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Abstract 11 

This work presents ShellChron, a new model for generating accurate internal age models for high-12 

resolution paleoclimate archives, such as corals, mollusk shells and speleothems. Reliable sub-annual 13 

age models form the backbone of high-resolution paleoclimate studies. In absence of independent sub-14 

annual growth markers in many of these archives, the most reliable method for determining the age of 15 

samples is through age modelling based on stable oxygen isotope or other seasonally controlled proxy 16 

records. ShellChron expands on previous solutions to the age model problem by fitting a combination 17 

of a growth rate and temperature sinusoid to model seasonal variability in the proxy record in a sliding 18 

window approach. This new approach creates smoother, more precise age-distance relationships for 19 

multi-annual proxy records with the added benefit of allowing assessment of the uncertainty on the 20 

modelled age. The modular script of ShellChron allows the model to be tailored to specific archives, 21 

without being limited to oxygen isotope proxy records or carbonate archives, with high flexibility in 22 

assigning the relationship between the input proxy and the seasonal cycle. The performance of 23 

ShellChron in terms of accuracy and computation time is tested on a set of virtual seasonality records 24 

and real coral, mollusk and speleothem archives. The result shows that several key improvements in 25 

comparison to previous age model routines enhance the accuracy of ShellChron on multi-annual records 26 

while limiting its processing time. The current full working version of ShellChron enables the user to 27 
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model the age of a 10-year long high-resolution (16 samples/yr) carbonate records with monthly 28 

accuracy within one hour of computation time on a personal computer. The model is freely accessible 29 

on the CRAN database and GitHub. Members of the community are invited to contribute by adapting 30 

the model code to suit their research topics and encouraged to cite the original work of Judd et al. (2018) 31 

alongside this work when using ShellChron in future studies. 32 

 33 

 34 

1. Introduction 35 

Fast growing carbonate archives, such as coral skeletons, mollusk shells and speleothems, contain a 36 

wealth of information about past and present climate and environment (e.g. Urban et al., 2000; Wang et 37 

al., 2001; Steuber et al., 2005; Butler et al., 2013). Recent advances in analytical techniques have 38 

improved our ability to extract this information and obtain records of the conditions under which these 39 

carbonates precipitated at high temporal resolutions, often beyond the annual scale (Treble et al., 2007; 40 

Saenger et al., 2017; Vansteenberge et al., 2019; de Winter et al., 2020a; Ivany and Judd, 2022). Key 41 

to the interpretation of such records is the development of reliable chemical or physical proxies for 42 

climate and environmental conditions which can be measured on a sufficiently fine scale to allow 43 

variability to be reconstructed at the desired time resolution. Examples of suitable proxies include 44 

observations of variability in carbonate fabric and microstructure and in (trace) elemental and isotopic 45 

composition (Frisia et al., 2000; Lough, 2010; Ullmann et al., 2010; Schöne et al., 2011; Ullmann et al., 46 

2013; Van Rampelbergh et al., 2014; de Winter et al., 2017). The unique preservation potential of 47 

carbonates in comparison with archives of climate variability at similar time resolutions, such as tree ring 48 

records and ice cores, now allows us to recover information about climate and environment of the 49 

geological past from these proxies on the (sub-)seasonal scale (Ivany and Runnegar, 2010; Ullmann 50 

and Korte, 2015; Vansteenberge et al., 2016; de Winter et al., 2018; 2020b; c; Mohr et al., 2020). The 51 

importance of this development cannot be overstated because variability at high (daily and seasonal) 52 

resolution constitutes the most significant component of climate variability (Mitchell, 1976; Huybers and 53 

Curry, 2006; Zhu et al., 2019; von der Heydt et al., 2021). Accurate reconstructions of this type of 54 

variability are therefore fundamental to our understanding of Earth’s climate system and critical for 55 

projecting its behavior in the future under anthropogenic global warming conditions (IPCC, 2021). 56 
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A reliable age model is crucial for the interpretation of high-resolution carbonate records. An age model 57 

is defined as a set of rules or markers that allows the translation of the location of a measurement or 58 

observation on the archive to the time at which the carbonate was precipitated. This translation is 59 

required for aligning records from multiple proxies or archives on a common time axis. Age alignment 60 

enables data to be intercomparable and to be interpreted in the context of processes playing a role at 61 

similar timescales. Age models are based on knowledge about the growth or accretion rate of the archive 62 

through time. Many high-resolution carbonate archives contain growth markers on which age models 63 

can be based (e.g. Jones, 1983; Le Tissier et al., 1994; Verheyden et al., 2006). These are especially 64 

valuable in some mollusk species, in which growth lines demarcate annual, daily, or even tidal cycles 65 

(e.g. Arctica islandica, Schöne et al., 2005; Pecten maximus, Chavaud et al., 2005 and Cerastoderma 66 

edule, Mahé et al., 2010). However, in many mollusk species and most carbonate archives, such 67 

independent growth indicators are absent or too infrequent to (relatively) date high-resolution 68 

measurements (Judd et al., 2018; Huyghe et al., 2019). In such cases, age models need to be based 69 

on alternative indicators. 70 

The oxygen isotope composition of carbonates (δ18Oc) is closely dependent on the isotopic composition 71 

of the fluid (δ18Ow) and the temperature at which the carbonate is precipitated (Urey, 1948; McCrea, 72 

1950; Epstein et al., 1953). In most natural surface environments, either one or both factors is strongly 73 

dependent on the seasonal cycle, one generally being dominant over the other. This causes carbonates 74 

precipitated in these environments to display strong quasi-sinusoidal variations in δ18Oc that record the 75 

seasonal cycle (e.g. Dunbar and Wellington, 1981; Jones and Quitmyer, 1996; Baldini et al., 2008). 76 

Examples of this behavior include seasonal cyclicity in sea surface temperatures recorded in the δ18Oc 77 

of corals and mollusks and seasonal cyclicity in the δ18Ow of precipitation recorded in speleothems 78 

(Dunbar and Wellington, 1981; Schöne et al., 2005; Van Rampelbergh et al., 2014). This relationship is 79 

challenged in tropical latitudes, where temperature seasonality is restricted. However, in some tropical 80 

archives, the annual cycle of δ18Ow in precipitation still allows the annual cycle to be resolved from δ18O 81 

records (e.g. Evans and Schrag, 2004). These properties make δ18Oc one of the most highly sought-82 

after proxies for climate variability, and high-resolution δ18Oc records are abundant in the paleoclimate 83 

literature (e.g. Lachniet, 2009; Lough, 2010; Schöne and Gillikin, 2013 and references therein). 84 

The close relationship between δ18Oc records and the seasonal cycle can also be exploited to estimate 85 

variability in growth rate of the archive. This property of δ18Oc curves has been recognized by previous 86 
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authors, and attempts have been made to quantify intra-annual growth rates from the shape of δ18Oc 87 

profiles (Wilkinson and Ivany, 2002; Goodwin et al., 2003; De Ridder et al., 2006; Goodwin et al., 2009; 88 

De Brauwere et al., 2009; Müller et al., 2015; Judd et al., 2018). Over time, these so called “growth 89 

models” have improved from fitting of sinusoids to δ18Oc data (Wilkinson and Ivany, 2002; De Ridder et 90 

al., 2006) to including increasingly complicated (inter)annual growth rate curves to the model to fit the 91 

shape of the δ18Oc data (Goodwin et al., 2003; 2009; Müller et al., 2015; Judd et al., 2018). These later 92 

models manage to fit the shape of δ18Oc records well, but they often rely on detailed a priori knowledge 93 

of growth rate or temperature patterns (e.g. Goodwin et al., 2003; 2009), which requires measurements 94 

of one or more parameters in the environment. These measurements are not available in studies on 95 

carbonate archives from the archeological or geological past. In contrast, the latest model by Judd et al. 96 

(2018; GRATAISS, or “Growth Rate and Temporal Alignment of Isotopic Serial Samples”) is based only 97 

on the assumption that growth and temperature follow quasi-sinusoidal patterns and can therefore work 98 

with δ18Oc data alone, making it more widely applicable. The simplified parameterization of temperature 99 

and growth rate seasonality by Judd et al. (2018) using two (skewed) sinusoids is demonstrated to 100 

approximate natural circumstances very well. 101 

However, the GRATAISS model is still limited in its use because it requires whole, individual growth 102 

years to be analyzed separately, resulting in a discontinuous time series when applied on records 103 

containing multiple years of δ18Oc data and no solution for incomplete years. In addition, the model has 104 

no option to supply information about the less dominant factor that drives δ18Oc values (δ18Ow of sea 105 

water in the case of mollusks and corals). Furthermore, only estimates from aragonite records are 106 

supported, while the δ18Oc value of the other dominant carbonate mineral, calcite, has a different 107 

temperature relationship (Kim and O’Neil, 1997). Finally, neither of the models highlighted above except 108 

for the MoGroFun model by Goodwin et al. (2009) include any assessment of the uncertainty of the 109 

constructed age model. 110 

Here, a new model for estimating ages of samples in seasonal δ18Oc curves is presented which 111 

combines the advantages of previous models while attempting to negate their disadvantages. 112 

ShellChron combines a skewed growth rate sinusoid with a sinusoidal temperature curve to model δ18Oc 113 

using the Shuffled Complex Evolution model developed at the University of Arizona (SCEUA; Duan et 114 

al., 1992; following Judd et al., 2018). It applies this optimization using a sliding window through the 115 

dataset (as in Wilkinson and Ivany, 2002) and includes the option to use a Monte Carlo simulation 116 
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approach to combine uncertainties on the input (δ18Oc and sample distance measurements) and the 117 

model routine (as in Goodwin et al., 2009). As a result, ShellChron produces a continuous time series 118 

with a confidence envelope, supports records from multiple carbonate minerals and allows the user to 119 

provide information on the less dominant variable influencing δ18Oc (e.g. δ18Ow) if available (see section 120 

2). The modular design of ShellChron’s functional script allows parts of the model to be adapted and 121 

interchanged, supporting a wide range of climate and environmental archives. As a result, the initial 122 

design of ShellChron for reconstructing age models in temperature-dominated δ18Oc records from 123 

marine bio-archives (e.g. corals and mollusks) presented here can be easily modified for application on 124 

other types of records. The routine is worked out into a ready-to-use package for the open-source 125 

computational programming language R and is directly available without restrictions, allowing all 126 

interested parties to freely modify and build on the base structure to adapt it to their needs (R Core 127 

Team, 2020; full package code and documentation in SI1, see also Code availability). 128 

 129 

2. Scientific basis 130 

The relationship between δ18Oc and the temperature of carbonate precipitation was first established by 131 

Urey (1951) and later refined with additional measurements and theoretical models (e.g. Epstein et al., 132 

1953; Tarutani et al., 1969; Grossman and Ku, 1986; Kim and O’Neil, 1997; Coplen, 2007; Watkins et 133 

al., 2014; Daëron et al., 2019). Empirical transfer functions for aragonite and calcite by Grossmann and 134 

Ku (1986; modified by Dettmann et al., 1999; equation 1) and Kim and O’Neil (1997; equation 2, with 135 

VSMOW to VPDB scale conversion following Brand et al., 2014; equation 3) have so far found most 136 

frequent use in modern paleoclimate studies and are therefore applied as default relationships in the 137 

ShellChron model (see d18O_model function). 138 

𝑇[°𝐶] = 20.6 − 4.34 ∗ (𝛿18𝑂𝑐[‰𝑉𝑃𝐷𝐵] − 𝛿18𝑂𝑤[‰𝑉𝑆𝑀𝑂𝑊] + 0.2) (𝟏) 139 

1000 ∗ ln(𝛼) = 18.03 ∗
103

(𝑇[°𝐶] + 273.15)
− 32.42  140 

𝑤𝑖𝑡ℎ 𝛼 =  
(

𝛿18𝑂𝑐[‰𝑉𝑃𝐷𝐵]
1000

+ 1)

(
𝛿18𝑂𝑤[‰𝑉𝑃𝐷𝐵]

1000
+ 1)

 (𝟐) 141 

𝛿18𝑂𝑤[‰𝑉𝑃𝐷𝐵] = 0.97002 ∗ 𝛿18𝑂𝑤[‰𝑉𝑆𝑀𝑂𝑊] − 29.98 (𝟑) 142 
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To apply these formulae, it is assumed that carbonate is precipitated in equilibrium with the precipitation 143 

fluid. Which carbonates are precipitated in equilibrium has long been subject to debate, and the 144 

development of new techniques for measuring the carbonate-water system (e.g. clumped and dual-145 

clumped isotope analyses; Daëron et al., 2019; Bajnai et al., 2020) has led some authors to challenge 146 

the assumption that equilibrium fractionation is the norm (see Supplementary Discussion). The 147 

modular character of ShellChron allows the empirical transfer function to be adapted to the δ18Oc record 148 

or to the user’s preference for alternative transfer functions by a small modification of the d18O_model 149 

function. Future versions of the model will include more options for changing the transfer function (see 150 

Model description). 151 

As the name suggests, the ShellChron model was initially developed for application on δ18Oc records 152 

from marine calcifiers (e.g. mollusk shells and corals). ShellChron approximates the evolution of the 153 

calcification temperature at which the carbonate is precipitated by a sinusoidal function (see equation 154 

4, Table 1 and SI4; temperature_curve function; visualized in Fig. 4A and Fig S1), a good approximation 155 

of seasonal temperature fluctuations in most marine and terrestrial environments (Wilkinson and Ivany, 156 

2002; Ivany and Judd, 2022). Variability in δ18Ow is also comparatively limited in most marine 157 

environments (except for regions with sea ice formation), making the model easy to use in these settings 158 

(LeGrande and Schmidt, 2006; Rohling, 2013). Nevertheless, ShellChron includes the option to provide 159 

a priori knowledge about δ18Ow, ranging from annual average values to detailed seasonal variability, 160 

enabling the model to work in environments with more complex interaction between δ18Ow and 161 

temperature on the δ18Oc record (see equations 1 and 2). This δ18Ow data can be provided either as a 162 

vector (with the same length as the data) or a single value (assuming constant δ18Ow) through the d18Ow 163 

parameter in the run_model function. 164 

𝑇[°𝐶] = 𝑇𝑎𝑣 +
𝑇𝑎𝑚𝑝

2
sin (

2𝜋 ∗ (𝑡[𝑑] − 𝑇𝑝ℎ𝑎 +
𝑇𝑝𝑒𝑟

4
)

𝑇𝑝𝑒𝑟

) (𝟒) 165 

If marine δ18Oc records represent one extreme on the spectrum of temperature versus δ18Ow influence 166 

on the δ18Oc record, cave environments, in which δ18Oc variability is predominantly driven by δ18Ow 167 

variability in the precipitation fluid, represent the other extreme (Van Rampelbergh et al., 2014). In its 168 

current form, ShellChron takes δ18Ow as a user-supplied parameter to model temperature and growth 169 

rate variability, but future versions will allow temperature to be fixed, while δ18Ow becomes the modelled 170 
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variable. ShellChron’s modular character makes it possible to implement this update without changing 171 

the structure of the model. Application of ShellChron on δ18Oc records from cave deposits will have to 172 

be treated with caution, since drip water δ18Ow seasonality (if present) cannot always be approximated 173 

by a sinusoidal function and equilibrium fractionation in cave deposits is less common than in bio-174 

archives (Baldini et al., 2008; Daëron et al., 2011; Van Rampelbergh et al., 2014). 175 

Besides temperature (or δ18Ow) seasonality, ShellChron models the growth rate of the archive to 176 

approximate the δ18Oc record (see equation 5, Table 1 and SI4; growth_rate_curve function; visualized 177 

in Fig. 4B and Fig S2). Since the growth rate in many carbonate archives varies seasonally, a quasi-178 

sinusoidal model for growth rate seems plausible (e.g. Le Tissier et al., 1994; Baldini et al., 2008; Judd 179 

et al., 2018). However, as discussed in Judd et al. (2018), the occurrence of growth cessations (growth 180 

rate = 0) and skewness in seasonal growth patterns calls for a more complex growth rate model that 181 

can take these properties into account. Therefore, ShellChron uses a slightly modified version of the 182 

skewed sinusoidal growth function described by Judd et al. (2018; equation 5). Note that the added 183 

complexity of this function does not preclude the modelling of growth rate functions described by a 184 

simple sinusoid (no skewness; Gskw = 50) or even constant growth through the year (Gamp = 0; see Table 185 

1). 186 

𝐺[𝑚𝑚/𝑦𝑟] = 𝐺𝑎𝑣 +
𝐺𝑎𝑚𝑝

2
sin (

2𝜋 ∗ (𝑡[𝑑] − 𝐺𝑝ℎ𝑎 + 𝐺𝑝𝑒𝑟 ∗ 𝑆)

𝑃
) 187 

𝑤𝑖𝑡ℎ 𝑆 = {

100 − 𝐺𝑠𝑘𝑤

50
, if  𝑡[𝑑] − 𝐺𝑝ℎ𝑎 < 𝐺𝑝𝑒𝑟

100 − 𝐺𝑠𝑘𝑤

100
𝐺𝑠𝑘𝑤

50
,               if  𝑡[𝑑] − 𝐺𝑝ℎ𝑎 ≥ 𝐺𝑝𝑒𝑟

100 − 𝐺𝑠𝑘𝑤

100

 (𝟓) 188 

Contrary to previous δ18Oc growth models, ShellChron allows uncertainties on the input variables 189 

(sampling distance and δ18Oc measurements) as well as uncertainties of the full modelling approach to 190 

be propagated, providing confidence envelopes around the chronology. Uncertainty propagation is 191 

optional and can be skipped without compromising model accuracy. Standard deviations of uncertainties 192 

on input variables (sampling distance and δ18Oc) can be provided by the user, while model uncertainties 193 

are calculated from the variability in model results of the same datapoint obtained from overlapping 194 

simulation windows (see growth_model function). Measurement errors are combined by projecting 195 

Monte Carlo simulated values for sampling distance and δ18Oc measurements on the modelled δ18Oc 196 

curve through an orthogonal projection (equation 6; mc_err_orth function; visualized in Fig S3). The 197 
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measurement uncertainty projected on the distance domain is then combined with the model uncertainty 198 

to obtain pooled uncertainties in the distance domain, which are propagated through the modelled δ18Oc 199 

record to obtain uncertainties on the model result in the age domain. As a result of the sliding window 200 

approach in ShellChron, model results for datapoints situated at the edges of windows are more 201 

sensitive to small changes in the modelled parameters and therefore possess a larger model 202 

uncertainty. To prevent these least certain model estimates from affecting the stability of the model, 203 

model results are given more weight the closer they are situated towards the center of the model window 204 

(see equation 7 in export_results function; see also Fig. S4). This weighting is also incorporated in 205 

uncertainty propagation through a weighted standard deviation (see equation 8 from the sd_wt 206 

function). Note that, despite the weighting solution, the size of uncertainties on the first and last positions 207 

in the δ18Oc record remains uncertain since they are based on a smaller number of overlapping windows 208 

(see e.g. Figure 3). 209 

𝜎𝑚𝑒𝑎𝑠 = √(
𝐷𝑠𝑖𝑚 − 𝐷𝑠𝑖𝑚

̅̅ ̅̅ ̅̅

𝜎𝐷

)

2

+ (
𝛿18𝑂𝑠𝑖𝑚 − 𝛿18𝑂𝑠𝑖𝑚

̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜎𝛿18𝑂

)

2

(𝟔) 210 

𝑤[𝑖] = 1 − |
2𝑖

𝐿𝑤𝑖𝑛𝑑𝑜𝑤

− 1| (𝟕) 211 

𝜎𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑,𝑖 = √
𝑤𝑖 ∗ (𝑥𝑖 − �̅�)2

∑ 𝑤[𝑖] ∗
𝑁 − 1

𝑁

(𝟖) 212 

 213 

3. Model description 214 

ShellChron is organized as a series of functions that describe the step-by-step modelling process. A 215 

schematic overview of the model is given in Fig. 1. A short Test Case is used to illustrate the modelling 216 

steps in ShellChron. Fig. 2 shows how the virtual Test Case was created from randomly generated 217 

seasonal growth rate, δ18Ow and temperature curves using the seasonalclumped R package (de Winter 218 

et al., 2021a; see Fig. 2, Supplementary Methods and SI2) A wrapper function (wrap_function) is 219 

included, which carries out all steps of the model procedure in succession to promote ease of use. 220 

Data is imported through the data_import function, which takes a comma-separated text file (CSV) with 221 

the input data. Data files need to contain columns containing sampling distance (D, in µm) and δ18Oc 222 
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data (in ‰VPDB), a column marking years in the record (yearmarkers) and two optional columns 223 

containing uncertainties on sampling distance (σ(D), one standard deviation, in µm) and δ18Oc (σ(δ18Oc), 224 

one standard deviation, in ‰) respectively (see example in SI2 and Figure 3). The function uses the 225 

year markers (third column) as guidelines for defining the minimum length of the model windows to 226 

ensure that all windows contain at least one year of growth. By default, consecutive windows are shifted 227 

by one datapoint, yielding a total number of windows equal to the sample size minus the length of the 228 

last window. While year markers are required for ShellChron to run (otherwise no windows can be 229 

defined), the result of the model does not otherwise depend on user-provided year markers, instead 230 

basing the age result purely on simulations of the δ18Oc data. 231 

The core of the model consists of simulations of overlapping subsamples (windows) of the sampling 232 

distance and δ18Oc data described by the run_model function (see Fig. 1 and 3). Data and window sizes 233 

are passed from data_import onto run_model along with user-provided parameters (e.g. δ18Ow 234 

information; see Fig. 1). run_model loops through the data windows and calls the growth_model 235 

function, which fits a modelled δ18Oc vs. distance curve through the data using the SCEUA optimization 236 

algorithm (see Duan et al., 1992; see example in Fig 4). The simulated δ18Oc curve is produced through 237 

a combination of a temperature sinusoid (temperature_curve function; see equation 4, Fig. 4A and Fig. 238 

S1) and a skewed growth rate sinusoid (growth_rate_curve; see equation 5, Fig. 4B and Fig. S2), with 239 

temperature data converted to δ18Oc data through the d18O_model function (equation 1 and 2; Fig. 240 

4A). 241 

By default, starting values for the parameters describing temperature and growth rate curves are 242 

obtained by estimating the annual period (P) through a spectral density estimation and applying a 243 

linearized sinusoidal regression through the δ18Oc data (sinreg function; see equation 9). It is possible 244 

to skip this sinusoidal modelling step through the “sinfit” parameter in the run_model function, in which 245 

case the starting value for the annual period is set equal to the width of the model window. In addition, 246 

growth_model takes a series of parameters describing the method for SCEUA optimization (see Duan 247 

et al., 1992; Judd et al., 2018) and the upper and lower bounds for parameters describing temperature 248 

and growth rate curves (see SI4). Parameters for the SCEUA algorithm (iniflg, ngs, maxn, kstop, pcento 249 

and peps) in the run_model function may be modified by the user to reach more desirable optimization 250 

outcomes. The effect of changing the SCEUA parameters on the model result for the Test case is 251 

illustrated in section 4.1 (see Fig. 5). If uncertainties on sampling distance and δ18Oc data are provided, 252 
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growth_model calls the mc_err_orth function to propagate these errors through the model result (see 253 

equation 6 and Fig S3). 254 

𝛿18𝑂𝑐[‰𝑉𝑃𝐷𝐵] = 𝐼 +
𝐴

2
sin (

2𝜋 ∗ (𝐷 − 𝜑 +
𝑃
4

)

𝑃
), 255 

𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑 𝑎𝑠: 𝛿18𝑂𝑐[‰𝑉𝑃𝐷𝐵] = 𝑎 + 𝑏 sin (
2𝜋

𝑃
∗ 𝐷) + 𝑐 cos (

2𝜋

𝑃
∗ 𝐷), 256 

𝑤𝑖𝑡ℎ 𝐼 = 𝑎; 𝐴 =  √𝑏2 + 𝑐2 𝑎𝑛𝑑 𝜑 = 𝑃 ∗ (0.25 −
cos−1 (

𝑏
𝐴

)

2𝜋
) (𝟗) 257 

The run_model function returns an array listing day of the year (1–365), temperature, δ18Oc, growth rate 258 

and (optionally) their uncertainty standard deviations as propagated from uncertainties on the input data 259 

(“result array”; see Fig. 3 and SI5). Note that the default length of the year (Tper and Gper) is set at 365 260 

days, but that these parameters can be modified by the user in run_model. In addition, a matrix 261 

containing the optimized parameters of temperature and growth rate curves is provided, yielding 262 

information about the evolution of mean values, phases, amplitudes, and skewness of seasonality in 263 

temperature and growth rate along the record (“parameter matrix”, see Fig. 1 and SI6). To construct an 264 

age model for the entire record, the modelled timing of growth data, expressed as day relative to the 265 

365-day year, is converted into a cumulative time series listing the number of days relative to the start 266 

of the first year represented in the record (rather than relative to the start of the year in which the 267 

datapoint is found). This requires year transitions (transitions from day 365 to day 1) to be recognized 268 

in all the model results. The cumulative_day function achieves this by aggregating information about 269 

places where the beginning and end of the year is recorded in individual window simulations and 270 

applying a peak identification algorithm (peakid function) to find places in the record where year 271 

transitions occur (see Supplementary Methods). Results of the timing of growth for each sample (in 272 

day of the year) are converted to a cumulative time scale using their positions relative to these 273 

recognized year transitions (Supplementary Methods). 274 

In a final step (described by the export_results function), the results from overlapping individual 275 

modelling windows are combined to obtain mean values and 95% confidence envelopes of the result 276 

variables (age, δ18Oc, δ18Oc-based temperatures and growth rates) for each sample in the input data. If 277 

uncertainties on the input variables were provided, these are combined with uncertainties on the 278 
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modelling result calculated from results of the same datapoint on overlapping data windows by pooling 279 

the variance of the uncertainties (equation 10). Throughout this merging of data from overlapping 280 

windows, results from datapoints on the edge of windows are given less weight than those from 281 

datapoints near the center of a window (see equation 7 and Fig. S4). This weighting procedure corrects 282 

for the fact that datapoints near the edge of a window are more susceptible to small changes in the 283 

model parameters and are therefore less reliable than results in the center of the window. Finally, 284 

summaries of the simulation results and the model parameters including their confidence intervals are 285 

exported as comma-separated (CSV) files. In addition, export_results supports optional exports of 286 

figures displaying the model results and files containing raw data of all individual model windows 287 

(equivalent to “sheets” of the result array, see Fig. 3 and SI5). 288 

𝑉𝐴𝑅𝑝𝑜𝑜𝑙𝑒𝑑 =
∑ ((𝑁𝑖−1)∗𝑉𝐴𝑅𝑖∗𝑤𝑖)𝑖

∑ (𝑁𝑖)𝑖 −𝑛
 (10) 289 

in which w = weight of the individual reconstructions, N is the sample size and n is the number of 290 

reconstructions (indexed by i) that is combined 291 

 292 

4. Model performance 293 

The performance of ShellChron was first tested on three virtual datasets: 294 

1. The short Test case used to illustrate the model steps above (see Fig. 2 and 4; SI7) 295 

2. A δ18Oc record constructed from a simulated temperature sinusoid with added stochastic noise 296 

(Case 1; SI8) 297 

3. A record based on a known high-resolution sea surface temperature and salinity record 298 

measured on the coast of Texel island in the tidal basin of the Wadden Sea (North Netherlands; 299 

Texel, see details in SI9 and de Winter et al., 2021a and Supplementary Methods). 300 

Firstly, the effect of varying parameters in the SCEUA algorithm is tested on the Test Case (Fig. 5). 301 

Then, full model runs on Case 1 and Texel are evaluated in terms of model performance (Fig. 6). In 302 

addition to the three test cases, three modern carbonate δ18Oc records were internally dated using 303 

ShellChron (see Fig. 7): a tropical stony coral (Porites lutea; hereafter: coral) from the Pandora Reef 304 

(Great barrier Reef, NE Australia; Gagan et al., 1993; see SI10), a Pacific oyster shell (Crassostrea 305 

gigas; hereafter: oyster) from List Basin in Denmark (Ullmann et al., 2010; see SI10) and a temperate 306 
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zone speleothem from Han-sur-Lesse cave (Belgium; hereafter: speleothem; see Vansteenberge et 307 

al., 2019; see SI10). Finally, ShellChron’s performance in terms of computation time and accuracy is 308 

compared to that of the most comprehensive pre-existing δ18Oc-based age model (GRATAISS model 309 

by Judd et al., 2018) on simulated temperature sinusoids of various length and sampling resolutions to 310 

which stochastic noise was added (sensu Case 1; de Winter et al., 2021a; see Fig. 8 and SI11). The 311 

latter also demonstrates the scalability of ShellChron and its application on a variety of datasets. Timing 312 

comparisons were carried out using a modern laptop (Dell XPS13–7390; Dell Inc., Round Rock, Tx, 313 

USA) with an Intel Core i7 processor (8 MB cache, 4.1 GHz clock speed, 4 cores, Intel Corporation, 314 

Santa Clara, CA, USA), 16 GB LPDDR3 RAM and an SSD drive running Windows 10. Note that 315 

ShellChron was built and tested successfully on Mac OS, Fedora Linux and Ubuntu Linux as well. 316 

4.1 Testing model parameters 317 

Testing different combinations of modelling parameters (Fig. 5) shows that, while the results of 318 

ShellChron can improve beyond the default SCEUA parameters and sinusoidal regression, care must 319 

be taken to evaluate the effect of changing modelling parameters on both the δ18Oc fit and the age-320 

distance relationship. Comparative testing on the Test case (Fig. 5) shows that sinusoidal regression 321 

has a negligible influence on the success of ShellChron fitting the δ18Oc curve (Fig. 5A-B; standard 322 

deviation on δ18Oc is 0.49‰ with sinusoidal regression and 0.50‰ without). However, ShellChron with 323 

sinusoidal regression performs better in terms of age approximation, with a mean age offset of only 7 324 

± 32 days with sinusoidal regression against 32 ± 35 days without (Fig. 5C-D). Age-distance plots 325 

(Fig. 5C) show that the model without sinusoidal fit shows a phase offset with respect to the known 326 

age-distance relationship, resulting in overestimation of the age for much of the record. Sinusoidal 327 

regression probably results in better initial parameter estimation, which helps to avoid phase offsets 328 

like the one shown in Fig. 5. For the remainder of the tests, sinusoidal regression was enabled. 329 

The remainder of the tests show that the main bottleneck towards better δ18Oc fit optimization is the 330 

maximum number of function evaluations allowed within a single modelling cycle (maxn; see Fig. 5). 331 

Increasing the other SCEUA parameters, such as the number of complexes in the SCEUA routine 332 

(ngs), the number of shuffling loops that should show a significant change before convergence (kstop) 333 

and the thresholds for significant change in parameter value (peps) or result value (pcento) does not 334 

improve the result if the SCEUA algorithm is not allowed more processing time (maxn). In fact, Fig. 5 335 
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shows that increasing these SCEUA parameters can actually result in a deterioration of the δ18Oc fit 336 

and higher uncertainty on the age result (Fig. 5B and D). A fivefold increase in maxn (maxn = 50000) 337 

almost halves the standard deviation on δ18Oc residuals (from 0.49‰ to 0.29‰; Fig. 5B) and 338 

decreases the standard deviation on the age model offset from 32 to 26 days (Fig. 5D). A combination 339 

of a tenfold increase in function evaluations with an equal multiplication of the number of complexes in 340 

the SCEUA routine (ngs; see details in Duan et al., 1992) results in a further reduction of standard 341 

deviations on δ18Oc (0.23‰) and age result (12 days). These tests show that returns in terms of model 342 

precision quickly diminish with increasing processing time. Since the total modelling time linearly 343 

scales with the number of function evaluations, this tradeoff towards lower standard deviation on the 344 

modelling result is costly. These function evaluations are repeated in each modelling window, so the 345 

cost in terms of extra processing time can increase quickly, especially for larger δ18Oc datasets. In 346 

addition, in this situation the mean model offset (accuracy of the model; 7 days, 28 days and 14 days 347 

for maxn of 1.0 * 104, 5.0 * 104 and 1.0 * 105 respectively; Fig. 5D) does not significantly improve with 348 

increasing number of function evaluations. Based on these results, the default maxn parameter in 349 

ShellChron was set to 104 to compromise between keeping modelling times short while retaining high 350 

model accuracy. However, specific datasets may benefit from an increase in modeling time, so case-351 

by-case assessment of the optimal SCEUA parameters is recommended. A detailed evaluation of the 352 

total modelling time in a typical δ18Oc dataset is discussed in section 4.4. 353 

 354 

4.2 Artificial carbonate records 355 

Results of running ShellChron on the Test case (Fig. 4), Case 1 and Texel datasets (Fig. 6) show that 356 

modelled δ18Oc records in individual windows closely match the data. On the level of individual windows, 357 

inter-annual growth rate variability is more difficult to model than the temperature sinusoid, especially 358 

when sampling resolution is limited and at the beginning and end of the record (Fig. 4B). However, after 359 

overlapping multiple windows, the accuracy of ShellChron improves significantly (Fig. 4E). Note that in 360 

Fig. 4A-C, the length of the first model window (difference in age between first and 11th datapoint) is 361 

less than 365 days, because the 12th datapoint, which occurs exactly 1 year after the first point, is not 362 

part of the window. A summary of ShellChron performance statistics is given in Table 2. In all virtual 363 

datasets, δ18Oc estimates are equally distributed above and below the δ18Oc data (∆18O𝑐
̅̅ ̅̅ ̅̅ ̅̅ = 0.0 ‰; 364 
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Spearman’s ρ of 0.94, 0.98 and 0.92 for Test case, Case 1 and Texel datasets respectively). Age 365 

offsets vary slightly over the seasons, but the difference between monthly time bins is not statistically 366 

significant on a 95% confidence level (Fig. 6C and F; see also SI12). The fact that seasonal bias in age 367 

offset is absent in the Texel dataset, which is skewed towards growth in the winter season and includes 368 

relatively strong seasonal variability in δ18Ow, shows that ShellChron is not sensitive to such subtle 369 

(though common) variability in growth rate or δ18Ow. In general, ShellChron’s mean age assignment is 370 

accurate on a monthly scale (age offsets of 4 ± 12 d and +30 ± 24 d for Case 1 and Texel datasets 371 

respectively). However, age results in individual months do sometimes show significant offsets from the 372 

known value (e.g. Fig. 6C and 6F). This is most notable in Case 1, where accuracy of the age model 373 

decreases near the extreme values of the δ18Oc curve (Fig. 6B-C). This occurs because in these places 374 

the model is most sensitive to stochastic noise (simulated uncertainty) on the δ18Oc value. A small 375 

random change in the δ18Oc value at the minima or maxima of the δ18Oc curve thus results in a large 376 

change in the model fit of the δ18Oc curve, resulting in a seasonally non-uniform decrease in the accuracy 377 

of the model, as is evident from the skewed ∆18Oc distribution in Figure 6B-C. The sampling resolution 378 

in the Texel data decreases near the end of the record (see SI9), but this does not result in reduced age 379 

model accuracy. If anything, the age of Texel samples is better approximated near the end of the record, 380 

and age offsets are larger in the central part of the record (~30-50 mm; Fig. 6E). The lower accuracy in 381 

the third to fifth year of the Texel record is likely a result of the sub-annual variability in the record that 382 

is superimposed on the seasonal cycle. The lower sampling resolution later in the record mutes this 383 

variability and illustrates that higher sampling resolutions do not necessarily result in better age models. 384 

The constant offset of the modelled age of the Texel sample from the known age is a result of the way 385 

the model result was aligned to start at zero for comparison with the known age (Fig. 6F). This was 386 

done by adding the offset from zero of the modelled age of the first datapoint in the record to the entire 387 

record, thereby defining an arbitrary reference point which is sensitive to the uncertainty on the age of 388 

the first sample (see also Oyster and Speleothem results in Fig. 7B-C). Note that this alignment issue 389 

does not play a role in fossil data, where model results can be aligned to growth marks in the carbonate 390 

(e.g. shell growth breaks or laminae) and that it does not affect the seasonal alignment of proxy binned 391 

into monthly sample bins. 392 

 393 

4.3 Natural carbonate records 394 
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Results of modelling natural carbonate records (Fig. 7; Table 2; see also SI10) illustrate the 395 

effectiveness of ShellChron on various types of records. Performance clearly depends on the resolution 396 

of the record and the regularity of seasonal variability contained within. As in the virtual datasets, 397 

modelled δ18Oc successfully mimic δ18Oc data in all records (∆18O𝑐
̅̅ ̅̅ ̅̅ ̅̅ = 0.0; Spearman’s ρ of 0.97, 0.91 398 

and 0.92 for coral, oyster and speleothem respectively). No consistent seasonal bias is observed in 399 

∆18Oc and model accuracy (p > 0.05; see Table 2 and SI12), despite significant (seasonal and inter-400 

annual) variability contained in the records (especially in oyster and speleothem records). When 401 

comparing the accuracy of these records, it must be noted that the “known” age of the samples in these 402 

natural carbonates is not known. Model results are instead compared with age models constructed using 403 

conventional techniques such as matching δ18Oc profiles with local temperature and/or δ18Ow variability 404 

(oyster and coral records) or even merely by linear interpolation between annual markers in the record 405 

(speleothem record; see Supplementary Methods). Despite this caveat, testing results clearly show 406 

that the least complicated record (coral; Fig. 7A), characterized by minimal variability in δ18Ow and 407 

growth rate and a high sampling density, has the best overall model result (∆18Oc = 0.0 ± 0.14 compared 408 

to a ~1.7‰ seasonal range; ρ = 0.97; ∆t = 12 ± 28 d; see Table 2). The oyster record (Fig. 7B), which 409 

has strong seasonal variability in growth rate and δ18Osw also yields a reliable age model (∆18Oc = 0.0 ± 410 

0.39 compared to a ~3‰ seasonal range; ρ = 0.91; ∆t = -15 ± 43 d; see Table 2). On closer inspection, 411 

the age within the oyster record is clearly more difficult to model than within the coral, due in part to the 412 

higher variability of δ18Oc values superimposed on the seasonal cycle, the sharp growth cessations in 413 

the winters (high δ18Oc values) and the variability in sampling resolution within the record. The latter 414 

causes the first growth year of the oyster record to be less accurately modelled (Fig. 7B) while the 415 

variability in δ18Oc causes the edges of some modelling windows to predict steep increases or decreases 416 

in δ18Oc (vertical “offshoots” in modelled δ18Oc; Fig. 7B). Note that the low weighting of the edges of 417 

modelling windows combined with the high overall sampling resolution in the oyster record minimizes 418 

the effect of these “offshoots” on the accuracy of the model. The speleothem record (Fig. 7C), plagued 419 

by lower sampling resolution, large inter-annual δ18Oc variability, restricted δ18Oc seasonality and a lack 420 

of clearly seasonal δ18Oc forcing, yields the least reliable model result (∆18Oc = 0.0 ± 0.08‰ compared 421 

to a ~0.5‰ seasonal range; ρ = 0.92; ∆t = -114 ± 59 d; see Table 2). Note that the accuracy figure 422 

provided for the speleothem record is based on comparison with an age model relying on linear 423 

interpolation between annual growth lines. This assumption of the age-distance relationship is almost 424 
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certainly erroneous, since drip water supply to (and therefore growth in) speleothems has been shown 425 

to vary seasonally (e.g. Baldini et al., 2008), including at the very site the speleothem data derives from 426 

(Han-sur-Lesse cave, Belgium; Van Rampelbergh et al., 2014; Vansteenberge et al., 2019). However, 427 

since no reliable information is available on sub-annual variability in growth rates in this record, 428 

ShellChron results cannot be validated at the sub-annual scale in this case. The high age offset (-114 429 

days) in the speleothem model result is a consequence of the assumption in ShellChron that the highest 430 

temperature (lowest δ18Oc value) recorded in each growth year happens halfway through the year (day 431 

183) and the alignment of the modelled age with the “known” age for this record (see discussion of Texel 432 

results in 4.2). While the assumption about the phase of the temperature sinusoid is approximately valid 433 

for temperature-controlled δ18Oc records (see Fig. 6 and 7), it is problematic for speleothems, in which 434 

δ18Oc is often dominated by the δ18Ow of drip water, which may not be lowest during the summer season 435 

(see Van Rampelbergh et al., 2014). The timing of the δ18Oc minimum can be set in the run_model 436 

function using the t_maxtemp parameter. Note that changing t_maxtemp does not affect relative dating 437 

within the δ18Oc record, but, if set correctly, results in a phase shift of the age model result into better 438 

alignment with the seasonal cycle. 439 

 440 

4.4 Modeling time 441 

The performance of both ShellChron and GRATAISS in terms of computation time linearly increases 442 

with the length of the record (in years; see Fig. 8, Fig. S5 and SI11). Computation time of ShellChron 443 

on the high-resolution test dataset (50 samples/yr) increases very steeply with the length of the record 444 

in years (~20 minutes per additional year), while the low-resolution dataset (16 samples/yr) shows a 445 

slower increase (~3 minutes per additional year; Fig. 5A). This contrasts with GRATAISS, which 446 

requires only slightly more time on high-resolution data than on low-resolution datasets (~7 and ~10 447 

minutes per additional year, respectively). The difference is explained by the sliding window approach 448 

applied in ShellChron, which requires more SCEUA optimization runs per year in high-resolution 449 

datasets than in low resolution datasets. When plotted against the number of calculation windows or 450 

samples in the dataset, running ShellChron on low-resolution and high-resolution datasets require a 451 

similar increase in computation time (~0.4 minutes, or 24 seconds, per additional sample/window; Fig. 452 
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S5) under default SCEUA conditions. ShellChron outcompetes GRATAISS in terms of computation time 453 

in datasets with fewer than ~20 samples per year, even though more SCEUA optimizations are required. 454 

A key computational improvement in ShellChron is the application of a sinusoidal regression before 455 

each SCEUA optimization to estimate the initial values of the modelled parameters (sinreg function; see 456 

equation 9 and Fig. 1 in Model description). Since carbonate archives are rarely sampled for stable 457 

isotope measurements above 20 samples per year (e.g. Goodwin et al., 2003; Schöne et al., 2005; 458 

Lough, 2010 and references therein), the disadvantage of a steep computational increase for very high-459 

resolution archives is, in practice, a favorable tradeoff for the added control on model and measurement 460 

uncertainty and smoother inter-year transitions ShellChron offers in comparison to previous models. 461 

The similarity of ShellChron’s accuracy in the low- and high-resolution datasets demonstrates its 462 

robustness across datasets with various sampling resolutions (see also Table 2 and Fig. 7). 463 

Longer computation times in GRATAISS result in slightly better accuracy on the modelled age compared 464 

to ShellChron on the scale of individual datapoints in low-resolution datasets (see Fig. 8B). However, 465 

this advantage is rapidly lost when records containing multiple years are considered (Fig. 8B). The 466 

advantage of the ShellChron model is its application of overlapping model windows, which smooth out 467 

the transitions between modelled years and eliminate accumulations of model inaccuracies when 468 

records grow longer. In addition, contrary to previous models, ShellChron does not rely on user-defined 469 

year boundaries, which may introduce mismatches between subsequent years to be propagated 470 

through the age model, even in ideal datasets such as Case 1 (Fig. 8B; see also Supplementary 471 

Methods). By comparison, the overall accuracy of ShellChron is much more stable within and between 472 

datasets of different length, while rarely introducing offsets of more than a month. It must be noted here 473 

that the cumulative, multi-year age uncertainty in the GRATAISS model (Fig. 8B) was calculated by 474 

combining the results of consecutive growth years in the record, which the GRATAISS model models 475 

separately, while avoiding age inversions and retaining the seasonal phase of the model results. This 476 

procedure causes gaps in time to be introduced in the cumulative age modelled by GRATAISS 477 

whenever the results of two consecutive, individually modelled growth years do not align, explaining the 478 

sharp increases in age uncertainty of the GRATAISS model result (Fig. 8B). These cumulative 479 

uncertainties are therefore not theoretically part of the model result (see year-by-year uncertainty in Fig. 480 

8B) but are a necessary consequence of the way GRATAISS approximates growth years separately. If 481 
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only within-year inaccuracies are compared, GRATAISS results are roughly equally accurate as 482 

ShellChron results (see dotted lines in Fig. 8B). 483 

Where ShellChron considers the uncertainty on input parameters, this uncertainty is not considered in 484 

most previous models (the MoGroFun model of Goodwin et al., 2003 being the exception). The added 485 

uncertainty caused by input error is higher in less regular (sinusoidal) δ18Oc records and in records with 486 

lower sampling resolution, causing the uncertainties on GRATAISS reported here for the ideal, high-487 

resolution Case 1 dataset to be over-optimistic. If ShellChron’s model accuracy is insufficient, its 488 

modular character allows the user to run the SCEUA algorithm to within more precise optimization 489 

criteria by changing the model parameters (see section 4.1). However, this adaptation comes at a cost 490 

of longer computation times. 491 

The estimated uncertainty envelope (95% confidence interval) on the modelled age calculated by the 492 

error propagation algorithm in ShellChron (4.7 ± 6.5 d) on average slightly underestimates the actual 493 

offset between modelled age and known age in the Case 1 record (9.3 ± 13.1 d; Fig. 8C). The 494 

foremost difference between modelled and known uncertainty on the result is that the modelled 495 

uncertainty yields a more smoothed record of uncertainty compared to the record of actual offset of the 496 

model (Fig. 8C). ShellChron’s uncertainty calculations are partly based on comparing overlapping 497 

model windows, thereby smoothing out short term variations in model offset. The uncertainty of the 498 

model result (both known and modelled) shows regular variability with a period of half a year (Fig. 8C). 499 

Comparing this variability with the phase of the record (of which 6 years are plotted in Fig. 6A) reveals 500 

that the uncertainty of the model is negatively correlated to the slope of the δ18Oc record. This is 501 

expected, because in parts of the record with extreme values in the δ18Oc curve, the local age model 502 

result is more sensitive to small changes in the sampling distance, caused either by uncertainty in the 503 

model fit or propagated uncertainty on the sampling distance defined by the user (see discussion in 504 

section 4.2). The slight seasonal variability in model accuracy in Case 1 is also shown in Fig. 6C and 505 

comprises a difference in uncertainty of up to 10 days depending on the time of year in which the 506 

datapoint is found. 507 

 508 

5. Applications and discussion 509 
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Its new features compared to previous age model routines make ShellChron a versatile package for 510 

creating age models in a range of high-resolution paleoclimate records. The discussion above 511 

demonstrates that ShellChron can reconstruct the age of individual δ18Oc samples with monthly 512 

precision. This level of precision is sufficient for accurate reconstructions of seasonality, defined as the 513 

difference between warmest and coldest month (following USGS definitions; O’Donnell and Ignizio, 514 

2012). While an improvement on this uncertainty could be of potential interest for ultra-high-resolution 515 

paleoclimate studies (e.g. sub-daily variability, see Sano et al., 2012; Yan et al., 2020; de Winter et al., 516 

2020a), the increase in computation time and the sampling resolution such detailed age models demand 517 

render age modelling from δ18Oc records inefficient for this purpose (see sections 4.1 and 4.4). The 518 

sampling resolution for high-resolution carbonate δ18Oc records in the literature does not typically exceed 519 

100 µm due to limitations in sampling acquisition (e.g. micromilling), which even in fast-growing archives 520 

limits the resolution of these records to several days at best (see Gagan et al., 1994; Van Rampelbergh 521 

et al., 2014; de Winter et al., 2020c). While in some archives, high-resolution (< 100 µm) trace element 522 

records could be used to capture variability beyond this limit, the monthly age resolution of ShellChron 523 

is sufficient for most typical high-resolution paleoclimate studies. 524 

The ability to produce uninterrupted age models from multi-year records while considering both 525 

variability in δ18Ow and uncertainties on input parameters represent major advantages of ShellChron 526 

over previous age modelling solutions. As a result, ShellChron can be applied on a wide range of 527 

carbonate archives (see Fig. 7 and Table 2). However, testing ShellChron on different records highlights 528 

the limitations of the model inherited through its underlying assumptions. The most accurate model 529 

results are obtained on records with minimal growth rate and δ18Ow variability and a nearly sinusoidal 530 

δ18Oc record, such as tropical coral records (Fig. 7A; Gagan et al., 1994). In records where large 531 

seasonal variability in growth rate and δ18Ow does occur, such as in intertidal oyster shells, ShellChron’s 532 

accuracy slightly decreases, especially near growth hiatuses in the record (see Fig. 7B; Ullmann et al., 533 

2010). A worst-case scenario is represented by the speleothem record, which not only suffers from 534 

much slower and more unpredictable growth rates and contains a comparatively small annual range in 535 

δ18Oc, but it responds to δ18Ow variability in drip water in the cave rather than temperature seasonality, 536 

one of the assumptions underlying the current version of ShellChron (Fig. 7C; Vansteenberghe et al., 537 

2019). Despite these problems, ShellChron yields an age model that is remarkably accurate on an 538 

annual timescale, which is as good as, or better than, the best age model that can be obtained by 539 
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applying layer counting on the most clearly laminated parts of the speleothem (e.g. Verheyden et al., 540 

2006). It must be noted that, while the close fit between modelled δ18Oc and speleothem δ18Oc data (ρ 541 

= 0.92; σ = 0.08‰) is encouraging, a major reason for the model’s success is the fact that the Proserpine 542 

speleothem used in this example is known to receive significantly seasonal (though not sinusoidal) drip 543 

water volumes and concentrations (Van Rampelbergh et al., 2014). Variability in drip water properties 544 

and cave temperatures are known to differ strongly between cave systems (Fairchild et al., 2006; 545 

Lachniet, 2009). For ShellChron (or any other δ18Oc-based age model) to work reliably in speleothem 546 

records, consistent seasonal variability in either temperature or δ18Ow should be demonstrated to 547 

significantly influence the δ18Oc variability in the record. In practice, these constraints make ShellChron 548 

applicable in speleothems for which the cave environment varies in response to the seasonal cycle, 549 

such as localities overlain by thin epikarst, well-ventilated caves or speleothems situated close to the 550 

cave entrance (Verheyden et al., 2006; Feng et al., 2013; Baker et al., 2021). 551 

ShellChron’s ability to model multi-year records with smooth transitions between the years does not 552 

compromise the accuracy of its age determination on the seasonal scale (e.g. Fig. 6 and 7). Many 553 

paleoclimatology studies investigating the seasonal cycle rely on stacking of seasonal variability relative 554 

to the annual cycle, thereby combining seasonal information from multiple years to obtain a precise 555 

reconstruction of seasonal variability in the past (e.g. de Winter et al., 2018; Judd et al., 2019; Tierney 556 

et al., 2020). While this can be achieved using age models of individual years (e.g. Judd et al., 2018), 557 

seasonally resolved archives dated using ShellChron can also be stacked along a common seasonal 558 

axis while retaining information about the multi-annual record allowing, for example, comparison 559 

between consecutive years dated using the same age model including uncertainty on the age 560 

determination. 561 

The difficulty of applying age model routines on speleothem records highlights one of the main 562 

advantages of ShellChron over pre-existing age model routines, namely its modular character. Since 563 

δ18Oc records from some carbonate archives, such as speleothems, cannot be described by the 564 

standard combination of temperature and growth rate sinusoids on which ShellChron is based (in its 565 

current version), the possibility to adapt the “building block” functions used to approximate these δ18Oc 566 

records (d18O_model, temperature_curve and growth_rate_curve; see Fig. 1) while leaving the core 567 

structure of ShellChron intact greatly augments the versatility of the model. The freedom to adapt the 568 
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building blocks used to approximate the δ18Oc record theoretically enables ShellChron to model sub-569 

annual age-distance relationships in any record if the seasonal variability in the variables used to model 570 

the input data are predictable and can be represented by a function. For example, since speleothem 571 

δ18Oc records often depend on variability in the δ18Ow value of the drip water, a function describing this 572 

variability through the year can replace the temperature_curve function to create more accurate sub-573 

annual age models for speleothems (e.g. Mattey et al., 2008; Lachniet, 2009; Van Rampelbergh et al., 574 

2014). Similarly, the growth_rate_curve function can be modified in case the default skewed sinusoid 575 

does not accurately describe the extension rate of the record under study, and the d18O_model function 576 

can be adapted to feature the most fitting δ18Oc-temperature or δ18Oc-δ18Ow relationship. Note that the 577 

flexibility of this approach is limited by the expression of the annual cycle in the δ18Oc record. The δ18Oc-578 

based dating approach in ShellChron will therefore have more trouble dating records in which the annual 579 

δ18Oc variability is severely dampened, such as speleothems in deeper cave systems (e.g. 580 

Vansteenberge et al., 2016), or in which annual δ18Oc variability is not sinusoidal, such as tropical 581 

records with bimodal temperature or precipitation seasonality (Knoben et al., 2018). 582 

Flexibility in the definition of “building block” functions used to approximate the input data paves the way 583 

for future application beyond carbonate δ18Oc records. The seasonal variability in δ18O in some ice cores 584 

can be approximated by a stable and unbiased temperature relationship (van Ommen and Morgan, 585 

1997). ShellChron can therefore be modified to date sub-annual samples in these ice core records and 586 

reconstruct seasonal variability in the high latitudes through the Quaternary. Similarly, inter-annual δ18O 587 

variability in tree ring records are demonstrated to record variability in precipitation through the year, 588 

and this variability can be modelled to improve sub-annual age models in these records (Xu et al., 2016). 589 

More generally, the field of dendrochemistry has recently developed additional chemical proxies for 590 

seasonality (e.g. trace element concentrations), which can be measured on smaller sample volumes 591 

(and thus greater resolution) to obtain ultra-high-resolution records on which (sub-annual) dating can be 592 

based (e.g. Poussart et al., 2006; Superville et al., 2017). A similar development has taken place in the 593 

study of carbonate bio-archives such as corals and mollusks, of which some show strong, predictable 594 

seasonal variability in trace elements (e.g. Mg/Ca and Sr/Ca ratios) which can be used to accurately 595 

date these records (de Villiers et al., 1995; Sosdian et al., 2006; Durham et al., 2017; de Winter et al., 596 

2021b). Minor changes in the “building block” functions using empirical transfer functions for these trace 597 

element records will enable ShellChron to capitalize on these relationships and reconstruct sub-annual 598 
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growth rates with improved precision due to the higher precision with which these proxies can be 599 

measured compared to δ18Oc records. Finally, the application of ShellChron for age model construction 600 

is not necessarily limited to the seasonal cycle, as other major cycles in climate (e.g. tidal, diurnal or 601 

Milankovitch cycles) leave similar marks on climate records and can thus be used as basis for age 602 

modelling (e.g. Sano et al., 2012; Huyghe et al., 2019; de Winter et al., 2020a; Sinnesael et al., 2020). 603 

It must be noted that, since ShellChron was developed for modeling based on annual periodicity, 604 

applying it on other timescales would require more thorough adaptation of the model code than merely 605 

adapting the “building block” functions to support additional proxy systems. 606 

While age reconstructions are the main aim of ShellChron, the model also yields information about the 607 

temperature and growth rate parameters used in each simulation window to approximate the local δ18Oc 608 

curve (see parameter matrix in Fig. 1 and SI6). These parameters hold key information about the 609 

response of the archive to seasonal changes in the environment, such as the season of growth, 610 

relationships between growth rate and temperature and the temperature range that is recorded. 611 

Combining these parameters with records of influential environmental variables such as seawater 612 

chlorophyl concentration or local precipitation patterns yields information about the response of the 613 

climate archive to environmental variables, in addition to the climate or environmental change it records. 614 

Study examples include the relationship between growth rate of marine calcifies and phytoplankton 615 

abundance or the correlation between precipitation patterns and chemical variability in speleothems. 616 

While such discussion is beyond the scope of this work, examples of parameter distributions are 617 

provided in SI5, and the application of modelled growth rate parameters in bivalve sclerochronology is 618 

discussed in more detail in Judd et al. (2018). Note that the sliding window approach of ShellChron 619 

produces records of changing temperature and growth rate parameters at the scale of individual 620 

samples (albeit smoothed by the sliding window approach) rather than annually, as in Judd et al. (2018). 621 

 622 

6. Conclusions 623 

ShellChron offers a novel, open-source solution to the problem of dating carbonate archives for high-624 

resolution paleoclimate reconstruction on a sub-annual scale. Based on critical evaluation of previous 625 

age models, building on their strengths while attempting to minimize their weaknesses, ShellChron 626 

provides continuous age models based on δ18Oc-profiles in these archives with monthly accuracy, 627 
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considering the uncertainties associated with both the model itself and the input data. The monthly 628 

accuracy of the model, as tested on a range of virtual and natural datasets, enables its application for 629 

age determination in studies of seasonal climate and environmental variability. Higher accuracies can 630 

be reached at the cost of longer computation times by adapting the model parameters, but age 631 

determinations far beyond the monthly scale are unlikely to be feasible considering the limitations on 632 

sampling resolution and measurement uncertainties on δ18Oc records. ShellChron’s computation times 633 

on datasets with sampling resolutions typical for the paleoclimatology field (up to 20 samples/yr) remain 634 

practical and comparable to previous model solutions, despite adding several features that improve the 635 

versatility and interpretation of model results. Its modular design allows ShellChron to be adapted to 636 

different situations with comparative ease. It thereby functions as a platform for age-distance modelling 637 

on a wide range of climate and environmental archives and is not limited in its application to the δ18Oc 638 

proxy, the carbonate substrate or even to the annual cycle, as long as the relationship between the 639 

proxy and the extension rate of the archive on a given time scale can be parameterized. Future 640 

improvements will capitalize on this variability, expanding ShellChron beyond its current dependency on 641 

the δ18Oc-temperature relationship in carbonates. Members of the high-resolution paleoclimate 642 

community are invited to contribute to this effort by adapting the model for their purpose. 643 

 644 

Code availability 645 

ShellChron is worked out into a fully functioning package for the open-source computational language 646 

R (version 3.5.0 or later; R Core Team, 2020). The most recent full version (v0.4.0) of the ShellChron 647 

passed the code review of the Comprehensive R Archive Network (CRAN) and is freely available for 648 

download as an R package on the CRAN server (see https://CRAN.R-project.org/package=ShellChron). 649 

The CRAN server entry also includes detailed line-by-line documentation of the code and working 650 

examples for every function. In addition, the latest development version of ShellChron is available on 651 

GitHub (https://github.com/nielsjdewinter/ShellChron). Those interested in adapting ShellChron for their 652 

research purposes are invited to do so there. Code and documentation, together with all supplementary 653 

files belonging to this study, are also available on the open-source online repository Zenodo 654 

(http://doi.org/10.5281/zenodo.4288344). 655 

 656 
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http://doi.org/10.5281/zenodo.4288344


24 
 

Author contribution 657 

NJW designed the study, wrote the model script, carried out the test calculations and wrote the 658 

manuscript. 659 

 660 

Competing interests 661 

There were no competing interests to declare. 662 

 663 

Acknowledgements 664 

This research project is part of the UNBIAS project funded by the European Commission through a 665 

Marie Curie Individual Fellowship (MSCA-IF; grant number: 843011) and the Flemish Research Council 666 

(FWO; junior postdoc grant, project number: 12ZB220N). Thanks go to Emily Judd for discussions about 667 

the workings of the Judd et al. (2018) model and its potential adaptation beyond aragonitic mollusk 668 

shells. High-resolution temperature and salinity data from the NIOZ jetty which underlie the Texel 669 

dataset and the noise added to the idealized Case 1 dataset were kindly provided by Eric Wagemaakers 670 

and Sonja van Leeuwen (Royal Dutch Institute for Sea Research, the Netherlands). The δ18Oc data 671 

series from the Crassostrea gigas (oyster) and Proserpine stalagmite (speleothem) were generously 672 

provided by dr. Clemens V. Ullmann (University of Exeter, UK) and dr. Stef Vansteenberge (Vrije 673 

Universiteit Brussel, Belgium), respectively. Raw data from the Porites lutea coral dataset were obtained 674 

with help of the WebPlotDigitizer (https://automeris.io/WebPlotDigitizer/) developed by Ankit Rohatgi. 675 

Preparation of the ShellChron model into an R package would not have been possible without the helpful 676 

instructions by Fong Chun Chan (https://tinyheero.github.io/jekyll/update/2015/07/26/making-your-first-677 

R-package.html), Hilary Parker (https://hilaryparker.com/2014/04/29/writing-an-r-package-from-678 

scratch/) and Hadley Wickham (https://r-pkgs.org/release.html) as well as the insightful and inspiring 679 

discussions on R coding and statistics with Ilja Kocken (Utrecht University). In addition, distribution of 680 

the code in an organized way was made possible thanks to Git (https://git-scm.com/) and Github 681 

(https://github.com/) and the R Project Team (https://www.r-project.org/), with special thanks to Uwe 682 

Ligges (University of Dortmund, Germany) and Gregor Seyer (University of Vienna, Austria) for their 683 

comments on initial submissions of the package to the CRAN database. Thanks go to William A. Huber 684 

https://automeris.io/WebPlotDigitizer/
https://tinyheero.github.io/jekyll/update/2015/07/26/making-your-first-R-package.html
https://tinyheero.github.io/jekyll/update/2015/07/26/making-your-first-R-package.html
https://hilaryparker.com/2014/04/29/writing-an-r-package-from-scratch/
https://hilaryparker.com/2014/04/29/writing-an-r-package-from-scratch/
https://r-pkgs.org/release.html
https://git-scm.com/
https://github.com/
https://www.r-project.org/


25 
 

(https://www.analysisandinference.com/team/william-a-huber-phd) for providing a practical general 685 

solution to the peak identification problem in the cumulative_day function (see peakid function and 686 

https://rpubs.com/mengxu/peak_detection). 687 

  688 

https://www.analysisandinference.com/team/william-a-huber-phd
https://rpubs.com/mengxu/peak_detection


26 
 

References 689 

Bajnai D., Guo W., Spötl C., Coplen T. B., Methner K., Löffler N., Krsnik E., Gischler E., Hansen M., 690 
Henkel D., Price G. D., Raddatz J., Scholz D. and Fiebig J. (2020) Dual clumped isotope thermometry 691 
resolves kinetic biases in carbonate formation temperatures. Nature Communications 11, 4005. 692 

Baker A., Mariethoz G., Comas-Bru L., Hartmann A., Frisia S., Borsato A., Treble P. C. and Asrat A. 693 
(2021) The Properties of Annually Laminated Stalagmites-A Global Synthesis. Reviews of Geophysics 694 
59, e2020RG000722. 695 

Baldini J. U. L., McDermott F., Hoffmann D. L., Richards D. A. and Clipson N. (2008) Very high-696 
frequency and seasonal cave atmosphere PCO2 variability: Implications for stalagmite growth and 697 
oxygen isotope-based paleoclimate records. Earth and Planetary Science Letters 272, 118–129. 698 

Brand W. A., Coplen T. B., Vogl J., Rosner M. and Prohaska T. (2014) Assessment of international 699 
reference materials for isotope-ratio analysis (IUPAC Technical Report). Pure and Applied Chemistry 700 
86, 425–467. 701 

de Brauwere A., De Ridder F., Pintelon R., Schoukens J. and Dehairs F. (2009) A comparative study 702 
of methods to reconstruct a periodic time series from an environmental proxy record. Earth-Science 703 
Reviews 95, 97–118. 704 

Butler P. G., Wanamaker A. D., Scourse J. D., Richardson C. A. and Reynolds D. J. (2013) Variability 705 
of marine climate on the North Icelandic Shelf in a 1357-year proxy archive based on growth 706 
increments in the bivalve Arctica islandica. Palaeogeography, Palaeoclimatology, Palaeoecology 373, 707 
141–151. 708 

Chauvaud L., Lorrain A., Dunbar R. B., Paulet Y.-M., Thouzeau G., Jean F., Guarini J.-M. and 709 
Mucciarone D. (2005) Shell of the Great Scallop Pecten maximus as a high-frequency archive of 710 
paleoenvironmental changes. Geochemistry, Geophysics, Geosystems 6. 711 

Coplen T. B. (2007) Calibration of the calcite–water oxygen-isotope geothermometer at Devils Hole, 712 
Nevada, a natural laboratory. Geochimica et Cosmochimica Acta 71, 3948–3957. 713 

Daëron M., Drysdale R. N., Peral M., Huyghe D., Blamart D., Coplen T. B., Lartaud F. and Zanchetta 714 
G. (2019) Most Earth-surface calcites precipitate out of isotopic equilibrium. Nature Communications 715 
10, 429. 716 

Daëron M., Guo W., Eiler J., Genty D., Blamart D., Boch R., Drysdale R., Maire R., Wainer K. and 717 
Zanchetta G. (2011) 13C18O clumping in speleothems: Observations from natural caves and 718 
precipitation experiments. Geochimica et Cosmochimica Acta 75, 3303–3317. 719 

De Ridder F., de Brauwere A., Pintelon R., Schoukens J., Dehairs F., Baeyens W. and Wilkinson B. H. 720 
(2007) Comment on: Paleoclimatic inference from stable isotope profiles of accretionary biogenic 721 
hardparts—a quantitative approach to the evaluation of incomplete data, by Wilkinson, BH, Ivany, LC, 722 
2002. Palaeogeogr. Palaeocl. Palaeoecol. 185, 95–114. Palaeogeography, Palaeoclimatology, 723 
Palaeoecology 248, 473–476. 724 

DeCarlo T. M. and Cohen A. L. (2017) Dissepiments, density bands and signatures of thermal stress 725 
in Porites skeletons. Coral Reefs 36, 749–761. 726 

Dettman D. L., Reische A. K. and Lohmann K. C. (1999) Controls on the stable isotope composition of 727 
seasonal growth bands in aragonitic fresh-water bivalves (Unionidae). Geochimica et Cosmochimica 728 
Acta 63, 1049–1057. 729 

Duan Q., Sorooshian S. and Gupta V. (1992) Effective and efficient global optimization for conceptual 730 
rainfall-runoff models. Water resources research 28, 1015–1031. 731 

Dunbar R. B. and Wellington G. M. (1981) Stable isotopes in a branching coral monitor seasonal 732 
temperature variation. Nature 293, 453–455. 733 

Durham S. R., Gillikin D. P., Goodwin D. H. and Dietl G. P. (2017) Rapid determination of oyster 734 
lifespans and growth rates using LA-ICP-MS line scans of shell Mg/Ca ratios. Palaeogeography, 735 
Palaeoclimatology, Palaeoecology. 736 



27 
 

Epstein S., Buchsbaum R., Lowenstam H. A. and Urey H. C. (1953) Revised carbonate-water isotopic 737 
temperature scale. Geological Society of America Bulletin 64, 1315–1326. 738 

Evans M. N. and Schrag D. P. (2004) A stable isotope-based approach to tropical dendroclimatology1 739 
1Associate editor: D. W. Lea. Geochimica et Cosmochimica Acta 68, 3295–3305. 740 

Fairchild I. J., Smith C. L., Baker A., Fuller L., Spötl C., Mattey D., McDermott F., and others (2006) 741 
Modification and preservation of environmental signals in speleothems. Earth-Science Reviews 75, 742 
105–153. 743 

Feng W., Casteel R. C., Banner J. L. and Heinze-Fry A. (2014) Oxygen isotope variations in rainfall, 744 
drip-water and speleothem calcite from a well-ventilated cave in Texas, USA: Assessing a new 745 
speleothem temperature proxy. Geochimica et Cosmochimica Acta 127, 233–250. 746 

Frisia S., Borsato A., Fairchild I. J. and McDermott F. (2000) Calcite fabrics, growth mechanisms, and 747 
environments of formation in speleothems from the Italian Alps and southwestern Ireland. Journal of 748 
Sedimentary Research 70, 1183–1196. 749 

Gagan M. K., Chivas A. R. and Isdale P. J. (1994) High-resolution isotopic records from corals using 750 
ocean temperature and mass-spawning chronometers. Earth and Planetary Science Letters 121, 549–751 
558. 752 

Goodwin D. H., Paul P. and Wissink C. L. (2009) MoGroFunGen: A numerical model for reconstructing 753 
intra-annual growth rates of bivalve molluscs. Palaeogeography, Palaeoclimatology, Palaeoecology 754 
276, 47–55. 755 

Goodwin D. H., Schöne B. R. and Dettman D. L. (2003) Resolution and Fidelity of Oxygen Isotopes as 756 
Paleotemperature Proxies in Bivalve Mollusk Shells: Models and Observations. PALAIOS 18, 110–757 
125. 758 

Grossman E. L. and Ku T.-L. (1986) Oxygen and carbon isotope fractionation in biogenic aragonite: 759 
temperature effects. Chemical Geology: Isotope Geoscience section 59, 59–74. 760 

Huybers P. and Curry W. (2006) Links between annual, Milankovitch and continuum temperature 761 
variability. Nature 441, 329. 762 

Huyghe D., de Rafelis M., Ropert M., Mouchi V., Emmanuel L., Renard M. and Lartaud F. (2019) New 763 
insights into oyster high-resolution hinge growth patterns. Mar Biol 166, 48. 764 

IPCC, Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, 765 
Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., 766 
Waterfield, T., Yelekçi, Ö., Yu, R., and Zhou, B. (Eds.): Climate Change 2021: The Physical Science 767 
Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel 768 
on Climate Change, Cambridge University Press, 2021. Ivany L. C. and Runnegar B. (2010) Early 769 
Permian seasonality from bivalve δ18O and implications for the oxygen isotopic composition of 770 
seawater. Geology 38, 1027–1030. 771 

Ivany, L. C. and Judd, E. J.: Deciphering Temperature Seasonality in Earth’s Ancient Oceans, 50, 772 
123–152, https://doi.org/10.1146/annurev-earth-032320-095156, 2022.  773 

Jones D. S. (1983) Sclerochronology: Reading the Record of the Molluscan Shell: Annual growth 774 
increments in the shells of bivalve molluscs record marine climatic changes and reveal surprising 775 
longevity. American Scientist 71, 384–391. 776 

Jones D. S. and Quitmyer I. R. (1996) Marking Time with Bivalve Shells: Oxygen Isotopes and Season 777 
of Annual Increment Formation. PALAIOS 11, 340–346. 778 

Judd E. J., Wilkinson B. H. and Ivany L. C. (2018) The life and time of clams: Derivation of intra-annual 779 
growth rates from high-resolution oxygen isotope profiles. Palaeogeography, Palaeoclimatology, 780 
Palaeoecology 490, 70–83. 781 

Judd, E. J., Ivany, L. C., DeConto, R. M., Halberstadt, A. R. W., Miklus, N. M., Junium, C. K., and 782 
Uveges, B. T.: Seasonally resolved proxy data from the Antarctic Peninsula support a heterogeneous 783 
middle Eocene Southern Ocean, 34, 787–799, 2019.  784 



28 
 

Kim S.-T. and O’Neil J. R. (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic 785 
carbonates. Geochimica et Cosmochimica Acta 61, 3461–3475. 786 

Knoben W. J. M., Woods R. A. and Freer J. E. (2019) Global bimodal precipitation seasonality: A 787 
systematic overview. International Journal of Climatology 39, 558–567. 788 

Lachniet M. S. (2009) Climatic and environmental controls on speleothem oxygen-isotope values. 789 
Quaternary Science Reviews 28, 412–432. 790 

Le Tissier M. D. A., Clayton B., Brown B. E. and Davis P. S. (1994) Skeletal correlates of coral density 791 
banding and an evaluation of radiography as used in sclerochronology. Marine Ecology Progress 792 
Series 110, 29–44. 793 

LeGrande A. N. and Schmidt G. A. (2006) Global gridded data set of the oxygen isotopic composition 794 
in seawater. Geophysical research letters 33. 795 

Lough J. M. (2010) Climate records from corals. WIREs Climate Change 1, 318–331. 796 

Mahé K., Bellamy E., Lartaud F. and Rafélis M. de (2010) Calcein and manganese experiments for 797 
marking the shell of the common cockle (Cerastoderma edule): tidal rhythm validation of increments 798 
formation. Aquat. Living Resour. 23, 239–245. 799 

Mattey D., Lowry D., Duffet J., Fisher R., Hodge E. and Frisia S. (2008) A 53 year seasonally resolved 800 
oxygen and carbon isotope record from a modern Gibraltar speleothem: Reconstructed drip water and 801 
relationship to local precipitation. Earth and Planetary Science Letters 269, 80–95. 802 

McCrea J. M. (1950) On the Isotopic Chemistry of Carbonates and a Paleotemperature Scale. J. 803 
Chem. Phys. 18, 849–857. 804 

Mitchell Jr. J. M. (1976) An overview of climatic variability and its causal mechanisms. Quaternary 805 
Research 6, 481–493. 806 

Mohr R. C., Tobin T. S., Petersen S. V., Dutton A. and Oliphant E. (2020) Subannual stable isotope 807 
records reveal climate warming and seasonal anoxia associated with two extinction intervals across 808 
the Cretaceous-Paleogene boundary on Seymour Island, Antarctica. Geology 48, 1131–1136. 809 

Müller P., Taylor M. H., Klicpera A., Wu H. C., Michel J. and Westphal H. (2015) Food for thought: 810 
Mathematical approaches for the conversion of high-resolution sclerochronological oxygen isotope 811 
records into sub-annually resolved time series. Palaeogeography, Palaeoclimatology, Palaeoecology 812 
440, 763–776. 813 

O’Donnell M. S. and Ignizio D. A. (2012) Bioclimatic predictors for supporting ecological applications in 814 
the conterminous United States. US Geological Survey Data Series 691. 815 

Ommen T. D. van and Morgan V. (1997) Calibrating the ice core paleothermometer using seasonality. 816 
Journal of Geophysical Research: Atmospheres 102, 9351–9357. 817 

Poussart P. M., Myneni S. C. B. and Lanzirotti A. (2006) Tropical dendrochemistry: A novel approach 818 
to estimate age and growth from ringless trees. Geophysical Research Letters 33. 819 

R Core Team (2020) R: A Language and Environment for Statistical Computing., R Foundation for 820 
Statistical Computing, Vienna, Austria. 821 

Rohling E. J. (2013) Oxygen isotope composition of seawater. The Encyclopedia of Quaternary 822 
Science. Amsterdam: Elsevier 2, 915–922. 823 

Saenger C., Gabitov R. I., Farmer J., Watkins J. M. and Stone R. (2017) Linear correlations in bamboo 824 
coral δ13C and δ18O sampled by SIMS and micromill: Evaluating paleoceanographic potential and 825 
biomineralization mechanisms using δ11B and ∆47 composition. Chemical Geology 454, 1–14. 826 

Sano Y., Kobayashi S., Shirai K., Takahata N., Matsumoto K., Watanabe T., Sowa K. and Iwai K. 827 
(2012) Past daily light cycle recorded in the strontium/calcium ratios of giant clam shells. Nature 828 
Communications 3, 761. 829 



29 
 

Schöne B. R., Fiebig J., Pfeiffer M., Gleβ R., Hickson J., Johnson A. L., Dreyer W. and Oschmann W. 830 
(2005) Climate records from a bivalved Methuselah (Arctica islandica, Mollusca; Iceland). 831 
Palaeogeography, Palaeoclimatology, Palaeoecology 228, 130–148. 832 

Schöne B. R. and Gillikin D. P. (2013) Unraveling environmental histories from skeletal diaries — 833 
Advances in sclerochronology. Palaeogeography, Palaeoclimatology, Palaeoecology 373, 1–5. 834 

Schöne B. R., Zhang Z., Radermacher P., Thébault J., Jacob D. E., Nunn E. V. and Maurer A.-F. 835 
(2011) Sr/Ca and Mg/Ca ratios of ontogenetically old, long-lived bivalve shells (Arctica islandica) and 836 
their function as paleotemperature proxies. Palaeogeography, Palaeoclimatology, Palaeoecology 302, 837 
52–64. 838 

Sinnesael M., De Vleeschouwer D., Zeeden C., Batenburg S. J., Da Silva A.-C., de Winter N. J., 839 
Dinarès-Turell J., Drury A. J., Gambacorta G. and Hilgen F. J. (2019) The Cyclostratigraphy 840 
Intercomparison Project (CIP): consistency, merits and pitfalls. Earth-Science Reviews, 102965. 841 

Sosdian S., Gentry D. K., Lear C. H., Grossman E. L., Hicks D. and Rosenthal Y. (2006) Strontium to 842 
calcium ratios in the marine gastropod Conus ermineus: Growth rate effects and temperature 843 
calibration. Geochemistry, Geophysics, Geosystems 7. 844 

Steuber T., Rauch M., Masse J.-P., Graaf J. and Malkoč M. (2005) Low-latitude seasonality of 845 
Cretaceous temperatures in warm and cold episodes. Nature 437, 1341–1344. 846 

Superville P.-J., De Winter N., Phung A. T., Proix N., Baeyens W. and Gao Y. (2017) Radial metal 847 
concentration profiles in trees growing on highly contaminated soils. Chemosphere 172, 80–88. 848 

Tarutani T., Clayton R. N. and Mayeda T. K. (1969) The effect of polymorphism and magnesium 849 
substitution on oxygen isotope fractionation between calcium carbonate and water. Geochimica et 850 
Cosmochimica Acta 33, 987–996. 851 

Tierney, J. E., Poulsen, C. J., Montañez, I. P., Bhattacharya, T., Feng, R., Ford, H. L., Hönisch, B., 852 
Inglis, G. N., Petersen, S. V., Sagoo, N., Tabor, C. R., Thirumalai, K., Zhu, J., Burls, N. J., Foster, G. 853 
L., Goddéris, Y., Huber, B. T., Ivany, L. C., Turner, S. K., Lunt, D. J., McElwain, J. C., Mills, B. J. W., 854 
Otto-Bliesner, B. L., Ridgwell, A., and Zhang, Y. G.: Past climates inform our future, 370, 855 
https://doi.org/10.1126/science.aay3701, 2020.  856 

Treble P. C., Schmitt A. K., Edwards R. L., McKeegan K. D., Harrison T. M., Grove M., Cheng H. and 857 
Wang Y. J. (2007) High resolution Secondary Ionisation Mass Spectrometry (SIMS) δ18O analyses of 858 
Hulu Cave speleothem at the time of Heinrich Event 1. Chemical Geology 238, 197–212. 859 

Ullmann C. V., Böhm F., Rickaby R. E., Wiechert U. and Korte C. (2013) The Giant Pacific Oyster 860 
(Crassostrea gigas) as a modern analog for fossil ostreoids: isotopic (Ca, O, C) and elemental (Mg/Ca, 861 
Sr/Ca, Mn/Ca) proxies. Geochemistry, Geophysics, Geosystems 14, 4109–4120. 862 

Ullmann C. V. and Korte C. (2015) Diagenetic alteration in low-Mg calcite from macrofossils: a review. 863 
Geological Quarterly 59, 3–20. 864 

Ullmann C. V., Wiechert U. and Korte C. (2010) Oxygen isotope fluctuations in a modern North Sea 865 
oyster (Crassostrea gigas) compared with annual variations in seawater temperature: Implications for 866 
palaeoclimate studies. Chemical Geology 277, 160–166. 867 

Urban F. E., Cole J. E. and Overpeck J. T. (2000) Influence of mean climate change on climate 868 
variability from a 155-year tropical Pacific coral record. Nature 407, 989–993. 869 

Urey H. C. (1948) Oxygen Isotopes in Nature and in the Laboratory. Science 108, 489–496. 870 

Van Rampelbergh M., Verheyden S., Allan M., Quinif Y., Keppens E. and Claeys P. (2014) Seasonal 871 
variations recorded in cave monitoring results and a 10 year monthly resolved speleothem δ18O and 872 
δ13C record from the Han-sur-Lesse cave, Belgium. Climate of the Past Discussions 10, 1821–1856. 873 

Vansteenberge S., Verheyden S., Cheng H., Edwards R. L., Keppens E. and Claeys P. (2016) 874 
Paleoclimate in continental northwestern Europe during the Eemian and early Weichselian (125–875 
97 ka): insights from a Belgian speleothem. Clim. Past 12, 1445–1458. 876 

Vansteenberge S., Winter N. de, Sinnesael M., Verheyden S., Goderis S., Malderen S. J. M. V., 877 
Vanhaecke F. and Claeys P. (2019) Reconstructing seasonality through stable isotope and trace 878 

https://doi/


30 
 

element analysis of the Proserpine stalagmite, Han-sur-Lesse Cave, Belgium: indications for climate-879 
driven changes during the last 400 years. Climate of the Past Discussions, 1–32. 880 

Verheyden S., Baele J.-M., Keppens E., Genty D., Cattani O., Cheng H., LAWRENCE E., ZHANG H., 881 
Van Strijdonck M. and Quinif Y. (2006) The Proserpine stalagmite (Han-Sur-Lesse Cave, Belgium): 882 
preliminary environmental interpretation of the last 1000 years as recorded in a layered speleothem. 883 
Geologica Belgica. 884 

de Villiers S., Nelson B. K. and Chivas A. R. (1995) Biological controls on coral Sr/Ca and delta18O 885 
reconstructions of sea surface temperatures. Science 269, 1247. 886 

von der Heydt, A. S., Ashwin, P., Camp, C. D., Crucifix, M., Dijkstra, H. A., Ditlevsen, P., and Lenton, 887 
T. M.: Quantification and interpretation of the climate variability record, Global and Planetary Change, 888 
197, 103399, https://doi.org/10.1016/j.gloplacha.2020.103399, 2021.  889 

Wang Y. J., Cheng H., Edwards R. L., An Z. S., Wu J. Y., Shen C.-C. and Dorale J. A. (2001) A High-890 
Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China. Science 294, 891 
2345–2348. 892 

Watkins J. M., Hunt J. D., Ryerson F. J. and DePaolo D. J. (2014) The influence of temperature, pH, 893 
and growth rate on the δ18O composition of inorganically precipitated calcite. Earth and Planetary 894 
Science Letters 404, 332–343. 895 

Wilkinson B. H. and Ivany L. C. (2002) Paleoclimatic inference from stable isotope profiles of 896 
accretionary biogenic hardparts – a quantitative approach to the evaluation of incomplete data. 897 
Palaeogeography, Palaeoclimatology, Palaeoecology 185, 95–114. 898 

de Winter N., Vellekoop J., Vorsselmans R., Golreihan A., Soete J., Petersen S., Meyer K., Casadio 899 
S., Speijer R. and Claeys P. (2018) An assessment of latest Cretaceous Pycnodonte vesicularis 900 
(Lamarck, 1806) shells as records for palaeoseasonality: a multi-proxy investigation. Climate of the 901 
Past 14, 725–749. 902 

de Winter N. J., Goderis S., Dehairs F., Jagt J. W., Fraaije R. H., Van Malderen S. J., Vanhaecke F. 903 
and Claeys P. (2017) Tropical seasonality in the late Campanian (late Cretaceous): Comparison 904 
between multiproxy records from three bivalve taxa from Oman. Palaeogeography, Palaeoclimatology, 905 
Palaeoecology 485, 740–760. 906 

de Winter N. J., Goderis S., Malderen S. J. M. V., Sinnesael M., Vansteenberge S., Snoeck C., Belza 907 
J., Vanhaecke F. and Claeys P. (2020a) Subdaily-Scale Chemical Variability in a Torreites Sanchezi 908 
Rudist Shell: Implications for Rudist Paleobiology and the Cretaceous Day-Night Cycle. 909 
Paleoceanography and Paleoclimatology 35, e2019PA003723. 910 

de Winter N. J., Ullmann C. V., Sørensen A. M., Thibault N., Goderis S., Van Malderen S. J. M., 911 
Snoeck C., Goolaerts S., Vanhaecke F. and Claeys P. (2020b) Shell chemistry of the boreal 912 
Campanian bivalve &lt;i&gt;Rastellum diluvianum&lt;/i&gt; (Linnaeus, 1767) reveals temperature 913 
seasonality, growth rates and life cycle of an extinct Cretaceous oyster. Biogeosciences 17, 2897–914 
2922. 915 

de Winter N. J., Vellekoop J., Clark A. J., Stassen P., Speijer R. P. and Claeys P. (2020c) The giant 916 
marine gastropod Campanile giganteum (Lamarck, 1804) as a high-resolution archive of seasonality in 917 
the Eocene greenhouse world. Geochemistry, Geophysics, Geosystems 21, e2019GC008794. 918 

de Winter N. J., Agterhuis T. and Ziegler M. (2021a) Optimizing sampling strategies in high-resolution 919 
paleoclimate records. Climate of the Past 17, 1315–1340. 920 

de Winter, N. J., Dämmer, L. K., Falkenroth, M., Reichart, G.-J., Moretti, S., Martínez-García, A., 921 
Höche, N., Schöne, B. R., Rodiouchkina, K., Goderis, S., Vanhaecke, F., van Leeuwen, S. M., and 922 
Ziegler, M. (2021b): Multi-isotopic and trace element evidence against different formation pathways for 923 
oyster microstructures, Geochimica et Cosmochimica Acta, 308, 326–352, 924 
https://doi.org/10.1016/j.gca.2021.06.012.  925 

Xu C., Zheng H., Nakatsuka T., Sano M., Li Z. and Ge J. (2016) Inter-and intra-annual tree-ring 926 
cellulose oxygen isotope variability in response to precipitation in Southeast China. Trees 30, 785–927 
794. 928 



31 
 

Yan H., Liu C., An Z., Yang W., Yang Yuanjian, Huang P., Qiu S., Zhou P., Zhao N., Fei H., Ma X., Shi 929 
G., Dodson J., Hao J., Yu K., Wei G., Yang Yanan, Jin Z. and Zhou W. (2020) Extreme weather 930 
events recorded by daily to hourly resolution biogeochemical proxies of marine giant clam shells. 931 
PNAS 117, 7038–7043. 932 

Zhu F., Emile-Geay J., McKay N. P., Hakim G. J., Khider D., Ault T. R., Steig E. J., Dee S. and 933 
Kirchner J. W. (2019) Climate models can correctly simulate the continuum of global-average 934 
temperature variability. PNAS 116, 8728–8733. 935 
  936 



32 
 

Table 1: Overview of model parameters 
 

Name Description Unit Range 

Tav Average temperature °C Variable, generally between 0°C–30°C 
Tamp Temperature range (2*amplitude) °C Variable, generally <20°C 
Tpha Phase of temperature sinusoid d 0–365 days 
Tper Period of temperature sinusoid d 365 days by default 

Gav Average growth rate µm/d Variable, generally between 0–100 µm/day 
Gamp Range of growth rates µm/d Variable, generally <200 µm/day 
Gpha Phase of growth rate sinusoid d 0–365 days 
Gper Period of growth rate sinusoid d 365 days by default 
Gskw Skewness factor of GR sinusoid - 0–100, with 50 meaning no skew 

D Distance along the record µm Depends on archive 
t Age d Depends on archive 

Lwin Length of sampling window # Depends on sampling resolution 
w Weighting factor on sample - 0–1 
i Position relative to model window - 0–Li 

I Intercept of sinusoid (Tav or Gav) 
°C or 
µm/d 

 

A 
Amplitude of sinusoid 

(
𝑇𝑎𝑚𝑝

2
 𝑜𝑟 

𝐺𝑎𝑚𝑝

2
) 

°C or 
µm/d 

 

P Period of sinusoid (Tper or Gper) d  
φ Phase of sinusoid (Tpha or Gpha) d  

 937 
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Table 2: Overview of datasets and model results 
 

Dataset Resolution Length 
δ18Oc seasonal 

range 
Complications 

Test case 7-12 yr-1 5 yr ~5‰ 
Variable δ18Ow, 

Variable GR 

Case 1 50 yr-1 6 yr ~4.3‰ None 

Texel 26–45 yr-1 10 yr ~4‰ 
Variable δ18Ow, 

Variable GR 

Coral 30–49 yr-1 6 yr ~1.7‰ Variable GR 

Oyster 23–45 yr-1 3.5 yr ~3‰ 
Variable δ18Ow, 

Variable GR 

Speleothem 4–13 yr-1 14 yr ~0.5‰ 

Variable δ18Ow, 
Variable GR, 

Non-sinusoidal 
δ18Oc-forcing 

     

Dataset 
δ18Oc offset 

(±1σ) 
Age offset 

(±1σ) 
Spearman’s ρ Observations 

Test case 0.0 ± 0.49 ‰ 7 ± 32 d 0.94 
Slightly out of 

phase 

Case 1 0.0 ± 0.27‰ 4 ± 12 d 0.98 - 

Texel 0.0 ± 0.41‰ 30 ± 24 d 0.92 - 

Coral 0.0 ± 0.14‰ 12 ± 28 d 0.97 - 

Oyster 0.0 ± 0.39‰ -15 ± 43 d 0.91 
Reduced 

accuracy near 
growth stops 

Speleothem 0.0 ± 0.08‰ -114 ± 59 d 0.92 

Susceptible to 
phase offsets; 

Only reliable on 
inter-annual scale 
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Figure 1: Schematic overview of ShellChron. Names in italics refer to functions (encapsulated in 941 

rounded rectangular boxes) and operations within functions. Rectangular boxes represent data. Arrows 942 

represent the flow of information between model components. Note that some operations are 943 

encapsulated in functions (e.g. Error propagation in export results) and that some functions are only 944 

used within other functions (e.g. peakid in cumulative_day). All data structures outside wrap_function 945 

represent input and output of the model. Detailed documentation of all functions and operations in 946 

ShellChron is provided in SI1 (see also Code availability). 947 

 948 

Figure 2: A) Plots of the growth rate (light green), δ18Ow (blue) and temperature (red) records (in time 949 

domain) from which the Test case was produced. Black triangles on the bottom of the temperature plot 950 

indicate the ages of the samples taken from the record. B) The δ18Oc record for the Test Case generated 951 

after equidistant sampling using the seasonalclumped package (de Winter et al., 2021a) with a sampling 952 

interval of 0.5 mm. Error bars on sampling distance (0.1 mm) and δ18Oc (0.1‰) fall within the symbols. 953 

Vertical grey dashed lines indicate user-provided year markers and the blue bar on top of this plot shows 954 

an example of the width of a modelling window. See Supplementary Methods for details on producing 955 

the Test case δ18Oc record and SI3 for the R script used to generate the data. 956 

 957 

Figure 3: Schematic overview of the structure of the result array in which ShellChron stores the raw 958 

results of each model window. Data is stored in three dimensions: The sample number (rows in the 959 

figure), the window number (columns in the figure) and the number of modelled parameters 960 

(represented by the stacked table “sheets” in the figure). Note that the first 5 columns of each “sheet” 961 

represent the user-provided input data (see example in SI2), and that the model result data starts from 962 

column 6. The window length is determined by the user-provided indication of year transitions (column 963 

3). Rows of dots in the figure are placeholders for (input or result) values. Shading of these dots in the 964 

window columns indicate differential weighting of modelled values in function of their location relative 965 

to the sliding window. The horizontal box shows how these weighting factors within each sample 966 

window (in vertical direction) result in weighting of different estimates of modelled parameters for the 967 

same data point (in horizontal direction). Shading of input data and window number towards the 968 

bottom and right edge of the figure, respectively, indicates that the number of input values (and thus 969 
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simulation windows) is only limited to the length of the input table and may therefore continue 970 

indefinitely (at the expense of longer computation times, see Fig. 8 in Model performance). 971 

 972 

Figure 4: Showing the steps taken to simulate δ18Oc data in the run_model function on the Test case. 973 

A) Temperature sinusoid used to approximate δ18Oc data in the first modelling window (see D), 974 

produced using a combination of temperature_curve and d18O_model functions. Symbols indicate the 975 

positions of δ18Oc samples on the temperature curve, with estimated δ18Oc values shown on the 976 

secondary axis (right). B) Skewed growth rate sinusoid fit to the δ18Oc data using the 977 

growth_rate_curve function. Note the shift towards steeper growth rate increase around the 300th 978 

model day (autumn season in this example). See Fig. S2 for a detailed description of the growth rate 979 

sinusoid. C) The modelled age-distance relationship for this window after fitting δ18Oc data, resulting 980 

from aligning the estimated age of samples (x-axes on A) with the distance in sampling direction (x-981 

axis in D) using the cumulative growth rate function (B). D) δ18Oc profile of the Test case (green) with 982 

the δ18Oc curve of the first modelling window (red), which results from the combination of temperature 983 

(A) and growth rate (B) sinusoids, plotted on top (growth_model function). E) Result after simulating 984 

the full δ18Oc profile of the Test case (green) using run_model, with the δ18Oc curves of individual 985 

modelling windows shown in red. 986 

 987 

Figure 5: Result of testing ShellChron with various combinations of SCEUA parameters and 988 

sinusoidal regression on the Test case dataset (see Fig. 2). The leftmost plots illustrate performance 989 

of ShellChron under default SCEUA parameters. Plots to the right show various combinations of 990 

parameters that deviate from the default (see labels on top and bottom of plot) A) Fits of the model 991 

δ18Oc curves (red) with the data (black). B) Violin plots showing the distribution of modelled δ18Oc 992 

offset from the data. C) Age-distance plots showing modelled (red) and known (black) age-depth 993 

relationships for each scenario. D) Violin plots showing the distribution of age offsets from the known 994 

age-depth relationship. SD = standard deviation, N = number of datapoints, sinres = sinusoidal 995 

regression, maxn, ngs, kstop, peps and pcento are SCEUA parameters (see Duan et al., 1992 and 996 

explanation in section 4.1). Data on test results is provided in SI11. 997 
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 998 

Figure 6: Result of applying ShellChron on two virtual datasets: Case 1 (top, see SI8) and Texel, 999 

(bottom, see SI9). Leftmost panels (A and D) show the model fit of individual sample windows (red) on 1000 

the data (black, including horizontal and vertical error bars), with in the top left Spearman’s correlation 1001 

coefficients (ρ) and standard deviations on the δ18Oc estimate (σest). Middle panels (B and E) show the 1002 

resulting age model (red, including shaded 95% confidence level) compared with the known age-1003 

distance relationship of both records. Histograms in the top left of age-distance plots show the offset 1004 

between modelled and measured δ18Oc (as visualized in panels A and D) with standard deviations of 1005 

the δ18Oc offset (σoff) and offset averages (µ). Histograms in the bottom right of age-distance plots show 1006 

the offset between modelled and known ages (in days) of each datapoint, including standard deviations 1007 

on the age accuracy (σacc) and mean age offset (µ). Rightmost panels (C and F) highlight age offsets 1008 

binned in 12 monthly time bins based on their position relative to the annual cycle to illustrate how 1009 

accuracy varies over the seasons. Grey envelopes indicate 95% confidence levels on the monthly age 1010 

offset within these monthly time bins. The horizontal red dashed line indicates no offset (modelled age 1011 

is equal to the known age of the sample). 1012 

 1013 

Figure 7: Overview of model results for the three test datasets from real carbonate archives: (A) coral, 1014 

(B) oyster and (C) speleothem. Lower panels indicate the fit of individual model windows (in red) with 1015 

the data (in black) while upper panels show the age model (in red) compared to the “true” age-distance 1016 

relationship with histograms showing model accuracy (in days, top left) and model fit (δ18Oc offset in ‰, 1017 

bottom right). Color scheme follows Figure 3. Note that the true age-distance relationship is not known 1018 

for these natural records, but is estimated using known growth seasonality (coral), comparison with in 1019 

situ temperature and salinity measurements (oyster) or simply by interpolating between annual growth 1020 

lines (speleothem). See Supplementary Methods for details and SI10 for raw data. 1021 

 1022 

Figure 8: Overview of the result of timing ShellChron and the GRATAISS model on the same datasets 1023 

(A), comparing the accuracies of both models (B) and comparing the accuracy as calculated by 1024 

ShellChron with the known offset in the age model (C). In (A) and (B), low resolution datasets are 1025 
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plotted in dark blue (ShellChron) and dark green (GRATAISS), while high-resolution datasets plot in 1026 

light blue (ShellChron) and light green (GRATAISS). Solid lines represent ShellChron and dashed 1027 

lines show performance of the GRATAISS model. Green dotted lines in (B) show the accuracies of the 1028 

GRATAISS model on a year-by-year basis (without accumulating error due to linking consecutive 1029 

years) The black box in (A) and (B) highlights the dataset used in (C). In (C), dark blue lines, bars and 1030 

boxplot indicate true offset of the model from the actual sample age, while light blue lines, bars and 1031 

boxplot show the accuracy of the model as calculated from the propagated errors on model and input 1032 

data. Raw data is provided in SI11. 1033 


