the bin (i.en, is assumed to be

air density ofl kgm 3). In both Figure 1 and 2, the upper bin-wise constant; note that the dimensiomgfdepends on
panels display the number density and the bottamelshew  the choice of p). TheermalizationnormalisationfactorM e

(1957). The numerical solution obtained with the upwind scheme
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the analysis, the Taylor expansion ofup to the second or-
deristakenat ™, N, and I, and substituted into thes
numerical upwind scheme, in which the ux function (2.2) is
expressed using moduli (e.g., Crowley, 1968, eq. (12)):

i _ o CHIC]

(7 Pt

[ i 2
CjCj
=D @7
resulting in: 20
t _ u+tjuj X
@+@ 5= - @ @
uj uj X
>— @ + @ - (2.8)

which is further transformed by employing a time deriva-
tive of both sides of the original advection equati@h =

u@ ! @ = u@Q@ =u’@ to substitute thes
second-order time derivative with spatial derivative (Cauchy-
Kowalevski procedure, see Toro, 1999) leading to the sought
modi ed equation (Roberts and Weiss, 1966, eq. 2.9):

@ +u@ + w2t j uj—x @ +::=0 (2.9)
2 2
| {KZ }

The above analysis depicts that the employment of the au-
merical scheme (2.1) results in a solution of a modi ed equa-
tion (2.9), approximating the original problem up to rst or-

) ) ) ) der. The leading second-order error contribution has the form
(2.1) is plotted with red histograms and comparéth-the  f 4 diffusive term with a coef cienK (note that the above
diseretizedto, the discretised analytical solution plotted as qytline of the modi ed equation analysis assumes the cen-

Figure 2. Asin Fig. L forp=r andx = r.

grey lled histograms. stant velocity eld). The diffusive form of the leading error

Looking at the mass density plots in Figs. 1 and 2, itis evi- term explains with the smoothing of the spectrum evident in
s dent that casting the results in the form of mass density shiftgjgs 1 2, and hence the notion of numerical diffusion.

positions of the extrema in comparison witleanalytical so-
lution. This is one of the consequencespplyingnumerical 2.4  Antidiffusive velocity and iterative corrections
setutionby-ntegratingintegratingthe number conservation

law (for discussion see sec. 2.12). The problem of numerical diffusion can be addressed sby
1 Ascan be seen in both the number- and mass-density plot&itroducing the se-eatted-so-called “antidiffusive veloc-
in Figs. 1 and 2, solutions obtained with the upwind schemeity” (Smolarkiewicz, 1983). To this end, the Fickian ux
arecharacterizethy-characterisetly a signi cantdropinthe  can be cast in the form of the advective ux - an ap-
peak value and spectral broadeningth respect to the ana-  proach dubbed pseudo-velocity technique in the context of
lytical solution — both manifesting the numerical diffusion.  advection-diffusion simulations (Lange, 1973, 1978) or hy-
s The broadening and the drop in the peak vaiugre less  perbolic formulation of diffusion (Cristiani, 2015, discussion
pronounced in Fig. 2 where the linear grid increases the resof eq. (4) therein), and discussed in detail in Smolarkiewicz
olution in the large-particle region of the spectrum. and Clark (1986, sect. 3.2):

2.3 Truncation error analysis of the upwind scheme Q@K@ )=@ K @ : (2.10)

One of the methods used to quantify the numerical diffusion In Smolarkiewicz (1983, 1984), it was proposed to apply
2 Of the upwind scheme is the modi ed equation analysis of the identity (2.10) to equation (2.9}-erderto suppress the
Hirt (1968) (see Margolin and Shashkov, 2006, for discus-spurious diffusion. The procedure is iterative. The rst iter-
sion in the context of MPDATA). To depict the idea, a sim- ation is the basic upwind pass. Subsequent corrective itera-
pli ed setting of G =1 andC = const is outlined herein. In  tions reverse the effect of numerical diffusion by performing
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Figure 4. Comparison of analytic, upwind and MPDATA solutions
Figure 3. Comparison of analytic, upwind and MPDATA solutions (see plot key for algorithm variant speci cation) using the setup
(see plot key for algorithm variant speci cation) using the setup from Fig. 1, see sec. 2.5 for discussion.
from Fig. 1, see sec. 2.4 for discussion.

. . rinmli nd br ning of the resultan rum
upwind passes with the so-called antidiffusive ux based ond op In amp tude and b oade 19 0 t e resu ta tspect u

equation (2.10) but witkK taken witha negative sign and — .~ 7~ 7T T T T TR

approximated using the upwmd stencil (for discussion of theSOIUtlon

L In nite gauge variant

—
N
o
o
=

~

=t

Accordingly, the basic antidiffusive eld;C(k) is de ned For the possible improvement of the algorithm, one may can-

constant used to prevent from divisions by zero) large constant (i.e. taking®= + a in the limita!1
" * 1 k 1 2 instead of , where is a constant scalar background eld).
GCL = Ay GGy GGy ; (2.11)  Such analysis was considered in Smolarkiewicz and Clark
(1986, eg. 41) and subsequently referred to as the “in nite-
10 wherek is the iteration numbeGC®  GC and gauge” (or “iga”) variant of MPDATA (Smolarkiewicz
‘ ‘ (2006, eq. 34), Margolin and Shashkov (2006, point (6) on
Aipy = — 1 (2.12)  page 1204)).
i+1 i Such gauge transformation changes the corrective itera-

where  denotes " in the rst iteration, or the values tions of the basic algorithm as follows (replacing egs. (2.12)
resultantfromresultingfrom the application of the upwind ~and (2.2) what isymbelizegsymbolised with ).

scheme with the antidiffusive ux in subsequent iterations.

1s The MPDATA scheme inherits the key properties of upwind A, A(Igal) - _i#l i (2.13)
in terms of positive-de niteness, conservativeness and stabil- " 2
ity --while reducing the effect of numerical diffusion. Given F;, 1 F.(igi) GCI(J'f)1 (2.14)
2

the context of conservation of particle concentration, in all

presented numerical formulee below, it is assumed that the Noting that the amplitude of the diffusive ux (2.10) is

transported signal is positive, the references provided includénversely proportional to the amplitude of the signal, sugh

formulation of the algorithm for variable sign signals. gauge choice decreases the amplitude of the truncation error
Figure 3 compares a set of example simulations performedsee Smolarkiewicz and Clark (1986, p. 408), Jaruga et al.

with the same set-up as in Figure 1. The analytical results ob§2015, discussion of Fig. 11)), howeyér makes the algo-

tained with upwind are supplemented with results obtainedrithm no longer positive de nite. N

usingthe MPDATA scheme with two and three iterations.  Figure 4 depicts how enabling the in nite gauge vars

Employment of the MPDATA iteration corrects both the sig- ant in uences results presented in Figure 3. In each plotted

nal peak amplitude and its width, as well as the position oftimestep, the maximum amplitude of the in nite-gauge re-

the maximum. It is visible that the effect of the third itera- sult is closest to the analytical solution improving over the

tion is less pronounced than that of the second one. Overbasic MPDATA. However, in each caseggative values are

» all, while the MPDATA solutions are superior to upwind, the observed (non-physical in case of the considered problers).

2

o

2

o
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Consequently, for the problem at hand, it is effectively es-
sential to combine it with the monotonicity-preserving non-
oscillatory option outlined in the next section.

2.6 Non-oscillatory option

s In Smolarkiewicz and Grabowski (199030 extension of
the MPDATA algorithm was introduced that makes the solu-
tion monotonicity preserving and precludé® appearance
of negative values in the discussed solution of droplet size
spectrum evolution. The trade-off is that the order of the al-

10 gorithm is reduced (see Appendix A).

The non-oscillatory option (later referred to as “non-osc”
herein) modi es the algorithm in such way:

GC(k+1) GC(k+l ;non- os@t _ GC(k)

i+ 3 8 i+ 3 i+ 3 Figure 5. Comparison of analytic, upwind and MPDATA solutions
< min(L: #. ) cc® (see plot key for algorithm variant speci cation) using the setup
’ I v+l I; 1 . (2.15) from Fig. 1, see sec. 2.6 for discussion.
S min@; R GCI(+)1 <0
where eeliDouble-PasPonor-Cell), featuring the following form
” (mav) of the antidiffusiveGC eld:
. max % 1 i i i @ @ !
i Gi - ) GC(2) GC(DPDC) GC GC .
max F( ) %a min F( ;)i 1;0 + i+ i+ 1] Ai+%j 1 A|2+1 '
(2.16) (2.20)
and with A, 1 de nedineq. (2.12). Note that only one corrective
. (min). Lo iteration is performed with the DPDC variant.
e min- % s i i i ) As in the case of the in nite gauge variant of MPDATA
! ! max F( ), 1.0 min F( ), 1.0 + ' (section 2.5), the above formulation does not guaratitee
" ' monotonicity of the solution. Herein an example simula-
(2.17)  tion combining theDPBouble- pasgDPDC), the non-
) oscillatory and in nite-gauge variants is presented in Fig-
with ure 6 depicting how the solution is improved over that in
" i(min) =min( " " Ny (2.18) Figure 5.
M) =max( Py MMy (2.19) 2.8 Divergent- ow correction
Note that in the case of in nite gauge option enabledunc- For divergent ow (hereinafter abbreviated d), mods
tion takes form presented in eq. (2.13) (see also Hill, 2011, ed equation analysis yields an additional correction
sect. 2.5). term to the antidiffusive velocity (see Smolarkiewicz
s Figure 5 juxtaposes in nite gauge solutiofewith the (1984, eq. (38)) for uniform coordinates?-eg—(36)
non-oscillatory option switched on or off. The effectiveness Margolin and Smolarkiewicz (1998, eq. (30)) for non-
of the latter variant is apparent as spurious negative values noniform coordinates and Waruszewski et al. (2018, sectss4)
longer occur. for the in nite-gauge variant):
2.7 DPDC ot
kd) _ k i+3
o An alternative approach to the iterative procedureGC 1 GCi(+ %) =GcW ﬁ

was introduced in Beason-andMargolin{1988): ®) ®)
GC. GC,
Beason and Margolin (1988); Margolin and Smolarkiewicz (1998) i+32 i 1=2

and further discussed in Margolin and Shashkov (2006), 2
where the contributions of multiple corrective iterations (ot =2 (iga)
s of MPDATA were analytically summed leading to a 1 !

new two-pass scheme dubbed DPD@ble-passioner 1 (else)

(2.21)
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Figure 6. Comparison of analytic, upwind and MPDATA solutions Figure 7. Comparison of analytic, upwind and MPDATA solutions
(see plot key for algorithm variant speci cation) using the setup (see plot key for algorithm variant speci cation) using the setup
from Fig. 1, see sec. 2.7 for discussion. from Fig. 1, see sec. 2.9 for discussion.

As pointed out in section 5.1 in Smolarkiewicz (1984), this ) . . ] .
option has the potential of improving results for the problem ~ Figure 7 depicts how enabling the third-order-terms im-
of the evolution of the droplet sizéistributionspectrun(per- provesthe solution of the test problem with respect to the

sonal communication with William Hall cited therein). This UPWind and basic MPDATA.

s is due to the drop growth velocity de ned by eq. (2.3) be- Noteworthy, discussion of higher—order variants of MP-
ing dependent otthe droplet radius (hence divergent given PATA was carried forward in Kuo et al. (1999) and

the one-dimensional problem). Yet, applying adequate co\WVaruszewski et al. (2018). In the latter case, the focus was

ordinate transformation (i.ep= r2), the drop growth ve- Placed on accounting for coordinate transformation and vari-

locity in the transformed coordinates becomes constant (se@Pl€ velocity in the derivation of antidiffusive velocities lead-
1 Section 2.2 above and Hall (see, e.g. 1980, sec. 3b)). Howi"d to a fully third-order accurate scheme.

ever, in simulations using the presented setup (férr?;

not shown), only insigni cant changes in the signal occur- 2.10 A “best” combination of options =

ring when the divergent- ow option was used were observed.

However, the problem considered herein does not includeThe MPDATA variants presented in the preceding sections
15 for instance, the surface tension in uence on the drop growthcan be combined together. In Figure 8, results obtained with

rate. the upwind scheme and the basic two-pass MPDATA are
_ _ comparedwith-to those obtained with aewerfttcombina-
2.9 Third-erderThird-order terms tion of three iterations, third-order-terms, in nite-gauge and

o . non-oscillatory options hereinafter referred to as the “best”
Another possible improvement to the algorithm comes from, 4iant (for the problem at hand).

the inclusion of the third-order terms in the modi ed equa- |, the following subsections, the in uence of MPDATA
= tion analysis, which leads tie following form of the antid-  4140rithm variant choice on the resultant spectrum broadness

iffusive velocity {?)(Margolin and Smolarkiewicz, 1998): and computational cost is analysed using the example simu-
lation setup used above (i.e., in all gures except Fig. 2, see
GC.(k)l GC_(k;Iot) = cc® + B; GC.(k)l section 2.2 for test case de nition).
"tz *32 '+f 1 Analysis of the scheme solution convergence with chang-
icc® c® 2 ing resolution and Courant number is presented in Ap-
1 J i+ 1) i+ 1 .
SRt g@__*i A 1X (2.22)  pendixA. s
6 Gi+1 + Gj Gi+1 + Gj
2.11 Quanti cation of numerical broadening
Bi=2 ( i i+1 it i) The relative dispersion, de ned as the ratio of standard devia-
(1+1+1+1) 1 (iga) tion tothe mean of thedis%ribuﬂeggpeqtrum, is a param-
2 N R N | (2.23) eter commonly used to describe the width of the spectrum
(v i+1 i i 1) (else) (e.g. Chandrakar et al., 2018). 55
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In particular, a tenfold decrease in numerical broadening
as quanti ed usingRy is observed comparing upwind and
the“best” variant considered herein. 20
0 te outsice of the-scope of—the-present study EI
IS—WOHR-ROtiRGthat-in—siMuIations €o "5'" 9 saeetral
gl 'B”EI With—transport p_lrys carspace;t IE “tll eriea
also contributes tothe numerical broadening effect
(see Hernandéz Pardo et al., 2020, and references therein)

2.12 Notes on conservativeness

Due to the formulation of the problem as number conserva-

tion using xed bins, even though the numerical schemesxis

Figure 8. Comparison of analytic, upwind and MPDATA solutions conservative (up to subtle limitations outlined below), evalu-
(see plot key for algorithm variant speci cation) using the setup ation of other statistical moments of the evoldigtribution

from Fig. 1, see sec. 2.10 for discussion.

spectrumfrom the number density introduces an inherent

discrepancy from the analytical results (for a discussion on
multi-moment formulation of the problem, see e.g. Liu et ak.,

grid setup as in Fig. 1) analytical solution taken for ve selected 1997).

times.

Variant  danalytic

dM =1gkg 1) 0.357

dM =2gkg ') 0.202

d(M =4gkg ) 0.126

dM =6gkg 1) 0.097

d(M =8gkg ') 0.080

d(M =10gkg )  0.069

The calculated dispersion ratio over all bins takes form:

P o P 2
(1=2)
oM S

d= b
1 (1=1)
oM

mi(|=1)

(2.24)
i
wherem; is de ned in (2.6), andN is the conserved total
number of particles (equal to mi(|:0) ). To quantify the ef-

In order to quantify the discrepancy in the total mass be-

numerically integrated spectrum the following ratio is de-
ned using moment evaluation formula (2.6): 40

RM =M (numerig =M (analytig 1=

P _ .
i mi(I—3 , numerig L
P .
m(l—3 , analytig

(2.26)

above de ned ratro computed for spectra obtained with dif-

ferent variants of MPDATA discussed herein. The departuses

from analytically-derived values are largest for the upwind

scheme (up to ca. 5%pand oscillate around O withn ampli-

tude of the order of 1% for most of the MPDATA solutions.
The consequences of mass conservation inaccuracies in

tion may not be as severe asin, e.g. dynamlcal core responsi-
ble for thetransport of conserved scalar elds. The outlined
discrepancies may be dealt with by calculating the change in

fect of numerical diffusion on the broadness of the resultantmass during a timestep from condensation, then using it in

in percentages):

Rg= dnumericai:danalytical 1 (2.25)

served.
The problem embodied in equation (1.1) is the conserva-
tion of the number of particles and the embraced algorithm

Table 1 depicts the gradual narrowing of the spectrum un-2-1)- (2.2) is conservative (up to numerical precision) for
G=

der undisturbed adiabatic growth.
Left panel in Fig. 9 provides values of tiiey parameter
evaluated at six selected timesteps correspondinigl te

=1. However, the formulation of the donor cell scheme
n+l = ny Gi Fi 1=+ Fi+% on the staggered grid

with G 6 1, for example due to employment of non-identity

1;2;4;6;8;10 gkg . Although numerical broadening is in- coordinate transformations implies that even though the in-

herent to all employed schemeand grows in time for all

duced when using MPDATA.

ux and out ux across boundary of adjacent cells is equai,

its the level of accuracy in number conservation.
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The total number of particles in the system may diverge2.13 Computational cost 20
from the analytical expected value even for the initial condi-

tion depending on the employetkeretizatiordiscretisation  Table 2 includes an assessment of the relative computational

approach. In the present work, the probability density func-cost of the explored variants of MPDATA. The performance

to i thevaluesof ;, 1 i 1=2)=(ri 1oTioas -») Where
is the cumulative distribution.
w  Left—panel— summarizes — values ——of —the
ical . - .
Rﬁ;dm,:dm.m—i—(e%presseda&a—pefeemage)

ms ioR2: iIseussion: 3 _ “The “best’ variant is roughly ten times more costly
corresponedto-perfectmatehwith-theanalyticalselution:) than the upwind scheme The-table-includesanalogous

measu%emem&epeﬁedﬂ%earheﬁmdfe&eﬂ—MPDAiFAr
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Table 2. Elapsedﬁa# eral additional points to consider applying MPDATA to the
wind eer problem.
solution Compafed'\f*%h%#to data reported lﬂh%eep*ewwsw First, in the context of atmospheric cloud simulations, ow-

publishefour earlier works-Celumnlabeledwith-: S83 denotes g to the strati cation of the atmospherethe usual practice

valdesreperteeh Smo'ark'e""'cz (1983)fer—(two-dimensional st reformulate the conservation problem in terms of spe-

--------- ci ¢ number concentration being de ned as the number of
particlesn, (cf. eq. (1.1)) divided by the mass of air (com-

Column); SRglmelﬂelesvaléééﬁémdenotes Smolarkiewicz and Monly the dry air) effectively resulting in multiplication ofs

Rasch (1991}andMSS00 corresponds tintafrerMargolin et al. theG factor (cf. egs (1.2)-(2.1)) by the (dry) air density. This

(2000)(both reported for two-dimensional problems). translates to maintaining a constant speci c number concen-
' tration (summed across aflarticle-size-particle-size cate-
Variant S83 SS05 SR91 MSSQ@neS) along the vertical dimension desgilte presence of
_ an air density gradient. Ordinary particle volume concentra-
upwind 1.0 10 10 10 10 tjonwould vary due to variable density of air (i.e., expansion
2 passgters 25 29 4.3 54 3.7

of air along the vertical coordinate). Noteowever, that in

;;’:{fgz :gz ON-0SC 2529 B 1é99 B T eq.(21)itis assum(_ad that '.[Iﬁbfactor dpes not vary in tin_"ne.
DPDC::,:igé, no’n-osc 6:2 i N i i Second, even with a smglg spatial dlmenglon (smgl_e—
3 passiters 57 5 ) 98 ) column setup), the coupled size-spectral/spatial advection
3 pasiiers, tot 41 - ) 19 ) problem is two-dimensional. This is where the inherent mul-
3pasiters, tot, iga, non-osc 11 - . . . tidimensionality of MPDATA (also, the "M" in MPDATA)

requires further attention. The one-dimensional antidiffusive
formulae discussed in sections 2.4-2.9 need to be augmented
with additional terms representing cross-dimensional coni-
butions to the numerical diffusion Fan introduction see

orlgmal denvatlon see Smolarkiewicz (1984), for a recent
work discussing the interpretation of all terms in the antidif-
fusive velocity formulee, including cross-dimensional terms,
see Waruszewski et al. (2018).

Third, in any practical application where the drop size evo-
lution is coupled withthe water vapour budget (and hence
with supersaturation evolution), it is essential to evaluate the
total change in mass of liquid water due to condensation
which is then to be used to de ne the source term of the water
vapour eld (and in latent heat budget representation). Note-

- worthy, knowing the difference of values at-i and at n
Although the discussed problem is one-dimensiofial,  timesteps of the advected speci ¢ number concentration eld

a computationally efcient andan accurate solution is s not suf cient to evaluate the vapour sink/source term. This
s essential, as it typically needs to be solved at everyis because only the uxes across the size-spectral dimension

timestep and grid point of a three-dimensional cloud model.need to be accounted for (note that the uxes in all MPDATA
iterations need to be summed up).

highlighting the need for scrutiny when comes to the ia-
terplay of size-spectral and spatial advection and the asso-
ciated numerical broadening (Morrison et al., 2018; Her-
nandéz Pardo et al., 2020; Lee et al., 2021). In the following
subsection, a set of single-column simulations is presented

3 Spectral-spatial advection with MPDATA and discussed depictirtpe performance of MPDATA in ass
(single-column test case) size-spectral/spatial advection problem coupled with vapour
advection and supersaturation budget. The simulations are

3.1 Problem statement performed using a commonly employed MPDATA setting

with only the non-oscillatory option enabled, and the dis-
»s In multidimensional simulations in which the considered par- cussion is focused on the sensitivity of the results to spatial,
ticle number density eld is not only a function of time and spectral and temporal resolution, as well as to the effect of
ofparticle size, but also of spatial coordinates, there are sev-
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performing one or two corrective passes of MPDATA (two  The domain is initially void of liquid water and the only

or three iterations, respectively). source of it is through the boundary condition in the spectsal
dimension speci ed as follows:
3.2 Test case de nition X !
1=max 0O;Nccn (31)

The test setup is based on the single-column KiD warm i
case introduced in Shipway and Hill (2012). This prescribed-
ow framework has been further used, e.g., in Field et al.
(2012) (mixed-phase scenario), in Hill et al. (2015) (warm

o

with i = 1 denoting the halo grid cell at the left edge of
the spectral domain on a given vertical level and the sum-

) ) in Gettel d Morri 2015) (both mation spans all bins at a given level (excluding halo gsid
rain s_cenarm)_ & In Gettelman and Morrison ( s ) (_ ot cells). The ux across the domain boundary in the spectral
pure-ice, mixed-phase and warm-rain scenariasjl.in

he Hill L (2021)mi hvsi delsi T dimension representse cloud droplet activation. The ux

w the Hill etal. (2021)microphysicsmodelsintercomparison s qenendent, through eq. (2.3) on the supersaturation at a
study g T given level, and on thBlccny parameter representing a max-

7 ) ; . . imal number of activated droplets (per unit mass of dry ais).

The simulated3:2 km height column of air is described In the performed simulation8| ccy Was set t&00mg?. For

by: a const.ant—|n-t|me piecewise-linear potential temperaturediscussion of other ways to represent activation in bin micro-
pro le (297:9 K from the ground to the level 6f40m, lin- physics models, see, e.g., Grabowski et al. (2011).

gar_ly decreasmg_down 81266 K at 3_260 m); constant- The simulations are run fdt5 minutes out of which the
|n-t|me_ hydrostatic pressure and denS|ty_ pro Ie_s computed rst 10 involve non-zero vertical velocity (as = 600 s). 70
assuming surface pressure 1307 hPa; piece-wise linear
initial vapour mixing ratio prole (L5 gkg ! at ground, 3.3 Discussion of results
2138 gkg ! at 740 m and 2:4 gkg ! at 3260 m); and
a constant-in-space but time-dependent vertical momenturfrigure 10 depicts qualitatively how MPDATA performs with
de nedby gw(z;t)= gwgsin(t=t 1)(1 H(t t;)) where the single-column simulation depending on the number of
H is the Heaviside step functiom is the vertical velocity, =~ MPDATA iterations employed. Presented simulation, here-
w; =2:5ms 1, 4isthe hydrostatic dry density pro le and inafter referred to as base resolution case, is performed with
s £ =600 s. Note that the vertical velocity thus differs from the liquid water dynamics resolved or82 32 grid with a
the original KiD setup wherw is held constant, the change is vertical grid step z =100 m, size-spectral grid stepr =
motivated by the aim of maintaining the non-divergent ow 0:6 m and timestep t =0:25s. The two-dimensional lig-
eld condition. uid water mixing ratio grid is rendered withshaded array of
The advection is thus solved for two scalar elds: (i) a one- histogram bars. The vertical axis corresponds to the adveeted
dimensional eld representing vertical variability of water quantity: spatio-spectral number density divided by the dry

1

o

3

S

(ii) a two-dimensional eld representing vertical and spectral 1% of the vertical axis rangd ¢ 2 m*mg! m?) are not
variability of liquid particle speci c concentration (humber plotted for clarity. Presented plots are aimed at intuitively
of particles per mass of dry air). The spectral coordinate isportraying the model state and the extent to whinhintro- s
set to particle radiusp(= r) and the bins are laid out uni- duction of subsequent MPDATA corrective iterations coun-
formly (x =r) over arange ol mto20:2 m. Notewor- teracts the numerical spectrum broadening. Note that besides
thy, this results in the size-spectral component of the advecthe depicted liquid water mixing ratio, the model state con-
tion velocity being divergent (while the vertical component sists as well of a one-dimensional vapour mixing ratio vector.
is non-divergent). In Figure 11, the base resolution case is depicted with plets
«»  The initial condition does not feature supersaturation any-constructed following the original methodology from Ship-
where in the domain. The upward advection of water vapourway and Hill (2012) (as in Fig. 1 therein). Thegay-scale

3!

a

The size-spectral velocity is de ned as in the box-model mension of—water vapour mixing ratiay, supersaturation
test case (cf. eq. (2.3)) but with supersaturation being time-S and the droplet spectrum relative disperstbrThe adja- o
dependent and derived from the values of vapour mixing ra-cent pro le plots depict the vertical variability of the mapped
tio, temperature and pressure at a given level. Note that thguantity at four selected times.

temperature pro le is constant in time and the test case does Notwithstanding the highly idealised and simplied

4

o

the ambient air/particle vapour budget is accounted for byattempta comparison with pro les obtained from both ifx
s Subtracting the amount of condensed water from the vapousitu aircraft measurements (Arabas et al., 2009, pro les of
eld in each timestepprierto-performingbeforeperforming  d in Fig. 1 therein) and detailed three-dimensional simu-

thesubsequent step eflvetieradvection on the vapour mix- lations (Arabas and Shima, 2013, proles &f and lig-

ing ratio eld. uid water content in Fig. 2-4 therein) inspired by the same
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Figure 10. Snapshots of the advected two-dimensional liquid water eld=att; = 600s for three different number of iterations settings of
MPDATA (with the non-oscillatory option enabled).

Seinfeld (2006fpr
|muIat|onsof marine

The bottom row in Fig. 11 depicts the relatlve dispersian
de ned and computed as in section 2.11, discarding levels
where the total droplet number mixing ratio summed over
all bins on a level is below 5% dflccn. Narrowing of the
spectrum witha height belowz =1:5 km depicted by de-
The I|qU|d water pro les depicted in the top row of F|g 11 creasing values df is a robust feature. Minimal values df s
reveal that the cloud structure developed within the rst vary visibly depending on the number of MPDATA iterations
ca. 9 minutes of the simulation is later maintained, with theemployed.

2 proles att =9 min. andt = 12 min. being virtually indis- tr-erderto-To provide insight into the sensitivity of the
tinguishable. Middle row plots of supersaturation pro les de- results to temporal, spatial and spectral resolution, Fig. 12
pict that the considered simulation setup enables to capfure presents the relative dispersion pro lestat t; =10 min. s
the characteristic supersaturation maximum just above cloudor several resolution settings. In the background of the g-
base. Furthermore, it is evident that the corrective iterationaure, there are three axes plotted pointing the directions in

s of MPDATA in uence the maximal supersaturation values. which the gure panels can be explored to reveal the de-
Noteworthy, this results in different timestep (Courant num- pendence on: the vertical spatial spacing (left-to-right),
ber) constraints depending on the number of iterations usethe spectral spacing r (bottom-to-top), and the timestep
because the spectral velocity is a function of supersaturatior(.back-to-foreground). The base resolution case is plotted at

the intersection of the background axes. Note that besides

the back-to-foreground sequence of plots where all but the
timestep settings is kept equal, the timestep also varies with

the grid settlngs tdu#ll—sehe*mta@#&eens#ammll o




Olesik et. al: On numerical broadening of particle-size spectra 15

MPDATA iterations: 1 MPDATA iterations: 2 MPDATA iterations: 3

Figure 11.Single-column simulations depicted with three selected variables: liquid water mixingyr&t row), supersaturatidh (middle
row) and relative dispersiod (bottom row); for three settings of the iteration count in MPDATA (one iteration corresponding to the basic

For plotting, the model state is resampled by averaging in the time dimension to reduce the number of plotted steps by &0g&tmmof
3600down t072).

The dependence on the temporal resolution, as gaugeid shown to be much smaller than on the spatial or spectral
by comparing the base resolution case with cases with theesolution.
timestep halved (t =125 ms; background) and doubled  The dependence dhe spectral resolution is captured and
( t=500 s; foreground), is barely observable. This is in clearly manifested at the lowest spectral resolution where
s general agreement with Morrison et al. (2018) and Her-the minimal spectral dispersiahdrops by ca. 0.1 when de-
nandéz Pardo et al. (2020) where the dependence on timestepeasing r =1:2 m down to r =0:3 m. Little further
change can be observed by re ning the resolution down to
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Figure 12. Pro les of relative dispersiom for a set of temporal, spatial and spectral resolution settings ( z and t values given in
labels above each plot). Each panel depicts results for three different MPDATA iteration counts (one iteration corresponding to the basic
upwind scheme). Pro les plotted far= t; =10 min.

r =0:15 m. Focusing on the minimal values dffor a 0.1 when re ning the resolution from z =200 m down to
given pro le, in generalthe lower the spectral resolution,the  z=25 m.
more profound the effect of introducing corrective iterations
of MPDATA. In most cases, applying even a single corrective
s step (i.e., 2 iterations) results in halving of the minimal val- 4 conclusions
uesd as compared tthe upwind solution (i.e., 1 iteration).
The spatial resolution settingz signi cantly alters the re- The study was focused on the MPDATA family of nu-

sultparticutarhynear, particularlynearthe cloud base. The  nerical schemes{;haHte%atweJyuapp#yand its application

values ofd at the lower half of the presented prole (i.e.,
w ca. belowz=1 km) drop from over 0.3 down to around
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overall characteristics of the spectrum width pro le as it sig-
ni cantly in uences the just-above-cloud-base evolution of

the spectral widttmuehlessin-uenrce-above).

s Sion while maintaining the sallent features of the underly-v D
ing upwind scheme such as conservativeness and pomuvaeressalmest#ebwa\eeadesanm%mes%easesree%eden
de niteness. multidimensionalhydrodynamicsapplications. It was the

P I F -I . I -. : I t : .. - F -. I . F ’ . : : - I .. ” I

d;éﬂg{yqﬂ—a—gn@e—eelﬁmﬁmedepﬁa&preseﬂ{edime Code availability. The calculations are performed using Python
deve}eped_se{up_eensﬂtu{e&a_P_ytheﬂ_{e}Fﬂp{eﬁqen{aﬂen with a new open-source implementation of MPDATA: PyMPDATA

detailed. follows libmpdata++ (Jaruga et al., 2015).
e All of presented gures and tables can be recreated in interactive
In_th f .the singl lumn variant-ofthe Kib- . . X

= In the caseof the single-colu notebooks “in the cloud” using the mybinder.org or Colab plat-
frameworkintroduced-i Elh'”g”a& Elmd I “Ifl (2;122 Fhe forms. To launch the notebooks, follow the links: 9
simulationsfeature -

testcase,the simulationsieaturedcou https://github.com/atmos-cloud-sim-uj/PyMPDATA-examples/

pling between droplet growth and supersaturation evolutionree/main/PyMPDATA_examples/Olesik_et_al_2020 and
Furthermore the multidimensionalcharacterof MPDATA

; https://github.com/atmos-cloud-sim-uj/PyMPDATA-examples/

o stemming-from—invelvement-of—eross-dimensionaterms  tree/main/PyMPDATA_examples/Shipway_and_Hill_2012.  The
n—antidiffusive-veloeityformuloe-is—exploited—Presented  notebooks are part of the PyMPDATA-examples Python package.
analysisisfocusedonthesensitivityto-spatial;spectraland Both PyMPDATA and PyMPDATA-examples are licensed under

i j i the GNU General Public License 3.0, are available on the PyPl.org
the-The cloud droplet spectrum relative dlsper3|0n is Python package repository, and are additionally enclosed as an
« Signi-cantly-in uenced by numerical diffusion pertinent to €lectronic supplement to this paper. , ,
both spectral and vertical advection. Focusing on the lev- 1€ Single-column framework is a Python reimplementation

els corresponding to the region of maximal liquid water of the open-source KiD code available at https://github.com/
P 9 9 q BShipway/KiD.

the spectral width. In agreement with conclusions drawnTo assess the spatial and temporal convergence of the numer-
from single-column simulations in Morrison et al. (2018) and ical solutions presented above, a convergence test originating
Lee et al. (2021), within the range of explored grid settings,from Smolarkiewicz and Grabowski (1990) is used. For the

ss the vertical resolution haghe most profound effect on the analysis the following truncation-errar> measure is used
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Figure Al. Convergence plot for the upwind scheme (cf. Fig. 1).
Angle in the polar plot corresponds to the Courant nunibgethe
distance from origin denotes the number of grid bomes see eq.

(A2). GrayGrey dots indicate data point locations — parameter val- Figyre A2. Convergence plot for basie-passtwo-pass MPDATA

ues for which computations were ma@lersColours and isolines (cf. Fig. 3). See caption of Fig. Al fdhe description of plot ele-

depict the error measure values (interpolated from the data point lopents.
cations), see eq. (Al).

(e.g., Smolarkiewicz, 1984):
s

[

X i analytical 2
? inumencal i Y] =nx: (Al)

Err o =

As a side note, it is worth pointing out that for the chosen
coordinates p= r?;x = r? | the coordinate transformation

s term is equal taheidentity, so there is no need for including
theG factor into the computed error measureshe general
case, convergence will depend on the grid choice and to ac-
count for that one maysedusea modi ed measure as given
in Smolarkiewicz and Rasch (1991, eq. 24 ).

10 To explore the convergence, the error measures are com-
puted for 7 different linearly spaced values ©f between
0:05 and 0:95, andnx 2 27;28;29;210;211.212. 913, 914
resulting in 56 simulations for each presented combination
of options.

s As proposed in Smolarkiewicz and Grabowski (1990), vi-
sualization of the results is carried out on polar plots with
radius and angle coordinates de ned as follows:

a5 A2 . L
2 (A2) Figure A3. Convergence plot for the in nite gauge MPDATA

(cf. Fig. 4). See caption of Fig. Al fghe description of plot el-
where was shifted by a constant so that the highest resoluements.
2 tion grid corresponds to=1.
Figures A1-A8 depict the convergence rates and are in-
tended for comparison with analogously constructed plots in

1
=ln, — + const =C
nx
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Figure A4. Convergence plot for the in nite gauge non-oscillatory Figure A6. Convergence plot for the three-pass MPDATA
variant of MPDATA (cf. Fig. 5). See caption of Fig. Al fthe de-  (cf. Fig. 3). See caption of Fig. Al fahe description of plot el-
scription of plot elements. ements.

Figure A5. Convergence plot for the DPDC variant with in nite  Figure A7. Convergence plot for the three-pass MPDATA wiikrel

Fig. Al for the description of plot elements. description of plot elements.



