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Abstract

This work presents ShellChron, a new model for generating accurate internal age-_models for high-
resolution paleoclimate archives, such as corals, mollusk shells and speleothems. Reliable sub-annual
age models form the backbone of high-resolution paleoclimate studies. In absence of independent sub-
annual growth markers in many of these archives, the most reliable method for determining the age of
samples is through age modelling based on stable oxygen isotope or other seasonally controlled proxy
records. ShellChron expands on previous solutions to the age model problem by fitting a combination
of a growth rate and temperature sinusoid to model seasonal variability in the proxy record in_a sliding
window approach. This new approach creates smoother, more precise age-distance relationships for
multi-annual proxy records with the added benefit of allowing assessment of the uncertainty on the
modelled age. The modular script of ShellChron allows the model to be tailored to specific archives,
without being limited to oxygen isotope proxy records or carbonate archives, with high flexibility in
assigning the relationship between the input proxy and the seasonal cycle. The performance of
ShellChron in terms of accuracy and computation time is tested on a set of virtual seasonality records
and real coral, bivalve—mollusk and speleothem archives. The result shows that several key
improvements in comparison to previous age model routines enhance the accuracy of ShellChron on

multi-annual records while limiting its processing time. The current full working version of ShellChron
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enables the user to model the age of a 10-year long high-resolution (16 samples/yr) carbonate records
with monthly accuracy within one hour of computation time on a personal computer. The model is freely
accessible on the CRAN database and GitHub. Members of the community are invited to contribute by

adapting the model code to suit their research topics_and encouraged to cite the original work of Judd

et al. (2018) alongside this work when using ShellChron in future studies.

1. Introduction

Fast growing carbonate archives, such as coral skeletons, mollusk shells and speleothems, contain a
wealth of information about past and present climate and environment (e.g. Urban et al., 2000; Wang et
al., 2001; Steuber et al., 2005; Butler et al., 2013). Recent advances in analytical techniques have
improved our ability to extract this information and obtain records of the conditions under which these
carbonates precipitated at high temporal resolutions, often beyond the annual scale (Treble et al., 2007;

Saenger et al., 2017; Vansteenberge et al., 2019; de Winter et al., 2020a; Ivany and Judd, 2022). Key

to the interpretation of such records is the development of reliable chemical or physical proxies for
climate and environmental conditions which can be measured on a sufficiently fine scale to allow
variability to be reconstructed at the desired time resolution. Examples of suitable proxies include
observations of variability in carbonate fabric and microstructure and in (trace) elemental and isotopic
composition (Frisia et al., 2000; Lough, 2010; Ullmann et al., 2010; Schéne et al., 2011; Ullmann et al.,
2013; Van Rampelbergh et al., 2014; de Winter et al., 2017). The unique preservation potential of
carbonates in comparison with archives of climate variability at similar time resolutions, such as tree ring
records and ice cores, now allows us to recover information about climate and environment of the
geological past from these proxies on the (sub-)seasonal scale (Ilvany and Runnegar, 2010; Ullmann
and Korte, 2015; Vansteenberge et al., 2016; de Winter et al., 2018; 2020b; c; Mohr et al., 2020). The
importance of this development cannot be overstated because variability at high (daily and seasonal)
resolution constitutes the most significant component of climate variability (Mitchell, 1976; Huybers and

Curry, 2006; Zhu et al., 2019; von der Heydt et al., 2021). Accurate reconstructions of this type of

variability are therefore fundamental to our understanding of Earth’s climate system and critical for

projecting its behavior in the future under anthropogenic global warming conditions (IPCC, 26482021).
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Areliable age model is crucial te-for the interpretation of high-resolution carbonate records. An age model
is defined as a set of rules or markers that allows the translation of the location of a measurement or
observation on the archive to the time at which the carbonate was precipitated. This translation is
required for aligning records from multiple proxies or archives te-on a common time axis. Age alignment
enables data to be intercomparable and to be interpreted in the context of processes playing a role at
similar timescales. Age models are based on knowledge about the growth or accretion rate of the archive
through time. Many high-resolution carbonate archives contain growth markers on which age models
can be based (e.g. Jones, 1983; Le Tissier et al., 1994; Verheyden et al., 2006). These are especially
valuable in some mollusk species, in which growth lines demarcate annual, daily, or even tidal cycles
(e.g. Arctica islandica, Schéne et al., 2005; Pecten maximus, Chavaud et al., 2005 and Cerastoderma
edule, Mahé et al., 2010). However, in many mollusk species and most carbonate archives, such
independent growth indicators are absent or too infrequent to (relatively) date high-resolution
measurements (Judd et al., 2018; Huyghe et al., 2019). In such cases, age models need to be based

on alternative indicators.

The oxygen isotope composition of carbonates (5'8Qc) is closely dependent on the isotopic composition
of the fluid (3'80w) and the temperature at which the carbonate is precipitated (Urey, 1948; McCrea,
1950; Epstein et al., 1953). In most natural surface environments, either one or both factors is strongly
dependent on the seasonal cycle, one generally being dominant over the other. This causes carbonates
precipitated in these environments to display strong quasi-sinusoidal variations in 5'80c that fellew-record the
seasonal cycle (e.g. Dunbar and Wellington, 1981; Jones and Quitmyer, 1996; Baldini et al., 2008).
Examples of this behavior include seasonal cyclicity in sea surface temperatures recorded in the 5'80¢
of corals and mollusks and seasonal cyclicity in the &'80w of precipitation recorded in speleothems
(Dunbar and Wellington, 1981; Schéne et al., 2005; Van Rampelbergh et al., 2014). This relationship is
challenged in tropical latitudes, where temperature seasonality is restricted. However, in some tropical
archives, the annual cycle of 5'80w in precipitation still allows the annual cycle to be resolved from &80
records (e.g. Evans and Schrag, 2004). These properties make 5'8O. one of the most highly sought-
after proxies for climate variability, and high-resolution 3'80c records are abundant in the paleoclimate

literature (e.g. Lachniet, 2009; Lough, 2010; Schéne and Gillikin, 2013 and references therein).

The close relationship between 5'®0c records and the seasonal cycle can also be exploited to estimate

variability in growth rate of the archive. This property of 5'®Oc curves has been recognized by previous

3
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authors, and attempts have been made to quantify intra-annual growth rates from the shape of 5'80¢
profiles (Wilkinson and lvany, 2002; Goodwin et al., 2003; De Ridder et al., 2006; Goodwin et al., 2009;
De Brauwere et al., 2009; Miiller et al., 2015; Judd et al., 2018). Over time, these so called “growth
models” have improved from fitting of sinusoids to 5'80c data (Wilkinson and Ivany, 2002; De Ridder et
al., 2006) to including increasingly complicated (inter)annual growth rate curves to the model to fit the
shape of the 5'80. data (Goodwin et al., 2003; 2009; Mdller et al., 2015; Judd et al., 2018). These later
models manage to fit the shape of 5'8Oc records well, but they often rely on detailed a priori knowledge
of growth rate or temperature patterns (e.g. Goodwin et al., 2003; 2009), which requires measurements
of one or more parameters in the environment. These measurements are not available in studies on
carbonate archives from the archeological or geological past. In contrast, the latest model by Judd et al.

(2018; GRATAISS, or “Growth Rate and Temporal Alignment of Isotopic Serial Samples”) is based only

on the assumption that growth and temperature follow quasi-sinusoidal patterns and can therefore work
with 5'80c data alone, making it more widely applicable. The simplified parameterization of temperature
and growth rate seasonality by Judd et al. (2018) using two (skewed) sinusoids is demonstrated to

approximate natural circumstances very well.

However, the approach-byJudd-et-al{2018)GRATAISS model is still limited in its use; because it
requires whole, individual growth years to be analyzed separately, resulting in a discontinuous time
series when applied on records containing multiple years of 5'80c data and no solution for incomplete
years. In addition, the model has no option to supply information about the less dominant factor that
drives 5'80c values (5'80w of sea water in the case of mollusks and corals). Furthermore, only estimates
from aragonite records are supported, while the 5'80. value of the other dominant carbonate mineral,
calcite, has a different temperature relationship (Kim and O’Neil, 1997). Finally, neither of the models
highlighted above except for the MoGroFun model by Goodwin et al. (2009) include any assessment of

the uncertainty of the constructed age model.

Here, a new model for estimating ages of samples in seasonal d'®0c curves is presented which
combines the advantages of previous models while attempting to negate their disadvantages.
ShellChron combines a skewed growth rate sinusoid with a sinusoidal temperature curve to model 5'80c
using the Shuffled Complex Evolution model developed at the University of Arizona (SCEUA; Duan et
al., 1992; following Judd et al., 2018). It applies this optimization using a sliding window through the

dataset (as in Wilkinson and Ivany, 2002) and includes the option to use a Monte Carlo simulation

4
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approach to combine uncertainties on the input (3'80c and sample distance measurements) and the
model routine (as in Goodwin et al., 2009). As a result, ShellChron produces a continuous time series
with a confidence envelope, supports records from multiple carbonate minerals and allows the user to
provide information on the less dominant variable influencing 80 (e.g. 5'80w) if available (see section
2). The modular design of ShellChron’s functional script allows parts of the model to be adapted and
interchanged, supporting a wide range of climate and environmental archives. As a result, the initial
design of ShellChron for reconstructing age models in temperature-dominated 5'8Oc records from
marine bio-archives (e.g. corals and mollusks) presented here can be easily modified for application on
other types of records. The routine is worked out into a ready-to-use package for the open-source
computational programming language R and is directly available without restrictions, allowing all
interested parties to freely modify and build on the base structure to adapt it to their needs (R Core

Team, 2020; full package code and documentation in SI1, see also Code availability).

2. Scientific basis

The relationship between 5'80. and the temperature of carbonate precipitation was first established by
Urey (1951) and later refined with additional measurements and theoretical models (e.g. Epstein et al.,
1953; Tarutani et al., 1969; Grossman and Ku, 1986; Kim and O’Neil, 1997; Coplen, 2007; Watkins et
al., 2014; Daéron et al., 2019). Empirical transfer functions for aragonite and calcite by Grossmann and
Ku (1986; modified by Dettmann et al., 1999; equation 1) and Kim and O’Neil (1997; equation 2, with
VSMOW to VPDB scale conversion following Brand et al., 2014; equation 3) have so far found most
frequent use in modern paleoclimate studies and are therefore applied as default relationships in the

ShellChron model (see d180_model function).
T[°C] = 20.6 — 4.34 * (6'80.[%0oVPDB] — §80,,[%oVSMOW] + 0.2) (1)

10°
1000 * ll’l((l) =18.03 * m— 3242

8180, [%oVPDB]
( ‘To00 * 1)
@

57180, [%oV PDB]
( 000 T 1)

with a =

5180,,[%0VPDB] = 0.97002 * §180,,[%oVSMOW] — 29.98 (3)
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To apply these formulae, it is assumed that carbonate is precipitated in equilibrium with the precipitation
fluid. Which carbonates are precipitated in equilibrium has long been subject to debate, and the
development of new techniques for measuring the carbonate-water system (e.g. clumped and dual-
clumped isotope analyses; Daéron et al., 2019; Bajnai et al., 2020) has led recent-some authors to
challenge the assumption that equilibrium fractionation is the norm (see Supplementary Discussion).
The modular character of ShellChron allows the empirical transfer function to be adapted to the §'8Oc
record or to the user’s preference for alternative transfer functions by a small modification of the
d180_model function. Future versions of the model will include more options for changing the transfer

function (see Model description).

As the name suggests, the ShellChron model was initially developed for application on 5'0Oc records
from marine calcifiers (e.g. mollusk shells and corals). ShellChron approximates the evolution of the
calcification temperature at which the carbonate is precipitated by a sinusoidal function (see equation
4, Table 1 and Sl4; temperature_curve function; visualized in Fig. 4A and Fig S1), a good approximation
of seasonal temperature fluctuations in most marine and terrestrial environments (Wilkinson and lvany,
2002; Ivany and Judd, 2022). Variability in 3'®Ow is also comparatively limited in most marine
environments (except for regions with sea ice formation), making the model easy to use in these settings
(LeGrande and Schmidt, 2006; Rohling, 2013). Nevertheless, ShellChron includes the option to provide
a priori knowledge about 5'80w, ranging from annual average values to detailed seasonal variability,
enabling the model to work in environments with more complex interaction between &'®0w and
temperature on the 580 record (see equations 1 and 2). This 5'®0w data can be provided either as a
vector (with the same length as the data) or a single value (assuming constant 5'8Ow) through the d780w

parameter in the run_model function.

T,
r 2+ (t[d] ~Tpna + ’jfr)
° amp .
T[°C]l =Ty + 2 sin T (C))]
per
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Table 1: Overview of model parameters

Name Description Unit Range
Tav Average temperature °C Variable, generally between 0°C-30°C
Tamp  Temperature range (2*amplitude) °C Variable, generally <20°C
Toha Phase of temperature sinusoid d 0-365 days
Tper Period of temperature sinusoid d 365 days by default
Gav Average growth rate pum/d Variable, generally between 0-100 um/day
Gamp Range of growth rates um/d Variable, generally <200 uym/day
Gpha Phase of growth rate sinusoid d 0-365 days
Gper Period of growth rate sinusoid d 365 days by default
Gskw Skewness factor of GR sinusoid - 0-100, with 50 meaning no skew
D Distance along the record um Depends on archive
t Age d Depends on archive
Lwin Length of sampling window Depends on sampling resolution
w Weighting factor on sample - 0-1
i Position relative to model window - 0-L;
1 Intercept of sinusoid (Tay or Gay) ﬁ
Amplitude of sinusoid °C or
A Tamp Gamp
5 or 2 um/d
P Period of sinusoid (Tper Or Gper) d
@ Phase of sinusoid (Tpha OF Gpha) d

If marine 5'80c records represent one extreme on the spectrum of temperature versus 580w influence
on the 8'80Oc record, cave environments, in which 8'80c variability is predominantly driven by 580w
variability in the precipitation fluid, represent the other extreme (Van Rampelbergh et al., 2014). In its
current form, ShellChron takes 5'80w as a user-supplied parameter to model temperature and growth
rate variability, but future versions will allow temperature to be fixed, while §'80w becomes the modelled
variable. ShellChron’s modular character makes it possible to implement this update without changing
the structure of the model. Application of ShellChron on 5'8Oc records from cave deposits will have to
be treated with caution, since drip water 5'®0Ow seasonality (if present) cannot always be approximated
by a sinusoidal function and equilibrium fractionation in cave deposits is less common than in bio-

archives (Baldini et al., 2008; Daéron et al., 2011; Van Rampelbergh et al., 2014).

Besides temperature (or 5'®0w) seasonality, ShellChron models the growth rate of the archive to
approximate the 5'80c record (see equation 5, Table 1 and Sl4; growth_rate_curve function; visualized
in Fig. 4B and Fig S2). Since the growth rate in many carbonate archives varies seasonally, a quasi-
sinusoidal model for growth rate seems plausible (e.g. Le Tissier et al., 1994; Baldini et al., 2008; Judd
et al., 2018). However, as discussed in Judd et al. (2018), the occurrence of growth cessations (growth

rate = 0) and skewness in seasonal growth patterns calls for a more complex growth rate model that
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can take these properties into account. Therefore, ShellChron uses a slightly modified version of the
skewed sinusoidal growth function described by Judd et al. (2018; equation 5). Note that the added
complexity of this function does not preclude the modelling of growth rate functions described by a
simple sinusoid (no skewness; Gsw = 50) or even constant growth through the year (Gamp = 0; see Table

1).

G[mm/yr] = Gqy +

Gamp . (Zn * (t[d] = Gpna + Gper * s)>
2 P

100 — Gy ) 100 — Gy,

N TSW, if t[d] — Gpra < GperTSW .
ithS =

) Gt 100~ Gy ©

if t[d] - Gpha N Gper

50 ’ 100

Contrary to previous 5'®0c growth models, ShellChron allows uncertainties on the input variables
(sampling distance and 5'®0. measurements) as well as uncertainties of the full modelling approach to
be propagated, providing confidence envelopes around the chronology. Uncertainty propagation is
optional and can be skipped without compromising model accuracy. Standard deviations of uncertainties
on input variables (sampling distance and 5'80c) can be provided by the user, while model uncertainties
are calculated from the variability in model results of the same datapoint obtained from overlapping
simulation windows (see growth_model function). Measurement errors are combined by projecting
Monte Carlo simulated values for sampling distance and 5'80. measurements on the modelled 5'80O¢
curve through an orthogonal projection (equation 6; mc_err_orth function; visualized in Fig S3). The
measurement uncertainty projected on the distance domain is then combined with the model uncertainty
to obtain pooled uncertainties in the distance domain, which are propagated through the modelled 5'80c
record to obtain uncertainties on the model result in the age domain. As a result of the sliding window
approach in ShellChron, model results for datapoints situated at the edges of windows are more
sensitive to small changes in the modelled parameters and therefore possess a larger model
uncertainty. To prevent these least certain model estimates from affecting the stability of the model,
model results are given more weight the closer they are situated towards the center of the model window
(see equation 7 in export_results function; see also Fig. S4). This weighting is also incorporated in
uncertainty propagation through a weighted standard deviation (see equation 8 from the sd_wt

function). Note that, despite the weighting solution, the size of uncertainties on the first and last positions




210

211

212

213

214

215

216

217

218

219

220

221

222

223

in the 5'80. record remains uncertain since they are based on a smaller number of overlapping windows

(see e.q. Figure 3).

2 _— 2
_ Dsim - Dslm 61805im - 618051m
Omeas = o + 0150 (6)

_ 2i
w[t]=1—‘ —1‘(7)
window
wi * (x; — W)?
Oweighted,i = |—— N =18

3. Model description

ShellChron is organized in-as a series of functions that describe the step-by-step modelling process. A
schematic overview of the model is given in Fig. 1. A short Test Case is used to illustrate the modelling
steps in ShellChron. Fig. 2 shows how the virtual Test Case was created from randomly generated
seasonal growth rate, §'80w and temperature curves using the seasonalclumped R package (de Winter
et al.,, 2021a; see Fig. 2, Supplementary Methods and SI2) A wrapper function (wrap_function) is

included, which carries out all steps of the model procedure in succession to promote ease of use.
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Schematic overview of ShellChron model

¢~ wrap_function ™
Cdafa_import

{ Input data

User provided parameters
dat « directory

windows — « file name
sinreg € * mineralogy
; SCEUA + time interval (d)
model parameters] « annual period (T; d)
(— + 80, information (%0VSMOW)

= day of max. temp (d
™ y p (d)

A

—
AY
Ji

~

@ run_model

growth_mode/ « # MC simulations
b + plot and export options
iteration
h
g
3
=1

growth_rate _curve
=
/) parameter

< matrix
esult array

\N

e cumulative_day

Qutput data
« Summary statistics of model
+ (Optional) Raw data of all

( - > I year | T moedelling steps
peakid o g step:
W\ tran5|t|ons|/ I

Vs (Optional) Output figures
export_results + Plot of 50, fits

W Error € * Plot of age-depth relationship
- propagation * Plot of growth rate over time
.. / /

Figure 1: Schematic overview of ShellChron. Names in italics refer to functions (encapsulated in
rounded rectangular boxes) and operations within functions. Rectangular boxes represent data. Arrows
represent the flow of information between model components. Note that some operations are
encapsulated in functions (e.g. Error propagation in export results) and that some functions are only
used within other functions (e.g. peakid in cumulative_day). All data structures outside wrap_function
represent input and output of the model. Detailed documentation of all functions and operations in

ShellChron is provided in SI1 (see also Code availability).
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Figure 2: A) Plots of the growth rate (light green), §'80w (blue) and tFemperature (red) records (in time
domain) from which the Test case was produced. Black triangles on the bottom of the temperature
plot indicate the ages of the samples taken from the record. B) The §'8Oc record for the Test Case
generated after equidistant sampling using the seasonalclumped package (de Winter et al., 2021a)
with a sampling interval of 0.5 mm. Error bars on sampling distance (0.1 mm) and 6§'8Oc (0.1%o) fall
within the symbols. Vertical grey dashed lines indicate user-provided year markers and the blue bar on

top of this plot shows an example of the width of a modelling window. See Supplementary Methods

for details on producing the Test case §'80. record and SI3 for the R script used to generate the data.
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Data is imported through the data_import function, which takes a comma-separated text file (CSV) with
the input data. Data files need to contain columns containing sampling distance (D, in pm) and 5'8Oc
data (in %0VPDB), a column marking years in the record (yearmarkers) and two optional columns
containing uncertainties on sampling distance (o(D), one standard deviation, in pm) and 5'80c (0(5780,),
one standard deviation, in %o) respectively (see example in SI2 and Figure 3). The function uses the
year markers (third column) as guidelines for defining the minimum length of the model windows to
ensure that all windows contain at least one year of growth. Window-sizes-are-defined-to-contain-at-least
two-yearmarkers{see-Fig—2)-By default, consecutive windows are shifted by one datapoint, yielding a
total number of windows equal to the sample size minus the length of the last window. While year
markers are required for ShellChron to run (otherwise no windows can be defined), the result of the
model does not otherwise depend on user-provided year markers, instead basing the age result purely

on simulations of the 5'80¢ data.

12
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Schematic overview of result array structure
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Figure 3: Schematic overview of the structure of the result array in which ShellChron stores the raw
results of each model window. Data is stored in three dimensions: The sample number (rows in the
figure), the window number (columns in the figure) and the number of modelled parameters
(represented by the stacked table “sheets” in the figure). Note that the first 5 columns of each “sheet”
represent the user-provided input data (see example in S12), and that the model result data starts from
column 6. The window length is determined by the user-provided indication of year transitions (column
3). Rows of dots in the figure are placeholders for (input or result) values. Shading of these dots in the
window columns indicate differential weighirgweighting of modelled values in function of their location
relative to the sliding window. The horizontal box shows how these weighingweighting factors within
each sample window (in vertical direction) result in weighingweighting of different estimates of
modelled parameters for the same data point (in horizontal direction). Shading of input data and

window number towards the bottom and right edge of the figure, respectively, indicates that the
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268 number of input values (and thus simulation windows) is only limited to the length of the input table
269 and may therefore continue indefinitely (at the expense of longer computation times, see Fig. 8 in

270 Model performance).
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The core of the model consists of simulations of overlapping subsamples (windows) of the sampling
distance and 5'80. data described by the run_model function (see Fig. 1 and 3). Data and window sizes
are passed from data_import onto run_model along with user-provided parameters (e.g. 580w
information; see Fig. 1). run_model loops through the data windows and calls the growth_model
function, which fits a modelled 5'8Qc vs. distance curve through the data using the SCEUA optimization
algorithm (see Duan et al., 1992; see example in Fig 4). The simulated 5'80O. curve is produced through
a combination of a temperature sinusoid (temperature_curve function; see equation 4, Fig. 4A and Fig.
S$1) and a skewed growth rate sinusoid (growth_rate_curve; see equation 5, Fig. 4B and Fig. S2), with
temperature data converted to 5'8O. data through the d7180_model function (equation 1 and 2; Fig.

4A).
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Figure 4: Showing the steps taken to simulate §'8Oc data in the run_model{) function on the Test case.
A) Temperature sinusoid used to approximate §'8Oc data in the first modelling window (see D), produced
using a combination of temperature_curve and d180_model functions. Symbols indicate the positions
of §'80c samples on the temperature curve, with estimated §'80. values shown on the secondary axis
(right). B) Skewed growth rate sinusoid fit to the §'80. data using the growth_rate_curve function. Note
the shift towards steeper growth rate increase around the 300 model day (autumn season in this
example). See Fig. S2 for a detailed description of the growth rate sinusoid. C) The modelled age-
distance relationship for this window after fitting 6’0 data, resulting from aligning the estimated age of
samples (x-axes on A) with the distance in sampling direction (x-axis in D) using the cumulative growth
rate function (B). D) §'®0c profile of the Test case (green) with the 5'80c curve of the first modelling
window (red), which results from the combination of temperature (A) and growth rate (B) sinusoids,
plotted on top (growth_model function). E) Result after simulating the full §'8Oc profile of the Test case

(green) using run_model, with the §'80. curves of individual modelling windows shown in red.
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By default, starting values for the parameters describing temperature and growth rate curves are
obtained by estimating the annual period (P) through a spectral density estimation and applying a
linearized sinusoidal regression through the 5'80c data (sinreg function; see equation 9). It is possible
to skip this sinusoidal modelling step through the “sinfit’ parameter in the run_model function, in which
case the starting value for the annual period is set equal to the width of the model window. In addition,
growth_model takes a series of parameters describing the method for SCEUA optimization (see Duan
et al., 1992; Judd et al., 2018) and the upper and lower bounds for parameters describing temperature
and growth rate curves (see Sl4). Parameters for the SCEUA algorithm (iniflg, ngs, maxn, kstop, pcento
and peps) in the run_model function may be modified by the user to reach more desirable optimization
outcomes. The effect of changing the SCEUA parameters on the model result for the Test case is
illustrated in section 4.1 (see Fig. 5). If uncertainties on sampling distance and 580 data are provided,
growth_model calls the mc_err_orth function to propagate these errors through the model result (see

equation 6 and Fig S3).

271*(D—(p+%)

18 0, = é i
6'°0,[%oVPDB] 1+251n P K

2m 2
linearized as: §'80,[%oVPDB] = a + b sin (F * D) + ccos (F * D),

[ cos™?! (%)
withl =a;A= \[b?+c2and ¢ =P * 025 ————22 | (9)

The run_model function returns an array listing day of the year (1-365), temperature, 5'8Oc, growth rate
and (optionally) their uncertainty standard deviations as propagated from uncertainties on the input data
(“result array”; see Fig. 3 and SI5). Note that the default length of the year (Tper and Gper) is set at 365
days, but that these parameters can be modified by the user in run_model. In addition, a matrix
containing the optimized parameters of temperature and growth rate curves is provided, yielding
information about the evolution of mean values, phases, amplitudes, and skewness of seasonality in
temperature and growth rate along the record (“parameter matrix”, see Fig. 1 and SI6). To construct an
age model for the entire record, the modelled timing of growth data, expressed as day relative to the
365-day year, is converted into a cumulative time series listing the number of days relative to the start

of the first year represented in the record (rather than relative to the start of the year in which the

17



322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

datapoint is found). This requires year transitions (transitions from day 365 to day 1) to be recognized
in all the model results. The cumulative_day function achieves this by aggregating information about
places where the beginning and end of the year is recorded in individual window simulations and
applying a peak identification algorithm (peakid function) to find places in the record where year
transitions occur (see Supplementary Methods). Results of the timing of growth for each sample (in
day of the year) are converted to a cumulative time scale using their positions relative to these

recognized year transitions (Supplementary Methods).

In a final step (described by the export_results function), the results from overlapping individual
modelling windows are combined to obtain mean values and 95% confidence envelopes of the result
variables (age, 5'80c, 5'80c-based temperatures and growth rates) for each sample in the input data. If
uncertainties on the input variables were provided, these are combined with uncertainties on the
modelling result calculated from results of the same datapoint on overlapping data windows by pooling
the variance of the uncertainties (equation 10). Throughout this merging of data from overlapping
windows, results from datapoints on the edge of windows are given less weight than those from
datapoints near the center of a window (see equation 7 and Fig. S4). This weighirgweighting procedure
corrects for the fact that datapoints near the edge of a window are more susceptible to small changes
in the model parameters and are therefore less reliable than results in the center of the window. Finally,
summaries of the simulation results and the model parameters including their confidence intervals are
exported as comma-separated (CSV) files. In addition, export_results supports optional exports of
figures displaying the model results and files containing raw data of all individual model windows

(equivalent to “sheets” of the result array, see Fig. 3 and SI5).

{(Ng—1)«VAR;*w;)
VARpuoled = Elzl(l\,# (10)

in which w = weight of the individual reconstructions, N is the sample size and n is the number of

reconstructions (indexed by /) that is combined
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4. Model performance

The performance of ShellChron was first tested on three virtual datasets:

1. The short Test case used to illustrate the model steps above (see Fig. 2 and 4; SI7)

2. A" record constructed from a simulated temperature sinusoid with added stochastic noise
(Case 1; SI8)

3. A record based on a real-known high-resolution sea surface temperature and salinity record
measured on the coast of Texel island in the tidal basin of the Wadden Sea (North Netherlands;

Texel, see details in SI9 and de Winter et al., 2021a and Supplementary Methods).

Firstly, the effect of varying parameters in the SCEUA algorithm is tested on the Test Case (Fig. 5).
Then, full model runs on Case 1 and Texel are evaluated in terms of model performance (Fig. 6).
In addition to the three test cases, three modern carbonate 5'80Oc records were internally dated using
ShellChron (see Fig. 7): a tropical stony coral (Porites lutea; hereafter: coral) from the Pandora
Reef (Great barrier Reef, NE Australia; Gagan et al., 1993; see SI10), a Pacific oyster shell
(Crassostrea gigas; hereafter: oyster) from List Basin in Denmark (Ullmann et al., 2010; see SI10)
and a temperate zone speleothem from Han-sur-Lesse cave (Belgium; hereafter: speleothem; see
Vansteenberge et al., 2019; see SI10). Finally, ShellChron’s performance in terms of computation
time and accuracy is compared to that of the most comprehensive pre-existing 5'8Oc-based age
model (GRATAISS model by Judd et all., 2018) on simulated temperature sinusoids of various
length and sampling resolutions to which stochastic noise was added (sensu Case 1; de Winter et
al., 2021a; see Fig. 8 and SI11). The latter also demonstrates the scalability of ShellChron and its
application on a variety of datasets. Timing comparisons were carried out using a modern laptop
(Dell XPS13-7390; Dell Inc., Round Rock, Tx, USA) with an Intel Core i7 processor (8 MB cache,
4.1 GHz clock speed, 4 cores, Intel Corporation, Santa Clara, CA, USA), 16 GB LPDDR3 RAM and
aan SSD drive running Windows 10. Note that ShellChron was built and tested successfully on Mac

OS, Fedora Linux and Ubuntu Linux as well.
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Figure 5: Result of testing ShellChron with various combinations of SCEUA parameters and
sinusoidal regression on the Test case dataset (see Fig. 2). The leftmost plots illustrate performance
of ShellChron under default SCEUA parameters. Plots to the right show various combinations of
parameters that deviate from the default (see labels on top and bottom of plot) A) Fits of the model
5'80. curves (red) with the data (black). B) Violin plots showing the distribution of modelled 5'80¢
offset from the data. C) Age-distance plots showing modelled (red) and true-known (black) age-depth
relationships for each scenario. D) Violin plots showing the distribution of age offsets from the real
known age-depth relationship. SD = standard deviation, N = number of datapoints, sinres = sinusoidal
regression, maxn, ngs, kstop, peps and pcento are SCEUA parameters (see Duan et al., 1992 and

explanation in section 4.1). Data on test results is provided in SI11.

4.1 Testing model parameters

Testing different combinations of modelling parameters (Fig. 5) shows that, while the results of
ShellChron can improve beyond the default SCEUA parameters and sinusoidal regression, care must
be taken to evaluate the effect of changing modelling parameters on both the 580 fit and the age-
distance relationship. Comparative testing on the Test case (Fig. 5) shows that sinusoidal regression
has a negligible influence on the success of ShellChron fitting the 3'8Oc curve (Fig. 5A-B; standard
deviation on 8'80c is 0.49%. with sinusoidal regression and 0.50%o. without). However, ShellChron with
sinusoidal regression performs better in terms of age approximation, with a mean age offset of only 7
+ 32 days with sinusoidal regression against 32 + 35 days without (Fig. 5C-D). Age-distance plots
(Fig. 5C) show that the model without sinusoidal fit shows a phase offset with respect to the real
known age-depth-distance relationship, resulting in overestimation of the age for much of the record.
Sinusoidal regression probably results in better initial parameter estimation, which helps to avoid
phase offsets like the one shown in Fig. 5. For the remainder of the tests, sinusoidal regression was

usedenabled.

The remainder of the tests show that the main bottleneck towards better 580 fit optimization is the
maximum number of function evaluations allowed within a single modelling cycle (maxn; see Fig. 5).
Increasing the other SCEUA parameters, such as the number of complexes in the SCEUA routine
(ngs), the number of shuffling loops that should show a significant change before convergence (kstop)

and the thresholds for significant change in parameter value (peps) or result value (pcento) does not
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improve the result if the SCEUA algorithm is not allowed more processing time (maxn). In fact, Fig. 5
shows that increasing these SCEUA parameters can actually result in a werse-deterioration of the
580 fit and higher uncertainty on the age result (Fig. 5B and D). A fivefold increase in maxn (maxn =
50000) almost halves the standard deviation on 5'80c residuals (from 0.49%. to 0.29%o; Fig. 5B) and
decreases the standard deviation on the age model offset from 32 to 26 days (Fig. 5D). A combination
of a tenfold increase in function evaluations with an equal multiplication of the number of complexes in
the SCEUA routine (ngs; see details in Duan et al., 1992) results in a further reduction of standard
deviations on 5'80c (0.23%o) and age result (12 days). These tests show that returns in terms of model
precision quickly diminish with increasing processing time. Since the total modelling time linearly
scales with the number of function evaluations, this tradeoff towards lower standard deviation on the
modelling result is costly. Since-tThese function evaluations are repeated in each modelling window,
so the cost in terms of extra processing time can increase quickly, especially for larger 5'80. datasets.
In addition, in this situation the mean model offset (accuracy of the model; 7 days, 28 days and 14
days for maxn of 1.0 * 104, 5.0_*.10* and 1.0_*_105 respectively; Fig. 5D) does not significantly improve
with increasing number of function evaluations. Based on these results, the default maxn parameter in
ShellChron was set to 10* to compromise between keeping modelling times short while retaining high
model accuracy. However, specific datasets may benefit from an increase in modeling time, so case-
by-case assessment of the optimal SCEUA parameters is recommended. A detailed evaluation of the

total modelling time in a typical 5'8O. dataset is discussed in section 4.4.
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Figure 6: Result of applying ShellChron on two virtual datasets: Case 1 (top, see SI8) and Texel,
(bottom, see SI9). Leftmost panels (A and D) show the model fit of individual sample windows (red) on
the data (black, including horizontal and vertical error bars), with in the top left Spearman’s correlation
coefficients (p) and standard deviations on the 580 estimate (Oest). Middle panels (B and E) show the
resulting age model (red, including shaded 95% confidence level) compared with the realknown age-
distance relationship of both records. Histograms in the top left of age-distance plots show the offset
between modelled and measured 5'80c (as visualized in panels A and D) with standard deviations of
the 880 offset (0orr) and offset averages (u). Histograms in the bottom right of age-distance plots show
the offset between modelled and astual-known ages (in days) of each datapoint, including standard
deviations on the age accuracy (0acc) and mean age offset (u). Rightmost panels (C and F) highlight age

offsets binned in 12 monthly time bins_based on their position relative to the annual cycle to illustrate

how accuracy varies over the seasons. Grey envelopes indicate 95% confidence levels on the monthly

age offset_within these monthly time bins. The horizontal red dashed line indicates no offset (modelled

age is equal to the known age of the sample).
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4.2 Artificial carbonate records

Results of running ShellChron on_the Test case (Fig. 4), Case 1 and Texel datasets (Fig. 6) show that

modelled 5'80c records in individual windows closely match the data. On the level of individual windows,

inter-annual growth rate variability is more difficult to model than the temperature sinusoid, especially

when sampling resolution is limited and at the beginning and end of the record (Fig. 4B). However, after

overlapping multiple windows, the accuracy of ShellChron improves significantly (Fig. 4E). Note that in

Fig. 4A-C, the length of the first model window (difference in age between first and 11" datapoint) is

less than 365 days, because the 12" datapoint, which occurs exactly 1 year after the first point, is not

//‘{ Formatted: Superscript

part of the window. A summary of ShellChron performance statistics is given in Table 2. In all virtual
datasets, 5'®0. estimates are equally distributed above and below the 5'80. data (A™80, = 0.0 %o;
Spearman’s p of 0.94, 0.98 and 0.92 for_Test case, Case 1 and Texel datasets respectively). Age
offsets vary slightly over the seasons, but the difference between monthly time bins is not statistically
significant on a 95% confidence level (Fig. 6C and F; see also SI12). The fact that seasonal bias in age
offset is absent in the Texel dataset, which is skewed towards growth in the winter season and includes
relatively strong seasonal variability in 380w, shows that ShellChron is not sensitive to such subtle
(though common) variability in growth rate or 8'80w. In general, ShellChron’s mean age assignment is
accurate on a monthly scale (age offsets of 4 + 12 d and +30 + 24 d for Case 1 and Texel datasets

respectively). However, age results in individual months do sometimes show significant offsets from the

known value (e.g. Fig. 6C and 6F). This is most notable in Case 1, where accuracy of the age model

decreases near the extreme values of the §'80O. curve (Fig. 6B-C). This occurs because in these places

the model is most sensitive to stochastic noise (simulated uncertainty) on the §'80c value. A small

random change in the §'80. value at the minima or maxima of the §'8Q curve thus results in a large

/f/‘{ Formatted: Superscript

change in the model fit of the §'8Qc curve, resulting in a seasonally non-uniform decrease in the accuracy

of the model, as is evident from the skewed A'8Qc distribution in Figure 6B-C. The sampling resolution

in the Texel data decreases near the end of the record (see SI9), but this does not result in reduced age
model accuracy. If anything, the age of Texel samples is better approximated near the end of the record,
and age offsets are larger in the central part of the record (~30-50 mm; Fig. 6E). The lower accuracy in
the third to fifth year of the Texel record is likely a result of the sub-annual variability in the record that

is superimposed on the seasonal cycle. The lower sampling resolution later in the record mutes this

variability and illustrates thatThis-variability-is-less-pronounced-near the-end-of the record; partly because
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this—variability-is—not resolved-at lower sampling resolution, which-illustrates-that higher sampling

resolutions do not necessarily result in better age models._The constant offset of the modelled age of

the Texel sample from the known age is a result of the way the model result was aligned to start at zero

for comparison with the known age (Fig. 6F). This was done by adding the offset from zero of the

modelled age of the first datapoint in the record to the entire record, thereby defining an arbitrary

reference point which is sensitive to the uncertainty on the age of the first sample (see also Oyster, and

Speleothem results in Fig. 7B-C). Note that this alignment issue does not play a role in fossil data,

where model results can be aligned to growth marks in the carbonate (e.g. shell growth breaks or

laminae) and that it does not affect the seasonal alignment of proxy binned into monthly sample bins.
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Table 2: Overview of datasets and model results

5'%0. seasonal

Dataset Resolution Length Complications
range
Variable 580w
- -1 ~ ’
Test case 7-12yr 5yr 5%o Variable GR
Case 1 50 yr! 6 yr ~4.3%o None
Variable 580w
—. -1 ~49 3
Texel 26-45 yr 10yr 4%0 Variable GR
Coral 3049 yr' 6 yr ~1.7%o Variable GR
Variable 580w
- -1 ~ ,
Oyster 23-45yr 3.5yr 3%o Variable GR
Variable 5'80w,
Variable GR
— 1 ~ 0/ 3
Speleothem 4-13 yr 14 yr 0.5%o Non-sinusoidal
5'80c-forcing
5180, offset Age offset , .
Dataset (#10) (10) Spearman’s p Observations
Test case 0.0 £ 0.49 %o 7+32d 0.94 Slightly out of
phase
Case 1 0.0 + 0.27%o 4+12d 0.98 -
Texel 0.0 + 0.41%o 30+24d 0.92 -
Coral 0.0 + 0.14%o 12+28d 0.97 -
Reduced
Oyster 0.0 £ 0.39%0 -15+43d 0.91 accuracy near
growth stops
Susceptible to
Speleothem 0.0 £ 0.08%o 114 £59d 0.92 phase offsets;
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Figure 7: Overview of model results for the three test datasets from real carbonate archives: (A) coral,
(B) oyster and (C) speleothem. Lower panels indicate the fit of individual model windows (in red) with
the data (in black) while upper panels show the age model (in red) compared to the “true” age-distance
relationship with histograms showing model accuracy (in days, top left) and model fit (5'80¢ offset in %o,
bottom right). Color scheme follows Figure 3. Note that the true age-distance relationship is not known
for these natural records, but is estimated using known growth seasonality (coral), comparison with in
situ temperature and salinity measurements (oyster) or simply by interpolating between annual growth

lines (speleothem). See Supplementary Methods for details and SI10 for raw data.
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4.3 Natural carbonate records

Results of modelling natural carbonate records (Fig. 7; Table 2; see also SI10) illustrate the

effectiveness of ShellChron on different-various types of records. Performance clearly depends on the

resolution of the record and the regularity of seasonal variability contained within. As in the virtual
datasets, modelled 5'80. successfully mimic 5'80. data in all records (AT80, = 0.0; Spearman’s p of
0.97, 0.91 and 0.92 for coral, oyster and speleothem respectively). No consistent seasonal bias is
observed in A0c and model accuracy (p > 0.05; see Table 2 and SI12), despite significant (seasonal
and inter-annual) variability contained in the records (especially in oyster and speleothem records).
When comparing the accuracy of these records, it must be noted that the “realknown” age of the samples
in these natural carbonates is not known. Model results are instead compared with age models
constructed using conventional techniques such as matching 'O profiles with local temperature
and/or 5'80w variability (oyster and coral records) or even merely by linear interpolation between annual
markers in the record (speleothem record; see Supplementary Methods). Despite this caveat, testing
results clearly show that the least complicated record (coral; Fig. 7A), characterized by minimal
variability in 5'80w and growth rate and a high sampling density, has the best overall model result (A'®0c
=0.0 £ 0.14 compared to a ~1.7%. seasonal range; p = 0.97; At = 12 + 28 d; see Table 2). The oyster
record (Fig. 7B), which has strong seasonal variability in growth rate and 3'®QOsw also yields a very
reliable age model (A'®0¢ = 0.0 + 0.39 compared to a ~3%. seasonal range; p = 0.91; At =-15 + 43 d;

see Table 2)._On closer inspection, the age within the oyster record is clearly more difficult to model

than within the coral, due in part to the higher variability of §'80O. values superimposed on the seasonal

cycle, the sharp growth cessations in the winters (high §'8Oc values) and the variability in sampling

resolution within the record. The latter causes the first growth year of the oyster record to be less

accurately modelled (Fig. 7B) while the variability in §'80. causes the edges of some modelling windows

to predict steep increases or decreases in §'8Qc (vertical “offshoots” in modelled §'8Q¢; Fig. 7B). Note

that the low weighting of the edges of modelling windows combined with the high overall sampling

resolution in the oyster record minimizes the effect of these “offshoots” on the accuracy of the model.

The speleothem record (Fig. 7C), plagued by lower sampling resolution, large inter-annual 5'8Oc
variability, restricted 8'80. seasonality and a lack of clearly seasonal 5'QOc forcing, yields the least
reliable model result (A'8Oc = 0.0 + 0.08%. compared to a ~0.5%o. seasonal range; p = 0.92; At = -114 +

59 d; see Table 2). Note that the accuracy figure provided for the speleothem record is based on
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comparison with an age model based-relying on linear interpolation between annual growth lines. This
assumption of the age-distance relationship is almost certainly erroneous, since drip water supply to
(and therefore growth in)_speleothems has been shown to vary seasonally (e.g. Baldini et al., 2008),
including at the very site the speleothem data derives from (Han-sur-Lesse cave, Belgium; Van
Rampelbergh et al., 2014; Vansteenberge et al., 2019). However, since no reliable information is
available on sub-annual variability in growth rates in this record, ShellChron results cannot be validated
at the sub-annual scale in this case. The high age offset (-114 days) in the speleothem model result is
a consequence of the assumption in ShellChron that the highest temperature (lowest §'®0c value)

recorded in each growth year happens halfway through the year (day 183)_and the alignment of the

modelled age with the “known” age for this record (see discussion of Texel results in 4.2). While theis

assumption_about the phase of the temperature sinusoid is approximately valid for temperature-

controlled §'®0c records (see Fig. 6 and 7), it is problematic for speleothems, in which &8O is often
dominated by the §'®0w of drip water, which may not be lowest during the summer season (see Van
Rampelbergh et al., 2014). The timing of the §'80c minimum can be set in the run_model function using
the t_maxtemp parameter. Note that changing t_maxtemp does not affect relative dating within the §'80c

record, but, if set correctly, results in a phase shift of the age model result into better alignment with the

seasonal cycle.
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Figure 8: Overview of the result of timing ShellChron and the GRATAISS modeldudd-et-al{(2018)medel
on the same datasets (A), comparing the accuracies of both models (B) and comparing the accuracy
as calculated by ShellChron with the reatknown offset in the age model (C). In (A) and (B), low resolution

datasets are plotted in dark blue_(ShellChron) and dark green (GRATAISS), while high-resolution

datasets plot in light blue_(ShellChron) and light green (GRATAISS). Solid lines represent ShellChron

and dashed lines show performance of the GRATAISS modeldudd-et-al—medel._Green dotted lines in

(B) show the accuracies of the GRATAISS model on a year-by-year basis (without accumulating error

due to linking consecutive years) The black box in (A) and (B) highlights the dataset used in (C). In (C),

dark blue lines, bars and boxplot indicate true offset of the model from the actual sample age, while light
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547 blue lines, bars and boxplot show the accuracy of the model as calculated from the propagated errors

548 on model and input data. Raw data is provided in SI11.

31



549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

4.4 Modeling time

The performance of both ShellChron and GRATAIS Sthe-Judd-et-al—medel in terms of computation time
linearly increases with the length of the record (in years; see Fig. 8, Fig. 85 and SI11). Computation
time of ShellChron on the high-resolution test dataset (50 samples/yr) increases very steeply with the
length of the record in years (~20 minutes per additional year), while the low-resolution dataset (16
samples/yr) shows a slower increase (~3 minutes per additional year; Fig. 5A). This contrasts with
GRATAISSthe-medel-from-Judd-et-alk, which requires only slightly more time on high-resolution data
than on low-resolution datasets (~7 and ~10 minutes per additional year, respectively). The difference
is explained by the sliding window approach applied in ShellChron, which requires more SCEUA
optimization runs per year in high-resolution datasets than in low resolution datasets. When plotted
against the number of calculation windows or samples in the dataset, running ShellChron on low-
resolution and high-resolution datasets require a similar increase in computation time (~0.4 minutes, or
24 seconds, per additional sample/window; Fig. S5) under default SCEUA conditions. ShellChron thus
outcompetes GRATAISSthe Judd-etal—medel in terms of computation time in datasets with fewer than

~20 samples per year, even though more SCEUA optimizations are required.

Fhe-A key computational improvement in ShellChron is the application of a sinusoidal regression before
each SCEUA optimization to estimate the initial values of the modelled parameters (sinreg function; see
equation 9 and Fig. 1 in Model description). Since carbonate archives are rarely sampled for stable
isotope measurements above 20 samples per year (e.g. Goodwin et al., 2003; Schéne et al., 2005;
Lough, 2010 and references therein), the disadvantage of a steep computational increase for very high-
resolution archives is, in practice, a favorable tradeoff for the added control on model and measurement
uncertainty and smoother inter-year transitions ShellChron offers in comparison to previous models.
The similarity of ShellChron’s accuracy in the low- and high-resolution datasets demonstrates its

robustness across datasets with various sampling resolutions (see also Table 2 and Fig. 7).

Longer computation times in the-Judd-et-al—modelGRATAISS result in slightly better accuracy on the
modelled age compared to ShellChron on the scale of individual datapoints in low-resolution datasets
(see Fig. 8B). However, this advantage is rapidly lost when records containing multiple years are
considered (Fig. 8B). The advantage of the ShellChron model is its application of overlapping model

windows, which smooth out the transitions between modelled years and eliminate accumulations of

32



578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

model inaccuracies when records grow longer. In addition, contrary to previous models, ShellChron
does not rely on user-defined year boundaries, which may introduce mismatches between subsequent
years to be propagated through the age model, even in ideal datasets such as Case 1 (Fig. 8B; see
also Supplementary Methods). By comparison, the overall accuracy of ShellChron is much more stable
within and between datasets of different length, while rarely introducing offsets of more than a month._It

must be noted here that the cumulative, multi-year age uncertainty in the GRATAISS model (Fig. 8B)

was calculated by combining the results of consecutive growth years in the record, which the GRATAISS

model models separately, while avoiding age inversions and retaining the seasonal phase of the model

results. This procedure causes gaps in time to be introduced in the cumulative age modelled by

GRATAISS whenever the results of two consecutive, individually modelled growth years do not align,

explaining the sharp increases in _age uncertainty of the GRATAISS model result (Fig. 8B). These

cumulative uncertainties are therefore not theoretically part of the model result (see year-by-year

uncertainty in Fig. 8B) but are a necessary consequence of the way GRATAISS approximates growth

years separately. If only within-year inaccuracies are compared, GRATAISS results are roughly equally

accurate as ShellChron results (see dotted lines in Fig. 8B).

-Meoreimpeortantly-w\Where ShellChron takes-into-aceountconsiders the uncertainty on input parameters,
this uncertainty is not considered in most previous models (the MoGroFun model of Goodwin et al.,
2003 being the exception). The added uncertainty caused by input error is higher in less regular
(sinusoidal) 6'®0c records and in records with lower sampling resolution, causing the uncertainties on
the-Judd-et-al;-modelGRATAISS reported here for the ideal, high-resolution Case 1 dataset to be over-
optimistic. If ShellChron’s model accuracy is insufficient, its modular character allows the user to run the
SCEUA algorithm to within more precise optimization criteria by changing the model parameters (see

section 4.1). However, this adaptation comes at a cost of longer computation times.

The estimated uncertainty envelope (95% confidence interval) on the modelled age calculated by the
error propagation algorithm in ShellChron (4.7 + 6.5 d) on average slightly underestimates the actual
offset between modelled age and realknown age in the Case 1 record (9.3 + 13.1 d; Fig. 8C). The
foremost difference between modelled and realknown uncertainty on the result is that the modelled
uncertainty yields a more smoothed record of uncertainty compared to the record of actual offset of the
model (Fig. 8C). ShellChron’s uncertainty calculations are partly based on comparing overlapping

model windows, thereby smoothing out short term variations in model offset. The uncertainty of the
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model result (both realknown and modelled) shows regular variability with a period of half a year (Fig.

8C). Comparing this variability with the phase of the record (of which 6 years are plotted in Fig. 6A)

reveals that the uncertainty of the model is pesitively-negatively correlated to the slope of the 5'80c /_,/{ Formatted: Font: (Default) Arial

record. This is expected, because in parts of the record with steep-5*¥0.-distance-slopesextreme

values in the 5'80. curve, the local age model result is more sensitive to small changes in the /_,/{ Formatted: Font: (Default) Arial, 10 pt

sampling distance, caused either by uncertainty in the model fit or propagated uncertainty on the

sampling distance defined by the user (see discussion in section 4.2). The slight seasonal variability in

model accuracy in Case 1 is also shown in Fig. 6C and comprises a difference in uncertainty of up to

10 days depending on the time of year in which the datapoint is found.
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5. Applications and discussion

Its new features compared to previous age model routines make ShellChron a versatile package for
creating age models in a range of high-resolution paleoclimate records. The discussion above
demonstrates that ShellChron can reconstruct the age of individual §'®0c samples within monthly
precision. This level of precision is sufficient for accurate reconstructions of seasonality, defined as the
difference between warmest and coldest month (following USGS definitions; O’Donnell and Ignizio,
2012). While an improvement on this uncertainty could be of potential interest for ultra-high-resolution
paleoclimate studies (e.g. sub-daily variability, see Sano et al., 2012; Yan et al., 2020; de Winter et al.,
2020a), the increase in computation time and the sampling resolution such detailed age models demand
render age modelling from &'80. records inefficient for this purpose (see sections 4.1 and 4.4). The
sampling resolution for high-resolution carbonate §'8O. records in the literature does not typically exceed
100 pm due to limitations in sampling acquisition (e.g. micromilling), which even in fast-growing archives
limits the resolution of these records to several days at best (see Gagan et al., 1994; Van Rampelbergh
et al., 2014; de Winter et al., 2020c). While in some archives, high-resolution (< 100 uym) trace element
records could be used to capture variability beyond this limit, the monthly age resolution of ShellChron

is sufficient for most typical high-resolution paleoclimate studies.

The ability to produce uninterrupted age models from multi-year records while considering both
variability in 6'®0w and uncertainties on input parameters represent major advantages of ShellChron
over previous age modelling solutions. As a result, ShellChron can be applied on a wide range of
carbonate archives (see Fig. 7 and Table 2). However, testing ShellChron on different records highlights
the limitations of the model inherited through its underlying assumptions. The most accurate model
results are obtained on records with minimal growth rate and §'8Ow variability and a nearly sinusoidal
§'80. record, such as tropical coral records (Fig. 7A; Gagan et al., 1994). In records where large
seasonal variability in growth rate and §'80w does occur, such as in intertidal oyster shells, ShellChron’s
accuracy slightly decreases, especially near growth hiatuses in the record (see Fig. 7B; Ullmann et al.,
2010). A worst-case scenario is represented by the speleothem record, which not only suffers from
much slower and more unpredictable growth rates and contains a comparatively small annual range in
§'8Qc, but it responds to §'80w variability in drip water in the cave rather than temperature seasonality,

one of the assumptions underlying the current version of ShellChron (Fig. 7C; Vansteenberghe et al.,
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646 2019). Despite these problems, ShellChron yields an age model that is remarkably accurate on an
647 annual timescale, which is as good as, or better than, the best age model that can be obtained by
648 applying layer counting on the most clearly laminated parts of the speleothem (e.g. Verheyden et al.,
649 2006). It must be noted that, while the close fit between modelled §'80¢ and speleothem §'80. data (p
650 =0.92; 0 = 0.08%o) is encouraging, a major reason for the model’s success is the fact that the Proserpine
651 speleothem used in this example is known to receive significantly seasonal (though not sinusoidal) drip
652  water volumes and concentrations (Van Rampelbergh et al., 2014). Variability in drip water properties
653 and cave temperatures are known to differ strongly between cave systems (Fairchild et al., 2006;
654 Lachniet, 2009). For ShellChron (or any other §'80Oc-based age model) to work reliably in speleothem
655 records, consistent seasonal variability in either temperature or §'®0w should be demonstrated to
656 significantly influence the §'80c variability in the record. In practice, these constraints make ShellChron
657 applicable in speleothems for which the cave environment varies in response to the seasonal cycle,
658 such as localities overlain by thin epikarst, well-ventilated caves or speleothems situated close to the

659 cave entrance (Verheyden et al., 2006; Feng et al., 2013; Baker et al., 2021)

660 ShellChron’s ability to model multi-year records with smooth transitions between the years does not

661  compromise the accuracy of its age determination on the seasonal scale (e.g. Fig. 6 and 7). Many /,,_/{ Formatted: Font: Not Bold

662 paleoclimatology studies investigating the seasonal cycle rely on stacking of seasonal variability relative

663 to the annual cycle, thereby combining seasonal information from multiple years to obtain a precise

664 reconstruction of seasonal variability in the past (e.g. de Winter et al., 2018; Judd et al., 2019; Tierney

665 et al., 2020). While this can be achieved using age models of individual years (e.g. Judd et al., 2018),

666 seasonally resolved archives dated using ShellChron can also be stacked along a common seasonal

667 axis_while retaining information about the multi-annual record allowing, for example, comparison

668 between consecutive years dated using the same age model including uncertainty on the age

669 determination.

670  The difficulty of applying age model routines on speleothem records highlights one of the main
671 advantages of ShellChron over pre-existing age model routines, namely its modular character. Since
672 6'80. records from some carbonate archives, such as speleothems, cannot be described by the
673 standard combination of temperature and growth rate sinusoids on which ShellChron is based (in its

674 current version), the possibility to adapt the “building block” functions used to approximate these §'80c
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records (d180_model, temperature_curve and growth_rate_curve; see Fig. 1) while leaving the core
structure of ShellChron intact greatly augments the versatility of the model. The freedom to adapt the
building blocks used to approximate the §'8Oc record theoretically enables ShellChron to model sub-
annual age-distance relationships in any record as-leng-asif the seasonal variability in the variables used
to model the input data are predictable and can be represented by a function. For example, since
speleothem &80 records often depend on variability in the §'®0w value of the drip water, a function
describing this variability through the year can replace the temperature_curve function to create more
accurate sub-annual age models for speleothems (e.g. Mattey et al., 2008; Lachniet, 2009; Van
Rampelbergh et al., 2014). Similarly, the growth_rate_curve function can be modified in case the default
skewed sinusoid does not accurately describe the extension rate of the record under study, and the
d180_model function can be adapted to feature the most fitting §'8Oc-temperature or §'80c-6'80w
relationship. Note that the flexibility of this approach is limited by the expression of the annual cycle in
the 8'80c record. The 6'®0c-based dating approach in ShellChron will therefore have severe-more
trouble dating records in which the annual §'80. variability is severely dampened, such as speleothems
in deeper cave systems (e.g. Vansteenberge et al., 2016), or in which annual §'80Oc variability is not
sinusoidal, such as tropical records with bimodal temperature or precipitation seasonality (Knoben et

al., 2018).

Flexibility in the definition of “building block” functions used to approximate the input data paves the way
for future application beyond carbonate §'8Oc records. The seasonal variability in 680 in some ice cores
can be approximated by a stable and unbiased temperature relationship (van Ommen and Morgan,
1997). ShellChron can therefore be modified to date sub-annual samples in these ice core records and
reconstruct seasonal variability in the high latitudes through the QuarternaryQuaternary. Similarly, inter-
annual §'80 variability in tree ring records are demonstrated to record variability in precipitation through
the year, and this variability can be modelled to improve sub-annual age models in these records (Xu et
al., 2016). More generally, the field of dendrochemistry has recently developed additional chemical
proxies for seasonality (e.g. trace element concentrations), which can be measured on smaller sample
volumes (and thus greater resolution) to obtain ultra-high-resolution records on which (sub-annual)
dating can be based (e.g. Poussart et al., 2006; Superville et al., 2017). A similar development has taken
place in the study of carbonate bio-archives such as corals and mollusks, of which some show strong,
predictable seasonal variability in trace elements (e.g. Mg/Ca and Sr/Ca ratios) which can be used to
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accurately date these records (de Villiers et al., 1995; Sosdian et al., 2006; Durham et al., 2017;_de

Winter et al., 2021b). Minor changes in the “building block” functions using empirical transfer functions

for these trace element records will enable ShellChron to capitalize on these relationships and
reconstruct sub-annual growth rates with improved precision due to the higher precision with which
these proxies can be measured compared to §'®Oc records. Finally, the application of ShellChron for
age model construction is not necessarily limited to the seasonal cycle, as other major cycles in climate
(e.g. tidal, diurnal or Milankovitch cycles) leave similar marks on climate records and can thus be used
as basis for age modelling (e.g. Sano et al., 2012; Huyghe et al., 2019; de Winter et al., 2020a; Sinnesael
et al., 2020). It must be noted that, since ShellChron was developed for modeling based on annual
periodicity, applying it on other timescales would require more thorough adaptation of the model code

than merely adapting the “building block” functions to support additional proxy systems.

While age reconstructions are the main aim of ShellChron, the model also yields information about the
temperature and growth rate parameters used in each simulation window to approximate the local §'80c¢
curve (see parameter matrix in Fig. 1 and SI6). These parameters hold key information about the
response of the archive to seasonal changes in the environment, such as the season of growth,
relationships between growth rate and temperature and the temperature range that is recorded.
Combining these parameters with records of influential environmental variables such as seawater
chlorophyl concentration or local precipitation patterns yields information about the response of the
climate archive to environmental variables, in addition to the climate or environmental change it records.
Study examples include the relationship between growth rate of marine calcifies and phytoplankton
abundance or the correlation between precipitation patterns and chemical variability in speleothems.
While such discussion is beyond the scope of this work, examples of parameter distributions are
provided in SI5, and the application of modelled growth rate parameters in bivalve sclerochronology is
discussed in more detail in Judd et al. (2018). Note that the sliding window approach of ShellChron
produces records of changing temperature and growth rate parameters at the scale of individual

samples (albeit smoothed by the sliding window approach) rather than annually, as in Judd et al. (2018).

6. Conclusions
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ShellChron offers a novel, open-source solution to the problem of dating carbonate archives for high-
resolution paleoclimate reconstruction on a sub-annual scale. Based on critical evaluation of previous
age models, building on their strengths while attempting to eliminate—minimize their weaknesses,
ShellChron provides continuous age models based on §'®QOc-profiles in these archives with monthly
accuracy, considering the uncertainties associated with both the model itself and the input data. The
monthly accuracy of the model, as tested on a range of virtual and natural datasets, enables its
application for age determination in studies of seasonal climate and environmental variability. Higher
accuracies can be reached at the cost of longer computation times by adapting the model parameters,
but age determinations far beyond the monthly scale are unlikely to be feasible considering the
limitations on sampling resolution and measurement uncertainties on §'8Q0. records. ShellChron’s
computation times on datasets with sampling resolutions typical for the paleoclimatology field (up to 20
samples/yr) remain practical and comparable to previous model solutions, despite adding several
features that improve the versatility and interpretation of model results. Its modular design allows
ShellChron to be adapted to different situations with comparative ease. It thereby functions as a platform
for age-distance modelling on a wide range of climate and environmental archives and is not limited in
its application to the 8'8Oc proxy, the carbonate substrate or even to the annual cycle, as long as the
relationship between the proxy and the extension rate of the archive on a given time scale can be
parameterized. Future improvements will capitalize on this variability, expanding ShellChron beyond its
current dependency on the &'8Oc-temperature relationship in carbonates. Members of the high-
resolution paleoclimate community are invited to contribute to this effort by adapting the model for their

purpose.

Code availability

ShellChron is worked out into a fully functioning package for the open-source computational language
R (version 3.5.0 or later; R Core Team, 2020). The most recent full version (v0.4.0) of the ShellChron
passed the code review of the Comprehensive R Archive Network (CRAN) and is freely available for

download as an R package on the CRAN server (see https://CRAN.R-project.org/package=ShellChron).

The CRAN server entry also includes detailed line-by-line documentation of the code and working

examples for every function. In addition, the latest development version of ShellChron is available on
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GitHub (https://github.com/nielsjdewinter/ShellChron). Those interested in adapting ShellChron for their

research purposes are invited to do so there. Code and documentation, together with all supplementary
files belonging to this study, are also available on the open-source online repository Zenodo

(http://doi.org/10.5281/zenodo.4288344).
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