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Abstract 11 

This work presents ShellChron, a new model for generating accurate internal age- models for high-12 

resolution paleoclimate archives, such as corals, mollusk shells and speleothems. Reliable sub-annual 13 

age models form the backbone of high-resolution paleoclimate studies. In absence of independent sub-14 

annual growth markers in many of these archives, the most reliable method for determining the age of 15 

samples is through age modelling based on stable oxygen isotope or other seasonally controlled proxy 16 

records. ShellChron expands on previous solutions to the age model problem by fitting a combination 17 

of a growth rate and temperature sinusoid to model seasonal variability in the proxy record in a sliding 18 

window approach. This new approach creates smoother, more precise age-distance relationships for 19 

multi-annual proxy records with the added benefit of allowing assessment of the uncertainty on the 20 

modelled age. The modular script of ShellChron allows the model to be tailored to specific archives, 21 

without being limited to oxygen isotope proxy records or carbonate archives, with high flexibility in 22 

assigning the relationship between the input proxy and the seasonal cycle. The performance of 23 

ShellChron in terms of accuracy and computation time is tested on a set of virtual seasonality records 24 

and real coral, bivalve mollusk and speleothem archives. The result shows that several key 25 

improvements in comparison to previous age model routines enhance the accuracy of ShellChron on 26 

multi-annual records while limiting its processing time. The current full working version of ShellChron 27 
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enables the user to model the age of a 10-year long high-resolution (16 samples/yr) carbonate records 28 

with monthly accuracy within one hour of computation time on a personal computer. The model is freely 29 

accessible on the CRAN database and GitHub. Members of the community are invited to contribute by 30 

adapting the model code to suit their research topics and encouraged to cite the original work of Judd 31 

et al. (2018) alongside this work when using ShellChron in future studies. 32 

 33 

 34 

1. Introduction 35 

Fast growing carbonate archives, such as coral skeletons, mollusk shells and speleothems, contain a 36 

wealth of information about past and present climate and environment (e.g. Urban et al., 2000; Wang et 37 

al., 2001; Steuber et al., 2005; Butler et al., 2013). Recent advances in analytical techniques have 38 

improved our ability to extract this information and obtain records of the conditions under which these 39 

carbonates precipitated at high temporal resolutions, often beyond the annual scale (Treble et al., 2007; 40 

Saenger et al., 2017; Vansteenberge et al., 2019; de Winter et al., 2020a; Ivany and Judd, 2022). Key 41 

to the interpretation of such records is the development of reliable chemical or physical proxies for 42 

climate and environmental conditions which can be measured on a sufficiently fine scale to allow 43 

variability to be reconstructed at the desired time resolution. Examples of suitable proxies include 44 

observations of variability in carbonate fabric and microstructure and in (trace) elemental and isotopic 45 

composition (Frisia et al., 2000; Lough, 2010; Ullmann et al., 2010; Schöne et al., 2011; Ullmann et al., 46 

2013; Van Rampelbergh et al., 2014; de Winter et al., 2017). The unique preservation potential of 47 

carbonates in comparison with archives of climate variability at similar time resolutions, such as tree ring 48 

records and ice cores, now allows us to recover information about climate and environment of the 49 

geological past from these proxies on the (sub-)seasonal scale (Ivany and Runnegar, 2010; Ullmann 50 

and Korte, 2015; Vansteenberge et al., 2016; de Winter et al., 2018; 2020b; c; Mohr et al., 2020). The 51 

importance of this development cannot be overstated because variability at high (daily and seasonal) 52 

resolution constitutes the most significant component of climate variability (Mitchell, 1976; Huybers and 53 

Curry, 2006; Zhu et al., 2019; von der Heydt et al., 2021). Accurate reconstructions of this type of 54 

variability are therefore fundamental to our understanding of Earth’s climate system and critical for 55 

projecting its behavior in the future under anthropogenic global warming conditions (IPCC, 20182021). 56 



3 
 

A reliable age model is crucial to for the interpretation of high-resolution carbonate records. An age model 57 

is defined as a set of rules or markers that allows the translation of the location of a measurement or 58 

observation on the archive to the time at which the carbonate was precipitated. This translation is 59 

required for aligning records from multiple proxies or archives to on a common time axis. Age alignment 60 

enables data to be intercomparable and to be interpreted in the context of processes playing a role at 61 

similar timescales. Age models are based on knowledge about the growth or accretion rate of the archive 62 

through time. Many high-resolution carbonate archives contain growth markers on which age models 63 

can be based (e.g. Jones, 1983; Le Tissier et al., 1994; Verheyden et al., 2006). These are especially 64 

valuable in some mollusk species, in which growth lines demarcate annual, daily, or even tidal cycles 65 

(e.g. Arctica islandica, Schöne et al., 2005; Pecten maximus, Chavaud et al., 2005 and Cerastoderma 66 

edule, Mahé et al., 2010). However, in many mollusk species and most carbonate archives, such 67 

independent growth indicators are absent or too infrequent to (relatively) date high-resolution 68 

measurements (Judd et al., 2018; Huyghe et al., 2019). In such cases, age models need to be based 69 

on alternative indicators. 70 

The oxygen isotope composition of carbonates (δ18Oc) is closely dependent on the isotopic composition 71 

of the fluid (δ18Ow) and the temperature at which the carbonate is precipitated (Urey, 1948; McCrea, 72 

1950; Epstein et al., 1953). In most natural surface environments, either one or both factors is strongly 73 

dependent on the seasonal cycle, one generally being dominant over the other. This causes carbonates 74 

precipitated in these environments to display strong quasi-sinusoidal variations in δ18Oc that follow record the 75 

seasonal cycle (e.g. Dunbar and Wellington, 1981; Jones and Quitmyer, 1996; Baldini et al., 2008). 76 

Examples of this behavior include seasonal cyclicity in sea surface temperatures recorded in the δ18Oc 77 

of corals and mollusks and seasonal cyclicity in the δ18Ow of precipitation recorded in speleothems 78 

(Dunbar and Wellington, 1981; Schöne et al., 2005; Van Rampelbergh et al., 2014). This relationship is 79 

challenged in tropical latitudes, where temperature seasonality is restricted. However, in some tropical 80 

archives, the annual cycle of δ18Ow in precipitation still allows the annual cycle to be resolved from δ18O 81 

records (e.g. Evans and Schrag, 2004). These properties make δ18Oc one of the most highly sought-82 

after proxies for climate variability, and high-resolution δ18Oc records are abundant in the paleoclimate 83 

literature (e.g. Lachniet, 2009; Lough, 2010; Schöne and Gillikin, 2013 and references therein). 84 

The close relationship between δ18Oc records and the seasonal cycle can also be exploited to estimate 85 

variability in growth rate of the archive. This property of δ18Oc curves has been recognized by previous 86 
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authors, and attempts have been made to quantify intra-annual growth rates from the shape of δ18Oc 87 

profiles (Wilkinson and Ivany, 2002; Goodwin et al., 2003; De Ridder et al., 2006; Goodwin et al., 2009; 88 

De Brauwere et al., 2009; Müller et al., 2015; Judd et al., 2018). Over time, these so called “growth 89 

models” have improved from fitting of sinusoids to δ18Oc data (Wilkinson and Ivany, 2002; De Ridder et 90 

al., 2006) to including increasingly complicated (inter)annual growth rate curves to the model to fit the 91 

shape of the δ18Oc data (Goodwin et al., 2003; 2009; Müller et al., 2015; Judd et al., 2018). These later 92 

models manage to fit the shape of δ18Oc records well, but they often rely on detailed a priori knowledge 93 

of growth rate or temperature patterns (e.g. Goodwin et al., 2003; 2009), which requires measurements 94 

of one or more parameters in the environment. These measurements are not available in studies on 95 

carbonate archives from the archeological or geological past. In contrast, the latest model by Judd et al. 96 

(2018; GRATAISS, or “Growth Rate and Temporal Alignment of Isotopic Serial Samples”) is based only 97 

on the assumption that growth and temperature follow quasi-sinusoidal patterns and can therefore work 98 

with δ18Oc data alone, making it more widely applicable. The simplified parameterization of temperature 99 

and growth rate seasonality by Judd et al. (2018) using two (skewed) sinusoids is demonstrated to 100 

approximate natural circumstances very well. 101 

However, the approach by Judd et al. (2018)GRATAISS model is still limited in its use, because it 102 

requires whole, individual growth years to be analyzed separately, resulting in a discontinuous time 103 

series when applied on records containing multiple years of δ18Oc data and no solution for incomplete 104 

years. In addition, the model has no option to supply information about the less dominant factor that 105 

drives δ18Oc values (δ18Ow of sea water in the case of mollusks and corals). Furthermore, only estimates 106 

from aragonite records are supported, while the δ18Oc value of the other dominant carbonate mineral, 107 

calcite, has a different temperature relationship (Kim and O’Neil, 1997). Finally, neither of the models 108 

highlighted above except for the MoGroFun model by Goodwin et al. (2009) include any assessment of 109 

the uncertainty of the constructed age model. 110 

Here, a new model for estimating ages of samples in seasonal δ18Oc curves is presented which 111 

combines the advantages of previous models while attempting to negate their disadvantages. 112 

ShellChron combines a skewed growth rate sinusoid with a sinusoidal temperature curve to model δ18Oc 113 

using the Shuffled Complex Evolution model developed at the University of Arizona (SCEUA; Duan et 114 

al., 1992; following Judd et al., 2018). It applies this optimization using a sliding window through the 115 

dataset (as in Wilkinson and Ivany, 2002) and includes the option to use a Monte Carlo simulation 116 
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approach to combine uncertainties on the input (δ18Oc and sample distance measurements) and the 117 

model routine (as in Goodwin et al., 2009). As a result, ShellChron produces a continuous time series 118 

with a confidence envelope, supports records from multiple carbonate minerals and allows the user to 119 

provide information on the less dominant variable influencing δ18Oc (e.g. δ18Ow) if available (see section 120 

2). The modular design of ShellChron’s functional script allows parts of the model to be adapted and 121 

interchanged, supporting a wide range of climate and environmental archives. As a result, the initial 122 

design of ShellChron for reconstructing age models in temperature-dominated δ18Oc records from 123 

marine bio-archives (e.g. corals and mollusks) presented here can be easily modified for application on 124 

other types of records. The routine is worked out into a ready-to-use package for the open-source 125 

computational programming language R and is directly available without restrictions, allowing all 126 

interested parties to freely modify and build on the base structure to adapt it to their needs (R Core 127 

Team, 2020; full package code and documentation in SI1, see also Code availability). 128 

 129 

2. Scientific basis 130 

The relationship between δ18Oc and the temperature of carbonate precipitation was first established by 131 

Urey (1951) and later refined with additional measurements and theoretical models (e.g. Epstein et al., 132 

1953; Tarutani et al., 1969; Grossman and Ku, 1986; Kim and O’Neil, 1997; Coplen, 2007; Watkins et 133 

al., 2014; Daëron et al., 2019). Empirical transfer functions for aragonite and calcite by Grossmann and 134 

Ku (1986; modified by Dettmann et al., 1999; equation 1) and Kim and O’Neil (1997; equation 2, with 135 

VSMOW to VPDB scale conversion following Brand et al., 2014; equation 3) have so far found most 136 

frequent use in modern paleoclimate studies and are therefore applied as default relationships in the 137 

ShellChron model (see d18O_model function). 138 

𝑇[°𝐶] = 20.6 − 4.34 ∗  (𝛿ଵ଼𝑂௖[‰𝑉𝑃𝐷𝐵] − 𝛿ଵ଼𝑂௪[‰𝑉𝑆𝑀𝑂𝑊] + 0.2) (𝟏) 139 

1000 ∗ ln(𝛼) = 18.03 ∗
10ଷ

(𝑇[°𝐶] + 273.15)
− 32.42  140 

𝑤𝑖𝑡ℎ 𝛼 =  
൬

𝛿ଵ଼𝑂௖[‰𝑉𝑃𝐷𝐵]
1000

+ 1൰

൬
𝛿ଵ଼𝑂௪[‰𝑉𝑃𝐷𝐵]

1000
+ 1൰

 (𝟐) 141 

𝛿ଵ଼𝑂௪[‰𝑉𝑃𝐷𝐵] = 0.97002 ∗ 𝛿ଵ଼𝑂௪[‰𝑉𝑆𝑀𝑂𝑊] − 29.98 (𝟑) 142 
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To apply these formulae, it is assumed that carbonate is precipitated in equilibrium with the precipitation 143 

fluid. Which carbonates are precipitated in equilibrium has long been subject to debate, and the 144 

development of new techniques for measuring the carbonate-water system (e.g. clumped and dual-145 

clumped isotope analyses; Daëron et al., 2019; Bajnai et al., 2020) has led recent some authors to 146 

challenge the assumption that equilibrium fractionation is the norm (see Supplementary Discussion). 147 

The modular character of ShellChron allows the empirical transfer function to be adapted to the δ18Oc 148 

record or to the user’s preference for alternative transfer functions by a small modification of the 149 

d18O_model function. Future versions of the model will include more options for changing the transfer 150 

function (see Model description). 151 

As the name suggests, the ShellChron model was initially developed for application on δ18Oc records 152 

from marine calcifiers (e.g. mollusk shells and corals). ShellChron approximates the evolution of the 153 

calcification temperature at which the carbonate is precipitated by a sinusoidal function (see equation 154 

4, Table 1 and SI4; temperature_curve function; visualized in Fig. 4A and Fig S1), a good approximation 155 

of seasonal temperature fluctuations in most marine and terrestrial environments (Wilkinson and Ivany, 156 

2002; Ivany and Judd, 2022). Variability in δ18Ow is also comparatively limited in most marine 157 

environments (except for regions with sea ice formation), making the model easy to use in these settings 158 

(LeGrande and Schmidt, 2006; Rohling, 2013). Nevertheless, ShellChron includes the option to provide 159 

a priori knowledge about δ18Ow, ranging from annual average values to detailed seasonal variability, 160 

enabling the model to work in environments with more complex interaction between δ18Ow and 161 

temperature on the δ18Oc record (see equations 1 and 2). This δ18Ow data can be provided either as a 162 

vector (with the same length as the data) or a single value (assuming constant δ18Ow) through the d18Ow 163 

parameter in the run_model function. 164 

𝑇[°𝐶] = 𝑇௔௩ +
𝑇௔௠௣

2
sin ൮

2𝜋 ∗ ൬𝑡[𝑑] − 𝑇௣௛௔ +
𝑇௣௘௥

4 ൰

𝑇௣௘௥
൲ (𝟒) 165 

  166 
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Table 1: Overview of model parameters 
 

Name Description Unit Range 
Tav Average temperature °C Variable, generally between 0°C–30°C 

Tamp Temperature range (2*amplitude) °C Variable, generally <20°C 
Tpha Phase of temperature sinusoid d 0–365 days 
Tper Period of temperature sinusoid d 365 days by default 
Gav Average growth rate µm/d Variable, generally between 0–100 µm/day 

Gamp Range of growth rates µm/d Variable, generally <200 µm/day 
Gpha Phase of growth rate sinusoid d 0–365 days 
Gper Period of growth rate sinusoid d 365 days by default 
Gskw Skewness factor of GR sinusoid - 0–100, with 50 meaning no skew 

D Distance along the record µm Depends on archive 
t Age d Depends on archive 

Lwin Length of sampling window # Depends on sampling resolution 
w Weighting factor on sample - 0–1 
i Position relative to model window - 0–Li 

I Intercept of sinusoid (Tav or Gav) 
°C or 
µm/d 

 

A 
Amplitude of sinusoid 

ቀ
்ೌ ೘೛

ଶ
 𝑜𝑟 

ீೌ೘೛

ଶ
ቁ 

°C or 
µm/d 

 

P Period of sinusoid (Tper or Gper) d  
φ Phase of sinusoid (Tpha or Gpha) d  

 167 

If marine δ18Oc records represent one extreme on the spectrum of temperature versus δ18Ow influence 168 

on the δ18Oc record, cave environments, in which δ18Oc variability is predominantly driven by δ18Ow 169 

variability in the precipitation fluid, represent the other extreme (Van Rampelbergh et al., 2014). In its 170 

current form, ShellChron takes δ18Ow as a user-supplied parameter to model temperature and growth 171 

rate variability, but future versions will allow temperature to be fixed, while δ18Ow becomes the modelled 172 

variable. ShellChron’s modular character makes it possible to implement this update without changing 173 

the structure of the model. Application of ShellChron on δ18Oc records from cave deposits will have to 174 

be treated with caution, since drip water δ18Ow seasonality (if present) cannot always be approximated 175 

by a sinusoidal function and equilibrium fractionation in cave deposits is less common than in bio-176 

archives (Baldini et al., 2008; Daëron et al., 2011; Van Rampelbergh et al., 2014). 177 

Besides temperature (or δ18Ow) seasonality, ShellChron models the growth rate of the archive to 178 

approximate the δ18Oc record (see equation 5, Table 1 and SI4; growth_rate_curve function; visualized 179 

in Fig. 4B and Fig S2). Since the growth rate in many carbonate archives varies seasonally, a quasi-180 

sinusoidal model for growth rate seems plausible (e.g. Le Tissier et al., 1994; Baldini et al., 2008; Judd 181 

et al., 2018). However, as discussed in Judd et al. (2018), the occurrence of growth cessations (growth 182 

rate = 0) and skewness in seasonal growth patterns calls for a more complex growth rate model that 183 
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can take these properties into account. Therefore, ShellChron uses a slightly modified version of the 184 

skewed sinusoidal growth function described by Judd et al. (2018; equation 5). Note that the added 185 

complexity of this function does not preclude the modelling of growth rate functions described by a 186 

simple sinusoid (no skewness; Gskw = 50) or even constant growth through the year (Gamp = 0; see Table 187 

1). 188 

𝐺[𝑚𝑚/𝑦𝑟] = 𝐺௔௩ +
𝐺௔௠௣

2
sin ቆ

2𝜋 ∗ ൫𝑡[𝑑] − 𝐺௣௛௔ + 𝐺௣௘௥ ∗ 𝑆൯

𝑃
ቇ 189 

𝑤𝑖𝑡ℎ 𝑆 = ൞

100 − 𝐺௦௞௪

50
, if  𝑡[𝑑] − 𝐺௣௛௔ < 𝐺௣௘௥

100 − 𝐺௦௞௪

100
𝐺௦௞௪

50
,               if  𝑡[𝑑] − 𝐺௣௛௔ ≥ 𝐺௣௘௥

100 − 𝐺௦௞௪

100

 (𝟓) 190 

Contrary to previous δ18Oc growth models, ShellChron allows uncertainties on the input variables 191 

(sampling distance and δ18Oc measurements) as well as uncertainties of the full modelling approach to 192 

be propagated, providing confidence envelopes around the chronology. Uncertainty propagation is 193 

optional and can be skipped without compromising model accuracy. Standard deviations of uncertainties 194 

on input variables (sampling distance and δ18Oc) can be provided by the user, while model uncertainties 195 

are calculated from the variability in model results of the same datapoint obtained from overlapping 196 

simulation windows (see growth_model function). Measurement errors are combined by projecting 197 

Monte Carlo simulated values for sampling distance and δ18Oc measurements on the modelled δ18Oc 198 

curve through an orthogonal projection (equation 6; mc_err_orth function; visualized in Fig S3). The 199 

measurement uncertainty projected on the distance domain is then combined with the model uncertainty 200 

to obtain pooled uncertainties in the distance domain, which are propagated through the modelled δ18Oc 201 

record to obtain uncertainties on the model result in the age domain. As a result of the sliding window 202 

approach in ShellChron, model results for datapoints situated at the edges of windows are more 203 

sensitive to small changes in the modelled parameters and therefore possess a larger model 204 

uncertainty. To prevent these least certain model estimates from affecting the stability of the model, 205 

model results are given more weight the closer they are situated towards the center of the model window 206 

(see equation 7 in export_results function; see also Fig. S4). This weighting is also incorporated in 207 

uncertainty propagation through a weighted standard deviation (see equation 8 from the sd_wt 208 

function). Note that, despite the weighting solution, the size of uncertainties on the first and last positions 209 
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in the δ18Oc record remains uncertain since they are based on a smaller number of overlapping windows 210 

(see e.g. Figure 3). 211 

𝜎௠௘௔௦ = ඨቆ
𝐷௦௜௠ − 𝐷௦ప௠

തതതതതത

𝜎஽
ቇ

ଶ

+ ቆ
𝛿ଵ଼𝑂௦௜௠ − 𝛿ଵ଼𝑂௦ప௠

തതതതതതതതതത

𝜎ఋభఴை
ቇ

ଶ

(𝟔) 212 

𝑤[𝑖] = 1 − ฬ
2𝑖

𝐿௪௜௡ௗ௢௪

− 1ฬ (𝟕) 213 

𝜎௪௘௜௚௛௧௘ௗ,௜ = ඩ
𝑤௜ ∗ (𝑥௜ − 𝑤ഥ)ଶ

∑ 𝑤[𝑖] ∗
𝑁 − 1

𝑁

(𝟖) 214 

 215 

3. Model description 216 

ShellChron is organized in as a series of functions that describe the step-by-step modelling process. A 217 

schematic overview of the model is given in Fig. 1. A short Test Case is used to illustrate the modelling 218 

steps in ShellChron. Fig. 2 shows how the virtual Test Case was created from randomly generated 219 

seasonal growth rate, δ18Ow and temperature curves using the seasonalclumped R package (de Winter 220 

et al., 2021a; see Fig. 2, Supplementary Methods and SI2) A wrapper function (wrap_function) is 221 

included, which carries out all steps of the model procedure in succession to promote ease of use. 222 

  223 
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 224 

Figure 1: Schematic overview of ShellChron. Names in italics refer to functions (encapsulated in 225 

rounded rectangular boxes) and operations within functions. Rectangular boxes represent data. Arrows 226 

represent the flow of information between model components. Note that some operations are 227 

encapsulated in functions (e.g. Error propagation in export results) and that some functions are only 228 

used within other functions (e.g. peakid in cumulative_day). All data structures outside wrap_function 229 

represent input and output of the model. Detailed documentation of all functions and operations in 230 

ShellChron is provided in SI1 (see also Code availability). 231 

  232 
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 233 

Figure 2: A) Plots of the growth rate (light green), δ18Ow (blue) and tTemperature (red) records (in time 234 

domain) from which the Test case was produced. Black triangles on the bottom of the temperature 235 

plot indicate the ages of the samples taken from the record. B) The δ18Oc record for the Test Case 236 

generated after equidistant sampling using the seasonalclumped package (de Winter et al., 2021a) 237 

with a sampling interval of 0.5 mm. Error bars on sampling distance (0.1 mm) and δ18Oc (0.1‰) fall 238 

within the symbols. Vertical grey dashed lines indicate user-provided year markers and the blue bar on 239 

top of this plot shows an example of the width of a modelling window. See Supplementary Methods 240 

for details on producing the Test case δ18Oc record and SI3 for the R script used to generate the data.  241 
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Data is imported through the data_import function, which takes a comma-separated text file (CSV) with 242 

the input data. Data files need to contain columns containing sampling distance (D, in µm) and δ18Oc 243 

data (in ‰VPDB), a column marking years in the record (yearmarkers) and two optional columns 244 

containing uncertainties on sampling distance (σ(D), one standard deviation, in µm) and δ18Oc (σ(δ18Oc), 245 

one standard deviation, in ‰) respectively (see example in SI2 and Figure 3). The function uses the 246 

year markers (third column) as guidelines for defining the minimum length of the model windows to 247 

ensure that all windows contain at least one year of growth. Window sizes are defined to contain at least 248 

two year markers (see Fig. 2). By default, consecutive windows are shifted by one datapoint, yielding a 249 

total number of windows equal to the sample size minus the length of the last window. While year 250 

markers are required for ShellChron to run (otherwise no windows can be defined), the result of the 251 

model does not otherwise depend on user-provided year markers, instead basing the age result purely 252 

on simulations of the δ18Oc data. 253 

  254 
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 255 

Figure 3: Schematic overview of the structure of the result array in which ShellChron stores the raw 256 

results of each model window. Data is stored in three dimensions: The sample number (rows in the 257 

figure), the window number (columns in the figure) and the number of modelled parameters 258 

(represented by the stacked table “sheets” in the figure). Note that the first 5 columns of each “sheet” 259 

represent the user-provided input data (see example in SI2), and that the model result data starts from 260 

column 6. The window length is determined by the user-provided indication of year transitions (column 261 

3). Rows of dots in the figure are placeholders for (input or result) values. Shading of these dots in the 262 

window columns indicate differential weighingweighting of modelled values in function of their location 263 

relative to the sliding window. The horizontal box shows how these weighingweighting factors within 264 

each sample window (in vertical direction) result in weighingweighting of different estimates of 265 

modelled parameters for the same data point (in horizontal direction). Shading of input data and 266 

window number towards the bottom and right edge of the figure, respectively, indicates that the 267 
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number of input values (and thus simulation windows) is only limited to the length of the input table 268 

and may therefore continue indefinitely (at the expense of longer computation times, see Fig. 8 in 269 

Model performance).  270 
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The core of the model consists of simulations of overlapping subsamples (windows) of the sampling 271 

distance and δ18Oc data described by the run_model function (see Fig. 1 and 3). Data and window sizes 272 

are passed from data_import onto run_model along with user-provided parameters (e.g. δ18Ow 273 

information; see Fig. 1). run_model loops through the data windows and calls the growth_model 274 

function, which fits a modelled δ18Oc vs. distance curve through the data using the SCEUA optimization 275 

algorithm (see Duan et al., 1992; see example in Fig 4). The simulated δ18Oc curve is produced through 276 

a combination of a temperature sinusoid (temperature_curve function; see equation 4, Fig. 4A and Fig. 277 

S1) and a skewed growth rate sinusoid (growth_rate_curve; see equation 5, Fig. 4B and Fig. S2), with 278 

temperature data converted to δ18Oc data through the d18O_model function (equation 1 and 2; Fig. 279 

4A). 280 

  281 
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 282 

Figure 4: Showing the steps taken to simulate δ18Oc data in the run_model() function on the Test case. 283 

A) Temperature sinusoid used to approximate δ18Oc data in the first modelling window (see D), produced 284 

using a combination of temperature_curve and d18O_model functions. Symbols indicate the positions 285 

of δ18Oc samples on the temperature curve, with estimated δ18Oc values shown on the secondary axis 286 

(right). B) Skewed growth rate sinusoid fit to the δ18Oc data using the growth_rate_curve function. Note 287 

the shift towards steeper growth rate increase around the 300th model day (autumn season in this 288 

example). See Fig. S2 for a detailed description of the growth rate sinusoid. C) The modelled age-289 

distance relationship for this window after fitting δ18Oc data, resulting from aligning the estimated age of 290 

samples (x-axes on A) with the distance in sampling direction (x-axis in D) using the cumulative growth 291 

rate function (B). D) δ18Oc profile of the Test case (green) with the δ18Oc curve of the first modelling 292 

window (red), which results from the combination of temperature (A) and growth rate (B) sinusoids, 293 

plotted on top (growth_model function). E) Result after simulating the full δ18Oc profile of the Test case 294 

(green) using run_model, with the δ18Oc curves of individual modelling windows shown in red.  295 
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By default, starting values for the parameters describing temperature and growth rate curves are 296 

obtained by estimating the annual period (P) through a spectral density estimation and applying a 297 

linearized sinusoidal regression through the δ18Oc data (sinreg function; see equation 9). It is possible 298 

to skip this sinusoidal modelling step through the “sinfit” parameter in the run_model function, in which 299 

case the starting value for the annual period is set equal to the width of the model window. In addition, 300 

growth_model takes a series of parameters describing the method for SCEUA optimization (see Duan 301 

et al., 1992; Judd et al., 2018) and the upper and lower bounds for parameters describing temperature 302 

and growth rate curves (see SI4). Parameters for the SCEUA algorithm (iniflg, ngs, maxn, kstop, pcento 303 

and peps) in the run_model function may be modified by the user to reach more desirable optimization 304 

outcomes. The effect of changing the SCEUA parameters on the model result for the Test case is 305 

illustrated in section 4.1 (see Fig. 5). If uncertainties on sampling distance and δ18Oc data are provided, 306 

growth_model calls the mc_err_orth function to propagate these errors through the model result (see 307 

equation 6 and Fig S3). 308 

𝛿ଵ଼𝑂௖[‰𝑉𝑃𝐷𝐵] = 𝐼 +
𝐴

2
sin ቌ
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𝑃
4ቁ

𝑃
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𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑 𝑎𝑠: 𝛿ଵ଼𝑂௖[‰𝑉𝑃𝐷𝐵] = 𝑎 + 𝑏 sin ൬
2𝜋

𝑃
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𝑏
𝐴ቁ

2𝜋
ቍ (𝟗) 311 

The run_model function returns an array listing day of the year (1–365), temperature, δ18Oc, growth rate 312 

and (optionally) their uncertainty standard deviations as propagated from uncertainties on the input data 313 

(“result array”; see Fig. 3 and SI5). Note that the default length of the year (Tper and Gper) is set at 365 314 

days, but that these parameters can be modified by the user in run_model. In addition, a matrix 315 

containing the optimized parameters of temperature and growth rate curves is provided, yielding 316 

information about the evolution of mean values, phases, amplitudes, and skewness of seasonality in 317 

temperature and growth rate along the record (“parameter matrix”, see Fig. 1 and SI6). To construct an 318 

age model for the entire record, the modelled timing of growth data, expressed as day relative to the 319 

365-day year, is converted into a cumulative time series listing the number of days relative to the start 320 

of the first year represented in the record (rather than relative to the start of the year in which the 321 
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datapoint is found). This requires year transitions (transitions from day 365 to day 1) to be recognized 322 

in all the model results. The cumulative_day function achieves this by aggregating information about 323 

places where the beginning and end of the year is recorded in individual window simulations and 324 

applying a peak identification algorithm (peakid function) to find places in the record where year 325 

transitions occur (see Supplementary Methods). Results of the timing of growth for each sample (in 326 

day of the year) are converted to a cumulative time scale using their positions relative to these 327 

recognized year transitions (Supplementary Methods). 328 

In a final step (described by the export_results function), the results from overlapping individual 329 

modelling windows are combined to obtain mean values and 95% confidence envelopes of the result 330 

variables (age, δ18Oc, δ18Oc-based temperatures and growth rates) for each sample in the input data. If 331 

uncertainties on the input variables were provided, these are combined with uncertainties on the 332 

modelling result calculated from results of the same datapoint on overlapping data windows by pooling 333 

the variance of the uncertainties (equation 10). Throughout this merging of data from overlapping 334 

windows, results from datapoints on the edge of windows are given less weight than those from 335 

datapoints near the center of a window (see equation 7 and Fig. S4). This weighingweighting procedure 336 

corrects for the fact that datapoints near the edge of a window are more susceptible to small changes 337 

in the model parameters and are therefore less reliable than results in the center of the window. Finally, 338 

summaries of the simulation results and the model parameters including their confidence intervals are 339 

exported as comma-separated (CSV) files. In addition, export_results supports optional exports of 340 

figures displaying the model results and files containing raw data of all individual model windows 341 

(equivalent to “sheets” of the result array, see Fig. 3 and SI5). 342 

𝑉𝐴𝑅௣௢௢௟௘ௗ =
∑ ((ே೔ିଵ)∗௏஺ோ೔∗௪೔)೔

∑ (ே೔)೔ ି௡
 (10) 343 

in which w = weight of the individual reconstructions, N is the sample size and n is the number of 344 

reconstructions (indexed by i) that is combined 345 

  346 
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4. Model performance 347 

The performance of ShellChron was first tested on three virtual datasets: 348 

1. The short Test case used to illustrate the model steps above (see Fig. 2 and 4; SI7) 349 

2. A δ18Oc record constructed from a simulated temperature sinusoid with added stochastic noise 350 

(Case 1; SI8) 351 

3. A record based on a real known high-resolution sea surface temperature and salinity record 352 

measured on the coast of Texel island in the tidal basin of the Wadden Sea (North Netherlands; 353 

Texel, see details in SI9 and de Winter et al., 2021a and Supplementary Methods). 354 

Firstly, the effect of varying parameters in the SCEUA algorithm is tested on the Test Case (Fig. 5). 355 

Then, full model runs on Case 1 and Texel are evaluated in terms of model performance (Fig. 6). 356 

In addition to the three test cases, three modern carbonate δ18Oc records were internally dated using 357 

ShellChron (see Fig. 7): a tropical stony coral (Porites lutea; hereafter: coral) from the Pandora 358 

Reef (Great barrier Reef, NE Australia; Gagan et al., 1993; see SI10), a Pacific oyster shell 359 

(Crassostrea gigas; hereafter: oyster) from List Basin in Denmark (Ullmann et al., 2010; see SI10) 360 

and a temperate zone speleothem from Han-sur-Lesse cave (Belgium; hereafter: speleothem; see 361 

Vansteenberge et al., 2019; see SI10). Finally, ShellChron’s performance in terms of computation 362 

time and accuracy is compared to that of the most comprehensive pre-existing δ18Oc-based age 363 

model (GRATAISS model by Judd et all., 2018) on simulated temperature sinusoids of various 364 

length and sampling resolutions to which stochastic noise was added (sensu Case 1; de Winter et 365 

al., 2021a; see Fig. 8 and SI11). The latter also demonstrates the scalability of ShellChron and its 366 

application on a variety of datasets. Timing comparisons were carried out using a modern laptop 367 

(Dell XPS13–7390; Dell Inc., Round Rock, Tx, USA) with an Intel Core i7 processor (8 MB cache, 368 

4.1 GHz clock speed, 4 cores, Intel Corporation, Santa Clara, CA, USA), 16 GB LPDDR3 RAM and 369 

aan SSD drive running Windows 10. Note that ShellChron was built and tested successfully on Mac 370 

OS, Fedora Linux and Ubuntu Linux as well.371 
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Figure 5: Result of testing ShellChron with various combinations of SCEUA parameters and 373 

sinusoidal regression on the Test case dataset (see Fig. 2). The leftmost plots illustrate performance 374 

of ShellChron under default SCEUA parameters. Plots to the right show various combinations of 375 

parameters that deviate from the default (see labels on top and bottom of plot) A) Fits of the model 376 

δ18Oc curves (red) with the data (black). B) Violin plots showing the distribution of modelled δ18Oc 377 

offset from the data. C) Age-distance plots showing modelled (red) and true known (black) age-depth 378 

relationships for each scenario. D) Violin plots showing the distribution of age offsets from the real 379 

known age-depth relationship. SD = standard deviation, N = number of datapoints, sinres = sinusoidal 380 

regression, maxn, ngs, kstop, peps and pcento are SCEUA parameters (see Duan et al., 1992 and 381 

explanation in section 4.1). Data on test results is provided in SI11. 382 

4.1 Testing model parameters 383 

Testing different combinations of modelling parameters (Fig. 5) shows that, while the results of 384 

ShellChron can improve beyond the default SCEUA parameters and sinusoidal regression, care must 385 

be taken to evaluate the effect of changing modelling parameters on both the δ18Oc fit and the age-386 

distance relationship. Comparative testing on the Test case (Fig. 5) shows that sinusoidal regression 387 

has a negligible influence on the success of ShellChron fitting the δ18Oc curve (Fig. 5A-B; standard 388 

deviation on δ18Oc is 0.49‰ with sinusoidal regression and 0.50‰ without). However, ShellChron with 389 

sinusoidal regression performs better in terms of age approximation, with a mean age offset of only 7 390 

± 32 days with sinusoidal regression against 32 ± 35 days without (Fig. 5C-D). Age-distance plots 391 

(Fig. 5C) show that the model without sinusoidal fit shows a phase offset with respect to the real 392 

known age-depth distance relationship, resulting in overestimation of the age for much of the record. 393 

Sinusoidal regression probably results in better initial parameter estimation, which helps to avoid 394 

phase offsets like the one shown in Fig. 5. For the remainder of the tests, sinusoidal regression was 395 

usedenabled. 396 

The remainder of the tests show that the main bottleneck towards better δ18Oc fit optimization is the 397 

maximum number of function evaluations allowed within a single modelling cycle (maxn; see Fig. 5). 398 

Increasing the other SCEUA parameters, such as the number of complexes in the SCEUA routine 399 

(ngs), the number of shuffling loops that should show a significant change before convergence (kstop) 400 

and the thresholds for significant change in parameter value (peps) or result value (pcento) does not 401 
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improve the result if the SCEUA algorithm is not allowed more processing time (maxn). In fact, Fig. 5 402 

shows that increasing these SCEUA parameters can actually result in a worse deterioration of the 403 

δ18Oc fit and higher uncertainty on the age result (Fig. 5B and D). A fivefold increase in maxn (maxn = 404 

50000) almost halves the standard deviation on δ18Oc residuals (from 0.49‰ to 0.29‰; Fig. 5B) and 405 

decreases the standard deviation on the age model offset from 32 to 26 days (Fig. 5D). A combination 406 

of a tenfold increase in function evaluations with an equal multiplication of the number of complexes in 407 

the SCEUA routine (ngs; see details in Duan et al., 1992) results in a further reduction of standard 408 

deviations on δ18Oc (0.23‰) and age result (12 days). These tests show that returns in terms of model 409 

precision quickly diminish with increasing processing time. Since the total modelling time linearly 410 

scales with the number of function evaluations, this tradeoff towards lower standard deviation on the 411 

modelling result is costly. Since tThese function evaluations are repeated in each modelling window, 412 

so the cost in terms of extra processing time can increase quickly, especially for larger δ18Oc datasets. 413 

In addition, in this situation the mean model offset (accuracy of the model; 7 days, 28 days and 14 414 

days for maxn of 1.0 * 104, 5.0 * 104 and 1.0 * 105 respectively; Fig. 5D) does not significantly improve 415 

with increasing number of function evaluations. Based on these results, the default maxn parameter in 416 

ShellChron was set to 104 to compromise between keeping modelling times short while retaining high 417 

model accuracy. However, specific datasets may benefit from an increase in modeling time, so case-418 

by-case assessment of the optimal SCEUA parameters is recommended. A detailed evaluation of the 419 

total modelling time in a typical δ18Oc dataset is discussed in section 4.4. 420 

  421 



23 
 

 422 

Figure 6: Result of applying ShellChron on two virtual datasets: Case 1 (top, see SI8) and Texel, 423 

(bottom, see SI9). Leftmost panels (A and D) show the model fit of individual sample windows (red) on 424 

the data (black, including horizontal and vertical error bars), with in the top left Spearman’s correlation 425 

coefficients (ρ) and standard deviations on the δ18Oc estimate (σest). Middle panels (B and E) show the 426 

resulting age model (red, including shaded 95% confidence level) compared with the realknown age-427 

distance relationship of both records. Histograms in the top left of age-distance plots show the offset 428 

between modelled and measured δ18Oc (as visualized in panels A and D) with standard deviations of 429 

the δ18Oc offset (σoff) and offset averages (µ). Histograms in the bottom right of age-distance plots show 430 

the offset between modelled and actual known ages (in days) of each datapoint, including standard 431 

deviations on the age accuracy (σacc) and mean age offset (µ). Rightmost panels (C and F) highlight age 432 

offsets binned in 12 monthly time bins based on their position relative to the annual cycle to illustrate 433 

how accuracy varies over the seasons. Grey envelopes indicate 95% confidence levels on the monthly 434 

age offset within these monthly time bins. The horizontal red dashed line indicates no offset (modelled 435 

age is equal to the known age of the sample). 436 

  437 
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4.2 Artificial carbonate records 438 

Results of running ShellChron on the Test case (Fig. 4), Case 1 and Texel datasets (Fig. 6) show that 439 

modelled δ18Oc records in individual windows closely match the data. On the level of individual windows, 440 

inter-annual growth rate variability is more difficult to model than the temperature sinusoid, especially 441 

when sampling resolution is limited and at the beginning and end of the record (Fig. 4B). However, after 442 

overlapping multiple windows, the accuracy of ShellChron improves significantly (Fig. 4E). Note that in 443 

Fig. 4A-C, the length of the first model window (difference in age between first and 11th datapoint) is 444 

less than 365 days, because the 12th datapoint, which occurs exactly 1 year after the first point, is not 445 

part of the window. A summary of ShellChron performance statistics is given in Table 2. In all virtual 446 

datasets, δ18Oc estimates are equally distributed above and below the δ18Oc data (∆ଵ଼O௖
തതതതതതതത = 0.0 ‰; 447 

Spearman’s ρ of 0.94, 0.98 and 0.92 for Test case, Case 1 and Texel datasets respectively). Age 448 

offsets vary slightly over the seasons, but the difference between monthly time bins is not statistically 449 

significant on a 95% confidence level (Fig. 6C and F; see also SI12). The fact that seasonal bias in age 450 

offset is absent in the Texel dataset, which is skewed towards growth in the winter season and includes 451 

relatively strong seasonal variability in δ18Ow, shows that ShellChron is not sensitive to such subtle 452 

(though common) variability in growth rate or δ18Ow. In general, ShellChron’s mean age assignment is 453 

accurate on a monthly scale (age offsets of 4 ± 12 d and +30 ± 24 d for Case 1 and Texel datasets 454 

respectively). However, age results in individual months do sometimes show significant offsets from the 455 

known value (e.g. Fig. 6C and 6F). This is most notable in Case 1, where accuracy of the age model 456 

decreases near the extreme values of the δ18Oc curve (Fig. 6B-C). This occurs because in these places 457 

the model is most sensitive to stochastic noise (simulated uncertainty) on the δ18Oc value. A small 458 

random change in the δ18Oc value at the minima or maxima of the δ18Oc curve thus results in a large 459 

change in the model fit of the δ18Oc curve, resulting in a seasonally non-uniform decrease in the accuracy 460 

of the model, as is evident from the skewed ∆18Oc distribution in Figure 6B-C. The sampling resolution 461 

in the Texel data decreases near the end of the record (see SI9), but this does not result in reduced age 462 

model accuracy. If anything, the age of Texel samples is better approximated near the end of the record, 463 

and age offsets are larger in the central part of the record (~30-50 mm; Fig. 6E). The lower accuracy in 464 

the third to fifth year of the Texel record is likely a result of the sub-annual variability in the record that 465 

is superimposed on the seasonal cycle. The lower sampling resolution later in the record mutes this 466 

variability and illustrates thatThis variability is less pronounced near the end of the record, partly because 467 
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this variability is not resolved at lower sampling resolution, which illustrates that higher sampling 468 

resolutions do not necessarily result in better age models. The constant offset of the modelled age of 469 

the Texel sample from the known age is a result of the way the model result was aligned to start at zero 470 

for comparison with the known age (Fig. 6F). This was done by adding the offset from zero of the 471 

modelled age of the first datapoint in the record to the entire record, thereby defining an arbitrary 472 

reference point which is sensitive to the uncertainty on the age of the first sample (see also Oyster and 473 

Speleothem results in Fig. 7B-C). Note that this alignment issue does not play a role in fossil data, 474 

where model results can be aligned to growth marks in the carbonate (e.g. shell growth breaks or 475 

laminae) and that it does not affect the seasonal alignment of proxy binned into monthly sample bins. 476 

  477 
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Table 2: Overview of datasets and model results 
 

Dataset Resolution Length 
δ18Oc seasonal 

range 
Complications 

Test case 7-12 yr-1 5 yr ~5‰ 
Variable δ18Ow, 

Variable GR 
Case 1 50 yr-1 6 yr ~4.3‰ None 

Texel 26–45 yr-1 10 yr ~4‰ 
Variable δ18Ow, 

Variable GR 
Coral 30–49 yr-1 6 yr ~1.7‰ Variable GR 

Oyster 23–45 yr-1 3.5 yr ~3‰ 
Variable δ18Ow, 

Variable GR 

Speleothem 4–13 yr-1 14 yr ~0.5‰ 

Variable δ18Ow, 
Variable GR, 

Non-sinusoidal 
δ18Oc-forcing 

     

Dataset 
δ18Oc offset 

(±1σ) 
Age offset 

(±1σ) 
Spearman’s ρ Observations 

Test case 0.0 ± 0.49 ‰ 7 ± 32 d 0.94 
Slightly out of 

phase 
Case 1 0.0 ± 0.27‰ 4 ± 12 d 0.98 - 
Texel 0.0 ± 0.41‰ 30 ± 24 d 0.92 - 
Coral 0.0 ± 0.14‰ 12 ± 28 d 0.97 - 

Oyster 0.0 ± 0.39‰ -15 ± 43 d 0.91 
Reduced 

accuracy near 
growth stops 

Speleothem 0.0 ± 0.08‰ -114 ± 59 d 0.92 

Susceptible to 
phase offsets; 

Only reliable on 
inter-annual scale 

  478 
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 479 

Figure 7: Overview of model results for the three test datasets from real carbonate archives: (A) coral, 480 

(B) oyster and (C) speleothem. Lower panels indicate the fit of individual model windows (in red) with 481 

the data (in black) while upper panels show the age model (in red) compared to the “true” age-distance 482 

relationship with histograms showing model accuracy (in days, top left) and model fit (δ18Oc offset in ‰, 483 

bottom right). Color scheme follows Figure 3. Note that the true age-distance relationship is not known 484 

for these natural records, but is estimated using known growth seasonality (coral), comparison with in 485 

situ temperature and salinity measurements (oyster) or simply by interpolating between annual growth 486 

lines (speleothem). See Supplementary Methods for details and SI10 for raw data. 487 

  488 
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4.3 Natural carbonate records 489 

Results of modelling natural carbonate records (Fig. 7; Table 2; see also SI10) illustrate the 490 

effectiveness of ShellChron on different various types of records. Performance clearly depends on the 491 

resolution of the record and the regularity of seasonal variability contained within. As in the virtual 492 

datasets, modelled δ18Oc successfully mimic δ18Oc data in all records (∆ଵ଼O௖
തതതതതതതത = 0.0; Spearman’s ρ of 493 

0.97, 0.91 and 0.92 for coral, oyster and speleothem respectively). No consistent seasonal bias is 494 

observed in ∆18Oc and model accuracy (p > 0.05; see Table 2 and SI12), despite significant (seasonal 495 

and inter-annual) variability contained in the records (especially in oyster and speleothem records). 496 

When comparing the accuracy of these records, it must be noted that the “realknown” age of the samples 497 

in these natural carbonates is not known. Model results are instead compared with age models 498 

constructed using conventional techniques such as matching δ18Oc profiles with local temperature 499 

and/or δ18Ow variability (oyster and coral records) or even merely by linear interpolation between annual 500 

markers in the record (speleothem record; see Supplementary Methods). Despite this caveat, testing 501 

results clearly show that the least complicated record (coral; Fig. 7A), characterized by minimal 502 

variability in δ18Ow and growth rate and a high sampling density, has the best overall model result (∆18Oc 503 

= 0.0 ± 0.14 compared to a ~1.7‰ seasonal range; ρ = 0.97; ∆t = 12 ± 28 d; see Table 2). The oyster 504 

record (Fig. 7B), which has strong seasonal variability in growth rate and δ18Osw also yields a very 505 

reliable age model (∆18Oc = 0.0 ± 0.39 compared to a ~3‰ seasonal range; ρ = 0.91; ∆t = -15 ± 43 d; 506 

see Table 2). On closer inspection, the age within the oyster record is clearly more difficult to model 507 

than within the coral, due in part to the higher variability of δ18Oc values superimposed on the seasonal 508 

cycle, the sharp growth cessations in the winters (high δ18Oc values) and the variability in sampling 509 

resolution within the record. The latter causes the first growth year of the oyster record to be less 510 

accurately modelled (Fig. 7B) while the variability in δ18Oc causes the edges of some modelling windows 511 

to predict steep increases or decreases in δ18Oc (vertical “offshoots” in modelled δ18Oc; Fig. 7B). Note 512 

that the low weighting of the edges of modelling windows combined with the high overall sampling 513 

resolution in the oyster record minimizes the effect of these “offshoots” on the accuracy of the model. 514 

The speleothem record (Fig. 7C), plagued by lower sampling resolution, large inter-annual δ18Oc 515 

variability, restricted δ18Oc seasonality and a lack of clearly seasonal δ18Oc forcing, yields the least 516 

reliable model result (∆18Oc = 0.0 ± 0.08‰ compared to a ~0.5‰ seasonal range; ρ = 0.92; ∆t = -114 ± 517 

59 d; see Table 2). Note that the accuracy figure provided for the speleothem record is based on 518 
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comparison with an age model based relying on linear interpolation between annual growth lines. This 519 

assumption of the age-distance relationship is almost certainly erroneous, since drip water supply to 520 

(and therefore growth in) speleothems has been shown to vary seasonally (e.g. Baldini et al., 2008), 521 

including at the very site the speleothem data derives from (Han-sur-Lesse cave, Belgium; Van 522 

Rampelbergh et al., 2014; Vansteenberge et al., 2019). However, since no reliable information is 523 

available on sub-annual variability in growth rates in this record, ShellChron results cannot be validated 524 

at the sub-annual scale in this case. The high age offset (-114 days) in the speleothem model result is 525 

a consequence of the assumption in ShellChron that the highest temperature (lowest δ18Oc value) 526 

recorded in each growth year happens halfway through the year (day 183) and the alignment of the 527 

modelled age with the “known” age for this record (see discussion of Texel results in 4.2). While theis 528 

assumption about the phase of the temperature sinusoid is approximately valid for temperature-529 

controlled δ18Oc records (see Fig. 6 and 7), it is problematic for speleothems, in which δ18Oc is often 530 

dominated by the δ18Ow of drip water, which may not be lowest during the summer season (see Van 531 

Rampelbergh et al., 2014). The timing of the δ18Oc minimum can be set in the run_model function using 532 

the t_maxtemp parameter. Note that changing t_maxtemp does not affect relative dating within the δ18Oc 533 

record, but, if set correctly, results in a phase shift of the age model result into better alignment with the 534 

seasonal cycle. 535 

  536 
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 537 

Figure 8: Overview of the result of timing ShellChron and the GRATAISS modelJudd et al. (2018) model 538 

on the same datasets (A), comparing the accuracies of both models (B) and comparing the accuracy 539 

as calculated by ShellChron with the realknown offset in the age model (C). In (A) and (B), low resolution 540 

datasets are plotted in dark blue (ShellChron) and dark green (GRATAISS), while high-resolution 541 

datasets plot in light blue (ShellChron) and light green (GRATAISS). Solid lines represent ShellChron 542 

and dashed lines show performance of the GRATAISS modelJudd et al. model. Green dotted lines in 543 

(B) show the accuracies of the GRATAISS model on a year-by-year basis (without accumulating error 544 

due to linking consecutive years) The black box in (A) and (B) highlights the dataset used in (C). In (C), 545 

dark blue lines, bars and boxplot indicate true offset of the model from the actual sample age, while light 546 
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blue lines, bars and boxplot show the accuracy of the model as calculated from the propagated errors 547 

on model and input data. Raw data is provided in SI11.  548 
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4.4 Modeling time 549 

The performance of both ShellChron and GRATAISSthe Judd et al. model in terms of computation time 550 

linearly increases with the length of the record (in years; see Fig. 8, Fig. S5 and SI11). Computation 551 

time of ShellChron on the high-resolution test dataset (50 samples/yr) increases very steeply with the 552 

length of the record in years (~20 minutes per additional year), while the low-resolution dataset (16 553 

samples/yr) shows a slower increase (~3 minutes per additional year; Fig. 5A). This contrasts with 554 

GRATAISSthe model from Judd et al., which requires only slightly more time on high-resolution data 555 

than on low-resolution datasets (~7 and ~10 minutes per additional year, respectively). The difference 556 

is explained by the sliding window approach applied in ShellChron, which requires more SCEUA 557 

optimization runs per year in high-resolution datasets than in low resolution datasets. When plotted 558 

against the number of calculation windows or samples in the dataset, running ShellChron on low-559 

resolution and high-resolution datasets require a similar increase in computation time (~0.4 minutes, or 560 

24 seconds, per additional sample/window; Fig. S5) under default SCEUA conditions. ShellChron thus 561 

outcompetes GRATAISSthe Judd et al. model in terms of computation time in datasets with fewer than 562 

~20 samples per year, even though more SCEUA optimizations are required. 563 

The A key computational improvement in ShellChron is the application of a sinusoidal regression before 564 

each SCEUA optimization to estimate the initial values of the modelled parameters (sinreg function; see 565 

equation 9 and Fig. 1 in Model description). Since carbonate archives are rarely sampled for stable 566 

isotope measurements above 20 samples per year (e.g. Goodwin et al., 2003; Schöne et al., 2005; 567 

Lough, 2010 and references therein), the disadvantage of a steep computational increase for very high-568 

resolution archives is, in practice, a favorable tradeoff for the added control on model and measurement 569 

uncertainty and smoother inter-year transitions ShellChron offers in comparison to previous models. 570 

The similarity of ShellChron’s accuracy in the low- and high-resolution datasets demonstrates its 571 

robustness across datasets with various sampling resolutions (see also Table 2 and Fig. 7). 572 

Longer computation times in the Judd et al. modelGRATAISS result in slightly better accuracy on the 573 

modelled age compared to ShellChron on the scale of individual datapoints in low-resolution datasets 574 

(see Fig. 8B). However, this advantage is rapidly lost when records containing multiple years are 575 

considered (Fig. 8B). The advantage of the ShellChron model is its application of overlapping model 576 

windows, which smooth out the transitions between modelled years and eliminate accumulations of 577 
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model inaccuracies when records grow longer. In addition, contrary to previous models, ShellChron 578 

does not rely on user-defined year boundaries, which may introduce mismatches between subsequent 579 

years to be propagated through the age model, even in ideal datasets such as Case 1 (Fig. 8B; see 580 

also Supplementary Methods). By comparison, the overall accuracy of ShellChron is much more stable 581 

within and between datasets of different length, while rarely introducing offsets of more than a month. It 582 

must be noted here that the cumulative, multi-year age uncertainty in the GRATAISS model (Fig. 8B) 583 

was calculated by combining the results of consecutive growth years in the record, which the GRATAISS 584 

model models separately, while avoiding age inversions and retaining the seasonal phase of the model 585 

results. This procedure causes gaps in time to be introduced in the cumulative age modelled by 586 

GRATAISS whenever the results of two consecutive, individually modelled growth years do not align, 587 

explaining the sharp increases in age uncertainty of the GRATAISS model result (Fig. 8B). These 588 

cumulative uncertainties are therefore not theoretically part of the model result (see year-by-year 589 

uncertainty in Fig. 8B) but are a necessary consequence of the way GRATAISS approximates growth 590 

years separately. If only within-year inaccuracies are compared, GRATAISS results are roughly equally 591 

accurate as ShellChron results (see dotted lines in Fig. 8B). 592 

 More importantly, wWhere ShellChron takes into accountconsiders the uncertainty on input parameters, 593 

this uncertainty is not considered in most previous models (the MoGroFun model of Goodwin et al., 594 

2003 being the exception). The added uncertainty caused by input error is higher in less regular 595 

(sinusoidal) δ18Oc records and in records with lower sampling resolution, causing the uncertainties on 596 

the Judd et al., modelGRATAISS reported here for the ideal, high-resolution Case 1 dataset to be over-597 

optimistic. If ShellChron’s model accuracy is insufficient, its modular character allows the user to run the 598 

SCEUA algorithm to within more precise optimization criteria by changing the model parameters (see 599 

section 4.1). However, this adaptation comes at a cost of longer computation times. 600 

The estimated uncertainty envelope (95% confidence interval) on the modelled age calculated by the 601 

error propagation algorithm in ShellChron (4.7 ± 6.5 d) on average slightly underestimates the actual 602 

offset between modelled age and realknown age in the Case 1 record (9.3 ± 13.1 d; Fig. 8C). The 603 

foremost difference between modelled and realknown uncertainty on the result is that the modelled 604 

uncertainty yields a more smoothed record of uncertainty compared to the record of actual offset of the 605 

model (Fig. 8C). ShellChron’s uncertainty calculations are partly based on comparing overlapping 606 

model windows, thereby smoothing out short term variations in model offset. The uncertainty of the 607 
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model result (both realknown and modelled) shows regular variability with a period of half a year (Fig. 608 

8C). Comparing this variability with the phase of the record (of which 6 years are plotted in Fig. 6A) 609 

reveals that the uncertainty of the model is positively negatively correlated to the slope of the δ18Oc 610 

record. This is expected, because in parts of the record with steep δ18Oc-distance slopesextreme 611 

values in the δ18Oc curve, the local age model result is more sensitive to small changes in the 612 

sampling distance, caused either by uncertainty in the model fit or propagated uncertainty on the 613 

sampling distance defined by the user (see discussion in section 4.2). The slight seasonal variability in 614 

model accuracy in Case 1 is also shown in Fig. 6C and comprises a difference in uncertainty of up to 615 

10 days depending on the time of year in which the datapoint is found.  616 
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5. Applications and discussion 617 

Its new features compared to previous age model routines make ShellChron a versatile package for 618 

creating age models in a range of high-resolution paleoclimate records. The discussion above 619 

demonstrates that ShellChron can reconstruct the age of individual δ18Oc samples within monthly 620 

precision. This level of precision is sufficient for accurate reconstructions of seasonality, defined as the 621 

difference between warmest and coldest month (following USGS definitions; O’Donnell and Ignizio, 622 

2012). While an improvement on this uncertainty could be of potential interest for ultra-high-resolution 623 

paleoclimate studies (e.g. sub-daily variability, see Sano et al., 2012; Yan et al., 2020; de Winter et al., 624 

2020a), the increase in computation time and the sampling resolution such detailed age models demand 625 

render age modelling from δ18Oc records inefficient for this purpose (see sections 4.1 and 4.4). The 626 

sampling resolution for high-resolution carbonate δ18Oc records in the literature does not typically exceed 627 

100 µm due to limitations in sampling acquisition (e.g. micromilling), which even in fast-growing archives 628 

limits the resolution of these records to several days at best (see Gagan et al., 1994; Van Rampelbergh 629 

et al., 2014; de Winter et al., 2020c). While in some archives, high-resolution (< 100 µm) trace element 630 

records could be used to capture variability beyond this limit, the monthly age resolution of ShellChron 631 

is sufficient for most typical high-resolution paleoclimate studies. 632 

The ability to produce uninterrupted age models from multi-year records while considering both 633 

variability in δ18Ow and uncertainties on input parameters represent major advantages of ShellChron 634 

over previous age modelling solutions. As a result, ShellChron can be applied on a wide range of 635 

carbonate archives (see Fig. 7 and Table 2). However, testing ShellChron on different records highlights 636 

the limitations of the model inherited through its underlying assumptions. The most accurate model 637 

results are obtained on records with minimal growth rate and δ18Ow variability and a nearly sinusoidal 638 

δ18Oc record, such as tropical coral records (Fig. 7A; Gagan et al., 1994). In records where large 639 

seasonal variability in growth rate and δ18Ow does occur, such as in intertidal oyster shells, ShellChron’s 640 

accuracy slightly decreases, especially near growth hiatuses in the record (see Fig. 7B; Ullmann et al., 641 

2010). A worst-case scenario is represented by the speleothem record, which not only suffers from 642 

much slower and more unpredictable growth rates and contains a comparatively small annual range in 643 

δ18Oc, but it responds to δ18Ow variability in drip water in the cave rather than temperature seasonality, 644 

one of the assumptions underlying the current version of ShellChron (Fig. 7C; Vansteenberghe et al., 645 
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2019). Despite these problems, ShellChron yields an age model that is remarkably accurate on an 646 

annual timescale, which is as good as, or better than, the best age model that can be obtained by 647 

applying layer counting on the most clearly laminated parts of the speleothem (e.g. Verheyden et al., 648 

2006). It must be noted that, while the close fit between modelled δ18Oc and speleothem δ18Oc data (ρ 649 

= 0.92; σ = 0.08‰) is encouraging, a major reason for the model’s success is the fact that the Proserpine 650 

speleothem used in this example is known to receive significantly seasonal (though not sinusoidal) drip 651 

water volumes and concentrations (Van Rampelbergh et al., 2014). Variability in drip water properties 652 

and cave temperatures are known to differ strongly between cave systems (Fairchild et al., 2006; 653 

Lachniet, 2009). For ShellChron (or any other δ18Oc-based age model) to work reliably in speleothem 654 

records, consistent seasonal variability in either temperature or δ18Ow should be demonstrated to 655 

significantly influence the δ18Oc variability in the record. In practice, these constraints make ShellChron 656 

applicable in speleothems for which the cave environment varies in response to the seasonal cycle, 657 

such as localities overlain by thin epikarst, well-ventilated caves or speleothems situated close to the 658 

cave entrance (Verheyden et al., 2006; Feng et al., 2013; Baker et al., 2021). 659 

ShellChron’s ability to model multi-year records with smooth transitions between the years does not 660 

compromise the accuracy of its age determination on the seasonal scale (e.g. Fig. 6 and 7). Many 661 

paleoclimatology studies investigating the seasonal cycle rely on stacking of seasonal variability relative 662 

to the annual cycle, thereby combining seasonal information from multiple years to obtain a precise 663 

reconstruction of seasonal variability in the past (e.g. de Winter et al., 2018; Judd et al., 2019; Tierney 664 

et al., 2020). While this can be achieved using age models of individual years (e.g. Judd et al., 2018), 665 

seasonally resolved archives dated using ShellChron can also be stacked along a common seasonal 666 

axis while retaining information about the multi-annual record allowing, for example, comparison 667 

between consecutive years dated using the same age model including uncertainty on the age 668 

determination. 669 

The difficulty of applying age model routines on speleothem records highlights one of the main 670 

advantages of ShellChron over pre-existing age model routines, namely its modular character. Since 671 

δ18Oc records from some carbonate archives, such as speleothems, cannot be described by the 672 

standard combination of temperature and growth rate sinusoids on which ShellChron is based (in its 673 

current version), the possibility to adapt the “building block” functions used to approximate these δ18Oc 674 
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records (d18O_model, temperature_curve and growth_rate_curve; see Fig. 1) while leaving the core 675 

structure of ShellChron intact greatly augments the versatility of the model. The freedom to adapt the 676 

building blocks used to approximate the δ18Oc record theoretically enables ShellChron to model sub-677 

annual age-distance relationships in any record as long asif the seasonal variability in the variables used 678 

to model the input data are predictable and can be represented by a function. For example, since 679 

speleothem δ18Oc records often depend on variability in the δ18Ow value of the drip water, a function 680 

describing this variability through the year can replace the temperature_curve function to create more 681 

accurate sub-annual age models for speleothems (e.g. Mattey et al., 2008; Lachniet, 2009; Van 682 

Rampelbergh et al., 2014). Similarly, the growth_rate_curve function can be modified in case the default 683 

skewed sinusoid does not accurately describe the extension rate of the record under study, and the 684 

d18O_model function can be adapted to feature the most fitting δ18Oc-temperature or δ18Oc-δ18Ow 685 

relationship. Note that the flexibility of this approach is limited by the expression of the annual cycle in 686 

the δ18Oc record. The δ18Oc-based dating approach in ShellChron will therefore have severe more 687 

trouble dating records in which the annual δ18Oc variability is severely dampened, such as speleothems 688 

in deeper cave systems (e.g. Vansteenberge et al., 2016), or in which annual δ18Oc variability is not 689 

sinusoidal, such as tropical records with bimodal temperature or precipitation seasonality (Knoben et 690 

al., 2018). 691 

Flexibility in the definition of “building block” functions used to approximate the input data paves the way 692 

for future application beyond carbonate δ18Oc records. The seasonal variability in δ18O in some ice cores 693 

can be approximated by a stable and unbiased temperature relationship (van Ommen and Morgan, 694 

1997). ShellChron can therefore be modified to date sub-annual samples in these ice core records and 695 

reconstruct seasonal variability in the high latitudes through the QuarternaryQuaternary. Similarly, inter-696 

annual δ18O variability in tree ring records are demonstrated to record variability in precipitation through 697 

the year, and this variability can be modelled to improve sub-annual age models in these records (Xu et 698 

al., 2016). More generally, the field of dendrochemistry has recently developed additional chemical 699 

proxies for seasonality (e.g. trace element concentrations), which can be measured on smaller sample 700 

volumes (and thus greater resolution) to obtain ultra-high-resolution records on which (sub-annual) 701 

dating can be based (e.g. Poussart et al., 2006; Superville et al., 2017). A similar development has taken 702 

place in the study of carbonate bio-archives such as corals and mollusks, of which some show strong, 703 

predictable seasonal variability in trace elements (e.g. Mg/Ca and Sr/Ca ratios) which can be used to 704 
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accurately date these records (de Villiers et al., 1995; Sosdian et al., 2006; Durham et al., 2017; de 705 

Winter et al., 2021b). Minor changes in the “building block” functions using empirical transfer functions 706 

for these trace element records will enable ShellChron to capitalize on these relationships and 707 

reconstruct sub-annual growth rates with improved precision due to the higher precision with which 708 

these proxies can be measured compared to δ18Oc records. Finally, the application of ShellChron for 709 

age model construction is not necessarily limited to the seasonal cycle, as other major cycles in climate 710 

(e.g. tidal, diurnal or Milankovitch cycles) leave similar marks on climate records and can thus be used 711 

as basis for age modelling (e.g. Sano et al., 2012; Huyghe et al., 2019; de Winter et al., 2020a; Sinnesael 712 

et al., 2020). It must be noted that, since ShellChron was developed for modeling based on annual 713 

periodicity, applying it on other timescales would require more thorough adaptation of the model code 714 

than merely adapting the “building block” functions to support additional proxy systems. 715 

While age reconstructions are the main aim of ShellChron, the model also yields information about the 716 

temperature and growth rate parameters used in each simulation window to approximate the local δ18Oc 717 

curve (see parameter matrix in Fig. 1 and SI6). These parameters hold key information about the 718 

response of the archive to seasonal changes in the environment, such as the season of growth, 719 

relationships between growth rate and temperature and the temperature range that is recorded. 720 

Combining these parameters with records of influential environmental variables such as seawater 721 

chlorophyl concentration or local precipitation patterns yields information about the response of the 722 

climate archive to environmental variables, in addition to the climate or environmental change it records. 723 

Study examples include the relationship between growth rate of marine calcifies and phytoplankton 724 

abundance or the correlation between precipitation patterns and chemical variability in speleothems. 725 

While such discussion is beyond the scope of this work, examples of parameter distributions are 726 

provided in SI5, and the application of modelled growth rate parameters in bivalve sclerochronology is 727 

discussed in more detail in Judd et al. (2018). Note that the sliding window approach of ShellChron 728 

produces records of changing temperature and growth rate parameters at the scale of individual 729 

samples (albeit smoothed by the sliding window approach) rather than annually, as in Judd et al. (2018). 730 

 731 

6. Conclusions 732 
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ShellChron offers a novel, open-source solution to the problem of dating carbonate archives for high-733 

resolution paleoclimate reconstruction on a sub-annual scale. Based on critical evaluation of previous 734 

age models, building on their strengths while attempting to eliminate minimize their weaknesses, 735 

ShellChron provides continuous age models based on δ18Oc-profiles in these archives with monthly 736 

accuracy, considering the uncertainties associated with both the model itself and the input data. The 737 

monthly accuracy of the model, as tested on a range of virtual and natural datasets, enables its 738 

application for age determination in studies of seasonal climate and environmental variability. Higher 739 

accuracies can be reached at the cost of longer computation times by adapting the model parameters, 740 

but age determinations far beyond the monthly scale are unlikely to be feasible considering the 741 

limitations on sampling resolution and measurement uncertainties on δ18Oc records. ShellChron’s 742 

computation times on datasets with sampling resolutions typical for the paleoclimatology field (up to 20 743 

samples/yr) remain practical and comparable to previous model solutions, despite adding several 744 

features that improve the versatility and interpretation of model results. Its modular design allows 745 

ShellChron to be adapted to different situations with comparative ease. It thereby functions as a platform 746 

for age-distance modelling on a wide range of climate and environmental archives and is not limited in 747 

its application to the δ18Oc proxy, the carbonate substrate or even to the annual cycle, as long as the 748 

relationship between the proxy and the extension rate of the archive on a given time scale can be 749 

parameterized. Future improvements will capitalize on this variability, expanding ShellChron beyond its 750 

current dependency on the δ18Oc-temperature relationship in carbonates. Members of the high-751 

resolution paleoclimate community are invited to contribute to this effort by adapting the model for their 752 

purpose. 753 

 754 

Code availability 755 

ShellChron is worked out into a fully functioning package for the open-source computational language 756 

R (version 3.5.0 or later; R Core Team, 2020). The most recent full version (v0.4.0) of the ShellChron 757 

passed the code review of the Comprehensive R Archive Network (CRAN) and is freely available for 758 

download as an R package on the CRAN server (see https://CRAN.R-project.org/package=ShellChron). 759 

The CRAN server entry also includes detailed line-by-line documentation of the code and working 760 

examples for every function. In addition, the latest development version of ShellChron is available on 761 
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GitHub (https://github.com/nielsjdewinter/ShellChron). Those interested in adapting ShellChron for their 762 

research purposes are invited to do so there. Code and documentation, together with all supplementary 763 

files belonging to this study, are also available on the open-source online repository Zenodo 764 

(http://doi.org/10.5281/zenodo.4288344). 765 
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